xref: /dflybsd-src/lib/libc/stdtime/localtime.c (revision 1c4f2fa48567f20b32ef2963ca51c6d456c4b58b)
1 /*
2 ** This file is in the public domain, so clarified as of
3 ** 1996-06-05 by Arthur David Olson.
4 **
5 ** @(#)localtime.c	8.10
6 ** $FreeBSD: src/lib/libc/stdtime/localtime.c,v 1.25.2.2 2002/08/13 16:08:07 bmilekic Exp $
7 */
8 
9 /*
10 ** Leap second handling from Bradley White.
11 ** POSIX-style TZ environment variable handling from Guy Harris.
12 */
13 
14 /*LINTLIBRARY*/
15 
16 #include "namespace.h"
17 #include <sys/types.h>
18 #include <sys/stat.h>
19 
20 #include <fcntl.h>
21 #include <float.h>	/* for FLT_MAX and DBL_MAX */
22 #include <time.h>
23 #include <pthread.h>
24 #include "private.h"
25 #include <un-namespace.h>
26 
27 #include "tzfile.h"
28 
29 #include "libc_private.h"
30 
31 #define	_MUTEX_LOCK(x)		if (__isthreaded) _pthread_mutex_lock(x)
32 #define	_MUTEX_UNLOCK(x)	if (__isthreaded) _pthread_mutex_unlock(x)
33 
34 #define _RWLOCK_RDLOCK(x)						\
35 		do {							\
36 			if (__isthreaded) _pthread_rwlock_rdlock(x);	\
37 		} while (0)
38 
39 #define _RWLOCK_WRLOCK(x)						\
40 		do {							\
41 			if (__isthreaded) _pthread_rwlock_wrlock(x);	\
42 		} while (0)
43 
44 #define _RWLOCK_UNLOCK(x)						\
45 		do {							\
46 			if (__isthreaded) _pthread_rwlock_unlock(x);	\
47 		} while (0)
48 
49 #ifndef TZ_ABBR_MAX_LEN
50 #define TZ_ABBR_MAX_LEN	16
51 #endif /* !defined TZ_ABBR_MAX_LEN */
52 
53 #ifndef TZ_ABBR_CHAR_SET
54 #define TZ_ABBR_CHAR_SET \
55 	"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 :+-._"
56 #endif /* !defined TZ_ABBR_CHAR_SET */
57 
58 #ifndef TZ_ABBR_ERR_CHAR
59 #define TZ_ABBR_ERR_CHAR	'_'
60 #endif /* !defined TZ_ABBR_ERR_CHAR */
61 
62 /*
63 ** Someone might make incorrect use of a time zone abbreviation:
64 **	1.	They might reference tzname[0] before calling tzset (explicitly
65 **		or implicitly).
66 **	2.	They might reference tzname[1] before calling tzset (explicitly
67 **		or implicitly).
68 **	3.	They might reference tzname[1] after setting to a time zone
69 **		in which Daylight Saving Time is never observed.
70 **	4.	They might reference tzname[0] after setting to a time zone
71 **		in which Standard Time is never observed.
72 **	5.	They might reference tm.TM_ZONE after calling offtime.
73 ** What's best to do in the above cases is open to debate;
74 ** for now, we just set things up so that in any of the five cases
75 ** WILDABBR is used. Another possibility: initialize tzname[0] to the
76 ** string "tzname[0] used before set", and similarly for the other cases.
77 ** And another: initialize tzname[0] to "ERA", with an explanation in the
78 ** manual page of what this "time zone abbreviation" means (doing this so
79 ** that tzname[0] has the "normal" length of three characters).
80 */
81 #define WILDABBR	"   "
82 
83 static char		wildabbr[] = WILDABBR;
84 
85 static const char	gmt[] = "UTC";
86 
87 /*
88 ** The DST rules to use if TZ has no rules and we can't load TZDEFRULES.
89 ** We default to US rules as of 1999-08-17.
90 ** POSIX 1003.1 section 8.1.1 says that the default DST rules are
91 ** implementation dependent; for historical reasons, US rules are a
92 ** common default.
93 */
94 #ifndef TZDEFRULESTRING
95 #define TZDEFRULESTRING ",M4.1.0,M10.5.0"
96 #endif /* !defined TZDEFDST */
97 
98 struct ttinfo {				/* time type information */
99 	long		tt_gmtoff;	/* UTC offset in seconds */
100 	int		tt_isdst;	/* used to set tm_isdst */
101 	int		tt_abbrind;	/* abbreviation list index */
102 	int		tt_ttisstd;	/* TRUE if transition is std time */
103 	int		tt_ttisgmt;	/* TRUE if transition is UTC */
104 };
105 
106 struct lsinfo {				/* leap second information */
107 	time_t		ls_trans;	/* transition time */
108 	long		ls_corr;	/* correction to apply */
109 };
110 
111 #define BIGGEST(a, b)	(((a) > (b)) ? (a) : (b))
112 
113 #ifdef TZNAME_MAX
114 #define MY_TZNAME_MAX	TZNAME_MAX
115 #endif /* defined TZNAME_MAX */
116 #ifndef TZNAME_MAX
117 #define MY_TZNAME_MAX	255
118 #endif /* !defined TZNAME_MAX */
119 
120 struct state {
121 	int		leapcnt;
122 	int		timecnt;
123 	int		typecnt;
124 	int		charcnt;
125 	int		goback;
126 	int		goahead;
127 	time_t		ats[TZ_MAX_TIMES];
128 	unsigned char	types[TZ_MAX_TIMES];
129 	struct ttinfo	ttis[TZ_MAX_TYPES];
130 	char		chars[BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt),
131 				(2 * (MY_TZNAME_MAX + 1)))];
132 	struct lsinfo	lsis[TZ_MAX_LEAPS];
133 };
134 
135 struct rule {
136 	int		r_type;		/* type of rule--see below */
137 	int		r_day;		/* day number of rule */
138 	int		r_week;		/* week number of rule */
139 	int		r_mon;		/* month number of rule */
140 	long		r_time;		/* transition time of rule */
141 };
142 
143 #define JULIAN_DAY		0	/* Jn - Julian day */
144 #define DAY_OF_YEAR		1	/* n - day of year */
145 #define MONTH_NTH_DAY_OF_WEEK	2	/* Mm.n.d - month, week, day of week */
146 
147 /*
148 ** Prototypes for static functions.
149 */
150 
151 static long		detzcode(const char * codep);
152 static time_t		detzcode64(const char * codep);
153 static int		differ_by_repeat(time_t t1, time_t t0);
154 static const char *	getzname(const char * strp);
155 static const char *	getqzname(const char * strp, const int delim);
156 static const char *	getnum(const char * strp, int * nump, int min,
157 				int max);
158 static const char *	getsecs(const char * strp, long * secsp);
159 static const char *	getoffset(const char * strp, long * offsetp);
160 static const char *	getrule(const char * strp, struct rule * rulep);
161 static void		gmtload(struct state * sp);
162 static struct tm *	gmtsub(const time_t * timep, long offset,
163 				struct tm * tmp);
164 static struct tm *	localsub(const time_t * timep, long offset,
165 				struct tm * tmp);
166 static int		increment_overflow(int * number, int delta);
167 static int		leaps_thru_end_of(int y);
168 static int		long_increment_overflow(long * number, int delta);
169 static int		long_normalize_overflow(long * tensptr,
170 				int * unitsptr, int base);
171 static int		normalize_overflow(int * tensptr, int * unitsptr,
172 				int base);
173 static void		settzname(void);
174 static time_t		time1(struct tm * tmp,
175 				struct tm * (*funcp)(const time_t *,
176 				long, struct tm *),
177 				long offset);
178 static time_t		time2(struct tm *tmp,
179 				struct tm * (*funcp)(const time_t *,
180 				long, struct tm*),
181 				long offset, int * okayp);
182 static time_t		time2sub(struct tm *tmp,
183 				struct tm * (*funcp)(const time_t *,
184 				long, struct tm*),
185 				long offset, int * okayp, int do_norm_secs);
186 static struct tm *	timesub(const time_t * timep, long offset,
187 				const struct state * sp, struct tm * tmp);
188 static int		tmcomp(const struct tm * atmp,
189 				const struct tm * btmp);
190 static time_t		transtime(time_t janfirst, int year,
191 				const struct rule * rulep, long offset);
192 static int		typesequiv(const struct state * sp, int a, int b);
193 static int		tzload(const char * name, struct state * sp,
194 				int doextend);
195 static int		tzparse(const char * name, struct state * sp,
196 				int lastditch);
197 
198 static struct state	lclmem;
199 static struct state	gmtmem;
200 #define lclptr		(&lclmem)
201 #define gmtptr		(&gmtmem)
202 
203 #ifndef TZ_STRLEN_MAX
204 #define TZ_STRLEN_MAX 255
205 #endif /* !defined TZ_STRLEN_MAX */
206 
207 static char		lcl_TZname[TZ_STRLEN_MAX + 1];
208 static int		lcl_is_set;
209 static int		gmt_is_set;
210 static pthread_rwlock_t	lcl_rwlock = PTHREAD_RWLOCK_INITIALIZER;
211 static pthread_mutex_t	gmt_mutex = PTHREAD_MUTEX_INITIALIZER;
212 
213 char *			tzname[2] = {
214 	wildabbr,
215 	wildabbr
216 };
217 
218 /*
219 ** Section 4.12.3 of X3.159-1989 requires that
220 **	Except for the strftime function, these functions [asctime,
221 **	ctime, gmtime, localtime] return values in one of two static
222 **	objects: a broken-down time structure and an array of char.
