xref: /dflybsd-src/lib/libdmsg/msg_lnk.c (revision f3f3eadbf9de7a55ef1ff8cb23a68641403906ea)
1 /*
2  * Copyright (c) 2012-2014 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@dragonflybsd.org>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 /*
35  * LNK_SPAN PROTOCOL SUPPORT FUNCTIONS - Please see sys/dmsg.h for an
36  * involved explanation of the protocol.
37  */
38 
39 #include "dmsg_local.h"
40 
41 /*
42  * Maximum spanning tree distance.  This has the practical effect of
43  * stopping tail-chasing closed loops when a feeder span is lost.
44  */
45 #define DMSG_SPAN_MAXDIST	16
46 
47 /*
48  * RED-BLACK TREE DEFINITIONS
49  *
50  * We need to track:
51  *
52  * (1) shared fsid's (a cluster).
53  * (2) unique fsid's (a node in a cluster) <--- LNK_SPAN transactions.
54  *
55  * We need to aggegate all active LNK_SPANs, aggregate, and create our own
56  * outgoing LNK_SPAN transactions on each of our connections representing
57  * the aggregated state.
58  *
59  * h2span_conn		- list of iocom connections who wish to receive SPAN
60  *			  propagation from other connections.  Might contain
61  *			  a filter string.  Only iocom's with an open
62  *			  LNK_CONN transactions are applicable for SPAN
63  *			  propagation.
64  *
65  * h2span_relay		- List of links relayed (via SPAN).  Essentially
66  *			  each relay structure represents a LNK_SPAN
67  *			  transaction that we initiated, verses h2span_link
68  *			  which is a LNK_SPAN transaction that we received.
69  *
70  * --
71  *
72  * h2span_cluster	- Organizes the shared fsid's.  One structure for
73  *			  each cluster.
74  *
75  * h2span_node		- Organizes the nodes in a cluster.  One structure
76  *			  for each unique {cluster,node}, aka {fsid, pfs_fsid}.
77  *
78  * h2span_link		- Organizes all incoming and outgoing LNK_SPAN message
79  *			  transactions related to a node.
80  *
81  *			  One h2span_link structure for each incoming LNK_SPAN
82  *			  transaction.  Links selected for propagation back
83  *			  out are also where the outgoing LNK_SPAN messages
84  *			  are indexed into (so we can propagate changes).
85  *
86  *			  The h2span_link's use a red-black tree to sort the
87  *			  distance hop metric for the incoming LNK_SPAN.  We
88  *			  then select the top N for outgoing.  When the
89  *			  topology changes the top N may also change and cause
90  *			  new outgoing LNK_SPAN transactions to be opened
91  *			  and less desireable ones to be closed, causing
92  *			  transactional aborts within the message flow in
93  *			  the process.
94  *
95  * Also note		- All outgoing LNK_SPAN message transactions are also
96  *			  entered into a red-black tree for use by the routing
97  *			  function.  This is handled by msg.c in the state
98  *			  code, not here.
99  */
100 
101 struct h2span_link;
102 struct h2span_relay;
103 TAILQ_HEAD(h2span_conn_queue, h2span_conn);
104 TAILQ_HEAD(h2span_relay_queue, h2span_relay);
105 
106 RB_HEAD(h2span_cluster_tree, h2span_cluster);
107 RB_HEAD(h2span_node_tree, h2span_node);
108 RB_HEAD(h2span_link_tree, h2span_link);
109 RB_HEAD(h2span_relay_tree, h2span_relay);
110 uint32_t DMsgRNSS;
111 
112 /*
113  * Received LNK_CONN transaction enables SPAN protocol over connection.
114  * (may contain filter).  Typically one for each mount and several may
115  * share the same media.
116  */
117 struct h2span_conn {
118 	TAILQ_ENTRY(h2span_conn) entry;
119 	struct h2span_relay_tree tree;
120 	dmsg_state_t *state;
121 	dmsg_lnk_conn_t lnk_conn;
122 };
123 
124 /*
125  * All received LNK_SPANs are organized by cluster (pfs_clid),
126  * node (pfs_fsid), and link (received LNK_SPAN transaction).
127  */
128 struct h2span_cluster {
129 	RB_ENTRY(h2span_cluster) rbnode;
130 	struct h2span_node_tree tree;
131 	uuid_t	pfs_clid;		/* shared fsid */
132 	uint8_t	peer_type;
133 	char	cl_label[128];		/* cluster label (typ PEER_BLOCK) */
134 	int	refs;			/* prevents destruction */
135 };
136 
137 struct h2span_node {
138 	RB_ENTRY(h2span_node) rbnode;
139 	struct h2span_link_tree tree;
140 	struct h2span_cluster *cls;
141 	uint8_t	pfs_type;
142 	uuid_t	pfs_fsid;		/* unique fsid */
143 	char	fs_label[128];		/* fs label (typ PEER_HAMMER2) */
144 	void	*opaque;
145 };
146 
147 struct h2span_link {
148 	RB_ENTRY(h2span_link) rbnode;
149 	dmsg_state_t	*state;		/* state<->link */
150 	struct h2span_node *node;	/* related node */
151 	struct h2span_relay_queue relayq; /* relay out */
152 	dmsg_lnk_span_t lnk_span;
153 };
154 
155 /*
156  * Any LNK_SPAN transactions we receive which are relayed out other
157  * connections utilize this structure to track the LNK_SPAN transactions
158  * we initiate (relay out) on other connections.  We only relay out
159  * LNK_SPANs on connections we have an open CONN transaction for.
160  *
161  * The relay structure points to the outgoing LNK_SPAN trans (out_state)
162  * and to the incoming LNK_SPAN transaction (in_state).  The relay
163  * structure holds refs on the related states.
164  *
165  * In many respects this is the core of the protocol... actually figuring
166  * out what LNK_SPANs to relay.  The spanid used for relaying is the
167  * address of the 'state' structure, which is why h2span_relay has to
168  * be entered into a RB-TREE based at h2span_conn (so we can look
169  * up the spanid to validate it).
