1 /* 2 * Copyright (c) 2012-2014 The DragonFly Project. All rights reserved. 3 * 4 * This code is derived from software contributed to The DragonFly Project 5 * by Matthew Dillon <dillon@dragonflybsd.org> 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * 3. Neither the name of The DragonFly Project nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific, prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, 27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 */ 34 /* 35 * LNK_SPAN PROTOCOL SUPPORT FUNCTIONS - Please see sys/dmsg.h for an 36 * involved explanation of the protocol. 37 */ 38 39 #include "dmsg_local.h" 40 41 /* 42 * Maximum spanning tree distance. This has the practical effect of 43 * stopping tail-chasing closed loops when a feeder span is lost. 44 */ 45 #define DMSG_SPAN_MAXDIST 16 46 47 /* 48 * RED-BLACK TREE DEFINITIONS 49 * 50 * We need to track: 51 * 52 * (1) shared fsid's (a cluster). 53 * (2) unique fsid's (a node in a cluster) <--- LNK_SPAN transactions. 54 * 55 * We need to aggegate all active LNK_SPANs, aggregate, and create our own 56 * outgoing LNK_SPAN transactions on each of our connections representing 57 * the aggregated state. 58 * 59 * h2span_conn - list of iocom connections who wish to receive SPAN 60 * propagation from other connections. Might contain 61 * a filter string. Only iocom's with an open 62 * LNK_CONN transactions are applicable for SPAN 63 * propagation. 64 * 65 * h2span_relay - List of links relayed (via SPAN). Essentially 66 * each relay structure represents a LNK_SPAN 67 * transaction that we initiated, verses h2span_link 68 * which is a LNK_SPAN transaction that we received. 69 * 70 * -- 71 * 72 * h2span_cluster - Organizes the shared fsid's. One structure for 73 * each cluster. 74 * 75 * h2span_node - Organizes the nodes in a cluster. One structure 76 * for each unique {cluster,node}, aka {fsid, pfs_fsid}. 77 * 78 * h2span_link - Organizes all incoming and outgoing LNK_SPAN message 79 * transactions related to a node. 80 * 81 * One h2span_link structure for each incoming LNK_SPAN 82 * transaction. Links selected for propagation back 83 * out are also where the outgoing LNK_SPAN messages 84 * are indexed into (so we can propagate changes). 85 * 86 * The h2span_link's use a red-black tree to sort the 87 * distance hop metric for the incoming LNK_SPAN. We 88 * then select the top N for outgoing. When the 89 * topology changes the top N may also change and cause 90 * new outgoing LNK_SPAN transactions to be opened 91 * and less desireable ones to be closed, causing 92 * transactional aborts within the message flow in 93 * the process. 94 * 95 * Also note - All outgoing LNK_SPAN message transactions are also 96 * entered into a red-black tree for use by the routing 97 * function. This is handled by msg.c in the state 98 * code, not here. 99 */ 100 101 struct h2span_link; 102 struct h2span_relay; 103 TAILQ_HEAD(h2span_conn_queue, h2span_conn); 104 TAILQ_HEAD(h2span_relay_queue, h2span_relay); 105 106 RB_HEAD(h2span_cluster_tree, h2span_cluster); 107 RB_HEAD(h2span_node_tree, h2span_node); 108 RB_HEAD(h2span_link_tree, h2span_link); 109 RB_HEAD(h2span_relay_tree, h2span_relay); 110 uint32_t DMsgRNSS; 111 112 /* 113 * Received LNK_CONN transaction enables SPAN protocol over connection. 114 * (may contain filter). Typically one for each mount and several may 115 * share the same media. 116 */ 117 struct h2span_conn { 118 TAILQ_ENTRY(h2span_conn) entry; 119 struct h2span_relay_tree tree; 120 dmsg_state_t *state; 121 dmsg_lnk_conn_t lnk_conn; 122 }; 123 124 /* 125 * All received LNK_SPANs are organized by cluster (pfs_clid), 126 * node (pfs_fsid), and link (received LNK_SPAN transaction). 127 */ 128 struct h2span_cluster { 129 RB_ENTRY(h2span_cluster) rbnode; 130 struct h2span_node_tree tree; 131 uuid_t pfs_clid; /* shared fsid */ 132 uint8_t peer_type; 133 char cl_label[128]; /* cluster label (typ PEER_BLOCK) */ 134 int refs; /* prevents destruction */ 135 }; 136 137 struct h2span_node { 138 RB_ENTRY(h2span_node) rbnode; 139 struct h2span_link_tree tree; 140 struct h2span_cluster *cls; 141 uint8_t pfs_type; 142 uuid_t pfs_fsid; /* unique fsid */ 143 char fs_label[128]; /* fs label (typ PEER_HAMMER2) */ 144 void *opaque; 145 }; 146 147 struct h2span_link { 148 RB_ENTRY(h2span_link) rbnode; 149 dmsg_state_t *state; /* state<->link */ 150 struct h2span_node *node; /* related node */ 151 struct h2span_relay_queue relayq; /* relay out */ 152 dmsg_lnk_span_t lnk_span; 153 }; 154 155 /* 156 * Any LNK_SPAN transactions we receive which are relayed out other 157 * connections utilize this structure to track the LNK_SPAN transactions 158 * we initiate (relay out) on other connections. We only relay out 159 * LNK_SPANs on connections we have an open CONN transaction for. 160 * 161 * The relay structure points to the outgoing LNK_SPAN trans (out_state) 162 * and to the incoming LNK_SPAN transaction (in_state). The relay 163 * structure holds refs on the related states. 