223 ** Thanks to Paul Eggert for noting this.
224 */
225 
226 static struct tm	tm;
227 
228 time_t			timezone = 0;
229 int			daylight = 0;
230 
231 static long
232 detzcode(const char * const codep)
233 {
234 	long	result;
235 	int	i;
236 
237 	result = (codep[0] & 0x80) ? ~0L : 0;
238 	for (i = 0; i < 4; ++i)
239 		result = (result << 8) | (codep[i] & 0xff);
240 	return result;
241 }
242 
243 static time_t
244 detzcode64(const char * const codep)
245 {
246 	time_t	result;
247 	int	i;
248 
249 	result = (codep[0] & 0x80) ?  (~(int_fast64_t) 0) : 0;
250 	for (i = 0; i < 8; ++i)
251 		result = result * 256 + (codep[i] & 0xff);
252 	return result;
253 }
254 
255 static void
256 settzname(void)
257 {
258 	struct state * const	sp = lclptr;
259 	int			i;
260 
261 	tzname[0] = wildabbr;
262 	tzname[1] = wildabbr;
263 	daylight = 0;
264 	timezone = 0;
265 
266 	for (i = 0; i < sp->typecnt; ++i) {
267 		const struct ttinfo * const	ttisp = &sp->ttis[i];
268 
269 		tzname[ttisp->tt_isdst] =
270 			&sp->chars[ttisp->tt_abbrind];
271 		if (ttisp->tt_isdst)
272 			daylight = 1;
273 		if (i == 0 || !ttisp->tt_isdst)
274 			timezone = -(ttisp->tt_gmtoff);
275 	}
276 	/*
277 	** And to get the latest zone names into tzname. . .
278 	*/
279 	for (i = 0; i < sp->timecnt; ++i) {
280 		const struct ttinfo * const	ttisp =
281 							&sp->ttis[
282 								sp->types[i]];
283 
284 		tzname[ttisp->tt_isdst] =
285 			&sp->chars[ttisp->tt_abbrind];
286 	}
287 	/*
288 	** Finally, scrub the abbreviations.
289 	** First, replace bogus characters.
290 	*/
291 	for (i = 0; i < sp->charcnt; ++i)
292 		if (strchr(TZ_ABBR_CHAR_SET, sp->chars[i]) == NULL)
293 			sp->chars[i] = TZ_ABBR_ERR_CHAR;
294 	/*
295 	** Second, truncate long abbreviations.
296 	*/
297 	for (i = 0; i < sp->typecnt; ++i) {
298 		const struct ttinfo * const	ttisp = &sp->ttis[i];
299 		char *				cp = &sp->chars[ttisp->tt_abbrind];
300 
301 		if (strlen(cp) > TZ_ABBR_MAX_LEN &&
302 			strcmp(cp, GRANDPARENTED) != 0)
303 				*(cp + TZ_ABBR_MAX_LEN) = '\0';
304 	}
305 }
306 
307 static int
308 differ_by_repeat(const time_t t1, const time_t t0)
309 {
310 	int_fast64_t _t0 = t0;
311 	int_fast64_t _t1 = t1;
312 
313 	if (TYPE_INTEGRAL(time_t) &&
314 		TYPE_BIT(time_t) - TYPE_SIGNED(time_t) < SECSPERREPEAT_BITS)
315 			return 0;
316 	return _t1 - _t0 == SECSPERREPEAT;
317 }
318 
319 static int
320 tzload(const char *name, struct state * const sp, const int doextend)
321 {
322 	const char *		p;
323 	int			i;
324 	int			fid;
325 	int			stored;
326 	int			nread;
327 	union {
328 		struct tzhead	tzhead;
329 		char		buf[2 * sizeof(struct tzhead) +
330 					2 * sizeof *sp +
331 					4 * TZ_MAX_TIMES];
332 	} u;
333 
334 	/* XXX The following is from OpenBSD, and I'm not sure it is correct */
335 	if (name != NULL && issetugid() != 0)
336 		if ((name[0] == ':' && name[1] == '/') ||
337 		    name[0] == '/' || strchr(name, '.'))
338 			name = NULL;
339 	if (name == NULL && (name = TZDEFAULT) == NULL)
340 		return -1;
341 	{
342 		int	doaccess;
343 		struct stat	stab;
344 		/*
345 		** Section 4.9.1 of the C standard says that
346 		** "FILENAME_MAX expands to an integral constant expression
347 		** that is the size needed for an array of char large enough
348 		** to hold the longest file name string that the implementation
349 		** guarantees can be opened."
350 		*/
351 		char		fullname[FILENAME_MAX + 1];
352 
353 		if (name[0] == ':')
354 			++name;
355 		doaccess = name[0] == '/';
356 		if (!doaccess) {
357 			if ((p = TZDIR) == NULL)
358 				return -1;
359 			if ((strlen(p) + 1 + strlen(name) + 1) >= sizeof fullname)
360 				return -1;
361 			strcpy(fullname, p);
362 			strcat(fullname, "/");
363 			strcat(fullname, name);
364 			/*
365 			** Set doaccess if '.' (as in "../") shows up in name.
366 			*/
367 			if (strchr(name, '.') != NULL)
368 				doaccess = TRUE;
369 			name = fullname;
370 		}
371 		if (doaccess && access(name, R_OK) != 0)
372 			return -1;
373 		if ((fid = _open(name, O_RDONLY)) == -1)
374 			return -1;
375 		if ((_fstat(fid, &stab) < 0) || !S_ISREG(stab.st_mode)) {
376 			_close(fid);
377 			return -1;
378 		}
379 	}
380 	nread = read(fid, u.buf, sizeof u.buf);
381 	if (close(fid) < 0 || nread <= 0)
382 		return -1;
383 	for (stored = 4; stored <= 8; stored *= 2) {
384 		int		ttisstdcnt;
385 		int		ttisgmtcnt;
386 
387 		ttisstdcnt = (int) detzcode(u.tzhead.tzh_ttisstdcnt);
388 		ttisgmtcnt = (int) detzcode(u.tzhead.tzh_ttisgmtcnt);
389 		sp->leapcnt = (int) detzcode(u.tzhead.tzh_leapcnt);
390 		sp->timecnt = (int) detzcode(u.tzhead.tzh_timecnt);
391 		sp->typecnt = (int) detzcode(u.tzhead.tzh_typecnt);
392 		sp->charcnt = (int) detzcode(u.tzhead.tzh_charcnt);
393 		p = u.tzhead.tzh_charcnt + sizeof u.tzhead.tzh_charcnt;
394 		if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
395 			sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
396 			sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
397 			sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
398 			(ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
399 			(ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
400 				return -1;
401 		if (nread - (p - u.buf) <
402 			sp->timecnt * stored +		/* ats */
403 			sp->timecnt +			/* types */
404 			sp->typecnt * 6 +		/* ttinfos */
405 			sp->charcnt +			/* chars */
406 			sp->leapcnt * (stored + 4) +	/* lsinfos */
407 			ttisstdcnt +			/* ttisstds */
408 			ttisgmtcnt)			/* ttisgmts */
409 				return -1;
410 		for (i = 0; i < sp->timecnt; ++i) {
411 			sp->ats[i] = (stored == 4) ?
412 				detzcode(p) : detzcode64(p);
413 			p += stored;
414 		}
415 		for (i = 0; i < sp->timecnt; ++i) {
416 			sp->types[i] = (unsigned char) *p++;
417 			if (sp->types[i] >= sp->typecnt)
418 				return -1;
419 		}
420 		for (i = 0; i < sp->typecnt; ++i) {
421 			struct ttinfo *	ttisp;
422 
423 			ttisp = &sp->ttis[i];
424 			ttisp->tt_gmtoff = detzcode(p);
425 			p += 4;
426 			ttisp->tt_isdst = (unsigned char) *p++;
427 			if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
428 				return -1;
429 			ttisp->tt_abbrind = (unsigned char) *p++;
430 			if (ttisp->tt_abbrind < 0 ||
431 				ttisp->tt_abbrind > sp->charcnt)
432 					return -1;
433 		}
434 		for (i = 0; i < sp->charcnt; ++i)
435 			sp->chars[i] = *p++;
436 		sp->chars[i] = '\0';	/* ensure '\0' at end */
437 		for (i = 0; i < sp->leapcnt; ++i) {
438 			struct lsinfo *	lsisp;
439 
440 			lsisp = &sp->lsis[i];
441 			lsisp->ls_trans = (stored == 4) ?
442 				detzcode(p) : detzcode64(p);
443 			p += stored;
444 			lsisp->ls_corr = detzcode(p);
445 			p += 4;
446 		}
447 		for (i = 0; i < sp->typecnt; ++i) {
448 			struct ttinfo *	ttisp;
449 
450 			ttisp = &sp->ttis[i];
451 			if (ttisstdcnt == 0)
452 				ttisp->tt_ttisstd = FALSE;
453 			else {
454 				ttisp->tt_ttisstd = *p++;
455 				if (ttisp->tt_ttisstd != TRUE &&
456 					ttisp->tt_ttisstd != FALSE)
457 						return -1;
458 			}
459 		}
460 		for (i = 0; i < sp->typecnt; ++i) {
461 			struct ttinfo *	ttisp;
462 
463 			ttisp = &sp->ttis[i];
464 			if (ttisgmtcnt == 0)
465 				ttisp->tt_ttisgmt = FALSE;
466 			else {
467 				ttisp->tt_ttisgmt = *p++;
468 				if (ttisp->tt_ttisgmt != TRUE &&
469 					ttisp->tt_ttisgmt != FALSE)
470 						return -1;
471 			}
472 		}
473 		/*
474 		** Out-of-sort ats should mean we're running on a
475 		** signed time_t system but using a data file with
476 		** unsigned values (or vice versa).