170  */
171 struct h2span_relay {
172 	TAILQ_ENTRY(h2span_relay) entry;	/* from link */
173 	RB_ENTRY(h2span_relay) rbnode;		/* from h2span_conn */
174 	struct h2span_conn	*conn;		/* related CONN transaction */
175 	dmsg_state_t		*source_rt;	/* h2span_link state */
176 	dmsg_state_t		*target_rt;	/* h2span_relay state */
177 };
178 
179 typedef struct h2span_conn h2span_conn_t;
180 typedef struct h2span_cluster h2span_cluster_t;
181 typedef struct h2span_node h2span_node_t;
182 typedef struct h2span_link h2span_link_t;
183 typedef struct h2span_relay h2span_relay_t;
184 
185 #define dmsg_termstr(array)	_dmsg_termstr((array), sizeof(array))
186 
187 static h2span_relay_t *dmsg_generate_relay(h2span_conn_t *conn,
188 					h2span_link_t *slink);
189 static uint32_t dmsg_rnss(void);
190 
191 static __inline
192 void
193 _dmsg_termstr(char *base, size_t size)
194 {
195 	base[size-1] = 0;
196 }
197 
198 /*
199  * Cluster peer_type, uuid, AND label must match for a match
200  */
201 static
202 int
203 h2span_cluster_cmp(h2span_cluster_t *cls1, h2span_cluster_t *cls2)
204 {
205 	int r;
206 
207 	if (cls1->peer_type < cls2->peer_type)
208 		return(-1);
209 	if (cls1->peer_type > cls2->peer_type)
210 		return(1);
211 	r = uuid_compare(&cls1->pfs_clid, &cls2->pfs_clid, NULL);
212 	if (r == 0)
213 		r = strcmp(cls1->cl_label, cls2->cl_label);
214 
215 	return r;
216 }
217 
218 /*
219  * Match against fs_label/pfs_fsid.  Together these two items represent a
220  * unique node.  In most cases the primary differentiator is pfs_fsid but
221  * we also string-match fs_label.
222  */
223 static
224 int
225 h2span_node_cmp(h2span_node_t *node1, h2span_node_t *node2)
226 {
227 	int r;
228 
229 	r = strcmp(node1->fs_label, node2->fs_label);
230 	if (r == 0)
231 		r = uuid_compare(&node1->pfs_fsid, &node2->pfs_fsid, NULL);
232 	return (r);
233 }
234 
235 /*
236  * Sort/subsort must match h2span_relay_cmp() under any given node
237  * to make the aggregation algorithm easier, so the best links are
238  * in the same sorted order as the best relays.
239  *
240  * NOTE: We cannot use link*->state->msgid because this msgid is created
241  *	 by each remote host and thus might wind up being the same.
242  */
243 static
244 int
245 h2span_link_cmp(h2span_link_t *link1, h2span_link_t *link2)
246 {
247 	if (link1->lnk_span.dist < link2->lnk_span.dist)
248 		return(-1);
249 	if (link1->lnk_span.dist > link2->lnk_span.dist)
250 		return(1);
251 	if (link1->lnk_span.rnss < link2->lnk_span.rnss)
252 		return(-1);
253 	if (link1->lnk_span.rnss > link2->lnk_span.rnss)
254 		return(1);
255 #if 1
256 	if ((uintptr_t)link1->state < (uintptr_t)link2->state)
257 		return(-1);
258 	if ((uintptr_t)link1->state > (uintptr_t)link2->state)
259 		return(1);
260 #else
261 	if (link1->state->msgid < link2->state->msgid)
262 		return(-1);
263 	if (link1->state->msgid > link2->state->msgid)
264 		return(1);
265 #endif
266 	return(0);
267 }
268 
269 /*
270  * Relay entries are sorted by node, subsorted by distance and link
271  * address (so we can match up the conn->tree relay topology with
272  * a node's link topology).
273  */
274 static
275 int
276 h2span_relay_cmp(h2span_relay_t *relay1, h2span_relay_t *relay2)
277 {
278 	h2span_link_t *link1 = relay1->source_rt->any.link;
279 	h2span_link_t *link2 = relay2->source_rt->any.link;
280 
281 	if ((intptr_t)link1->node < (intptr_t)link2->node)
282 		return(-1);
283 	if ((intptr_t)link1->node > (intptr_t)link2->node)
284 		return(1);
285 	if (link1->lnk_span.dist < link2->lnk_span.dist)
286 		return(-1);
287 	if (link1->lnk_span.dist > link2->lnk_span.dist)
288 		return(1);
289 	if (link1->lnk_span.rnss < link2->lnk_span.rnss)
290 		return(-1);
291 	if (link1->lnk_span.rnss > link2->lnk_span.rnss)
292 		return(1);
293 #if 1
294 	if ((uintptr_t)link1->state < (uintptr_t)link2->state)
295 		return(-1);
296 	if ((uintptr_t)link1->state > (uintptr_t)link2->state)
297 		return(1);
298 #else
299 	if (link1->state->msgid < link2->state->msgid)
300 		return(-1);
301 	if (link1->state->msgid > link2->state->msgid)
302 		return(1);
303 #endif
304 	return(0);
305 }
306 
307 RB_PROTOTYPE_STATIC(h2span_cluster_tree, h2span_cluster,
308 	     rbnode, h2span_cluster_cmp);
309 RB_PROTOTYPE_STATIC(h2span_node_tree, h2span_node,
310 	     rbnode, h2span_node_cmp);
311 RB_PROTOTYPE_STATIC(h2span_link_tree, h2span_link,
312 	     rbnode, h2span_link_cmp);
313 RB_PROTOTYPE_STATIC(h2span_relay_tree, h2span_relay,
314 	     rbnode, h2span_relay_cmp);
315 
316 RB_GENERATE_STATIC(h2span_cluster_tree, h2span_cluster,
317 	     rbnode, h2span_cluster_cmp);
318 RB_GENERATE_STATIC(h2span_node_tree, h2span_node,
319 	     rbnode, h2span_node_cmp);
320 RB_GENERATE_STATIC(h2span_link_tree, h2span_link,
321 	     rbnode, h2span_link_cmp);
322 RB_GENERATE_STATIC(h2span_relay_tree, h2span_relay,
323 	     rbnode, h2span_relay_cmp);
324 
325 /*
326  * Global mutex protects cluster_tree lookups, connq, mediaq.
