xref: /dflybsd-src/lib/libc/stdlib/nmalloc.c (revision e9586122ca8be1e743aa9cd2f9622dfe2f434ece)
1 /*
2  * NMALLOC.C	- New Malloc (ported from kernel slab allocator)
3  *
4  * Copyright (c) 2003,2004,2009,2010 The DragonFly Project. All rights reserved.
5  *
6  * This code is derived from software contributed to The DragonFly Project
7  * by Matthew Dillon <dillon@backplane.com> and by
8  * Venkatesh Srinivas <me@endeavour.zapto.org>.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  *
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in
18  *    the documentation and/or other materials provided with the
19  *    distribution.
20  * 3. Neither the name of The DragonFly Project nor the names of its
21  *    contributors may be used to endorse or promote products derived
22  *    from this software without specific, prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
27  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
28  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
29  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
30  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
31  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
32  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
33  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
34  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  * $Id: nmalloc.c,v 1.37 2010/07/23 08:20:35 vsrinivas Exp $
38  */
39 /*
40  * This module implements a slab allocator drop-in replacement for the
41  * libc malloc().
42  *
43  * A slab allocator reserves a ZONE for each chunk size, then lays the
44  * chunks out in an array within the zone.  Allocation and deallocation
45  * is nearly instantaneous, and overhead losses are limited to a fixed
46  * worst-case amount.
47  *
48  * The slab allocator does not have to pre-initialize the list of
49  * free chunks for each zone, and the underlying VM will not be
50  * touched at all beyond the zone header until an actual allocation
51  * needs it.
52  *
53  * Slab management and locking is done on a per-zone basis.
54  *
55  *	Alloc Size	Chunking        Number of zones
56  *	0-127		8		16
57  *	128-255		16		8
58  *	256-511		32		8
59  *	512-1023	64		8
60  *	1024-2047	128		8
61  *	2048-4095	256		8
62  *	4096-8191	512		8
63  *	8192-16383	1024		8
64  *	16384-32767	2048		8
65  *
66  *	Allocations >= ZoneLimit (16K) go directly to mmap and a hash table
67  *	is used to locate for free.  One and Two-page allocations use the
68  *	zone mechanic to avoid excessive mmap()/munmap() calls.
69  *
70  *			   API FEATURES AND SIDE EFFECTS
71  *
72  *    + power-of-2 sized allocations up to a page will be power-of-2 aligned.
73  *	Above that power-of-2 sized allocations are page-aligned.  Non
74  *	power-of-2 sized allocations are aligned the same as the chunk
75  *	size for their zone.
76  *    + malloc(0) returns a special non-NULL value
77  *    + ability to allocate arbitrarily large chunks of memory
78  *    + realloc will reuse the passed pointer if possible, within the
79  *	limitations of the zone chunking.
80  *
81  * Multithreaded enhancements for small allocations introduced August 2010.
82  * These are in the spirit of 'libumem'. See:
83  *	Bonwick, J.; Adams, J. (2001). "Magazines and Vmem: Extending the
84  *	slab allocator to many CPUs and arbitrary resources". In Proc. 2001
85  *	USENIX Technical Conference. USENIX Association.
86  *
87  * Oversized allocations employ the BIGCACHE mechanic whereby large
88  * allocations may be handed significantly larger buffers, allowing them
89  * to avoid mmap/munmap operations even through significant realloc()s.
90  * The excess space is only trimmed if too many large allocations have been
91  * given this treatment.
92  *
93  * TUNING
94  *
95  * The value of the environment variable MALLOC_OPTIONS is a character string
96  * containing various flags to tune nmalloc.
97  *
98  * 'U'   / ['u']	Generate / do not generate utrace entries for ktrace(1)
99  *			This will generate utrace events for all malloc,
100  *			realloc, and free calls. There are tools (mtrplay) to
101  *			replay and allocation pattern or to graph heap structure
102  *			(mtrgraph) which can interpret these logs.
103  * 'Z'   / ['z']	Zero out / do not zero all allocations.
104  *			Each new byte of memory allocated by malloc, realloc, or
105  *			reallocf will be initialized to 0. This is intended for
106  *			debugging and will affect performance negatively.