164 * 165 * In many respects this is the core of the protocol... actually figuring 166 * out what LNK_SPANs to relay. The spanid used for relaying is the 167 * address of the 'state' structure, which is why h2span_relay has to 168 * be entered into a RB-TREE based at h2span_conn (so we can look 169 * up the spanid to validate it). 170 */ 171 struct h2span_relay { 172 TAILQ_ENTRY(h2span_relay) entry; /* from link */ 173 RB_ENTRY(h2span_relay) rbnode; /* from h2span_conn */ 174 struct h2span_conn *conn; /* related CONN transaction */ 175 dmsg_state_t *source_rt; /* h2span_link state */ 176 dmsg_state_t *target_rt; /* h2span_relay state */ 177 }; 178 179 typedef struct h2span_conn h2span_conn_t; 180 typedef struct h2span_cluster h2span_cluster_t; 181 typedef struct h2span_node h2span_node_t; 182 typedef struct h2span_link h2span_link_t; 183 typedef struct h2span_relay h2span_relay_t; 184 185 #define dmsg_termstr(array) _dmsg_termstr((array), sizeof(array)) 186 187 static h2span_relay_t *dmsg_generate_relay(h2span_conn_t *conn, 188 h2span_link_t *slink); 189 static uint32_t dmsg_rnss(void); 190 191 static __inline 192 void 193 _dmsg_termstr(char *base, size_t size) 194 { 195 base[size-1] = 0; 196 } 197 198 /* 199 * Cluster peer_type, uuid, AND label must match for a match 200 */ 201 static 202 int 203 h2span_cluster_cmp(h2span_cluster_t *cls1, h2span_cluster_t *cls2) 204 { 205 int r; 206 207 if (cls1->peer_type < cls2->peer_type) 208 return(-1); 209 if (cls1->peer_type > cls2->peer_type) 210 return(1); 211 r = uuid_compare(&cls1->pfs_clid, &cls2->pfs_clid, NULL); 212 if (r == 0) 213 r = strcmp(cls1->cl_label, cls2->cl_label); 214 215 return r; 216 } 217 218 /* 219 * Match against fs_label/pfs_fsid. Together these two items represent a 220 * unique node. In most cases the primary differentiator is pfs_fsid but 221 * we also string-match fs_label. 222 */ 223 static 224 int 225 h2span_node_cmp(h2span_node_t *node1, h2span_node_t *node2) 226 { 227 int r; 228 229 r = strcmp(node1->fs_label, node2->fs_label); 230 if (r == 0) 231 r = uuid_compare(&node1->pfs_fsid, &node2->pfs_fsid, NULL); 232 return (r); 233 } 234 235 /* 236 * Sort/subsort must match h2span_relay_cmp() under any given node 237 * to make the aggregation algorithm easier, so the best links are 238 * in the same sorted order as the best relays. 239 * 240 * NOTE: We cannot use link*->state->msgid because this msgid is created 241 * by each remote host and thus might wind up being the same. 242 */ 243 static 244 int 245 h2span_link_cmp(h2span_link_t *link1, h2span_link_t *link2) 246 { 247 if (link1->lnk_span.dist < link2->lnk_span.dist) 248 return(-1); 249 if (link1->lnk_span.dist > link2->lnk_span.dist) 250 return(1); 251 if (link1->lnk_span.rnss < link2->lnk_span.rnss) 252 return(-1); 253 if (link1->lnk_span.rnss > link2->lnk_span.rnss) 254 return(1); 255 #if 1 256 if ((uintptr_t)link1->state < (uintptr_t)link2->state) 257 return(-1); 258 if ((uintptr_t)link1->state > (uintptr_t)link2->state) 259 return(1); 260 #else 261 if (link1->state->msgid < link2->state->msgid) 262 return(-1); 263 if (link1->state->msgid > link2->state->msgid) 264 return(1); 265 #endif 266 return(0); 267 } 268 269 /* 270 * Relay entries are sorted by node, subsorted by distance and link 271 * address (so we can match up the conn->tree relay topology with 272 * a node's link topology). 273 */ 274 static 275 int 276 h2span_relay_cmp(h2span_relay_t *relay1, h2span_relay_t *relay2) 277 { 278 h2span_link_t *link1 = relay1->source_rt->any.link; 279 h2span_link_t *link2 = relay2->source_rt->any.link; 280 281 if ((intptr_t)link1->node < (intptr_t)link2->node) 282 return(-1); 283 if ((intptr_t)link1->node > (intptr_t)link2->node) 284 return(1); 285 if (link1->lnk_span.dist < link2->lnk_span.dist) 286 return(-1); 287 if (link1->lnk_span.dist > link2->lnk_span.dist) 288 return(1); 289 if (link1->lnk_span.rnss < link2->lnk_span.rnss) 290 return(-1); 291 if (link1->lnk_span.rnss > link2->lnk_span.rnss) 292 return(1); 293 #if 1 294 if ((uintptr_t)link1->state < (uintptr_t)link2->state) 295 return(-1); 296 if ((uintptr_t)link1->state > (uintptr_t)link2->state) 297 return(1); 298 #else 299 if (link1->state->msgid < link2->state->msgid) 300 return(-1); 301 if (link1->state->msgid > link2->state->msgid) 302 return(1); 303 #endif 304 return(0); 305 } 306 307 RB_PROTOTYPE_STATIC(h2span_cluster_tree, h2span_cluster, 308 rbnode, h2span_cluster_cmp); 309 RB_PROTOTYPE_STATIC(h2span_node_tree, h2span_node, 310 rbnode, h2span_node_cmp); 311 RB_PROTOTYPE_STATIC(h2span_link_tree, h2span_link, 312 rbnode, h2span_link_cmp); 313 RB_PROTOTYPE_STATIC(h2span_relay_tree, h2span_relay, 314 rbnode, h2span_relay_cmp); 315 316 RB_GENERATE_STATIC(h2span_cluster_tree, h2span_cluster, 317 rbnode, h2span_cluster_cmp); 318 RB_GENERATE_STATIC(h2span_node_tree, h2span_node, 319 rbnode, h2span_node_cmp); 320 RB_GENERATE_STATIC(h2span_link_tree, h2span_link, 321 rbnode, h2span_link_cmp); 322 RB_GENERATE_STATIC(h2span_relay_tree, h2span_relay, 323 rbnode, h2span_relay_cmp); 324 325 /* 326 * Global mutex protects cluster_tree lookups, connq, mediaq. 