477 		*/
478 		for (i = 0; i < sp->timecnt - 2; ++i)
479 			if (sp->ats[i] > sp->ats[i + 1]) {
480 				++i;
481 				if (TYPE_SIGNED(time_t)) {
482 					/*
483 					** Ignore the end (easy).
484 					*/
485 					sp->timecnt = i;
486 				} else {
487 					/*
488 					** Ignore the beginning (harder).
489 					*/
490 					int	j;
491 
492 					for (j = 0; j + i < sp->timecnt; ++j) {
493 						sp->ats[j] = sp->ats[j + i];
494 						sp->types[j] = sp->types[j + i];
495 					}
496 					sp->timecnt = j;
497 				}
498 				break;
499 			}
500 		/*
501 		** If this is an old file, we're done.
502 		*/
503 		if (u.tzhead.tzh_version[0] == '\0')
504 			break;
505 		nread -= p - u.buf;
506 		for (i = 0; i < nread; ++i)
507 			u.buf[i] = p[i];
508 		/*
509 		** If this is a narrow integer time_t system, we're done.
510 		*/
511 		if (stored >= (int) sizeof(time_t) && TYPE_INTEGRAL(time_t))
512 			break;
513 	}
514 	if (doextend && nread > 2 &&
515 		u.buf[0] == '\n' && u.buf[nread - 1] == '\n' &&
516 		sp->typecnt + 2 <= TZ_MAX_TYPES) {
517 			struct state	ts;
518 			int		result;
519 
520 			u.buf[nread - 1] = '\0';
521 			result = tzparse(&u.buf[1], &ts, FALSE);
522 			if (result == 0 && ts.typecnt == 2 &&
523 				sp->charcnt + ts.charcnt <= TZ_MAX_CHARS) {
524 					for (i = 0; i < 2; ++i)
525 						ts.ttis[i].tt_abbrind +=
526 							sp->charcnt;
527 					for (i = 0; i < ts.charcnt; ++i)
528 						sp->chars[sp->charcnt++] =
529 							ts.chars[i];
530 					i = 0;
531 					while (i < ts.timecnt &&
532 						ts.ats[i] <=
533 						sp->ats[sp->timecnt - 1])
534 							++i;
535 					while (i < ts.timecnt &&
536 					    sp->timecnt < TZ_MAX_TIMES) {
537 						sp->ats[sp->timecnt] =
538 							ts.ats[i];
539 						sp->types[sp->timecnt] =
540 							sp->typecnt +
541 							ts.types[i];
542 						++sp->timecnt;
543 						++i;
544 					}
545 					sp->ttis[sp->typecnt++] = ts.ttis[0];
546 					sp->ttis[sp->typecnt++] = ts.ttis[1];
547 			}
548 	}
549 	sp->goback = sp->goahead = FALSE;
550 	if (sp->timecnt > 1) {
551 		for (i = 1; i < sp->timecnt; ++i)
552 			if (typesequiv(sp, sp->types[i], sp->types[0]) &&
553 				differ_by_repeat(sp->ats[i], sp->ats[0])) {
554 					sp->goback = TRUE;
555 					break;
556 				}
557 		for (i = sp->timecnt - 2; i >= 0; --i)
558 			if (typesequiv(sp, sp->types[sp->timecnt - 1],
559 				sp->types[i]) &&
560 				differ_by_repeat(sp->ats[sp->timecnt - 1],
561 				sp->ats[i])) {
562 					sp->goahead = TRUE;
563 					break;
564 		}
565 	}
566 	return 0;
567 }
568 
569 static int
570 typesequiv(const struct state * const sp, const int a, const int b)
571 {
572 	int	result;
573 
574 	if (sp == NULL ||
575 		a < 0 || a >= sp->typecnt ||
576 		b < 0 || b >= sp->typecnt)
577 			result = FALSE;
578 	else {
579 		const struct ttinfo *	ap = &sp->ttis[a];
580 		const struct ttinfo *	bp = &sp->ttis[b];
581 		result = ap->tt_gmtoff == bp->tt_gmtoff &&
582 			ap->tt_isdst == bp->tt_isdst &&
583 			ap->tt_ttisstd == bp->tt_ttisstd &&
584 			ap->tt_ttisgmt == bp->tt_ttisgmt &&
585 			strcmp(&sp->chars[ap->tt_abbrind],
586 			&sp->chars[bp->tt_abbrind]) == 0;
587 	}
588 	return result;
589 }
590 
591 static const int	mon_lengths[2][MONSPERYEAR] = {
592 	{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
593 	{ 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
594 };
595 
596 static const int	year_lengths[2] = {
597 	DAYSPERNYEAR, DAYSPERLYEAR
598 };
599 
600 /*
601 ** Given a pointer into a time zone string, scan until a character that is not
602 ** a valid character in a zone name is found. Return a pointer to that
603 ** character.
604 */
605 
606 static const char *
607 getzname(const char *strp)
608 {
609 	char	c;
610 
611 	while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
612 		c != '+')
613 			++strp;
614 	return strp;
615 }
616 
617 /*
618 ** Given a pointer into an extended time zone string, scan until the ending
619 ** delimiter of the zone name is located. Return a pointer to the delimiter.
620 **
621 ** As with getzname above, the legal character set is actually quite
622 ** restricted, with other characters producing undefined results.
623 ** We don't do any checking here; checking is done later in common-case code.
624 */
625 
626 static const char *
627 getqzname(const char *strp, const int delim)
628 {
629 	int	c;
630 
631 	while ((c = *strp) != '\0' && c != delim)
632 		++strp;
633 	return strp;
634 }
635 
636 /*
637 ** Given a pointer into a time zone string, extract a number from that string.
638 ** Check that the number is within a specified range; if it is not, return
639 ** NULL.
640 ** Otherwise, return a pointer to the first character not part of the number.
641 */
642 
643 static const char *
644 getnum(const char *strp, int * const nump, const int min, const int max)
645 {
646 	char	c;
647 	int	num;
648 
649 	if (strp == NULL || !is_digit(c = *strp))
650 		return NULL;
651 	num = 0;
652 	do {
653 		num = num * 10 + (c - '0');
654 		if (num > max)
655 			return NULL;	/* illegal value */
656 		c = *++strp;
657 	} while (is_digit(c));
658 	if (num < min)
659 		return NULL;		/* illegal value */
660 	*nump = num;
661 	return strp;
662 }
663 
664 /*
665 ** Given a pointer into a time zone string, extract a number of seconds,
666 ** in hh[:mm[:ss]] form, from the string.
667 ** If any error occurs, return NULL.
668 ** Otherwise, return a pointer to the first character not part of the number
669 ** of seconds.
670 */
671 
672 static const char *
673 getsecs(const char *strp, long * const secsp)
674 {
675 	int	num;
676 
677 	/*
678 	** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
679 	** "M10.4.6/26", which does not conform to Posix,
680 	** but which specifies the equivalent of
681 	** ``02:00 on the first Sunday on or after 23 Oct''.
682 	*/
683 	strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
684 	if (strp == NULL)
685 		return NULL;
686 	*secsp = num * (long) SECSPERHOUR;
687 	if (*strp == ':') {
688 		++strp;
689 		strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
690 		if (strp == NULL)
691 			return NULL;
692 		*secsp += num * SECSPERMIN;
693 		if (*strp == ':') {
694 			++strp;
695 			/* `SECSPERMIN' allows for leap seconds. */
696 			strp = getnum(strp, &num, 0, SECSPERMIN);
697 			if (strp == NULL)
698 				return NULL;
699 			*secsp += num;
700 		}
701 	}
702 	return strp;
703 }
704 
705 /*
706 ** Given a pointer into a time zone string, extract an offset, in
707 ** [+-]hh[:mm[:ss]] form, from the string.
708 ** If any error occurs, return NULL.
709 ** Otherwise, return a pointer to the first character not part of the time.
710 */
711 
712 static const char *
713 getoffset(const char *strp, long * const offsetp)
714 {
715 	int	neg = 0;
716 
717 	if (*strp == '-') {
718 		neg = 1;
719 		++strp;
720 	} else if (*strp == '+')
721 		++strp;
722 	strp = getsecs(strp, offsetp);
723 	if (strp == NULL)
724 		return NULL;		/* illegal time */
725 	if (neg)
726 		*offsetp = -*offsetp;
727 	return strp;
728 }
729 
730 /*
731 ** Given a pointer into a time zone string, extract a rule in the form
732 ** date[/time]. See POSIX section 8 for the format of "date" and "time".
733 ** If a valid rule is not found, return NULL.
734 ** Otherwise, return a pointer to the first character not part of the rule.
735 */
736 
737 static const char *
738 getrule(const char *strp, struct rule * const rulep)
739 {
740 	if (*strp == 'J') {
741 		/*
742 		** Julian day.