107  * 'H'	/  ['h']	Pass a hint to the kernel about pages unused by the
108  *			allocation functions.
109  */
110 
111 /* cc -shared -fPIC -g -O -I/usr/src/lib/libc/include -o nmalloc.so nmalloc.c */
112 
113 #include "libc_private.h"
114 
115 #include <sys/param.h>
116 #include <sys/types.h>
117 #include <sys/mman.h>
118 #include <sys/queue.h>
119 #include <sys/uio.h>
120 #include <sys/ktrace.h>
121 #include <stdio.h>
122 #include <stdint.h>
123 #include <stdlib.h>
124 #include <stdarg.h>
125 #include <stddef.h>
126 #include <unistd.h>
127 #include <string.h>
128 #include <fcntl.h>
129 #include <errno.h>
130 #include <pthread.h>
131 #include <machine/atomic.h>
132 
133 #include "spinlock.h"
134 #include "un-namespace.h"
135 
136 
137 /*
138  * Linked list of large allocations
139  */
140 typedef struct bigalloc {
141 	struct bigalloc *next;	/* hash link */
142 	void	*base;		/* base pointer */
143 	u_long	active;		/* bytes active */
144 	u_long	bytes;		/* bytes allocated */
145 } *bigalloc_t;
146 
147 /*
148  * Note that any allocations which are exact multiples of PAGE_SIZE, or
149  * which are >= ZALLOC_ZONE_LIMIT, will fall through to the kmem subsystem.
150  */
151 #define ZALLOC_ZONE_LIMIT	(16 * 1024)	/* max slab-managed alloc */
152 #define ZALLOC_MIN_ZONE_SIZE	(32 * 1024)	/* minimum zone size */
153 #define ZALLOC_MAX_ZONE_SIZE	(128 * 1024)	/* maximum zone size */
154 #define ZALLOC_ZONE_SIZE	(64 * 1024)
155 #define ZALLOC_SLAB_MAGIC	0x736c6162	/* magic sanity */
156 #define ZALLOC_SLAB_SLIDE	20		/* L1-cache skip */
157 
158 #if ZALLOC_ZONE_LIMIT == 16384
159 #define NZONES			72
160 #elif ZALLOC_ZONE_LIMIT == 32768
161 #define NZONES			80
162 #else
163 #error "I couldn't figure out NZONES"
164 #endif
165 
166 /*
167  * Chunk structure for free elements
168  */
169 typedef struct slchunk {
170 	struct slchunk *c_Next;
171 } *slchunk_t;
172 
173 /*
174  * The IN-BAND zone header is placed at the beginning of each zone.
175  */
176 struct slglobaldata;
177 
178 typedef struct slzone {
179 	int32_t		z_Magic;	/* magic number for sanity check */
180 	int		z_NFree;	/* total free chunks / ualloc space */
181 	struct slzone *z_Next;		/* ZoneAry[] link if z_NFree non-zero */
182 	int		z_NMax;		/* maximum free chunks */
183 	char		*z_BasePtr;	/* pointer to start of chunk array */
184 	int		z_UIndex;	/* current initial allocation index */
185 	int		z_UEndIndex;	/* last (first) allocation index */
186 	int		z_ChunkSize;	/* chunk size for validation */
187 	int		z_FirstFreePg;	/* chunk list on a page-by-page basis */
188 	int		z_ZoneIndex;
189 	int		z_Flags;
190 	struct slchunk *z_PageAry[ZALLOC_ZONE_SIZE / PAGE_SIZE];
191 } *slzone_t;
192 
193 typedef struct slglobaldata {
194 	spinlock_t	Spinlock;
195 	slzone_t	ZoneAry[NZONES];/* linked list of zones NFree > 0 */
196 	int		JunkIndex;
197 } *slglobaldata_t;
198 
199 #define SLZF_UNOTZEROD		0x0001
200 
201 #define FASTSLABREALLOC		0x02
202 
203 /*
204  * Misc constants.  Note that allocations that are exact multiples of
205  * PAGE_SIZE, or exceed the zone limit, fall through to the kmem module.