327 */ 328 static pthread_mutex_t cluster_mtx; 329 static struct h2span_cluster_tree cluster_tree = RB_INITIALIZER(cluster_tree); 330 static struct h2span_conn_queue connq = TAILQ_HEAD_INITIALIZER(connq); 331 static struct dmsg_media_queue mediaq = TAILQ_HEAD_INITIALIZER(mediaq); 332 333 static void dmsg_lnk_span(dmsg_msg_t *msg); 334 static void dmsg_lnk_conn(dmsg_msg_t *msg); 335 static void dmsg_lnk_ping(dmsg_msg_t *msg); 336 static void dmsg_lnk_relay(dmsg_msg_t *msg); 337 static void dmsg_relay_scan(h2span_conn_t *conn, h2span_node_t *node); 338 static void dmsg_relay_delete(h2span_relay_t *relay); 339 340 void 341 dmsg_msg_lnk_signal(dmsg_iocom_t *iocom __unused) 342 { 343 pthread_mutex_lock(&cluster_mtx); 344 dmsg_relay_scan(NULL, NULL); 345 pthread_mutex_unlock(&cluster_mtx); 346 } 347 348 /* 349 * DMSG_PROTO_LNK - Generic DMSG_PROTO_LNK. 350 * (incoming iocom lock not held) 351 * 352 * This function is typically called for one-way and opening-transactions 353 * since state->func is assigned after that, but it will also be called 354 * if no state->func is assigned on transaction-open. 355 */ 356 void 357 dmsg_msg_lnk(dmsg_msg_t *msg) 358 { 359 dmsg_iocom_t *iocom = msg->state->iocom; 360 361 switch(msg->tcmd & DMSGF_BASECMDMASK) { 362 case DMSG_LNK_CONN: 363 dmsg_lnk_conn(msg); 364 break; 365 case DMSG_LNK_SPAN: 366 dmsg_lnk_span(msg); 367 break; 368 case DMSG_LNK_PING: 369 dmsg_lnk_ping(msg); 370 break; 371 default: 372 iocom->usrmsg_callback(msg, 1); 373 /* state invalid after reply */ 374 break; 375 } 376 } 377 378 /* 379 * LNK_CONN - iocom identify message reception. 380 * (incoming iocom lock not held) 381 * 382 * Remote node identifies itself to us, sets up a SPAN filter, and gives us 383 * the ok to start transmitting SPANs. 384 */ 385 void 386 dmsg_lnk_conn(dmsg_msg_t *msg) 387 { 388 dmsg_state_t *state = msg->state; 389 dmsg_iocom_t *iocom = state->iocom; 390 dmsg_media_t *media; 391 h2span_conn_t *conn; 392 h2span_relay_t *relay; 393 char *alloc = NULL; 394 395 pthread_mutex_lock(&cluster_mtx); 396 397 dmio_printf(iocom, 3, 398 "dmsg_lnk_conn: msg %p cmd %08x state %p " 399 "txcmd %08x rxcmd %08x\n", 400 msg, msg->any.head.cmd, state, 401 state->txcmd, state->rxcmd); 402 403 switch(msg->any.head.cmd & DMSGF_TRANSMASK) { 404 case DMSG_LNK_CONN | DMSGF_CREATE: 405 case DMSG_LNK_CONN | DMSGF_CREATE | DMSGF_DELETE: 406 /* 407 * On transaction start we allocate a new h2span_conn and 408 * acknowledge the request, leaving the transaction open. 409 * We then relay priority-selected SPANs. 410 */ 411 dmio_printf(iocom, 3, "LNK_CONN(%08x): %s/%s/%s\n", 412 (uint32_t)msg->any.head.msgid, 413 dmsg_uuid_to_str(&msg->any.lnk_conn.pfs_clid, 414 &alloc), 415 msg->any.lnk_conn.cl_label, 416 msg->any.lnk_conn.fs_label); 417 free(alloc); 418 419 conn = dmsg_alloc(sizeof(*conn)); 420 assert(state->iocom->conn == NULL); 421 422 RB_INIT(&conn->tree); 423 state->iocom->conn = conn; /* XXX only one */ 424 state->iocom->conn_msgid = state->msgid; 425 dmsg_state_hold(state); 426 conn->state = state; 427 state->func = dmsg_lnk_conn; 428 state->any.conn = conn; 429 TAILQ_INSERT_TAIL(&connq, conn, entry); 430 conn->lnk_conn = msg->any.lnk_conn; 431 432 /* 433 * Set up media 434 */ 435 TAILQ_FOREACH(media, &mediaq, entry) { 436 if (uuid_compare(&msg->any.lnk_conn.mediaid, 437 &media->mediaid, NULL) == 0) { 438 break; 439 } 440 } 441 if (media == NULL) { 442 media = dmsg_alloc(sizeof(*media)); 443 media->mediaid = msg->any.lnk_conn.mediaid; 444 TAILQ_INSERT_TAIL(&mediaq, media, entry); 445 } 446 state->media = media; 447 ++media->refs; 448 449 if ((msg->any.head.cmd & DMSGF_DELETE) == 0) { 450 iocom->usrmsg_callback(msg, 0); 451 dmsg_msg_result(msg, 0); 452 dmsg_iocom_signal(iocom); 453 break; 454 } 455 /* FALL THROUGH */ 456 case DMSG_LNK_CONN | DMSGF_DELETE: 457 case DMSG_LNK_ERROR | DMSGF_DELETE: 458 /* 459 * On transaction terminate we clean out our h2span_conn 460 * and acknowledge the request, closing the transaction. 