743 		*/
744 		rulep->r_type = JULIAN_DAY;
745 		++strp;
746 		strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
747 	} else if (*strp == 'M') {
748 		/*
749 		** Month, week, day.
750 		*/
751 		rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
752 		++strp;
753 		strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
754 		if (strp == NULL)
755 			return NULL;
756 		if (*strp++ != '.')
757 			return NULL;
758 		strp = getnum(strp, &rulep->r_week, 1, 5);
759 		if (strp == NULL)
760 			return NULL;
761 		if (*strp++ != '.')
762 			return NULL;
763 		strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
764 	} else if (is_digit(*strp)) {
765 		/*
766 		** Day of year.
767 		*/
768 		rulep->r_type = DAY_OF_YEAR;
769 		strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
770 	} else	return NULL;		/* invalid format */
771 	if (strp == NULL)
772 		return NULL;
773 	if (*strp == '/') {
774 		/*
775 		** Time specified.
776 		*/
777 		++strp;
778 		strp = getsecs(strp, &rulep->r_time);
779 	} else	rulep->r_time = 2 * SECSPERHOUR;	/* default = 2:00:00 */
780 	return strp;
781 }
782 
783 /*
784 ** Given the Epoch-relative time of January 1, 00:00:00 UTC, in a year, the
785 ** year, a rule, and the offset from UTC at the time that rule takes effect,
786 ** calculate the Epoch-relative time that rule takes effect.
787 */
788 
789 static time_t
790 transtime(const time_t janfirst, const int year,
791 	  const struct rule * const rulep, const long offset)
792 {
793 	int	leapyear;
794 	time_t	value;
795 	int	i;
796 	int		d, m1, yy0, yy1, yy2, dow;
797 
798 	INITIALIZE(value);
799 	leapyear = isleap(year);
800 	switch (rulep->r_type) {
801 
802 	case JULIAN_DAY:
803 		/*
804 		** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
805 		** years.
806 		** In non-leap years, or if the day number is 59 or less, just
807 		** add SECSPERDAY times the day number-1 to the time of
808 		** January 1, midnight, to get the day.
809 		*/
810 		value = janfirst + (rulep->r_day - 1) * SECSPERDAY;
811 		if (leapyear && rulep->r_day >= 60)
812 			value += SECSPERDAY;
813 		break;
814 
815 	case DAY_OF_YEAR:
816 		/*
817 		** n - day of year.
818 		** Just add SECSPERDAY times the day number to the time of
819 		** January 1, midnight, to get the day.
820 		*/
821 		value = janfirst + rulep->r_day * SECSPERDAY;
822 		break;
823 
824 	case MONTH_NTH_DAY_OF_WEEK:
825 		/*
826 		** Mm.n.d - nth "dth day" of month m.
827 		*/
828 		value = janfirst;
829 		for (i = 0; i < rulep->r_mon - 1; ++i)
830 			value += mon_lengths[leapyear][i] * SECSPERDAY;
831 
832 		/*
833 		** Use Zeller's Congruence to get day-of-week of first day of
834 		** month.
835 		*/
836 		m1 = (rulep->r_mon + 9) % 12 + 1;
837 		yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
838 		yy1 = yy0 / 100;
839 		yy2 = yy0 % 100;
840 		dow = ((26 * m1 - 2) / 10 +
841 			1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
842 		if (dow < 0)
843 			dow += DAYSPERWEEK;
844 
845 		/*
846 		** "dow" is the day-of-week of the first day of the month. Get
847 		** the day-of-month (zero-origin) of the first "dow" day of the
848 		** month.
849 		*/
850 		d = rulep->r_day - dow;
851 		if (d < 0)
852 			d += DAYSPERWEEK;
853 		for (i = 1; i < rulep->r_week; ++i) {
854 			if (d + DAYSPERWEEK >=
855 				mon_lengths[leapyear][rulep->r_mon - 1])
856 					break;
857 			d += DAYSPERWEEK;
858 		}
859 
860 		/*
861 		** "d" is the day-of-month (zero-origin) of the day we want.
862 		*/
863 		value += d * SECSPERDAY;
864 		break;
865 	}
866 
867 	/*
868 	** "value" is the Epoch-relative time of 00:00:00 UTC on the day in
869 	** question. To get the Epoch-relative time of the specified local
870 	** time on that day, add the transition time and the current offset
871 	** from UTC.
872 	*/
873 	return value + rulep->r_time + offset;
874 }
875 
876 /*
877 ** Given a POSIX section 8-style TZ string, fill in the rule tables as
878 ** appropriate.
879 */
880 
881 static int
882 tzparse(const char *name, struct state * const sp, const int lastditch)
883 {
884 	const char *			stdname;
885 	const char *			dstname;
886 	size_t				stdlen;
887 	size_t				dstlen;
888 	long				stdoffset;
889 	long				dstoffset;
890 	time_t *		atp;
891 	unsigned char *	typep;
892 	char *			cp;
893 	int			load_result;
894 
895 	INITIALIZE(dstname);
896 	stdname = name;
897 	if (lastditch) {
898 		stdlen = strlen(name);	/* length of standard zone name */
899 		name += stdlen;
900 		if (stdlen >= sizeof sp->chars)
901 			stdlen = (sizeof sp->chars) - 1;
902 		stdoffset = 0;
903 	} else {
904 		if (*name == '<') {
905 			name++;
906 			stdname = name;
907 			name = getqzname(name, '>');
908 			if (*name != '>')
909 				return (-1);
910 			stdlen = name - stdname;
911 			name++;
912 		} else {
913 			name = getzname(name);
914 			stdlen = name - stdname;
915 		}
916 		if (*name == '\0')
917 			return -1;
918 		name = getoffset(name, &stdoffset);
919 		if (name == NULL)
920 			return -1;
921 	}
922 	load_result = tzload(TZDEFRULES, sp, FALSE);
923 	if (load_result != 0)
924 		sp->leapcnt = 0;		/* so, we're off a little */
925 	if (*name != '\0') {
926 		if (*name == '<') {
927 			dstname = ++name;
928 			name = getqzname(name, '>');
929 			if (*name != '>')
930 				return -1;
931 			dstlen = name - dstname;
932 			name++;
933 		} else {
934 			dstname = name;
935 			name = getzname(name);
936 			dstlen = name - dstname; /* length of DST zone name */
937 		}
938 		if (*name != '\0' && *name != ',' && *name != ';') {
939 			name = getoffset(name, &dstoffset);
940 			if (name == NULL)
941 				return -1;
942 		} else	dstoffset = stdoffset - SECSPERHOUR;
943 		if (*name == '\0' && load_result != 0)
944 			name = TZDEFRULESTRING;
945 		if (*name == ',' || *name == ';') {
946 			struct rule	start;
947 			struct rule	end;
948 			int	year;
949 			time_t	janfirst;
950 			time_t		starttime;
951 			time_t		endtime;
952 
953 			++name;
954 			if ((name = getrule(name, &start)) == NULL)
955 				return -1;
956 			if (*name++ != ',')
957 				return -1;
958 			if ((name = getrule(name, &end)) == NULL)
959 				return -1;
960 			if (*name != '\0')
961 				return -1;
962 			sp->typecnt = 2;	/* standard time and DST */
963 			/*
964 			** Two transitions per year, from EPOCH_YEAR forward.
965 			*/
966 			sp->ttis[0].tt_gmtoff = -dstoffset;
967 			sp->ttis[0].tt_isdst = 1;
968 			sp->ttis[0].tt_abbrind = stdlen + 1;
969 			sp->ttis[1].tt_gmtoff = -stdoffset;
970 			sp->ttis[1].tt_isdst = 0;
971 			sp->ttis[1].tt_abbrind = 0;
972 			atp = sp->ats;
973 			typep = sp->types;
974 			janfirst = 0;
975 			sp->timecnt = 0;
976 			for (year = EPOCH_YEAR;
977 			    sp->timecnt + 2 <= TZ_MAX_TIMES;
978 			    ++year) {
979 			    	time_t	newfirst;
980 
981 				starttime = transtime(janfirst, year, &start,
982 					stdoffset);
983 				endtime = transtime(janfirst, year, &end,
984 					dstoffset);
985 				if (starttime > endtime) {
986 					*atp++ = endtime;
987 					*typep++ = 1;	/* DST ends */
988 					*atp++ = starttime;
989 					*typep++ = 0;	/* DST begins */
990 				} else {
991 					*atp++ = starttime;
992 					*typep++ = 0;	/* DST begins */
993 					*atp++ = endtime;
994 					*typep++ = 1;	/* DST ends */
995 				}
996 				sp->timecnt += 2;
997 				newfirst = janfirst;
998 				newfirst += year_lengths[isleap(year)] *
999 					SECSPERDAY;
1000 				if (newfirst <= janfirst)
1001 					break;
1002 				janfirst = newfirst;
1003 			}
1004 		} else {
1005 			long	theirstdoffset;
1006 			long	theirdstoffset;
1007 			long	theiroffset;
1008 			int	isdst;
1009 			int	i;
1010 			int	j;
1011 
1012 			if (*name != '\0')
1013 				return -1;
1014 			/*
1015 			** Initial values of theirstdoffset and theirdstoffset.