206  * IN_SAME_PAGE_MASK is used to sanity-check the per-page free lists.
207  */
208 #define MIN_CHUNK_SIZE		8		/* in bytes */
209 #define MIN_CHUNK_MASK		(MIN_CHUNK_SIZE - 1)
210 #define IN_SAME_PAGE_MASK	(~(intptr_t)PAGE_MASK | MIN_CHUNK_MASK)
211 
212 /*
213  * WARNING: A limited number of spinlocks are available, BIGXSIZE should
214  *	    not be larger then 64.
215  */
216 #define BIGHSHIFT	10			/* bigalloc hash table */
217 #define BIGHSIZE	(1 << BIGHSHIFT)
218 #define BIGHMASK	(BIGHSIZE - 1)
219 #define BIGXSIZE	(BIGHSIZE / 16)		/* bigalloc lock table */
220 #define BIGXMASK	(BIGXSIZE - 1)
221 
222 /*
223  * BIGCACHE caches oversized allocations.  Note that a linear search is
224  * performed, so do not make the cache too large.
225  *
226  * BIGCACHE will garbage-collect excess space when the excess exceeds the
227  * specified value.  A relatively large number should be used here because
228  * garbage collection is expensive.
229  */
230 #define BIGCACHE	16
231 #define BIGCACHE_MASK	(BIGCACHE - 1)
232 #define BIGCACHE_LIMIT	(1024 * 1024)		/* size limit */
233 #define BIGCACHE_EXCESS	(16 * 1024 * 1024)	/* garbage collect */
234 
235 #define SAFLAG_ZERO	0x0001
236 #define SAFLAG_PASSIVE	0x0002
237 
238 /*
239  * Thread control
240  */
241 
242 #define arysize(ary)	(sizeof(ary)/sizeof((ary)[0]))
243 
244 #define MASSERT(exp)	do { if (__predict_false(!(exp)))	\
245 				_mpanic("assertion: %s in %s",	\
246 				#exp, __func__);		\
247 			    } while (0)
248 
249 /*
250  * Magazines
251  */
252 
253 #define M_MAX_ROUNDS	64
254 #define M_ZONE_ROUNDS	64
255 #define M_LOW_ROUNDS	32
256 #define M_INIT_ROUNDS	8
257 #define M_BURST_FACTOR  8
258 #define M_BURST_NSCALE	2
259 
260 #define M_BURST		0x0001
261 #define M_BURST_EARLY	0x0002
262 
263 struct magazine {
264 	SLIST_ENTRY(magazine) nextmagazine;
265 
266 	int		flags;
267 	int		capacity;	/* Max rounds in this magazine */
268 	int		rounds;		/* Current number of free rounds */
269 	int		burst_factor;	/* Number of blocks to prefill with */
270 	int		low_factor;	/* Free till low_factor from full mag */
271 	void		*objects[M_MAX_ROUNDS];
272 };
273 
274 SLIST_HEAD(magazinelist, magazine);
275 
276 static spinlock_t zone_mag_lock;
277 static spinlock_t depot_spinlock;
278 static struct magazine zone_magazine = {
279 	.flags = M_BURST | M_BURST_EARLY,
280 	.capacity = M_ZONE_ROUNDS,
281 	.rounds = 0,
282 	.burst_factor = M_BURST_FACTOR,
283 	.low_factor = M_LOW_ROUNDS
284 };
285 
286 #define MAGAZINE_FULL(mp)	(mp->rounds == mp->capacity)
287 #define MAGAZINE_NOTFULL(mp)	(mp->rounds < mp->capacity)
288 #define MAGAZINE_EMPTY(mp)	(mp->rounds == 0)
289 #define MAGAZINE_NOTEMPTY(mp)	(mp->rounds != 0)
290 
291 /*
292  * Each thread will have a pair of magazines per size-class (NZONES)
293  * The loaded magazine will support immediate allocations, the previous
294  * magazine will either be full or empty and can be swapped at need
295  */
296 typedef struct magazine_pair {
297 	struct magazine	*loaded;
298 	struct magazine	*prev;
299 } magazine_pair;
300 
301 /* A depot is a collection of magazines for a single zone. */
302 typedef struct magazine_depot {
303 	struct magazinelist full;
304 	struct magazinelist empty;
305 	spinlock_t	lock;
306 } magazine_depot;
307 
308 typedef struct thr_mags {
309 	magazine_pair	mags[NZONES];
310 	struct magazine	*newmag;
311 	int		init;
312 } thr_mags;
313 
314 /*
315  * With this attribute set, do not require a function call for accessing
316  * this variable when the code is compiled -fPIC.