461 */ 462 dmio_printf(iocom, 3, "%s\n", "LNK_CONN: Terminated"); 463 conn = state->any.conn; 464 assert(conn); 465 466 /* 467 * Adjust media refs 468 * 469 * Callback will clean out media config / user-opaque state 470 */ 471 media = state->media; 472 --media->refs; 473 if (media->refs == 0) { 474 dmio_printf(iocom, 3, "%s\n", "Media shutdown"); 475 TAILQ_REMOVE(&mediaq, media, entry); 476 pthread_mutex_unlock(&cluster_mtx); 477 iocom->usrmsg_callback(msg, 0); 478 pthread_mutex_lock(&cluster_mtx); 479 dmsg_free(media); 480 } 481 state->media = NULL; 482 483 /* 484 * Clean out all relays. This requires terminating each 485 * relay transaction. 486 */ 487 while ((relay = RB_ROOT(&conn->tree)) != NULL) { 488 dmsg_relay_delete(relay); 489 } 490 491 /* 492 * Clean out conn 493 */ 494 conn->state = NULL; 495 msg->state->any.conn = NULL; 496 msg->state->iocom->conn = NULL; 497 TAILQ_REMOVE(&connq, conn, entry); 498 dmsg_free(conn); 499 500 dmsg_msg_reply(msg, 0); 501 dmsg_state_drop(state); 502 /* state invalid after reply */ 503 break; 504 default: 505 iocom->usrmsg_callback(msg, 1); 506 #if 0 507 if (msg->any.head.cmd & DMSGF_DELETE) 508 goto deleteconn; 509 dmsg_msg_reply(msg, DMSG_ERR_NOSUPP); 510 #endif 511 break; 512 } 513 pthread_mutex_unlock(&cluster_mtx); 514 } 515 516 /* 517 * LNK_SPAN - Spanning tree protocol message reception 518 * (incoming iocom lock not held) 519 * 520 * Receive a spanning tree transactional message, creating or destroying 521 * a SPAN and propagating it to other iocoms. 522 */ 523 void 524 dmsg_lnk_span(dmsg_msg_t *msg) 525 { 526 dmsg_state_t *state = msg->state; 527 dmsg_iocom_t *iocom = state->iocom; 528 h2span_cluster_t dummy_cls; 529 h2span_node_t dummy_node; 530 h2span_cluster_t *cls; 531 h2span_node_t *node; 532 h2span_link_t *slink; 533 h2span_relay_t *relay; 534 char *alloc = NULL; 535 536 /* 537 * Ignore reply to LNK_SPAN. The reply is expected and will commands 538 * to flow in both directions on the open transaction. This will also 539 * ignore DMSGF_REPLY|DMSGF_DELETE messages. Since we take no action 540 * if the other end unexpectedly closes their side of the transaction, 541 * we can ignore that too. 542 */ 543 if (msg->any.head.cmd & DMSGF_REPLY) { 544 dmio_printf(iocom, 2, "%s\n", 545 "Ignore reply to LNK_SPAN"); 546 return; 547 } 548 549 pthread_mutex_lock(&cluster_mtx); 550 551 /* 552 * On transaction start we initialize the tracking infrastructure 553 */ 554 if (msg->any.head.cmd & DMSGF_CREATE) { 555 assert(state->func == NULL); 556 state->func = dmsg_lnk_span; 557 558 dmsg_termstr(msg->any.lnk_span.cl_label); 559 dmsg_termstr(msg->any.lnk_span.fs_label); 560 561 /* 562 * Find the cluster 563 */ 564 dummy_cls.pfs_clid = msg->any.lnk_span.pfs_clid; 565 dummy_cls.peer_type = msg->any.lnk_span.peer_type; 566 bcopy(msg->any.lnk_span.cl_label, 567 dummy_cls.cl_label, 568 sizeof(dummy_cls.cl_label)); 569 cls = RB_FIND(h2span_cluster_tree, &cluster_tree, &dummy_cls); 570 if (cls == NULL) { 571 cls = dmsg_alloc(sizeof(*cls)); 572 cls->pfs_clid = msg->any.lnk_span.pfs_clid; 573 cls->peer_type = msg->any.lnk_span.peer_type; 574 bcopy(msg->any.lnk_span.cl_label, 575 cls->cl_label, 576 sizeof(cls->cl_label)); 577 RB_INIT(&cls->tree); 578 RB_INSERT(h2span_cluster_tree, &cluster_tree, cls); 579 } 580 581 /* 582 * Find the node 583 */ 584 dummy_node.pfs_fsid = msg->any.lnk_span.pfs_fsid; 585 bcopy(msg->any.lnk_span.fs_label, dummy_node.fs_label, 586 sizeof(dummy_node.fs_label)); 587 node = RB_FIND(h2span_node_tree, &cls->tree, &dummy_node); 588 if (node == NULL) { 589 node = dmsg_alloc(sizeof(*node)); 590 node->pfs_fsid = msg->any.lnk_span.pfs_fsid; 591 node->pfs_type = msg->any.lnk_span.pfs_type; 592 bcopy(msg->any.lnk_span.fs_label, 593 node->fs_label, 594 sizeof(node->fs_label)); 595 node->cls = cls; 596 RB_INIT(&node->tree); 597 RB_INSERT(h2span_node_tree, &cls->tree, node); 598 } 599 600 /* 601 * Create the link 602 * 603 * NOTE: Sub-transactions on the incoming SPAN can be used 604 * to talk to the originator. We should not set-up 605 * state->relay for incoming SPANs since our sub-trans 606 * is running on the same interface (i.e. no actual 607 * relaying need be done). 608 * 609 * NOTE: Later on when we relay the SPAN out the outgoing 610 * SPAN state will be set up to relay back to this 611 * state. 612 * 613 * NOTE: It is possible for SPAN targets to send one-way 614 * messages to the originator but it is not possible 615 * for the originator to (currently) broadcast one-way 616 * messages to all of its SPAN targets. The protocol 617 * allows such a feature to be added in the future. 618 */ 619 assert(state->any.link == NULL); 620 dmsg_state_hold(state); 621 slink = dmsg_alloc(sizeof(*slink)); 622 TAILQ_INIT(&slink->relayq); 623 slink->node = node; 624 slink->state = state; 625 state->any.link = slink; 626 slink->lnk_span = msg->any.lnk_span; 627 628 RB_INSERT(h2span_link_tree, &node->tree, slink); 629 630 dmio_printf(iocom, 3, 631 "LNK_SPAN(thr %p): %p %s cl=%s fs=%s dist=%d\n", 632 iocom, slink, 633 dmsg_uuid_to_str(&msg->any.lnk_span.pfs_clid, 634 &alloc), 635 msg->any.lnk_span.cl_label, 636 msg->any.lnk_span.fs_label, 637 msg->any.lnk_span.dist); 638 free(alloc); 639 #if 0 640 dmsg_relay_scan(NULL, node); 641 #endif 642 /* 643 * Ack the open, which will issue a CREATE on our side, and 644 * leave the transaction open. Necessary to allow the 645 * transaction to be used as a virtual circuit. 