327  */
328 static pthread_mutex_t cluster_mtx;
329 static struct h2span_cluster_tree cluster_tree = RB_INITIALIZER(cluster_tree);
330 static struct h2span_conn_queue connq = TAILQ_HEAD_INITIALIZER(connq);
331 static struct dmsg_media_queue mediaq = TAILQ_HEAD_INITIALIZER(mediaq);
332 
333 static void dmsg_lnk_span(dmsg_msg_t *msg);
334 static void dmsg_lnk_conn(dmsg_msg_t *msg);
335 static void dmsg_lnk_ping(dmsg_msg_t *msg);
336 static void dmsg_lnk_relay(dmsg_msg_t *msg);
337 static void dmsg_relay_scan(h2span_conn_t *conn, h2span_node_t *node);
338 static void dmsg_relay_delete(h2span_relay_t *relay);
339 
340 void
341 dmsg_msg_lnk_signal(dmsg_iocom_t *iocom __unused)
342 {
343 	pthread_mutex_lock(&cluster_mtx);
344 	dmsg_relay_scan(NULL, NULL);
345 	pthread_mutex_unlock(&cluster_mtx);
346 }
347 
348 /*
349  * DMSG_PROTO_LNK - Generic DMSG_PROTO_LNK.
350  *	      (incoming iocom lock not held)
351  *
352  * This function is typically called for one-way and opening-transactions
353  * since state->func is assigned after that, but it will also be called
354  * if no state->func is assigned on transaction-open.
355  */
356 void
357 dmsg_msg_lnk(dmsg_msg_t *msg)
358 {
359 	dmsg_iocom_t *iocom = msg->state->iocom;
360 
361 	switch(msg->tcmd & DMSGF_BASECMDMASK) {
362 	case DMSG_LNK_CONN:
363 		dmsg_lnk_conn(msg);
364 		break;
365 	case DMSG_LNK_SPAN:
366 		dmsg_lnk_span(msg);
367 		break;
368 	case DMSG_LNK_PING:
369 		dmsg_lnk_ping(msg);
370 		break;
371 	default:
372 		iocom->usrmsg_callback(msg, 1);
373 		/* state invalid after reply */
374 		break;
375 	}
376 }
377 
378 /*
379  * LNK_CONN - iocom identify message reception.
380  *	      (incoming iocom lock not held)
381  *
382  * Remote node identifies itself to us, sets up a SPAN filter, and gives us
383  * the ok to start transmitting SPANs.
384  */
385 void
386 dmsg_lnk_conn(dmsg_msg_t *msg)
387 {
388 	dmsg_state_t *state = msg->state;
389 	dmsg_iocom_t *iocom = state->iocom;
390 	dmsg_media_t *media;
391 	h2span_conn_t *conn;
392 	h2span_relay_t *relay;
393 	char *alloc = NULL;
394 
395 	pthread_mutex_lock(&cluster_mtx);
396 
397 	dmio_printf(iocom, 3,
398 		"dmsg_lnk_conn: msg %p cmd %08x state %p "
399 		"txcmd %08x rxcmd %08x\n",
400 		msg, msg->any.head.cmd, state,
401 		state->txcmd, state->rxcmd);
402 
403 	switch(msg->any.head.cmd & DMSGF_TRANSMASK) {
404 	case DMSG_LNK_CONN | DMSGF_CREATE:
405 	case DMSG_LNK_CONN | DMSGF_CREATE | DMSGF_DELETE:
406 		/*
407 		 * On transaction start we allocate a new h2span_conn and
408 		 * acknowledge the request, leaving the transaction open.
409 		 * We then relay priority-selected SPANs.
410 		 */
411 		dmio_printf(iocom, 3, "LNK_CONN(%08x): %s/%s/%s\n",
412 			(uint32_t)msg->any.head.msgid,
413 			dmsg_uuid_to_str(&msg->any.lnk_conn.pfs_clid,
414 					    &alloc),
415 			msg->any.lnk_conn.cl_label,
416 			msg->any.lnk_conn.fs_label);
417 		free(alloc);
418 
419 		conn = dmsg_alloc(sizeof(*conn));
420 		assert(state->iocom->conn == NULL);
421 
422 		RB_INIT(&conn->tree);
423 		state->iocom->conn = conn;	/* XXX only one */
424 		state->iocom->conn_msgid = state->msgid;
425 		dmsg_state_hold(state);
426 		conn->state = state;
427 		state->func = dmsg_lnk_conn;
428 		state->any.conn = conn;
429 		TAILQ_INSERT_TAIL(&connq, conn, entry);
430 		conn->lnk_conn = msg->any.lnk_conn;
431 
432 		/*
433 		 * Set up media
434 		 */
435 		TAILQ_FOREACH(media, &mediaq, entry) {
436 			if (uuid_compare(&msg->any.lnk_conn.mediaid,
437 					 &media->mediaid, NULL) == 0) {
438 				break;
439 			}
440 		}
441 		if (media == NULL) {
442 			media = dmsg_alloc(sizeof(*media));
443 			media->mediaid = msg->any.lnk_conn.mediaid;
444 			TAILQ_INSERT_TAIL(&mediaq, media, entry);
445 		}
446 		state->media = media;
447 		++media->refs;
448 
449 		if ((msg->any.head.cmd & DMSGF_DELETE) == 0) {
450 			iocom->usrmsg_callback(msg, 0);
451 			dmsg_msg_result(msg, 0);
452 			dmsg_iocom_signal(iocom);
453 			break;
454 		}
455 		/* FALL THROUGH */
456 	case DMSG_LNK_CONN | DMSGF_DELETE:
457 	case DMSG_LNK_ERROR | DMSGF_DELETE:
458 		/*
459 		 * On transaction terminate we clean out our h2span_conn
460 		 * and acknowledge the request, closing the transaction.
461 		 */
462 		dmio_printf(iocom, 3, "%s\n", "LNK_CONN: Terminated");
463 		conn = state->any.conn;
464 		assert(conn);
465 
466 		/*
467 		 * Adjust media refs
468 		 *
469 		 * Callback will clean out media config / user-opaque state
470 		 */
471 		media = state->media;
472 		--media->refs;
473 		if (media->refs == 0) {
474 			dmio_printf(iocom, 3, "%s\n", "Media shutdown");
475 			TAILQ_REMOVE(&mediaq, media, entry);
476 			pthread_mutex_unlock(&cluster_mtx);
477 			iocom->usrmsg_callback(msg, 0);
478 			pthread_mutex_lock(&cluster_mtx);
479 			dmsg_free(media);
480 		}
481 		state->media = NULL;
482 
483 		/*
484 		 * Clean out all relays.  This requires terminating each
485 		 * relay transaction.