317  *
318  * Must be empty for libc_rtld (similar to __thread).
319  */
320 #ifdef __LIBC_RTLD
321 #define TLS_ATTRIBUTE
322 #else
323 #define TLS_ATTRIBUTE __attribute__ ((tls_model ("initial-exec")))
324 #endif
325 
326 static __thread thr_mags thread_mags TLS_ATTRIBUTE;
327 static pthread_key_t thread_mags_key;
328 static pthread_once_t thread_mags_once = PTHREAD_ONCE_INIT;
329 static magazine_depot depots[NZONES];
330 
331 /*
332  * Fixed globals (not per-cpu)
333  */
334 static const int ZoneSize = ZALLOC_ZONE_SIZE;
335 static const int ZoneLimit = ZALLOC_ZONE_LIMIT;
336 static const int ZonePageCount = ZALLOC_ZONE_SIZE / PAGE_SIZE;
337 static const int ZoneMask = ZALLOC_ZONE_SIZE - 1;
338 
339 static int opt_madvise = 0;
340 static int opt_utrace = 0;
341 static int g_malloc_flags = 0;
342 static struct slglobaldata	SLGlobalData;
343 static bigalloc_t bigalloc_array[BIGHSIZE];
344 static spinlock_t bigspin_array[BIGXSIZE];
345 static volatile void *bigcache_array[BIGCACHE];		/* atomic swap */
346 static volatile size_t bigcache_size_array[BIGCACHE];	/* SMP races ok */
347 static volatile int bigcache_index;			/* SMP races ok */
348 static int malloc_panic;
349 static size_t excess_alloc;				/* excess big allocs */
350 
351 static void *_slaballoc(size_t size, int flags);
352 static void *_slabrealloc(void *ptr, size_t size);
353 static void _slabfree(void *ptr, int, bigalloc_t *);
354 static void *_vmem_alloc(size_t bytes, size_t align, int flags);
355 static void _vmem_free(void *ptr, size_t bytes);
356 static void *magazine_alloc(struct magazine *, int *);
357 static int magazine_free(struct magazine *, void *);
358 static void *mtmagazine_alloc(int zi);
359 static int mtmagazine_free(int zi, void *);
360 static void mtmagazine_init(void);
361 static void mtmagazine_destructor(void *);
362 static slzone_t zone_alloc(int flags);
363 static void zone_free(void *z);
364 static void _mpanic(const char *ctl, ...) __printflike(1, 2);
365 static void malloc_init(void) __constructor(101);
366 
367 struct nmalloc_utrace {
368 	void *p;
369 	size_t s;
370 	void *r;
371 };
372 
373 #define UTRACE(a, b, c)						\
374 	if (opt_utrace) {					\
375 		struct nmalloc_utrace ut = {			\
376 			.p = (a),				\
377 			.s = (b),				\
378 			.r = (c)				\
379 		};						\
380 		utrace(&ut, sizeof(ut));			\
381 	}
382 
383 static void
384 malloc_init(void)
385 {
386 	const char *p = NULL;
387 
388 	if (issetugid() == 0)
389 		p = getenv("MALLOC_OPTIONS");
390 
391 	for (; p != NULL && *p != '\0'; p++) {
392 		switch(*p) {
393 		case 'u':	opt_utrace = 0; break;
394 		case 'U':	opt_utrace = 1; break;
395 		case 'h':	opt_madvise = 0; break;
396 		case 'H':	opt_madvise = 1; break;
397 		case 'z':	g_malloc_flags = 0; break;
398 		case 'Z':	g_malloc_flags = SAFLAG_ZERO; break;
399 		default:
400 			break;
401 		}
402 	}
403 
404 	UTRACE((void *) -1, 0, NULL);
405 }
406 
407 /*
408  * We have to install a handler for nmalloc thread teardowns when
409  * the thread is created.  We cannot delay this because destructors in
410  * sophisticated userland programs can call malloc() for the first time
411  * during their thread exit.