646 */ 647 dmsg_state_result(state, 0); 648 dmsg_iocom_signal(iocom); 649 } 650 651 /* 652 * On transaction terminate we remove the tracking infrastructure. 653 */ 654 if (msg->any.head.cmd & DMSGF_DELETE) { 655 slink = state->any.link; 656 assert(slink->state == state); 657 assert(slink != NULL); 658 node = slink->node; 659 cls = node->cls; 660 661 dmio_printf(iocom, 3, 662 "LNK_DELE(thr %p): %p %s cl=%s fs=%s\n", 663 iocom, slink, 664 dmsg_uuid_to_str(&cls->pfs_clid, &alloc), 665 cls->cl_label, 666 node->fs_label); 667 free(alloc); 668 669 /* 670 * Clean out all relays. This requires terminating each 671 * relay transaction. 672 */ 673 while ((relay = TAILQ_FIRST(&slink->relayq)) != NULL) { 674 dmsg_relay_delete(relay); 675 } 676 677 /* 678 * Clean out the topology 679 */ 680 RB_REMOVE(h2span_link_tree, &node->tree, slink); 681 if (RB_EMPTY(&node->tree)) { 682 RB_REMOVE(h2span_node_tree, &cls->tree, node); 683 if (RB_EMPTY(&cls->tree) && cls->refs == 0) { 684 RB_REMOVE(h2span_cluster_tree, 685 &cluster_tree, cls); 686 dmsg_free(cls); 687 } 688 node->cls = NULL; 689 dmsg_free(node); 690 node = NULL; 691 } 692 state->any.link = NULL; 693 slink->state = NULL; 694 slink->node = NULL; 695 dmsg_state_drop(state); 696 dmsg_free(slink); 697 698 /* 699 * We have to terminate the transaction 700 */ 701 dmsg_state_reply(state, 0); 702 /* state invalid after reply */ 703 704 /* 705 * If the node still exists issue any required updates. If 706 * it doesn't then all related relays have already been 707 * removed and there's nothing left to do. 708 */ 709 #if 0 710 if (node) 711 dmsg_relay_scan(NULL, node); 712 #endif 713 if (node) 714 dmsg_iocom_signal(iocom); 715 } 716 717 pthread_mutex_unlock(&cluster_mtx); 718 } 719 720 /* 721 * Respond to a PING with a PING|REPLY, forward replies to the usermsg 722 * callback. 723 */ 724 static 725 void 726 dmsg_lnk_ping(dmsg_msg_t *msg) 727 { 728 dmsg_msg_t *rep; 729 730 if (msg->any.head.cmd & DMSGF_REPLY) { 731 msg->state->iocom->usrmsg_callback(msg, 1); 732 } else { 733 rep = dmsg_msg_alloc(msg->state, 0, 734 DMSG_LNK_PING | DMSGF_REPLY, 735 NULL, NULL); 736 dmsg_msg_write(rep); 737 } 738 } 739 740 /* 741 * Update relay transactions for SPANs. 742 * 743 * Called with cluster_mtx held. 744 */ 745 static void dmsg_relay_scan_specific(h2span_node_t *node, 746 h2span_conn_t *conn); 747 748 static void 749 dmsg_relay_scan(h2span_conn_t *conn, h2span_node_t *node) 750 { 751 h2span_cluster_t *cls; 752 753 if (node) { 754 /* 755 * Iterate specific node 756 */ 757 TAILQ_FOREACH(conn, &connq, entry) 758 dmsg_relay_scan_specific(node, conn); 759 } else { 760 /* 761 * Full iteration. 762 * 763 * Iterate cluster ids, nodes, and either a specific connection 764 * or all connections. 765 */ 766 RB_FOREACH(cls, h2span_cluster_tree, &cluster_tree) { 767 /* 768 * Iterate node ids 769 */ 770 RB_FOREACH(node, h2span_node_tree, &cls->tree) { 771 /* 772 * Synchronize the node's link (received SPANs) 773 * with each connection's relays. 774 */ 775 if (conn) { 776 dmsg_relay_scan_specific(node, conn); 777 } else { 778 TAILQ_FOREACH(conn, &connq, entry) { 779 dmsg_relay_scan_specific(node, 780 conn); 781 } 782 assert(conn == NULL); 783 } 784 } 785 } 786 } 787 } 788 789 /* 790 * Update the relay'd SPANs for this (node, conn). 791 * 792 * Iterate links and adjust relays to match. We only propagate the top link 793 * for now (XXX we want to propagate the top two). 794 * 795 * The dmsg_relay_scan_cmp() function locates the first relay element 796 * for any given node. The relay elements will be sub-sorted by dist. 797 */ 798 struct relay_scan_info { 799 h2span_node_t *node; 800 h2span_relay_t *relay; 801 }; 802 803 static int 804 dmsg_relay_scan_cmp(h2span_relay_t *relay, void *arg) 805 { 806 struct relay_scan_info *info = arg; 807 808 if ((intptr_t)relay->source_rt->any.link->node < (intptr_t)info->node) 809 return(-1); 810 if ((intptr_t)relay->source_rt->any.link->node > (intptr_t)info->node) 811 return(1); 812 return(0); 813 } 814 815 static int 816 dmsg_relay_scan_callback(h2span_relay_t *relay, void *arg) 817 { 818 struct relay_scan_info *info = arg; 819 820 info->relay = relay; 821 return(-1); 822 } 823 824 static void 825 dmsg_relay_scan_specific(h2span_node_t *node, h2span_conn_t *conn) 826 { 827 struct relay_scan_info info; 828 h2span_relay_t *relay; 829 h2span_relay_t *next_relay; 830 h2span_link_t *slink; 831 dmsg_lnk_conn_t *lconn; 832 dmsg_lnk_span_t *lspan; 833 int count; 834 int maxcount = 2; 835 #ifdef REQUIRE_SYMMETRICAL 836 uint32_t lastdist = DMSG_SPAN_MAXDIST; 837 uint32_t lastrnss = 0; 838 #endif 839 840 info.node = node; 841 info.relay = NULL; 842 843 /* 844 * Locate the first related relay for the node on this connection. 