1016 			*/
1017 			theirstdoffset = 0;
1018 			for (i = 0; i < sp->timecnt; ++i) {
1019 				j = sp->types[i];
1020 				if (!sp->ttis[j].tt_isdst) {
1021 					theirstdoffset =
1022 						-sp->ttis[j].tt_gmtoff;
1023 					break;
1024 				}
1025 			}
1026 			theirdstoffset = 0;
1027 			for (i = 0; i < sp->timecnt; ++i) {
1028 				j = sp->types[i];
1029 				if (sp->ttis[j].tt_isdst) {
1030 					theirdstoffset =
1031 						-sp->ttis[j].tt_gmtoff;
1032 					break;
1033 				}
1034 			}
1035 			/*
1036 			** Initially we're assumed to be in standard time.
1037 			*/
1038 			isdst = FALSE;
1039 			theiroffset = theirstdoffset;
1040 			/*
1041 			** Now juggle transition times and types
1042 			** tracking offsets as you do.
1043 			*/
1044 			for (i = 0; i < sp->timecnt; ++i) {
1045 				j = sp->types[i];
1046 				sp->types[i] = sp->ttis[j].tt_isdst;
1047 				if (sp->ttis[j].tt_ttisgmt) {
1048 					/* No adjustment to transition time */
1049 				} else {
1050 					/*
1051 					** If summer time is in effect, and the
1052 					** transition time was not specified as
1053 					** standard time, add the summer time
1054 					** offset to the transition time;
1055 					** otherwise, add the standard time
1056 					** offset to the transition time.
1057 					*/
1058 					/*
1059 					** Transitions from DST to DDST
1060 					** will effectively disappear since
1061 					** POSIX provides for only one DST
1062 					** offset.
1063 					*/
1064 					if (isdst && !sp->ttis[j].tt_ttisstd) {
1065 						sp->ats[i] += dstoffset -
1066 							theirdstoffset;
1067 					} else {
1068 						sp->ats[i] += stdoffset -
1069 							theirstdoffset;
1070 					}
1071 				}
1072 				theiroffset = -sp->ttis[j].tt_gmtoff;
1073 				if (sp->ttis[j].tt_isdst)
1074 					theirdstoffset = theiroffset;
1075 				else	theirstdoffset = theiroffset;
1076 			}
1077 			/*
1078 			** Finally, fill in ttis.
1079 			** ttisstd and ttisgmt need not be handled.
1080 			*/
1081 			sp->ttis[0].tt_gmtoff = -stdoffset;
1082 			sp->ttis[0].tt_isdst = FALSE;
1083 			sp->ttis[0].tt_abbrind = 0;
1084 			sp->ttis[1].tt_gmtoff = -dstoffset;
1085 			sp->ttis[1].tt_isdst = TRUE;
1086 			sp->ttis[1].tt_abbrind = stdlen + 1;
1087 			sp->typecnt = 2;
1088 		}
1089 	} else {
1090 		dstlen = 0;
1091 		sp->typecnt = 1;		/* only standard time */
1092 		sp->timecnt = 0;
1093 		sp->ttis[0].tt_gmtoff = -stdoffset;
1094 		sp->ttis[0].tt_isdst = 0;
1095 		sp->ttis[0].tt_abbrind = 0;
1096 	}
1097 	sp->charcnt = stdlen + 1;
1098 	if (dstlen != 0)
1099 		sp->charcnt += dstlen + 1;
1100 	if ((size_t) sp->charcnt > sizeof sp->chars)
1101 		return -1;
1102 	cp = sp->chars;
1103 	strncpy(cp, stdname, stdlen);
1104 	cp += stdlen;
1105 	*cp++ = '\0';
1106 	if (dstlen != 0) {
1107 		strncpy(cp, dstname, dstlen);
1108 		*(cp + dstlen) = '\0';
1109 	}
1110 	return 0;
1111 }
1112 
1113 static void
1114 gmtload(struct state * const sp)
1115 {
1116 	if (tzload(gmt, sp, TRUE) != 0)
1117 		tzparse(gmt, sp, TRUE);
1118 }
1119 
1120 static void
1121 tzsetwall_basic(int rdlocked)
1122 {
1123 	if (!rdlocked)
1124 		_RWLOCK_RDLOCK(&lcl_rwlock);
1125 	if (lcl_is_set < 0) {
1126 		if (!rdlocked)
1127 			_RWLOCK_UNLOCK(&lcl_rwlock);
1128 		return;
1129 	}
1130 	_RWLOCK_UNLOCK(&lcl_rwlock);
1131 
1132 	_RWLOCK_WRLOCK(&lcl_rwlock);
1133 	lcl_is_set = -1;
1134 
1135 	if (tzload(NULL, lclptr, TRUE) != 0)
1136 		gmtload(lclptr);
1137 	settzname();
1138 	_RWLOCK_UNLOCK(&lcl_rwlock);
1139 
1140 	if (rdlocked)
1141 		_RWLOCK_RDLOCK(&lcl_rwlock);
1142 }
1143 
1144 void
1145 tzsetwall(void)
1146 {
1147 	tzsetwall_basic(0);
1148 }
1149 
1150 static void
1151 tzset_basic(int rdlocked)
1152 {
1153 	const char *	name;
1154 
1155 	name = getenv("TZ");
1156 	if (name == NULL) {
1157 		tzsetwall_basic(rdlocked);
1158 		return;
1159 	}
1160 
1161 	if (!rdlocked)
1162 		_RWLOCK_RDLOCK(&lcl_rwlock);
1163 	if (lcl_is_set > 0 && strcmp(lcl_TZname, name) == 0) {
1164 		if (!rdlocked)
1165 			_RWLOCK_UNLOCK(&lcl_rwlock);
1166 		return;
1167 	}
1168 	_RWLOCK_UNLOCK(&lcl_rwlock);
1169 
1170 	_RWLOCK_WRLOCK(&lcl_rwlock);
1171 	lcl_is_set = strlen(name) < sizeof lcl_TZname;
1172 	if (lcl_is_set)
1173 		strcpy(lcl_TZname, name);
1174 
1175 	if (*name == '\0') {
1176 		/*
1177 		** User wants it fast rather than right.
1178 		*/
1179 		lclptr->leapcnt = 0;		/* so, we're off a little */
1180 		lclptr->timecnt = 0;
1181 		lclptr->typecnt = 0;
1182 		lclptr->ttis[0].tt_isdst = 0;
1183 		lclptr->ttis[0].tt_gmtoff = 0;
1184 		lclptr->ttis[0].tt_abbrind = 0;
1185 		strcpy(lclptr->chars, gmt);
1186 	} else if (tzload(name, lclptr, TRUE) != 0)
1187 		if (name[0] == ':' || tzparse(name, lclptr, FALSE) != 0)
1188 			gmtload(lclptr);
1189 	settzname();
1190 	_RWLOCK_UNLOCK(&lcl_rwlock);
1191 
1192 	if (rdlocked)
1193 		_RWLOCK_RDLOCK(&lcl_rwlock);
1194 }
1195 
1196 void
1197 tzset(void)
1198 {
1199 	tzset_basic(0);
1200 }
1201 
1202 /*
1203 ** The easy way to behave "as if no library function calls" localtime
1204 ** is to not call it--so we drop its guts into "localsub", which can be
1205 ** freely called. (And no, the PANS doesn't require the above behavior--
1206 ** but it *is* desirable.)
1207 **
1208 ** The unused offset argument is for the benefit of mktime variants.