412  *
413  * This routine is called directly from pthreads.
414  */
415 void
416 _nmalloc_thr_init(void)
417 {
418 	static int init_once;
419 	thr_mags *tp;
420 
421 	/*
422 	 * Disallow mtmagazine operations until the mtmagazine is
423 	 * initialized.
424 	 */
425 	tp = &thread_mags;
426 	tp->init = -1;
427 
428 	if (init_once == 0) {
429 		init_once = 1;
430 		pthread_once(&thread_mags_once, mtmagazine_init);
431 	}
432 	pthread_setspecific(thread_mags_key, tp);
433 	tp->init = 1;
434 }
435 
436 void
437 _nmalloc_thr_prepfork(void)
438 {
439 	if (__isthreaded) {
440 		_SPINLOCK(&zone_mag_lock);
441 		_SPINLOCK(&depot_spinlock);
442 	}
443 }
444 
445 void
446 _nmalloc_thr_parentfork(void)
447 {
448 	if (__isthreaded) {
449 		_SPINUNLOCK(&depot_spinlock);
450 		_SPINUNLOCK(&zone_mag_lock);
451 	}
452 }
453 
454 void
455 _nmalloc_thr_childfork(void)
456 {
457 	if (__isthreaded) {
458 		_SPINUNLOCK(&depot_spinlock);
459 		_SPINUNLOCK(&zone_mag_lock);
460 	}
461 }
462 
463 /*
464  * Thread locks.
465  */
466 static __inline void
467 slgd_lock(slglobaldata_t slgd)
468 {
469 	if (__isthreaded)
470 		_SPINLOCK(&slgd->Spinlock);
471 }
472 
473 static __inline void
474 slgd_unlock(slglobaldata_t slgd)
475 {
476 	if (__isthreaded)
477 		_SPINUNLOCK(&slgd->Spinlock);
478 }
479 
480 static __inline void
481 depot_lock(magazine_depot *dp)
482 {
483 	if (__isthreaded)
484 		_SPINLOCK(&depot_spinlock);
485 #if 0
486 	if (__isthreaded)
487 		_SPINLOCK(&dp->lock);
488 #endif
489 }
490 
491 static __inline void
492 depot_unlock(magazine_depot *dp)
493 {
494 	if (__isthreaded)
495 		_SPINUNLOCK(&depot_spinlock);
496 #if 0
497 	if (__isthreaded)
498 		_SPINUNLOCK(&dp->lock);
499 #endif
500 }
501 
502 static __inline void
503 zone_magazine_lock(void)
504 {
505 	if (__isthreaded)
506 		_SPINLOCK(&zone_mag_lock);
507 }
508 
509 static __inline void
510 zone_magazine_unlock(void)
511 {
512 	if (__isthreaded)
513 		_SPINUNLOCK(&zone_mag_lock);
514 }
515 
516 static __inline void
517 swap_mags(magazine_pair *mp)
518 {
519 	struct magazine *tmp;
520 	tmp = mp->loaded;
521 	mp->loaded = mp->prev;
522 	mp->prev = tmp;
523 }
524 
525 /*
526  * bigalloc hashing and locking support.
527  *
528  * Return an unmasked hash code for the passed pointer.
529  */
530 static __inline int
531 _bigalloc_hash(void *ptr)
532 {
533 	int hv;
534 
535 	hv = ((int)(intptr_t)ptr >> PAGE_SHIFT) ^
536 	      ((int)(intptr_t)ptr >> (PAGE_SHIFT + BIGHSHIFT));
537 
538 	return(hv);
539 }
540 
541 /*
542  * Lock the hash chain and return a pointer to its base for the specified
543  * address.