845 * relay will be NULL if there were none. 846 */ 847 RB_SCAN(h2span_relay_tree, &conn->tree, 848 dmsg_relay_scan_cmp, dmsg_relay_scan_callback, &info); 849 relay = info.relay; 850 info.relay = NULL; 851 if (relay) 852 assert(relay->source_rt->any.link->node == node); 853 854 dm_printf(9, "relay scan for connection %p\n", conn); 855 856 /* 857 * Iterate the node's links (received SPANs) in distance order, 858 * lowest (best) dist first. 859 * 860 * PROPAGATE THE BEST LINKS OVER THE SPECIFIED CONNECTION. 861 * 862 * Track relays while iterating the best links and construct 863 * missing relays when necessary. 864 * 865 * (If some prior better link was removed it would have also 866 * removed the relay, so the relay can only match exactly or 867 * be worse). 868 */ 869 count = 0; 870 RB_FOREACH(slink, h2span_link_tree, &node->tree) { 871 /* 872 * Increment count of successful relays. This isn't 873 * quite accurate if we break out but nothing after 874 * the loop uses (count). 875 * 876 * If count exceeds the maximum number of relays we desire 877 * we normally want to break out. However, in order to 878 * guarantee a symmetric path we have to continue if both 879 * (dist) and (rnss) continue to match. Otherwise the SPAN 880 * propagation in the reverse direction may choose different 881 * routes and we will not have a symmetric path. 882 * 883 * NOTE: Spanning tree does not have to be symmetrical so 884 * this code is not currently enabled. 885 */ 886 if (++count >= maxcount) { 887 #ifdef REQUIRE_SYMMETRICAL 888 if (lastdist != slink->lnk_span.dist || 889 lastrnss != slink->lnk_span.rnss) { 890 break; 891 } 892 #else 893 break; 894 #endif 895 /* go beyond the nominal maximum desired relays */ 896 } 897 898 /* 899 * Match, relay already in-place, get the next 900 * relay to match against the next slink. 901 */ 902 if (relay && relay->source_rt->any.link == slink) { 903 relay = RB_NEXT(h2span_relay_tree, &conn->tree, relay); 904 continue; 905 } 906 907 /* 908 * We might want this SLINK, if it passes our filters. 909 * 910 * The spanning tree can cause closed loops so we have 911 * to limit slink->dist. 912 */ 913 if (slink->lnk_span.dist > DMSG_SPAN_MAXDIST) 914 break; 915 916 /* 917 * Don't bother transmitting a LNK_SPAN out the same 918 * connection it came in on. Trivial optimization. 919 */ 920 if (slink->state->iocom == conn->state->iocom) 921 break; 922 923 /* 924 * NOTE ON FILTERS: The protocol spec allows non-requested 925 * SPANs to be transmitted, the other end is expected to 926 * leave their transactions open but otherwise ignore them. 927 * 928 * Don't bother transmitting if the remote connection 929 * is not accepting this SPAN's peer_type. 930 * 931 * pfs_mask is typically used so pure clients can filter 932 * out receiving SPANs for other pure clients. 933 */ 934 lspan = &slink->lnk_span; 935 lconn = &conn->lnk_conn; 936 if (((1LLU << lspan->peer_type) & lconn->peer_mask) == 0) 937 break; 938 if (((1LLU << lspan->pfs_type) & lconn->pfs_mask) == 0) 939 break; 940 941 /* 942 * Do not give pure clients visibility to other pure clients 943 */ 944 if (lconn->pfs_type == DMSG_PFSTYPE_CLIENT && 945 lspan->pfs_type == DMSG_PFSTYPE_CLIENT) { 946 break; 947 } 948 949 /* 950 * Connection filter, if cluster uuid is not NULL it must 951 * match the span cluster uuid. Only applies when the 952 * peer_type matches. 953 */ 954 if (lspan->peer_type == lconn->peer_type && 955 !uuid_is_nil(&lconn->pfs_clid, NULL) && 956 uuid_compare(&slink->node->cls->pfs_clid, 957 &lconn->pfs_clid, NULL)) { 958 break; 959 } 960 961 /* 962 * Connection filter, if cluster label is not empty it must 963 * match the span cluster label. Only applies when the 964 * peer_type matches. 965 */ 966 if (lspan->peer_type == lconn->peer_type && 967 lconn->cl_label[0] && 968 strcmp(lconn->cl_label, slink->node->cls->cl_label)) { 969 break; 970 } 971 972 /* 973 * NOTE! pfs_fsid differentiates nodes within the same cluster 974 * so we obviously don't want to match those. Similarly 975 * for fs_label. 976 */ 977 978 /* 979 * Ok, we've accepted this SPAN for relaying. 980 */ 981 assert(relay == NULL || 982 relay->source_rt->any.link->node != slink->node || 983 relay->source_rt->any.link->lnk_span.dist >= 984 slink->lnk_span.dist); 985 relay = dmsg_generate_relay(conn, slink); 986 #ifdef REQUIRE_SYMMETRICAL 987 lastdist = slink->lnk_span.dist; 988 lastrnss = slink->lnk_span.rnss; 989 #endif 990 991 /* 992 * Match (created new relay), get the next relay to 993 * match against the next slink. 