1209 */
1210 
1211 /*ARGSUSED*/
1212 static struct tm *
1213 localsub(const time_t * const timep, const long offset __unused,
1214 	 struct tm * const tmp)
1215 {
1216 	struct state *		sp;
1217 	const struct ttinfo *	ttisp;
1218 	int			i;
1219 	struct tm *		result;
1220 	const time_t		t = *timep;
1221 
1222 	sp = lclptr;
1223 
1224 	if ((sp->goback && t < sp->ats[0]) ||
1225 		(sp->goahead && t > sp->ats[sp->timecnt - 1])) {
1226 			time_t		newt = t;
1227 			time_t		seconds;
1228 			time_t		tcycles;
1229 			int_fast64_t	icycles;
1230 
1231 			if (t < sp->ats[0])
1232 				seconds = sp->ats[0] - t;
1233 			else	seconds = t - sp->ats[sp->timecnt - 1];
1234 			--seconds;
1235 			tcycles = seconds / YEARSPERREPEAT / AVGSECSPERYEAR;
1236 			++tcycles;
1237 			icycles = tcycles;
1238 			if (tcycles - icycles >= 1 || icycles - tcycles >= 1)
1239 				return NULL;
1240 			seconds = icycles;
1241 			seconds *= YEARSPERREPEAT;
1242 			seconds *= AVGSECSPERYEAR;
1243 			if (t < sp->ats[0])
1244 				newt += seconds;
1245 			else	newt -= seconds;
1246 			if (newt < sp->ats[0] ||
1247 				newt > sp->ats[sp->timecnt - 1])
1248 					return NULL;	/* "cannot happen" */
1249 			result = localsub(&newt, offset, tmp);
1250 			if (result == tmp) {
1251 				time_t	newy;
1252 
1253 				newy = tmp->tm_year;
1254 				if (t < sp->ats[0])
1255 					newy -= icycles * YEARSPERREPEAT;
1256 				else	newy += icycles * YEARSPERREPEAT;
1257 				tmp->tm_year = newy;
1258 				if (tmp->tm_year != newy)
1259 					return NULL;
1260 			}
1261 			return result;
1262 	}
1263 	if (sp->timecnt == 0 || t < sp->ats[0]) {
1264 		i = 0;
1265 		while (sp->ttis[i].tt_isdst)
1266 			if (++i >= sp->typecnt) {
1267 				i = 0;
1268 				break;
1269 			}
1270 	} else {
1271 		int	lo = 1;
1272 		int	hi = sp->timecnt;
1273 
1274 		while (lo < hi) {
1275 			int	mid = (lo + hi) >> 1;
1276 
1277 			if (t < sp->ats[mid])
1278 				hi = mid;
1279 			else	lo = mid + 1;
1280 		}
1281 		i = (int) sp->types[lo - 1];
1282 	}
1283 	ttisp = &sp->ttis[i];
1284 	/*
1285 	** To get (wrong) behavior that's compatible with System V Release 2.0
1286 	** you'd replace the statement below with
1287 	**	t += ttisp->tt_gmtoff;
1288 	**	timesub(&t, 0L, sp, tmp);
1289 	*/
1290 	result = timesub(&t, ttisp->tt_gmtoff, sp, tmp);
1291 	tmp->tm_isdst = ttisp->tt_isdst;
1292 	tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind];
1293 #ifdef TM_ZONE
1294 	tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind];
1295 #endif /* defined TM_ZONE */
1296 	return result;
1297 }
1298 
1299 struct tm *
1300 localtime_r(const time_t * const timep, struct tm *p_tm)
1301 {
1302 	_RWLOCK_RDLOCK(&lcl_rwlock);
1303 	tzset_basic(1);
1304 	localsub(timep, 0L, p_tm);
1305 	_RWLOCK_UNLOCK(&lcl_rwlock);
1306 	return(p_tm);
1307 }
1308 
1309 struct tm *
1310 localtime(const time_t * const timep)
1311 {
1312 	static pthread_mutex_t localtime_mutex = PTHREAD_MUTEX_INITIALIZER;
1313 	static pthread_key_t localtime_key = -1;
1314 	struct tm *p_tm;
1315 
1316 	if (__isthreaded != 0) {
1317 		if (localtime_key < 0) {
1318 			_pthread_mutex_lock(&localtime_mutex);
1319 			if (localtime_key < 0) {
1320 				if (_pthread_key_create(&localtime_key, free) < 0) {
1321 					_pthread_mutex_unlock(&localtime_mutex);
1322 					return(NULL);
1323 				}
1324 			}
1325 			_pthread_mutex_unlock(&localtime_mutex);
1326 		}
1327 		p_tm = _pthread_getspecific(localtime_key);
1328 		if (p_tm == NULL) {
1329 			if ((p_tm = (struct tm *)malloc(sizeof(struct tm)))
1330 			    == NULL)
1331 				return(NULL);
1332 			_pthread_setspecific(localtime_key, p_tm);
1333 		}
1334 		_RWLOCK_RDLOCK(&lcl_rwlock);
1335 		tzset_basic(1);
1336 		localsub(timep, 0L, p_tm);
1337 		_RWLOCK_UNLOCK(&lcl_rwlock);
1338 		return(p_tm);
1339 	} else {
1340 		tzset_basic(0);
1341 		localsub(timep, 0L, &tm);
1342 		return(&tm);
1343 	}
1344 }
1345 
1346 /*
1347 ** gmtsub is to gmtime as localsub is to localtime.
1348 */
1349 
1350 static struct tm *
1351 gmtsub(const time_t * const timep, const long offset, struct tm * const tmp)
1352 {
1353 	struct tm *	result;
1354 
1355 	if (!gmt_is_set) {
1356 		_MUTEX_LOCK(&gmt_mutex);
1357 		if (!gmt_is_set) {
1358 			gmtload(gmtptr);
1359 			gmt_is_set = TRUE;
1360 		}
1361 		_MUTEX_UNLOCK(&gmt_mutex);
1362 	}
1363 	result = timesub(timep, offset, gmtptr, tmp);
1364 #ifdef TM_ZONE
1365 	/*
1366 	** Could get fancy here and deliver something such as
1367 	** "UTC+xxxx" or "UTC-xxxx" if offset is non-zero,
1368 	** but this is no time for a treasure hunt.
1369 	*/
1370 	if (offset != 0)
1371 		tmp->TM_ZONE = wildabbr;
1372 	else
1373 		tmp->TM_ZONE = gmtptr->chars;
1374 #endif /* defined TM_ZONE */
1375 	return result;
1376 }
1377 
1378 struct tm *
1379 gmtime(const time_t * const timep)
1380 {
1381 	static pthread_mutex_t gmtime_mutex = PTHREAD_MUTEX_INITIALIZER;
1382 	static pthread_key_t gmtime_key = -1;
1383 	struct tm *p_tm;
1384 
1385 	if (__isthreaded != 0) {
1386 		if (gmtime_key < 0) {
1387 			_pthread_mutex_lock(&gmtime_mutex);
1388 			if (gmtime_key < 0) {
1389 				if (_pthread_key_create(&gmtime_key, free) < 0) {
1390 					_pthread_mutex_unlock(&gmtime_mutex);
1391 					return(NULL);
1392 				}
1393 			}
1394 			_pthread_mutex_unlock(&gmtime_mutex);
1395 		}
1396 		/*
1397 		 * Changed to follow POSIX.1 threads standard, which
1398 		 * is what BSD currently has.
1399 		 */
1400 		if ((p_tm = _pthread_getspecific(gmtime_key)) == NULL) {
1401 			if ((p_tm = (struct tm *)malloc(sizeof(struct tm)))
1402 			    == NULL) {
1403 				return(NULL);
1404 			}
1405 			_pthread_setspecific(gmtime_key, p_tm);
1406 		}
1407 		return gmtsub(timep, 0L, p_tm);
1408 	} else {
1409 		return gmtsub(timep, 0L, &tm);
1410 	}
1411 }
1412 
1413 struct tm *
1414 gmtime_r(const time_t * timep, struct tm * tmp)
1415 {
1416 	return gmtsub(timep, 0L, tmp);
1417 }
1418 
1419 struct tm *
1420 offtime(const time_t * const timep, const long offset)
1421 {
1422 	return gmtsub(timep, offset, &tm);
1423 }
1424 
1425 /*
1426 ** Return the number of leap years through the end of the given year
1427 ** where, to make the math easy, the answer for year zero is defined as zero.
1428 */
1429 
1430 static int
1431 leaps_thru_end_of(const int y)
1432 {
1433 	return (y >= 0) ? (y / 4 - y / 100 + y / 400) :
1434 		-(leaps_thru_end_of(-(y + 1)) + 1);
1435 }
1436 
1437 static struct tm *
1438 timesub(const time_t * const timep, const long offset,
1439 	const struct state * const sp, struct tm * const tmp)
1440 {
1441 	const struct lsinfo *	lp;
1442 	time_t			tdays;
1443 	int			idays;	/* unsigned would be so 2003 */
1444 	long			rem;
1445 	int			y;
1446 	int			yleap;
1447 	const int *		ip;
1448 	long			corr;
1449 	int			hit;
1450 	int			i;
1451 
1452 	corr = 0;
1453 	hit = 0;
1454 	i = sp->leapcnt;
1455 
1456 	while (--i >= 0) {
1457 		lp = &sp->lsis[i];
1458 		if (*timep >= lp->ls_trans) {
1459 			if (*timep == lp->ls_trans) {
1460 				hit = ((i == 0 && lp->ls_corr > 0) ||
1461 					lp->ls_corr > sp->lsis[i - 1].ls_corr);
1462 				if (hit)
1463 					while (i > 0 &&
1464 						sp->lsis[i].ls_trans ==
1465 						sp->lsis[i - 1].ls_trans + 1 &&
1466 						sp->lsis[i].ls_corr ==
1467 						sp->lsis[i - 1].ls_corr + 1) {
1468 							++hit;
1469 							--i;
1470 					}
1471 			}
1472 			corr = lp->ls_corr;
1473 			break;
1474 		}
1475 	}
1476 	y = EPOCH_YEAR;
1477 	tdays = *timep / SECSPERDAY;
1478 	rem = *timep - tdays * SECSPERDAY;
1479 	while (tdays < 0 || tdays >= year_lengths[isleap(y)]) {
1480 		int	newy;
1481 		time_t	tdelta;
1482 		int	idelta;
1483 		int	leapdays;
1484 
1485 		tdelta = tdays / DAYSPERLYEAR;
1486 		idelta = tdelta;
1487 		if (tdelta - idelta >= 1 || idelta - tdelta >= 1)
1488 			return NULL;
1489 		if (idelta == 0)
1490 			idelta = (tdays < 0) ? -1 : 1;
1491 		newy = y;
1492 		if (increment_overflow(&newy, idelta))
1493 			return NULL;
1494 		leapdays = leaps_thru_end_of(newy - 1) -
1495 			leaps_thru_end_of(y - 1);
1496 		tdays -= ((time_t) newy - y) * DAYSPERNYEAR;
1497 		tdays -= leapdays;
1498 		y = newy;
1499 	}
1500 	{
1501 		long	seconds;
1502 
1503 		seconds = tdays * SECSPERDAY + 0.5;
1504 		tdays = seconds / SECSPERDAY;
1505 		rem += seconds - tdays * SECSPERDAY;
1506 	}
1507 	/*
1508 	** Given the range, we can now fearlessly cast...