544  */
545 static __inline bigalloc_t *
546 bigalloc_lock(void *ptr)
547 {
548 	int hv = _bigalloc_hash(ptr);
549 	bigalloc_t *bigp;
550 
551 	bigp = &bigalloc_array[hv & BIGHMASK];
552 	if (__isthreaded)
553 		_SPINLOCK(&bigspin_array[hv & BIGXMASK]);
554 	return(bigp);
555 }
556 
557 /*
558  * Lock the hash chain and return a pointer to its base for the specified
559  * address.
560  *
561  * BUT, if the hash chain is empty, just return NULL and do not bother
562  * to lock anything.
563  */
564 static __inline bigalloc_t *
565 bigalloc_check_and_lock(void *ptr)
566 {
567 	int hv = _bigalloc_hash(ptr);
568 	bigalloc_t *bigp;
569 
570 	bigp = &bigalloc_array[hv & BIGHMASK];
571 	if (*bigp == NULL)
572 		return(NULL);
573 	if (__isthreaded) {
574 		_SPINLOCK(&bigspin_array[hv & BIGXMASK]);
575 	}
576 	return(bigp);
577 }
578 
579 static __inline void
580 bigalloc_unlock(void *ptr)
581 {
582 	int hv;
583 
584 	if (__isthreaded) {
585 		hv = _bigalloc_hash(ptr);
586 		_SPINUNLOCK(&bigspin_array[hv & BIGXMASK]);
587 	}
588 }
589 
590 /*
591  * Find a bigcache entry that might work for the allocation.  SMP races are
592  * ok here except for the swap (that is, it is ok if bigcache_size_array[i]
593  * is wrong or if a NULL or too-small big is returned).
594  *
595  * Generally speaking it is ok to find a large entry even if the bytes
596  * requested are relatively small (but still oversized), because we really
597  * don't know *what* the application is going to do with the buffer.
598  */
599 static __inline
600 bigalloc_t
601 bigcache_find_alloc(size_t bytes)
602 {
603 	bigalloc_t big = NULL;
604 	size_t test;
605 	int i;
606 
607 	for (i = 0; i < BIGCACHE; ++i) {
608 		test = bigcache_size_array[i];
609 		if (bytes <= test) {
610 			bigcache_size_array[i] = 0;
611 			big = atomic_swap_ptr(&bigcache_array[i], NULL);
612 			break;
613 		}
614 	}
615 	return big;
616 }
617 
618 /*
619  * Free a bigcache entry, possibly returning one that the caller really must
620  * free.  This is used to cache recent oversized memory blocks.  Only
621  * big blocks smaller than BIGCACHE_LIMIT will be cached this way, so try
622  * to collect the biggest ones we can that are under the limit.
623  */
624 static __inline
625 bigalloc_t
626 bigcache_find_free(bigalloc_t big)
627 {
628 	int i;
629 	int j;
630 	int b;
631 
632 	b = ++bigcache_index;
633 	for (i = 0; i < BIGCACHE; ++i) {
634 		j = (b + i) & BIGCACHE_MASK;
635 		if (bigcache_size_array[j] < big->bytes) {
636 			bigcache_size_array[j] = big->bytes;
637 			big = atomic_swap_ptr(&bigcache_array[j], big);
638 			break;
639 		}
640 	}
641 	return big;
642 }
643 
644 static __inline
645 void
646 handle_excess_big(void)
647 {
648 	int i;
649 	bigalloc_t big;
650 	bigalloc_t *bigp;
651 
652 	if (excess_alloc <= BIGCACHE_EXCESS)
653 		return;
654 
655 	for (i = 0; i < BIGHSIZE; ++i) {
656 		bigp = &bigalloc_array[i];
657 		if (*bigp == NULL)
658 			continue;
659 		if (__isthreaded)
660 			_SPINLOCK(&bigspin_array[i & BIGXMASK]);
661 		for (big = *bigp; big; big = big->next) {
662 			if (big->active < big->bytes) {
663 				MASSERT((big->active & PAGE_MASK) == 0);
664 				MASSERT((big->bytes & PAGE_MASK) == 0);
665 				munmap((char *)big->base + big->active,
666 				       big->bytes - big->active);
667 				atomic_add_long(&excess_alloc,
668 						big->active - big->bytes);
669 				big->bytes = big->active;
670 			}
671 		}
672 		if (__isthreaded)
673 			_SPINUNLOCK(&bigspin_array[i & BIGXMASK]);
674 	}
675 }
676 
677 /*
678  * Calculate the zone index for the allocation request size and set the
679  * allocation request size to that particular zone's chunk size.