486 		 */
487 		while ((relay = RB_ROOT(&conn->tree)) != NULL) {
488 			dmsg_relay_delete(relay);
489 		}
490 
491 		/*
492 		 * Clean out conn
493 		 */
494 		conn->state = NULL;
495 		msg->state->any.conn = NULL;
496 		msg->state->iocom->conn = NULL;
497 		TAILQ_REMOVE(&connq, conn, entry);
498 		dmsg_free(conn);
499 
500 		dmsg_msg_reply(msg, 0);
501 		dmsg_state_drop(state);
502 		/* state invalid after reply */
503 		break;
504 	default:
505 		iocom->usrmsg_callback(msg, 1);
506 #if 0
507 		if (msg->any.head.cmd & DMSGF_DELETE)
508 			goto deleteconn;
509 		dmsg_msg_reply(msg, DMSG_ERR_NOSUPP);
510 #endif
511 		break;
512 	}
513 	pthread_mutex_unlock(&cluster_mtx);
514 }
515 
516 /*
517  * LNK_SPAN - Spanning tree protocol message reception
518  *	      (incoming iocom lock not held)
519  *
520  * Receive a spanning tree transactional message, creating or destroying
521  * a SPAN and propagating it to other iocoms.
522  */
523 void
524 dmsg_lnk_span(dmsg_msg_t *msg)
525 {
526 	dmsg_state_t *state = msg->state;
527 	dmsg_iocom_t *iocom = state->iocom;
528 	h2span_cluster_t dummy_cls;
529 	h2span_node_t dummy_node;
530 	h2span_cluster_t *cls;
531 	h2span_node_t *node;
532 	h2span_link_t *slink;
533 	h2span_relay_t *relay;
534 	char *alloc = NULL;
535 
536 	/*
537 	 * Ignore reply to LNK_SPAN.  The reply is expected and will commands
538 	 * to flow in both directions on the open transaction.  This will also
539 	 * ignore DMSGF_REPLY|DMSGF_DELETE messages.  Since we take no action
540 	 * if the other end unexpectedly closes their side of the transaction,
541 	 * we can ignore that too.
542 	 */
543 	if (msg->any.head.cmd & DMSGF_REPLY) {
544 		dmio_printf(iocom, 2, "%s\n",
545 			    "Ignore reply to LNK_SPAN");
546 		return;
547 	}
548 
549 	pthread_mutex_lock(&cluster_mtx);
550 
551 	/*
552 	 * On transaction start we initialize the tracking infrastructure
553 	 */
554 	if (msg->any.head.cmd & DMSGF_CREATE) {
555 		assert(state->func == NULL);
556 		state->func = dmsg_lnk_span;
557 
558 		dmsg_termstr(msg->any.lnk_span.cl_label);
559 		dmsg_termstr(msg->any.lnk_span.fs_label);
560 
561 		/*
562 		 * Find the cluster
563 		 */
564 		dummy_cls.pfs_clid = msg->any.lnk_span.pfs_clid;
565 		dummy_cls.peer_type = msg->any.lnk_span.peer_type;
566 		bcopy(msg->any.lnk_span.cl_label,
567 		      dummy_cls.cl_label,
568 		      sizeof(dummy_cls.cl_label));
569 		cls = RB_FIND(h2span_cluster_tree, &cluster_tree, &dummy_cls);
570 		if (cls == NULL) {
571 			cls = dmsg_alloc(sizeof(*cls));
572 			cls->pfs_clid = msg->any.lnk_span.pfs_clid;
573 			cls->peer_type = msg->any.lnk_span.peer_type;
574 			bcopy(msg->any.lnk_span.cl_label,
575 			      cls->cl_label,
576 			      sizeof(cls->cl_label));
577 			RB_INIT(&cls->tree);
578 			RB_INSERT(h2span_cluster_tree, &cluster_tree, cls);
579 		}
580 
581 		/*
582 		 * Find the node
583 		 */
584 		dummy_node.pfs_fsid = msg->any.lnk_span.pfs_fsid;
585 		bcopy(msg->any.lnk_span.fs_label, dummy_node.fs_label,
586 		      sizeof(dummy_node.fs_label));
587 		node = RB_FIND(h2span_node_tree, &cls->tree, &dummy_node);
588 		if (node == NULL) {
589 			node = dmsg_alloc(sizeof(*node));
590 			node->pfs_fsid = msg->any.lnk_span.pfs_fsid;
591 			node->pfs_type = msg->any.lnk_span.pfs_type;
592 			bcopy(msg->any.lnk_span.fs_label,
593 			      node->fs_label,
594 			      sizeof(node->fs_label));
595 			node->cls = cls;
596 			RB_INIT(&node->tree);
597 			RB_INSERT(h2span_node_tree, &cls->tree, node);
598 		}
599 
600 		/*
601 		 * Create the link
602 		 *
603 		 * NOTE: Sub-transactions on the incoming SPAN can be used
604 		 *	 to talk to the originator.  We should not set-up
605 		 *	 state->relay for incoming SPANs since our sub-trans
606 		 *	 is running on the same interface (i.e. no actual
607 		 *	 relaying need be done).
608 		 *
609 		 * NOTE: Later on when we relay the SPAN out the outgoing
610 		 *	 SPAN state will be set up to relay back to this
611 		 *	 state.
612 		 *
613 		 * NOTE: It is possible for SPAN targets to send one-way
614 		 *	 messages to the originator but it is not possible
615 		 *	 for the originator to (currently) broadcast one-way
616 		 *	 messages to all of its SPAN targets.  The protocol
617 		 *	 allows such a feature to be added in the future.
618 		 */
619 		assert(state->any.link == NULL);
620 		dmsg_state_hold(state);
621 		slink = dmsg_alloc(sizeof(*slink));
622 		TAILQ_INIT(&slink->relayq);
623 		slink->node = node;
624 		slink->state = state;
625 		state->any.link = slink;
626 		slink->lnk_span = msg->any.lnk_span;
627 
628 		RB_INSERT(h2span_link_tree, &node->tree, slink);
629 
630 		dmio_printf(iocom, 3,
631 			    "LNK_SPAN(thr %p): %p %s cl=%s fs=%s dist=%d\n",
632 			    iocom, slink,
633 			    dmsg_uuid_to_str(&msg->any.lnk_span.pfs_clid,
634 					     &alloc),
635 			    msg->any.lnk_span.cl_label,
636 			    msg->any.lnk_span.fs_label,
637 			    msg->any.lnk_span.dist);
638 		free(alloc);
639 #if 0
640 		dmsg_relay_scan(NULL, node);
641 #endif
642 		/*
643 		 * Ack the open, which will issue a CREATE on our side, and
644 		 * leave the transaction open.  Necessary to allow the
645 		 * transaction to be used as a virtual circuit.