994 */ 995 relay = RB_NEXT(h2span_relay_tree, &conn->tree, relay); 996 } 997 998 /* 999 * Any remaining relay's belonging to this connection which match 1000 * the node are in excess of the current aggregate spanning state 1001 * and should be removed. 1002 */ 1003 while (relay && relay->source_rt->any.link->node == node) { 1004 next_relay = RB_NEXT(h2span_relay_tree, &conn->tree, relay); 1005 dm_printf(9, "%s\n", "RELAY DELETE FROM EXTRAS"); 1006 dmsg_relay_delete(relay); 1007 relay = next_relay; 1008 } 1009 } 1010 1011 /* 1012 * Find the slink associated with the msgid and return its state, 1013 * so the caller can issue a transaction. 1014 */ 1015 dmsg_state_t * 1016 dmsg_findspan(const char *label) 1017 { 1018 dmsg_state_t *state; 1019 h2span_cluster_t *cls; 1020 h2span_node_t *node; 1021 h2span_link_t *slink; 1022 uint64_t msgid = strtoull(label, NULL, 16); 1023 1024 pthread_mutex_lock(&cluster_mtx); 1025 1026 state = NULL; 1027 RB_FOREACH(cls, h2span_cluster_tree, &cluster_tree) { 1028 RB_FOREACH(node, h2span_node_tree, &cls->tree) { 1029 RB_FOREACH(slink, h2span_link_tree, &node->tree) { 1030 if (slink->state->msgid == msgid) { 1031 state = slink->state; 1032 goto done; 1033 } 1034 } 1035 } 1036 } 1037 done: 1038 pthread_mutex_unlock(&cluster_mtx); 1039 1040 dm_printf(8, "findspan: %p\n", state); 1041 1042 return state; 1043 } 1044 1045 1046 /* 1047 * Helper function to generate missing relay on target connection. 1048 * 1049 * cluster_mtx must be held 1050 */ 1051 static 1052 h2span_relay_t * 1053 dmsg_generate_relay(h2span_conn_t *conn, h2span_link_t *slink) 1054 { 1055 h2span_relay_t *relay; 1056 dmsg_msg_t *msg; 1057 1058 dmsg_state_hold(slink->state); 1059 relay = dmsg_alloc(sizeof(*relay)); 1060 relay->conn = conn; 1061 relay->source_rt = slink->state; 1062 /* relay->source_rt->any.link = slink; */ 1063 1064 /* 1065 * NOTE: relay->target_rt->any.relay set to relay by alloc. 1066 * 1067 * NOTE: LNK_SPAN is transmitted as a top-level transaction. 1068 */ 1069 msg = dmsg_msg_alloc(&conn->state->iocom->state0, 1070 0, DMSG_LNK_SPAN | DMSGF_CREATE, 1071 dmsg_lnk_relay, relay); 1072 dmsg_state_hold(msg->state); 1073 relay->target_rt = msg->state; 1074 1075 msg->any.lnk_span = slink->lnk_span; 1076 msg->any.lnk_span.dist = slink->lnk_span.dist + 1; 1077 msg->any.lnk_span.rnss = slink->lnk_span.rnss + dmsg_rnss(); 1078 1079 RB_INSERT(h2span_relay_tree, &conn->tree, relay); 1080 TAILQ_INSERT_TAIL(&slink->relayq, relay, entry); 1081 1082 /* 1083 * Seed the relay so new sub-transactions received on the outgoing 1084 * SPAN circuit are relayed back to the originator. 1085 */ 1086 msg->state->relay = relay->source_rt; 1087 dmsg_state_hold(msg->state->relay); 1088 1089 dmsg_msg_write(msg); 1090 1091 return (relay); 1092 } 1093 1094 /* 1095 * Messages received on relay SPANs. These are open transactions so it is 1096 * in fact possible for the other end to close the transaction. 1097 * 1098 * XXX MPRACE on state structure 1099 */ 1100 static void 1101 dmsg_lnk_relay(dmsg_msg_t *msg) 1102 { 1103 dmsg_state_t *state = msg->state; 1104 h2span_relay_t *relay; 1105 1106 assert(msg->any.head.cmd & DMSGF_REPLY); 1107 1108 if (msg->any.head.cmd & DMSGF_DELETE) { 1109 pthread_mutex_lock(&cluster_mtx); 1110 dm_printf(8, "%s\n", "RELAY DELETE FROM LNK_RELAY MSG"); 1111 if ((relay = state->any.relay) != NULL) { 1112 dmsg_relay_delete(relay); 1113 } else { 1114 dmsg_state_reply(state, 0); 1115 } 1116 pthread_mutex_unlock(&cluster_mtx); 1117 } 1118 } 1119 1120 /* 1121 * cluster_mtx held by caller 1122 */ 1123 static 1124 void 1125 dmsg_relay_delete(h2span_relay_t *relay) 1126 { 1127 dm_printf(8, 1128 "RELAY DELETE %p RELAY %p ON CLS=%p NODE=%p " 1129 "DIST=%d FD %d STATE %p\n", 1130 relay->source_rt->any.link, 1131 relay, 1132 relay->source_rt->any.link->node->cls, 1133 relay->source_rt->any.link->node, 1134 relay->source_rt->any.link->lnk_span.dist, 1135 relay->conn->state->iocom->sock_fd, 1136 relay->target_rt); 1137 1138 RB_REMOVE(h2span_relay_tree, &relay->conn->tree, relay); 1139 TAILQ_REMOVE(&relay->source_rt->any.link->relayq, relay, entry); 1140 1141 if (relay->target_rt) { 1142 relay->target_rt->any.relay = NULL; 1143 dmsg_state_reply(relay->target_rt, 0); 1144 dmsg_state_drop(relay->target_rt); 1145 /* state invalid after reply */ 1146 relay->target_rt = NULL; 1147 } 1148 1149 /* 1150 * NOTE: relay->source_rt->refs is held by the relay SPAN 1151 * state, not by this relay structure. 