680  */
681 static __inline int
682 zoneindex(size_t *bytes, size_t *chunking)
683 {
684 	size_t n = (unsigned int)*bytes;	/* unsigned for shift opt */
685 
686 	/*
687 	 * This used to be 8-byte chunks and 16 zones for n < 128.
688 	 * However some instructions may require 16-byte alignment
689 	 * (aka SIMD) and programs might not request an aligned size
690 	 * (aka GCC-7), so change this as follows:
691 	 *
692 	 * 0-15 bytes	8-byte alignment in two zones	(0-1)
693 	 * 16-127 bytes	16-byte alignment in four zones	(3-10)
694 	 * zone index 2 and 11-15 are currently unused.
695 	 */
696 	if (n < 16) {
697 		*bytes = n = (n + 7) & ~7;
698 		*chunking = 8;
699 		return(n / 8 - 1);		/* 8 byte chunks, 2 zones */
700 		/* zones 0,1, zone 2 is unused */
701 	}
702 	if (n < 128) {
703 		*bytes = n = (n + 15) & ~15;
704 		*chunking = 16;
705 		return(n / 16 + 2);		/* 16 byte chunks, 8 zones */
706 		/* zones 3-10, zones 11-15 unused */
707 	}
708 	if (n < 256) {
709 		*bytes = n = (n + 15) & ~15;
710 		*chunking = 16;
711 		return(n / 16 + 7);
712 	}
713 	if (n < 8192) {
714 		if (n < 512) {
715 			*bytes = n = (n + 31) & ~31;
716 			*chunking = 32;
717 			return(n / 32 + 15);
718 		}
719 		if (n < 1024) {
720 			*bytes = n = (n + 63) & ~63;
721 			*chunking = 64;
722 			return(n / 64 + 23);
723 		}
724 		if (n < 2048) {
725 			*bytes = n = (n + 127) & ~127;
726 			*chunking = 128;
727 			return(n / 128 + 31);
728 		}
729 		if (n < 4096) {
730 			*bytes = n = (n + 255) & ~255;
731 			*chunking = 256;
732 			return(n / 256 + 39);
733 		}
734 		*bytes = n = (n + 511) & ~511;
735 		*chunking = 512;
736 		return(n / 512 + 47);
737 	}
738 #if ZALLOC_ZONE_LIMIT > 8192
739 	if (n < 16384) {
740 		*bytes = n = (n + 1023) & ~1023;
741 		*chunking = 1024;
742 		return(n / 1024 + 55);
743 	}
744 #endif
745 #if ZALLOC_ZONE_LIMIT > 16384
746 	if (n < 32768) {
747 		*bytes = n = (n + 2047) & ~2047;
748 		*chunking = 2048;
749 		return(n / 2048 + 63);
750 	}
751 #endif
752 	_mpanic("Unexpected byte count %zu", n);
753 	return(0);
754 }
755 
756 /*
757  * malloc() - call internal slab allocator
758  */
759 void *
760 __malloc(size_t size)
761 {
762 	void *ptr;
763 
764 	ptr = _slaballoc(size, 0);
765 	if (ptr == NULL)
766 		errno = ENOMEM;
767 	else
768 		UTRACE(0, size, ptr);
769 	return(ptr);
770 }
771 
772 #define MUL_NO_OVERFLOW	(1UL << (sizeof(size_t) * 4))
773 
774 /*
775  * calloc() - call internal slab allocator
776  */
777 void *
778 __calloc(size_t number, size_t size)
779 {
780 	void *ptr;
781 
782 	if ((number >= MUL_NO_OVERFLOW || size >= MUL_NO_OVERFLOW) &&
783 	     number > 0 && SIZE_MAX / number < size) {
784 		errno = ENOMEM;
785 		return(NULL);
786 	}
787 
788 	ptr = _slaballoc(number * size, SAFLAG_ZERO);
789 	if (ptr == NULL)
790 		errno = ENOMEM;
791 	else
792 		UTRACE(0, number * size, ptr);
793 	return(ptr);
794 }
795 
796 /*
797  * realloc() (SLAB ALLOCATOR)
798  *
799  * We do not attempt to optimize this routine beyond reusing the same
800  * pointer if the new size fits within the chunking of the old pointer's
801  * zone.