646 		 */
647 		dmsg_state_result(state, 0);
648 		dmsg_iocom_signal(iocom);
649 	}
650 
651 	/*
652 	 * On transaction terminate we remove the tracking infrastructure.
653 	 */
654 	if (msg->any.head.cmd & DMSGF_DELETE) {
655 		slink = state->any.link;
656 		assert(slink->state == state);
657 		assert(slink != NULL);
658 		node = slink->node;
659 		cls = node->cls;
660 
661 		dmio_printf(iocom, 3,
662 			    "LNK_DELE(thr %p): %p %s cl=%s fs=%s\n",
663 			    iocom, slink,
664 			    dmsg_uuid_to_str(&cls->pfs_clid, &alloc),
665 			    cls->cl_label,
666 			    node->fs_label);
667 		free(alloc);
668 
669 		/*
670 		 * Clean out all relays.  This requires terminating each
671 		 * relay transaction.
672 		 */
673 		while ((relay = TAILQ_FIRST(&slink->relayq)) != NULL) {
674 			dmsg_relay_delete(relay);
675 		}
676 
677 		/*
678 		 * Clean out the topology
679 		 */
680 		RB_REMOVE(h2span_link_tree, &node->tree, slink);
681 		if (RB_EMPTY(&node->tree)) {
682 			RB_REMOVE(h2span_node_tree, &cls->tree, node);
683 			if (RB_EMPTY(&cls->tree) && cls->refs == 0) {
684 				RB_REMOVE(h2span_cluster_tree,
685 					  &cluster_tree, cls);
686 				dmsg_free(cls);
687 			}
688 			node->cls = NULL;
689 			dmsg_free(node);
690 			node = NULL;
691 		}
692 		state->any.link = NULL;
693 		slink->state = NULL;
694 		slink->node = NULL;
695 		dmsg_state_drop(state);
696 		dmsg_free(slink);
697 
698 		/*
699 		 * We have to terminate the transaction
700 		 */
701 		dmsg_state_reply(state, 0);
702 		/* state invalid after reply */
703 
704 		/*
705 		 * If the node still exists issue any required updates.  If
706 		 * it doesn't then all related relays have already been
707 		 * removed and there's nothing left to do.
708 		 */
709 #if 0
710 		if (node)
711 			dmsg_relay_scan(NULL, node);
712 #endif
713 		if (node)
714 			dmsg_iocom_signal(iocom);
715 	}
716 
717 	pthread_mutex_unlock(&cluster_mtx);
718 }
719 
720 /*
721  * Respond to a PING with a PING|REPLY, forward replies to the usermsg
722  * callback.
723  */
724 static
725 void
726 dmsg_lnk_ping(dmsg_msg_t *msg)
727 {
728 	dmsg_msg_t *rep;
729 
730 	if (msg->any.head.cmd & DMSGF_REPLY) {
731 		msg->state->iocom->usrmsg_callback(msg, 1);
732 	} else {
733 		rep = dmsg_msg_alloc(msg->state, 0,
734 				     DMSG_LNK_PING | DMSGF_REPLY,
735 				     NULL, NULL);
736 		dmsg_msg_write(rep);
737 	}
738 }
739 
740 /*
741  * Update relay transactions for SPANs.
742  *
743  * Called with cluster_mtx held.
744  */
745 static void dmsg_relay_scan_specific(h2span_node_t *node,
746 					h2span_conn_t *conn);
747 
748 static void
749 dmsg_relay_scan(h2span_conn_t *conn, h2span_node_t *node)
750 {
751 	h2span_cluster_t *cls;
752 
753 	if (node) {
754 		/*
755 		 * Iterate specific node
756 		 */
757 		TAILQ_FOREACH(conn, &connq, entry)
758 			dmsg_relay_scan_specific(node, conn);
759 	} else {
760 		/*
761 		 * Full iteration.
762 		 *
763 		 * Iterate cluster ids, nodes, and either a specific connection
764 		 * or all connections.
765 		 */
766 		RB_FOREACH(cls, h2span_cluster_tree, &cluster_tree) {
767 			/*
768 			 * Iterate node ids
769 			 */
770 			RB_FOREACH(node, h2span_node_tree, &cls->tree) {
771 				/*
772 				 * Synchronize the node's link (received SPANs)
773 				 * with each connection's relays.
774 				 */
775 				if (conn) {
776 					dmsg_relay_scan_specific(node, conn);
777 				} else {
778 					TAILQ_FOREACH(conn, &connq, entry) {
779 					    dmsg_relay_scan_specific(node,
780 									conn);
781 					}
782 					assert(conn == NULL);
783 				}
784 			}
785 		}
786 	}
787 }
788 
789 /*
790  * Update the relay'd SPANs for this (node, conn).
791  *
792  * Iterate links and adjust relays to match.  We only propagate the top link
793  * for now (XXX we want to propagate the top two).
794  *
795  * The dmsg_relay_scan_cmp() function locates the first relay element
796  * for any given node.  The relay elements will be sub-sorted by dist.
797  */
798 struct relay_scan_info {
799 	h2span_node_t *node;
800 	h2span_relay_t *relay;
801 };
802 
803 static int
804 dmsg_relay_scan_cmp(h2span_relay_t *relay, void *arg)
805 {
806 	struct relay_scan_info *info = arg;
807 
808 	if ((intptr_t)relay->source_rt->any.link->node < (intptr_t)info->node)
809 		return(-1);
810 	if ((intptr_t)relay->source_rt->any.link->node > (intptr_t)info->node)
811 		return(1);
812 	return(0);
813 }
814 
815 static int
816 dmsg_relay_scan_callback(h2span_relay_t *relay, void *arg)
817 {
818 	struct relay_scan_info *info = arg;
819 
820 	info->relay = relay;
821 	return(-1);
822 }
823 
824 static void
825 dmsg_relay_scan_specific(h2span_node_t *node, h2span_conn_t *conn)
826 {
827 	struct relay_scan_info info;
828 	h2span_relay_t *relay;
829 	h2span_relay_t *next_relay;
830 	h2span_link_t *slink;
831 	dmsg_lnk_conn_t *lconn;
832 	dmsg_lnk_span_t *lspan;
833 	int count;
834 	int maxcount = 2;
835 #ifdef REQUIRE_SYMMETRICAL
836 	uint32_t lastdist = DMSG_SPAN_MAXDIST;
837 	uint32_t lastrnss = 0;
838 #endif
839 
840 	info.node = node;
841 	info.relay = NULL;
842 
843 	/*
844 	 * Locate the first related relay for the node on this connection.