1509 	*/
1510 	idays = tdays;
1511 	rem += offset - corr;
1512 	while (rem < 0) {
1513 		rem += SECSPERDAY;
1514 		--idays;
1515 	}
1516 	while (rem >= SECSPERDAY) {
1517 		rem -= SECSPERDAY;
1518 		++idays;
1519 	}
1520 	while (idays < 0) {
1521 		if (increment_overflow(&y, -1))
1522 			return NULL;
1523 		idays += year_lengths[isleap(y)];
1524 	}
1525 	while (idays >= year_lengths[isleap(y)]) {
1526 		idays -= year_lengths[isleap(y)];
1527 		if (increment_overflow(&y, 1))
1528 			return NULL;
1529 	}
1530 	tmp->tm_year = y;
1531 	if (increment_overflow(&tmp->tm_year, -TM_YEAR_BASE))
1532 		return NULL;
1533 	tmp->tm_yday = idays;
1534 	/*
1535 	** The "extra" mods below avoid overflow problems.
1536 	*/
1537 	tmp->tm_wday = EPOCH_WDAY +
1538 		((y - EPOCH_YEAR) % DAYSPERWEEK) *
1539 		(DAYSPERNYEAR % DAYSPERWEEK) +
1540 		leaps_thru_end_of(y - 1) -
1541 		leaps_thru_end_of(EPOCH_YEAR - 1) +
1542 		idays;
1543 	tmp->tm_wday %= DAYSPERWEEK;
1544 	if (tmp->tm_wday < 0)
1545 		tmp->tm_wday += DAYSPERWEEK;
1546 	tmp->tm_hour = (int) (rem / SECSPERHOUR);
1547 	rem %= SECSPERHOUR;
1548 	tmp->tm_min = (int) (rem / SECSPERMIN);
1549 	/*
1550 	** A positive leap second requires a special
1551 	** representation. This uses "... ??:59:60" et seq.
1552 	*/
1553 	tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
1554 	ip = mon_lengths[isleap(y)];
1555 	for (tmp->tm_mon = 0; idays >= ip[tmp->tm_mon]; ++(tmp->tm_mon))
1556 		idays -= ip[tmp->tm_mon];
1557 	tmp->tm_mday = (int) (idays + 1);
1558 	tmp->tm_isdst = 0;
1559 #ifdef TM_GMTOFF
1560 	tmp->TM_GMTOFF = offset;
1561 #endif /* defined TM_GMTOFF */
1562 	return tmp;
1563 }
1564 
1565 char *
1566 ctime(const time_t * const timep)
1567 {
1568 /*
1569 ** Section 4.12.3.2 of X3.159-1989 requires that
1570 **	The ctime function converts the calendar time pointed to by timer
1571 **	to local time in the form of a string. It is equivalent to
1572 **		asctime(localtime(timer))
1573 */
1574 	return asctime(localtime(timep));
1575 }
1576 
1577 char *
1578 ctime_r(const time_t * const timep, char *buf)
1579 {
1580         struct tm	mytm;
1581 	return asctime_r(localtime_r(timep, &mytm), buf);
1582 }
1583 
1584 /*
1585 ** Adapted from code provided by Robert Elz, who writes:
1586 **	The "best" way to do mktime I think is based on an idea of Bob
1587 **	Kridle's (so its said...) from a long time ago.
1588 **	It does a binary search of the time_t space. Since time_t's are
1589 **	just 32 bits, its a max of 32 iterations (even at 64 bits it
1590 **	would still be very reasonable).
1591 */
1592 
1593 #ifndef WRONG
1594 #define WRONG	(-1)
1595 #endif /* !defined WRONG */
1596 
1597 /*
1598 ** Simplified normalize logic courtesy Paul Eggert.
1599 */
1600 
1601 static int
1602 increment_overflow(int *number, int delta)
1603 {
1604 	int	number0;
1605 
1606 	number0 = *number;
1607 	*number += delta;
1608 	return (*number < number0) != (delta < 0);
1609 }
1610 
1611 static int
1612 long_increment_overflow(long *number, int delta)
1613 {
1614 	long	number0;
1615 
1616 	number0 = *number;
1617 	*number += delta;
1618 	return (*number < number0) != (delta < 0);
1619 }
1620 
1621 static int
1622 normalize_overflow(int * const tensptr, int * const unitsptr, const int base)
1623 {
1624 	int	tensdelta;
1625 
1626 	tensdelta = (*unitsptr >= 0) ?
1627 		(*unitsptr / base) :
1628 		(-1 - (-1 - *unitsptr) / base);
1629 	*unitsptr -= tensdelta * base;
1630 	return increment_overflow(tensptr, tensdelta);
1631 }
1632 
1633 static int
1634 long_normalize_overflow(long * const tensptr, int * const unitsptr,
1635 			const int base)
1636 {
1637 	int	tensdelta;
1638 
1639 	tensdelta = (*unitsptr >= 0) ?
1640 		(*unitsptr / base) :
1641 		(-1 - (-1 - *unitsptr) / base);
1642 	*unitsptr -= tensdelta * base;
1643 	return long_increment_overflow(tensptr, tensdelta);
1644 }
1645 
1646 static int
1647 tmcomp(const struct tm * const atmp, const struct tm * const btmp)
1648 {
1649 	int	result;
1650 
1651 	if ((result = (atmp->tm_year - btmp->tm_year)) == 0 &&
1652 		(result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
1653 		(result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
1654 		(result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
1655 		(result = (atmp->tm_min - btmp->tm_min)) == 0)
1656 			result = atmp->tm_sec - btmp->tm_sec;
1657 	return result;
1658 }
1659 
1660 static time_t
1661 time2sub(struct tm * const tmp,
1662       struct tm * (* const funcp)(const time_t *, long, struct tm *),
1663       const long offset, int * const okayp, const int do_norm_secs)
1664 {
1665 	const struct state *	sp;
1666 	int			dir;
1667 	int			i, j;
1668 	int			saved_seconds;
1669 	long			li;
1670 	time_t			lo;
1671 	time_t			hi;
1672 	long			y;
1673 	time_t			newt;
1674 	time_t			t;
1675 	struct tm		yourtm, mytm;
1676 
1677 	*okayp = FALSE;
1678 	yourtm = *tmp;
1679 	if (do_norm_secs) {
1680 		if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec,
1681 			SECSPERMIN))
1682 				return WRONG;
1683 	}
1684 	if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
1685 		return WRONG;
1686 	if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
1687 		return WRONG;
1688 	y = yourtm.tm_year;
1689 	if (long_normalize_overflow(&y, &yourtm.tm_mon, MONSPERYEAR))
1690 		return WRONG;
1691 	/*
1692 	** Turn y into an actual year number for now.
1693 	** It is converted back to an offset from TM_YEAR_BASE later.
1694 	*/
1695 	if (long_increment_overflow(&y, TM_YEAR_BASE))
1696 		return WRONG;
1697 	while (yourtm.tm_mday <= 0) {
1698 		if (long_increment_overflow(&y, -1))
1699 			return WRONG;
1700 		li = y + (1 < yourtm.tm_mon);
1701 		yourtm.tm_mday += year_lengths[isleap(li)];
1702 	}
1703 	while (yourtm.tm_mday > DAYSPERLYEAR) {
1704 		li = y + (1 < yourtm.tm_mon);
1705 		yourtm.tm_mday -= year_lengths[isleap(li)];
1706 		if (long_increment_overflow(&y, 1))
1707 			return WRONG;
1708 	}
1709 	for ( ; ; ) {
1710 		i = mon_lengths[isleap(y)][yourtm.tm_mon];
1711 		if (yourtm.tm_mday <= i)
1712 			break;
1713 		yourtm.tm_mday -= i;
1714 		if (++yourtm.tm_mon >= MONSPERYEAR) {
1715 			yourtm.tm_mon = 0;
1716 			if (long_increment_overflow(&y, 1))
1717 				return WRONG;
1718 		}
1719 	}
1720 	if (long_increment_overflow(&y, -TM_YEAR_BASE))
1721 		return WRONG;
1722 	yourtm.tm_year = y;
1723 	if (yourtm.tm_year != y)
1724 		return WRONG;
1725 	if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN)
1726 		saved_seconds = 0;
1727 	else if (y + TM_YEAR_BASE < EPOCH_YEAR) {
1728 		/*
1729 		** We can't set tm_sec to 0, because that might push the
1730 		** time below the minimum representable time.
1731 		** Set tm_sec to 59 instead.
1732 		** This assumes that the minimum representable time is
1733 		** not in the same minute that a leap second was deleted from,
1734 		** which is a safer assumption than using 58 would be.
1735 		*/
1736 		if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
1737 			return WRONG;
1738 		saved_seconds = yourtm.tm_sec;
1739 		yourtm.tm_sec = SECSPERMIN - 1;
1740 	} else {
1741 		saved_seconds = yourtm.tm_sec;
1742 		yourtm.tm_sec = 0;
1743 	}
1744 	/*
1745 	** Do a binary search (this works whatever time_t's type is).
1746 	*/
1747 	if (!TYPE_SIGNED(time_t)) {
1748 		lo = 0;
1749 		hi = lo - 1;
1750 	} else if (!TYPE_INTEGRAL(time_t)) {
1751 		if (sizeof(time_t) > sizeof(float))
1752 			hi = (time_t) DBL_MAX;
1753 		else	hi = (time_t) FLT_MAX;
1754 		lo = -hi;
1755 	} else {
1756 		lo = 1;
1757 		for (i = 0; i < (int) TYPE_BIT(time_t) - 1; ++i)
1758 			lo *= 2;
1759 		hi = -(lo + 1);
1760 	}
1761 	for ( ; ; ) {
1762 		t = lo / 2 + hi / 2;
1763 		if (t < lo)
1764 			t = lo;
1765 		else if (t > hi)
1766 			t = hi;
1767 		if ((*funcp)(&t, offset, &mytm) == NULL) {
1768 			/*
1769 			** Assume that t is too extreme to be represented in
1770 			** a struct tm; arrange things so that it is less
1771 			** extreme on the next pass.