1152 */ 1153 relay->conn = NULL; 1154 if (relay->source_rt) { 1155 dmsg_state_drop(relay->source_rt); 1156 relay->source_rt = NULL; 1157 } 1158 dmsg_free(relay); 1159 } 1160 1161 /************************************************************************ 1162 * ROUTER AND MESSAGING HANDLES * 1163 ************************************************************************ 1164 * 1165 * Basically the idea here is to provide a stable data structure which 1166 * can be localized to the caller for higher level protocols to work with. 1167 * Depends on the context, these dmsg_handle's can be pooled by use-case 1168 * and remain persistent through a client (or mount point's) life. 1169 */ 1170 1171 #if 0 1172 /* 1173 * Obtain a stable handle on a cluster given its uuid. This ties directly 1174 * into the global cluster topology, creating the structure if necessary 1175 * (even if the uuid does not exist or does not exist yet), and preventing 1176 * the structure from getting ripped out from under us while we hold a 1177 * pointer to it. 1178 */ 1179 h2span_cluster_t * 1180 dmsg_cluster_get(uuid_t *pfs_clid) 1181 { 1182 h2span_cluster_t dummy_cls; 1183 h2span_cluster_t *cls; 1184 1185 dummy_cls.pfs_clid = *pfs_clid; 1186 pthread_mutex_lock(&cluster_mtx); 1187 cls = RB_FIND(h2span_cluster_tree, &cluster_tree, &dummy_cls); 1188 if (cls) 1189 ++cls->refs; 1190 pthread_mutex_unlock(&cluster_mtx); 1191 return (cls); 1192 } 1193 1194 void 1195 dmsg_cluster_put(h2span_cluster_t *cls) 1196 { 1197 pthread_mutex_lock(&cluster_mtx); 1198 assert(cls->refs > 0); 1199 --cls->refs; 1200 if (RB_EMPTY(&cls->tree) && cls->refs == 0) { 1201 RB_REMOVE(h2span_cluster_tree, 1202 &cluster_tree, cls); 1203 dmsg_free(cls); 1204 } 1205 pthread_mutex_unlock(&cluster_mtx); 1206 } 1207 1208 /* 1209 * Obtain a stable handle to a specific cluster node given its uuid. 1210 * This handle does NOT lock in the route to the node and is typically 1211 * used as part of the dmsg_handle_*() API to obtain a set of 1212 * stable nodes. 1213 */ 1214 h2span_node_t * 1215 dmsg_node_get(h2span_cluster_t *cls, uuid_t *pfs_fsid) 1216 { 1217 } 1218 1219 #endif 1220 1221 /* 1222 * Dumps the spanning tree 1223 * 1224 * DEBUG ONLY 1225 */ 1226 void 1227 dmsg_shell_tree(dmsg_iocom_t *iocom, char *cmdbuf __unused) 1228 { 1229 h2span_cluster_t *cls; 1230 h2span_node_t *node; 1231 h2span_link_t *slink; 1232 h2span_relay_t *relay; 1233 char *uustr = NULL; 1234 1235 pthread_mutex_lock(&cluster_mtx); 1236 RB_FOREACH(cls, h2span_cluster_tree, &cluster_tree) { 1237 dmsg_printf(iocom, "Cluster %s %s (%s)\n", 1238 dmsg_peer_type_to_str(cls->peer_type), 1239 dmsg_uuid_to_str(&cls->pfs_clid, &uustr), 1240 cls->cl_label); 1241 RB_FOREACH(node, h2span_node_tree, &cls->tree) { 1242 dmsg_printf(iocom, " Node %02x %s (%s)\n", 1243 node->pfs_type, 1244 dmsg_uuid_to_str(&node->pfs_fsid, &uustr), 1245 node->fs_label); 1246 RB_FOREACH(slink, h2span_link_tree, &node->tree) { 1247 dmsg_printf(iocom, 1248 "\tSLink msgid %016jx " 1249 "dist=%d via %d\n", 1250 (intmax_t)slink->state->msgid, 1251 slink->lnk_span.dist, 1252 slink->state->iocom->sock_fd); 1253 TAILQ_FOREACH(relay, &slink->relayq, entry) { 1254 dmsg_printf(iocom, 1255 "\t Relay-out msgid %016jx " 1256 "via %d\n", 1257 (intmax_t)relay->target_rt->msgid, 1258 relay->target_rt->iocom->sock_fd); 1259 } 1260 } 1261 } 1262 } 1263 pthread_mutex_unlock(&cluster_mtx); 1264 if (uustr) 1265 free(uustr); 1266 #if 0 1267 TAILQ_FOREACH(conn, &connq, entry) { 1268 } 1269 #endif 1270 } 1271 1272 /* 1273 * DEBUG ONLY 1274 * 1275 * Locate the state representing an incoming LNK_SPAN given its msgid. 1276 */ 1277 int 1278 dmsg_debug_findspan(uint64_t msgid, dmsg_state_t **statep) 1279 { 1280 h2span_cluster_t *cls; 1281 h2span_node_t *node; 1282 h2span_link_t *slink; 1283 1284 pthread_mutex_lock(&cluster_mtx); 1285 RB_FOREACH(cls, h2span_cluster_tree, &cluster_tree) { 1286 RB_FOREACH(node, h2span_node_tree, &cls->tree) { 1287 RB_FOREACH(slink, h2span_link_tree, &node->tree) { 1288 if (slink->state->msgid == msgid) { 1289 *statep = slink->state; 1290 goto found; 1291 } 1292 } 1293 } 1294 } 1295 pthread_mutex_unlock(&cluster_mtx); 1296 *statep = NULL; 1297 return(ENOENT); 1298 found: 1299 pthread_mutex_unlock(&cluster_mtx); 1300 return(0); 1301 } 1302 1303 /* 1304 * Random number sub-sort value to add to SPAN rnss fields on relay. 1305 * This allows us to differentiate spans with the same <dist> field 1306 * for relaying purposes. We must normally limit the number of relays 1307 * for any given SPAN origination but we must also guarantee that a 1308 * symmetric reverse path exists, so we use the rnss field as a sub-sort 1309 * (since there can be thousands or millions if we only match on <dist>), 1310 * and if there STILL too many spans we go past the limit. 1311 */ 1312 static 1313 uint32_t 1314 dmsg_rnss(void) 1315 { 1316 if (DMsgRNSS == 0) { 1317 pthread_mutex_lock(&cluster_mtx); 1318 while (DMsgRNSS == 0) { 1319 srandomdev(); 1320 DMsgRNSS = random(); 1321 } 1322 pthread_mutex_unlock(&cluster_mtx); 1323 } 1324 return(DMsgRNSS); 1325 } 1326