845 	 * relay will be NULL if there were none.
846 	 */
847 	RB_SCAN(h2span_relay_tree, &conn->tree,
848 		dmsg_relay_scan_cmp, dmsg_relay_scan_callback, &info);
849 	relay = info.relay;
850 	info.relay = NULL;
851 	if (relay)
852 		assert(relay->source_rt->any.link->node == node);
853 
854 	dm_printf(9, "relay scan for connection %p\n", conn);
855 
856 	/*
857 	 * Iterate the node's links (received SPANs) in distance order,
858 	 * lowest (best) dist first.
859 	 *
860 	 * PROPAGATE THE BEST LINKS OVER THE SPECIFIED CONNECTION.
861 	 *
862 	 * Track relays while iterating the best links and construct
863 	 * missing relays when necessary.
864 	 *
865 	 * (If some prior better link was removed it would have also
866 	 *  removed the relay, so the relay can only match exactly or
867 	 *  be worse).
868 	 */
869 	count = 0;
870 	RB_FOREACH(slink, h2span_link_tree, &node->tree) {
871 		/*
872 		 * Increment count of successful relays.  This isn't
873 		 * quite accurate if we break out but nothing after
874 		 * the loop uses (count).
875 		 *
876 		 * If count exceeds the maximum number of relays we desire
877 		 * we normally want to break out.  However, in order to
878 		 * guarantee a symmetric path we have to continue if both
879 		 * (dist) and (rnss) continue to match.  Otherwise the SPAN
880 		 * propagation in the reverse direction may choose different
881 		 * routes and we will not have a symmetric path.
882 		 *
883 		 * NOTE: Spanning tree does not have to be symmetrical so
884 		 *	 this code is not currently enabled.
885 		 */
886 		if (++count >= maxcount) {
887 #ifdef REQUIRE_SYMMETRICAL
888 			if (lastdist != slink->lnk_span.dist ||
889 			    lastrnss != slink->lnk_span.rnss) {
890 				break;
891 			}
892 #else
893 			break;
894 #endif
895 			/* go beyond the nominal maximum desired relays */
896 		}
897 
898 		/*
899 		 * Match, relay already in-place, get the next
900 		 * relay to match against the next slink.
901 		 */
902 		if (relay && relay->source_rt->any.link == slink) {
903 			relay = RB_NEXT(h2span_relay_tree, &conn->tree, relay);
904 			continue;
905 		}
906 
907 		/*
908 		 * We might want this SLINK, if it passes our filters.
909 		 *
910 		 * The spanning tree can cause closed loops so we have
911 		 * to limit slink->dist.
912 		 */
913 		if (slink->lnk_span.dist > DMSG_SPAN_MAXDIST)
914 			break;
915 
916 		/*
917 		 * Don't bother transmitting a LNK_SPAN out the same
918 		 * connection it came in on.  Trivial optimization.
919 		 */
920 		if (slink->state->iocom == conn->state->iocom)
921 			break;
922 
923 		/*
924 		 * NOTE ON FILTERS: The protocol spec allows non-requested
925 		 * SPANs to be transmitted, the other end is expected to
926 		 * leave their transactions open but otherwise ignore them.
927 		 *
928 		 * Don't bother transmitting if the remote connection
929 		 * is not accepting this SPAN's peer_type.
930 		 *
931 		 * pfs_mask is typically used so pure clients can filter
932 		 * out receiving SPANs for other pure clients.
933 		 */
934 		lspan = &slink->lnk_span;
935 		lconn = &conn->lnk_conn;
936 		if (((1LLU << lspan->peer_type) & lconn->peer_mask) == 0)
937 			break;
938 		if (((1LLU << lspan->pfs_type) & lconn->pfs_mask) == 0)
939 			break;
940 
941 		/*
942 		 * Do not give pure clients visibility to other pure clients
943 		 */
944 		if (lconn->pfs_type == DMSG_PFSTYPE_CLIENT &&
945 		    lspan->pfs_type == DMSG_PFSTYPE_CLIENT) {
946 			break;
947 		}
948 
949 		/*
950 		 * Connection filter, if cluster uuid is not NULL it must
951 		 * match the span cluster uuid.  Only applies when the
952 		 * peer_type matches.
953 		 */
954 		if (lspan->peer_type == lconn->peer_type &&
955 		    !uuid_is_nil(&lconn->pfs_clid, NULL) &&
956 		    uuid_compare(&slink->node->cls->pfs_clid,
957 				 &lconn->pfs_clid, NULL)) {
958 			break;
959 		}
960 
961 		/*
962 		 * Connection filter, if cluster label is not empty it must
963 		 * match the span cluster label.  Only applies when the
964 		 * peer_type matches.
965 		 */
966 		if (lspan->peer_type == lconn->peer_type &&
967 		    lconn->cl_label[0] &&
968 		    strcmp(lconn->cl_label, slink->node->cls->cl_label)) {
969 			break;
970 		}
971 
972 		/*
973 		 * NOTE! pfs_fsid differentiates nodes within the same cluster
974 		 *	 so we obviously don't want to match those.  Similarly
975 		 *	 for fs_label.
976 		 */
977 
978 		/*
979 		 * Ok, we've accepted this SPAN for relaying.
980 		 */
981 		assert(relay == NULL ||
982 		       relay->source_rt->any.link->node != slink->node ||
983 		       relay->source_rt->any.link->lnk_span.dist >=
984 		        slink->lnk_span.dist);
985 		relay = dmsg_generate_relay(conn, slink);
986 #ifdef REQUIRE_SYMMETRICAL
987 		lastdist = slink->lnk_span.dist;
988 		lastrnss = slink->lnk_span.rnss;
989 #endif
990 
991 		/*
992 		 * Match (created new relay), get the next relay to
993 		 * match against the next slink.
994 		 */
995 		relay = RB_NEXT(h2span_relay_tree, &conn->tree, relay);
996 	}
997 
998 	/*
999 	 * Any remaining relay's belonging to this connection which match
1000 	 * the node are in excess of the current aggregate spanning state
1001 	 * and should be removed.