1772 			*/
1773 			dir = (t > 0) ? 1 : -1;
1774 		} else	dir = tmcomp(&mytm, &yourtm);
1775 		if (dir != 0) {
1776 			if (t == lo) {
1777 				++t;
1778 				if (t <= lo)
1779 					return WRONG;
1780 				++lo;
1781 			} else if (t == hi) {
1782 				--t;
1783 				if (t >= hi)
1784 					return WRONG;
1785 				--hi;
1786 			}
1787 			if (lo > hi)
1788 				return WRONG;
1789 			if (dir > 0)
1790 				hi = t;
1791 			else	lo = t;
1792 			continue;
1793 		}
1794 		if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
1795 			break;
1796 		/*
1797 		** Right time, wrong type.
1798 		** Hunt for right time, right type.
1799 		** It's okay to guess wrong since the guess
1800 		** gets checked.
1801 		*/
1802 		sp = (const struct state *)
1803 			((funcp == localsub) ? lclptr : gmtptr);
1804 
1805 		for (i = sp->typecnt - 1; i >= 0; --i) {
1806 			if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
1807 				continue;
1808 			for (j = sp->typecnt - 1; j >= 0; --j) {
1809 				if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
1810 					continue;
1811 				newt = t + sp->ttis[j].tt_gmtoff -
1812 					sp->ttis[i].tt_gmtoff;
1813 				if ((*funcp)(&newt, offset, &mytm) == NULL)
1814 					continue;
1815 				if (tmcomp(&mytm, &yourtm) != 0)
1816 					continue;
1817 				if (mytm.tm_isdst != yourtm.tm_isdst)
1818 					continue;
1819 				/*
1820 				** We have a match.
1821 				*/
1822 				t = newt;
1823 				goto label;
1824 			}
1825 		}
1826 		return WRONG;
1827 	}
1828 label:
1829 	newt = t + saved_seconds;
1830 	if ((newt < t) != (saved_seconds < 0))
1831 		return WRONG;
1832 	t = newt;
1833 	if ((*funcp)(&t, offset, tmp))
1834 		*okayp = TRUE;
1835 	return t;
1836 }
1837 
1838 static time_t
1839 time2(struct tm * const tmp,
1840       struct tm * (* const funcp)(const time_t *, long, struct tm *),
1841       const long offset, int * const okayp)
1842 {
1843 	time_t	t;
1844 
1845 	/*
1846 	** First try without normalization of seconds
1847 	** (in case tm_sec contains a value associated with a leap second).
1848 	** If that fails, try with normalization of seconds.
1849 	*/
1850 	t = time2sub(tmp, funcp, offset, okayp, FALSE);
1851 	return *okayp ? t : time2sub(tmp, funcp, offset, okayp, TRUE);
1852 }
1853 
1854 static time_t
1855 time1(struct tm * const tmp,
1856       struct tm * (* const funcp)(const time_t *, long, struct tm *),
1857       const long offset)
1858 {
1859 	time_t			t;
1860 	const struct state *	sp;
1861 	int			samei, otheri;
1862 	int			sameind, otherind;
1863 	int			i;
1864 	int			nseen;
1865 	int			seen[TZ_MAX_TYPES];
1866 	int			types[TZ_MAX_TYPES];
1867 	int			okay;
1868 
1869 	if (tmp == NULL) {
1870 		errno = EINVAL;
1871 		return WRONG;
1872 	}
1873 	if (tmp->tm_isdst > 1)
1874 		tmp->tm_isdst = 1;
1875 	t = time2(tmp, funcp, offset, &okay);
1876 
1877 	/*
1878 	** PCTS code courtesy Grant Sullivan.
1879 	*/
1880 	if (okay)
1881 		return t;
1882 	if (tmp->tm_isdst < 0)
1883 		tmp->tm_isdst = 0;	/* reset to std and try again */
1884 
1885 	/*
1886 	** We're supposed to assume that somebody took a time of one type
1887 	** and did some math on it that yielded a "struct tm" that's bad.
1888 	** We try to divine the type they started from and adjust to the
1889 	** type they need.
1890 	*/
1891 	sp = (const struct state *) ((funcp == localsub) ?  lclptr : gmtptr);
1892 
1893 	for (i = 0; i < sp->typecnt; ++i)
1894 		seen[i] = FALSE;
1895 	nseen = 0;
1896 	for (i = sp->timecnt - 1; i >= 0; --i)
1897 		if (!seen[sp->types[i]]) {
1898 			seen[sp->types[i]] = TRUE;
1899 			types[nseen++] = sp->types[i];
1900 		}
1901 	for (sameind = 0; sameind < nseen; ++sameind) {
1902 		samei = types[sameind];
1903 		if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
1904 			continue;
1905 		for (otherind = 0; otherind < nseen; ++otherind) {
1906 			otheri = types[otherind];
1907 			if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
1908 				continue;
1909 			tmp->tm_sec += sp->ttis[otheri].tt_gmtoff -
1910 					sp->ttis[samei].tt_gmtoff;
1911 			tmp->tm_isdst = !tmp->tm_isdst;
1912 			t = time2(tmp, funcp, offset, &okay);
1913 			if (okay)
1914 				return t;
1915 			tmp->tm_sec -= sp->ttis[otheri].tt_gmtoff -
1916 					sp->ttis[samei].tt_gmtoff;
1917 			tmp->tm_isdst = !tmp->tm_isdst;
1918 		}
1919 	}
1920 	return WRONG;
1921 }
1922 
1923 time_t
1924 mktime(struct tm * const tmp)
1925 {
1926 	time_t mktime_return_value;
1927 	_RWLOCK_RDLOCK(&lcl_rwlock);
1928 	tzset_basic(1);
1929 	mktime_return_value = time1(tmp, localsub, 0L);
1930 	_RWLOCK_UNLOCK(&lcl_rwlock);
1931 	return(mktime_return_value);
1932 }
1933 
1934 time_t
1935 timelocal(struct tm * const tmp)
1936 {
1937 	if (tmp != NULL)
1938 		tmp->tm_isdst = -1;	/* in case it wasn't initialized */
1939 	return mktime(tmp);
1940 }
1941 
1942 time_t
1943 timegm(struct tm * const tmp)
1944 {
1945 	if (tmp != NULL)
1946 		tmp->tm_isdst = 0;
1947 	return time1(tmp, gmtsub, 0L);
1948 }
1949 
1950 time_t
1951 timeoff(struct tm * const tmp, const long offset)
1952 {
1953 	if (tmp != NULL)
1954 		tmp->tm_isdst = 0;
1955 	return time1(tmp, gmtsub, offset);
1956 }
1957 
1958 #ifdef CMUCS
1959 
1960 /*
1961 ** The following is supplied for compatibility with
1962 ** previous versions of the CMUCS runtime library.
1963 */
1964 
1965 long
1966 gtime(struct tm * const tmp)
1967 {
1968 	const time_t	t = mktime(tmp);
1969 
1970 	if (t == WRONG)
1971 		return -1;
1972 	return t;
1973 }
1974 
1975 #endif /* defined CMUCS */
1976 
1977 /*
1978 ** XXX--is the below the right way to conditionalize??
1979 */
1980 
1981 /*
1982 ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
1983 ** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which
1984 ** is not the case if we are accounting for leap seconds.
1985 ** So, we provide the following conversion routines for use
1986 ** when exchanging timestamps with POSIX conforming systems.
1987 */
1988 
1989 static long
1990 leapcorr(time_t *timep)
1991 {
1992 	struct state *		sp;
1993 	struct lsinfo *	lp;
1994 	int			i;
1995 
1996 	sp = lclptr;
1997 	i = sp->leapcnt;
1998 	while (--i >= 0) {
1999 		lp = &sp->lsis[i];
2000 		if (*timep >= lp->ls_trans)
2001 			return lp->ls_corr;
2002 	}
2003 	return 0;
2004 }
2005 
2006 time_t
2007 time2posix(time_t t)
2008 {
2009 	tzset();
2010 	return t - leapcorr(&t);
2011 }
2012 
2013 time_t
2014 posix2time(time_t t)
2015 {
2016 	time_t	x;
2017 	time_t	y;
2018 
2019 	tzset();
2020 	/*
2021 	** For a positive leap second hit, the result
2022 	** is not unique. For a negative leap second
2023 	** hit, the corresponding time doesn't exist,
2024 	** so we return an adjacent second.
2025 	*/
2026 	x = t + leapcorr(&t);
2027 	y = x - leapcorr(&x);
2028 	if (y < t) {
2029 		do {
2030 			x++;
2031 			y = x - leapcorr(&x);
2032 		} while (y < t);
2033 		if (t != y)
2034 			return x - 1;
2035 	} else if (y > t) {
2036 		do {
2037 			--x;
2038 			y = x - leapcorr(&x);
2039 		} while (y > t);
2040 		if (t != y)
2041 			return x + 1;
2042 	}
2043 	return x;
2044 }
2045