1002 	 */
1003 	while (relay && relay->source_rt->any.link->node == node) {
1004 		next_relay = RB_NEXT(h2span_relay_tree, &conn->tree, relay);
1005 		dm_printf(9, "%s\n", "RELAY DELETE FROM EXTRAS");
1006 		dmsg_relay_delete(relay);
1007 		relay = next_relay;
1008 	}
1009 }
1010 
1011 /*
1012  * Find the slink associated with the msgid and return its state,
1013  * so the caller can issue a transaction.
1014  */
1015 dmsg_state_t *
1016 dmsg_findspan(const char *label)
1017 {
1018 	dmsg_state_t *state;
1019         h2span_cluster_t *cls;
1020 	h2span_node_t *node;
1021 	h2span_link_t *slink;
1022 	uint64_t msgid = strtoull(label, NULL, 16);
1023 
1024 	pthread_mutex_lock(&cluster_mtx);
1025 
1026 	state = NULL;
1027 	RB_FOREACH(cls, h2span_cluster_tree, &cluster_tree) {
1028 		RB_FOREACH(node, h2span_node_tree, &cls->tree) {
1029 			RB_FOREACH(slink, h2span_link_tree, &node->tree) {
1030 				if (slink->state->msgid == msgid) {
1031 					state = slink->state;
1032 					goto done;
1033 				}
1034 			}
1035 		}
1036 	}
1037 done:
1038 	pthread_mutex_unlock(&cluster_mtx);
1039 
1040 	dm_printf(8, "findspan: %p\n", state);
1041 
1042 	return state;
1043 }
1044 
1045 
1046 /*
1047  * Helper function to generate missing relay on target connection.
1048  *
1049  * cluster_mtx must be held
1050  */
1051 static
1052 h2span_relay_t *
1053 dmsg_generate_relay(h2span_conn_t *conn, h2span_link_t *slink)
1054 {
1055 	h2span_relay_t *relay;
1056 	dmsg_msg_t *msg;
1057 
1058 	dmsg_state_hold(slink->state);
1059 	relay = dmsg_alloc(sizeof(*relay));
1060 	relay->conn = conn;
1061 	relay->source_rt = slink->state;
1062 	/* relay->source_rt->any.link = slink; */
1063 
1064 	/*
1065 	 * NOTE: relay->target_rt->any.relay set to relay by alloc.
1066 	 *
1067 	 * NOTE: LNK_SPAN is transmitted as a top-level transaction.
1068 	 */
1069 	msg = dmsg_msg_alloc(&conn->state->iocom->state0,
1070 			     0, DMSG_LNK_SPAN | DMSGF_CREATE,
1071 			     dmsg_lnk_relay, relay);
1072 	dmsg_state_hold(msg->state);
1073 	relay->target_rt = msg->state;
1074 
1075 	msg->any.lnk_span = slink->lnk_span;
1076 	msg->any.lnk_span.dist = slink->lnk_span.dist + 1;
1077 	msg->any.lnk_span.rnss = slink->lnk_span.rnss + dmsg_rnss();
1078 
1079 	RB_INSERT(h2span_relay_tree, &conn->tree, relay);
1080 	TAILQ_INSERT_TAIL(&slink->relayq, relay, entry);
1081 
1082 	/*
1083 	 * Seed the relay so new sub-transactions received on the outgoing
1084 	 * SPAN circuit are relayed back to the originator.
1085 	 */
1086 	msg->state->relay = relay->source_rt;
1087 	dmsg_state_hold(msg->state->relay);
1088 
1089 	dmsg_msg_write(msg);
1090 
1091 	return (relay);
1092 }
1093 
1094 /*
1095  * Messages received on relay SPANs.  These are open transactions so it is
1096  * in fact possible for the other end to close the transaction.
1097  *
1098  * XXX MPRACE on state structure
1099  */
1100 static void
1101 dmsg_lnk_relay(dmsg_msg_t *msg)
1102 {
1103 	dmsg_state_t *state = msg->state;
1104 	h2span_relay_t *relay;
1105 
1106 	assert(msg->any.head.cmd & DMSGF_REPLY);
1107 
1108 	if (msg->any.head.cmd & DMSGF_DELETE) {
1109 		pthread_mutex_lock(&cluster_mtx);
1110 		dm_printf(8, "%s\n", "RELAY DELETE FROM LNK_RELAY MSG");
1111 		if ((relay = state->any.relay) != NULL) {
1112 			dmsg_relay_delete(relay);
1113 		} else {
1114 			dmsg_state_reply(state, 0);
1115 		}
1116 		pthread_mutex_unlock(&cluster_mtx);
1117 	}
1118 }
1119 
1120 /*
1121  * cluster_mtx held by caller
1122  */
1123 static
1124 void
1125 dmsg_relay_delete(h2span_relay_t *relay)
1126 {
1127 	dm_printf(8,
1128 		  "RELAY DELETE %p RELAY %p ON CLS=%p NODE=%p "
1129 		  "DIST=%d FD %d STATE %p\n",
1130 		  relay->source_rt->any.link,
1131 		  relay,
1132 		  relay->source_rt->any.link->node->cls,
1133 		  relay->source_rt->any.link->node,
1134 		  relay->source_rt->any.link->lnk_span.dist,
1135 		  relay->conn->state->iocom->sock_fd,
1136 		  relay->target_rt);
1137 
1138 	RB_REMOVE(h2span_relay_tree, &relay->conn->tree, relay);
1139 	TAILQ_REMOVE(&relay->source_rt->any.link->relayq, relay, entry);
1140 
1141 	if (relay->target_rt) {
1142 		relay->target_rt->any.relay = NULL;
1143 		dmsg_state_reply(relay->target_rt, 0);
1144 		dmsg_state_drop(relay->target_rt);
1145 		/* state invalid after reply */
1146 		relay->target_rt = NULL;
1147 	}
1148 
1149 	/*
1150 	 * NOTE: relay->source_rt->refs is held by the relay SPAN
1151 	 *	 state, not by this relay structure.
1152 	 */
1153 	relay->conn = NULL;
1154 	if (relay->source_rt) {
1155 		dmsg_state_drop(relay->source_rt);
1156 		relay->source_rt = NULL;
1157 	}
1158 	dmsg_free(relay);
1159 }
1160 
1161 /************************************************************************
1162  *			ROUTER AND MESSAGING HANDLES			*
1163  ************************************************************************
1164  *
1165  * Basically the idea here is to provide a stable data structure which
1166  * can be localized to the caller for higher level protocols to work with.
1167  * Depends on the context, these dmsg_handle's can be pooled by use-case
1168  * and remain persistent through a client (or mount point's) life.
1169  */
1170 
1171 #if 0
1172 /*
1173  * Obtain a stable handle on a cluster given its uuid.  This ties directly
1174  * into the global cluster topology, creating the structure if necessary
1175  * (even if the uuid does not exist or does not exist yet), and preventing
1176  * the structure from getting ripped out from under us while we hold a
1177  * pointer to it.
1178  */
1179 h2span_cluster_t *
1180 dmsg_cluster_get(uuid_t *pfs_clid)
1181 {
1182 	h2span_cluster_t dummy_cls;
1183 	h2span_cluster_t *cls;
1184 
1185 	dummy_cls.pfs_clid = *pfs_clid;
1186 	pthread_mutex_lock(&cluster_mtx);
1187 	cls = RB_FIND(h2span_cluster_tree, &cluster_tree, &dummy_cls);
1188 	if (cls)
1189 		++cls->refs;
1190 	pthread_mutex_unlock(&cluster_mtx);
1191 	return (cls);
1192 }
1193 
1194 void
1195 dmsg_cluster_put(h2span_cluster_t *cls)
1196 {
1197 	pthread_mutex_lock(&cluster_mtx);
1198 	assert(cls->refs > 0);
1199 	--cls->refs;
1200 	if (RB_EMPTY(&cls->tree) && cls->refs == 0) {
1201 		RB_REMOVE(h2span_cluster_tree,
1202 			  &cluster_tree, cls);
1203 		dmsg_free(cls);
1204 	}
1205 	pthread_mutex_unlock(&cluster_mtx);
1206 }
1207 
1208 /*
1209  * Obtain a stable handle to a specific cluster node given its uuid.
1210  * This handle does NOT lock in the route to the node and is typically
1211  * used as part of the dmsg_handle_*() API to obtain a set of
1212  * stable nodes.
1213  */
1214 h2span_node_t *
1215 dmsg_node_get(h2span_cluster_t *cls, uuid_t *pfs_fsid)
1216 {
1217 }
1218 
1219 #endif
1220 
1221 /*
1222  * Dumps the spanning tree
1223  *
1224  * DEBUG ONLY
1225  */
1226 void
1227 dmsg_shell_tree(dmsg_iocom_t *iocom, char *cmdbuf __unused)
1228 {
1229 	h2span_cluster_t *cls;
1230 	h2span_node_t *node;
1231 	h2span_link_t *slink;
1232 	h2span_relay_t *relay;
1233 	char *uustr = NULL;
1234 
1235 	pthread_mutex_lock(&cluster_mtx);
1236 	RB_FOREACH(cls, h2span_cluster_tree, &cluster_tree) {
1237 		dmsg_printf(iocom, "Cluster %s %s (%s)\n",
1238 				  dmsg_peer_type_to_str(cls->peer_type),
1239 				  dmsg_uuid_to_str(&cls->pfs_clid, &uustr),
1240 				  cls->cl_label);
1241 		RB_FOREACH(node, h2span_node_tree, &cls->tree) {
1242 			dmsg_printf(iocom, "    Node %02x %s (%s)\n",
1243 				node->pfs_type,
1244 				dmsg_uuid_to_str(&node->pfs_fsid, &uustr),
1245 				node->fs_label);
1246 			RB_FOREACH(slink, h2span_link_tree, &node->tree) {
1247 				dmsg_printf(iocom,
1248 					    "\tSLink msgid %016jx "
1249 					    "dist=%d via %d\n",
1250 					    (intmax_t)slink->state->msgid,
1251 					    slink->lnk_span.dist,
1252 					    slink->state->iocom->sock_fd);
1253 				TAILQ_FOREACH(relay, &slink->relayq, entry) {
1254 					dmsg_printf(iocom,
1255 					    "\t    Relay-out msgid %016jx "
1256 					    "via %d\n",
1257 					    (intmax_t)relay->target_rt->msgid,
1258 					    relay->target_rt->iocom->sock_fd);
1259 				}
1260 			}
1261 		}
1262 	}
1263 	pthread_mutex_unlock(&cluster_mtx);
1264 	if (uustr)
1265 		free(uustr);
1266 #if 0
1267 	TAILQ_FOREACH(conn, &connq, entry) {
1268 	}
1269 #endif
1270 }
1271 
1272 /*
1273  * DEBUG ONLY
1274  *
1275  * Locate the state representing an incoming LNK_SPAN given its msgid.
1276  */
1277 int
1278 dmsg_debug_findspan(uint64_t msgid, dmsg_state_t **statep)
1279 {
1280 	h2span_cluster_t *cls;
1281 	h2span_node_t *node;
1282 	h2span_link_t *slink;
1283 
1284 	pthread_mutex_lock(&cluster_mtx);
1285 	RB_FOREACH(cls, h2span_cluster_tree, &cluster_tree) {
1286 		RB_FOREACH(node, h2span_node_tree, &cls->tree) {
1287 			RB_FOREACH(slink, h2span_link_tree, &node->tree) {
1288 				if (slink->state->msgid == msgid) {
1289 					*statep = slink->state;
1290 					goto found;
1291 				}
1292 			}
1293 		}
1294 	}
1295 	pthread_mutex_unlock(&cluster_mtx);
1296 	*statep = NULL;
1297 	return(ENOENT);
1298 found:
1299 	pthread_mutex_unlock(&cluster_mtx);
1300 	return(0);
1301 }
1302 
1303 /*
1304  * Random number sub-sort value to add to SPAN rnss fields on relay.
1305  * This allows us to differentiate spans with the same <dist> field
1306  * for relaying purposes.  We must normally limit the number of relays
1307  * for any given SPAN origination but we must also guarantee that a
1308  * symmetric reverse path exists, so we use the rnss field as a sub-sort
1309  * (since there can be thousands or millions if we only match on <dist>),
1310  * and if there STILL too many spans we go past the limit.
1311  */
1312 static
1313 uint32_t
1314 dmsg_rnss(void)
1315 {
1316 	if (DMsgRNSS == 0) {
1317 		pthread_mutex_lock(&cluster_mtx);
1318 		while (DMsgRNSS == 0) {
1319 			srandomdev();
1320 			DMsgRNSS = random();
1321 		}
1322 		pthread_mutex_unlock(&cluster_mtx);
1323 	}
1324 	return(DMsgRNSS);
1325 }
1326