802  */
803 void *
804 __realloc(void *ptr, size_t size)
805 {
806 	void *ret;
807 	ret = _slabrealloc(ptr, size);
808 	if (ret == NULL)
809 		errno = ENOMEM;
810 	else
811 		UTRACE(ptr, size, ret);
812 	return(ret);
813 }
814 
815 /*
816  * posix_memalign()
817  *
818  * Allocate (size) bytes with a alignment of (alignment), where (alignment)
819  * is a power of 2 >= sizeof(void *).
820  *
821  * The slab allocator will allocate on power-of-2 boundaries up to
822  * at least PAGE_SIZE.  We use the zoneindex mechanic to find a
823  * zone matching the requirements, and _vmem_alloc() otherwise.
824  */
825 int
826 __posix_memalign(void **memptr, size_t alignment, size_t size)
827 {
828 	bigalloc_t *bigp;
829 	bigalloc_t big;
830 	size_t chunking;
831 	int zi __unused;
832 
833 	/*
834 	 * OpenGroup spec issue 6 checks
835 	 */
836 	if ((alignment | (alignment - 1)) + 1 != (alignment << 1)) {
837 		*memptr = NULL;
838 		return(EINVAL);
839 	}
840 	if (alignment < sizeof(void *)) {
841 		*memptr = NULL;
842 		return(EINVAL);
843 	}
844 
845 	/*
846 	 * Our zone mechanism guarantees same-sized alignment for any
847 	 * power-of-2 allocation.  If size is a power-of-2 and reasonable
848 	 * we can just call _slaballoc() and be done.  We round size up
849 	 * to the nearest alignment boundary to improve our odds of
850 	 * it becoming a power-of-2 if it wasn't before.
851 	 */
852 	if (size <= alignment)
853 		size = alignment;
854 	else
855 		size = (size + alignment - 1) & ~(size_t)(alignment - 1);
856 
857 	/*
858 	 * If we have overflown above when rounding to the nearest alignment
859 	 * boundary, just return ENOMEM, size should be == N * sizeof(void *).
860 	 */
861 	if (size == 0)
862 		return(ENOMEM);
863 
864 	if (size < PAGE_SIZE && (size | (size - 1)) + 1 == (size << 1)) {
865 		*memptr = _slaballoc(size, 0);
866 		return(*memptr ? 0 : ENOMEM);
867 	}
868 
869 	/*
870 	 * Otherwise locate a zone with a chunking that matches
871 	 * the requested alignment, within reason.   Consider two cases:
872 	 *
873 	 * (1) A 1K allocation on a 32-byte alignment.  The first zoneindex
874 	 *     we find will be the best fit because the chunking will be
875 	 *     greater or equal to the alignment.
876 	 *
877 	 * (2) A 513 allocation on a 256-byte alignment.  In this case
878 	 *     the first zoneindex we find will be for 576 byte allocations
879 	 *     with a chunking of 64, which is not sufficient.  To fix this
880 	 *     we simply find the nearest power-of-2 >= size and use the
881 	 *     same side-effect of _slaballoc() which guarantees
882 	 *     same-alignment on a power-of-2 allocation.
883 	 */
884 	if (size < PAGE_SIZE) {
885 		zi = zoneindex(&size, &chunking);
886 		if (chunking >= alignment) {
887 			*memptr = _slaballoc(size, 0);
888 			return(*memptr ? 0 : ENOMEM);
889 		}
890 		if (size >= 1024)
891 			alignment = 1024;
892 		if (size >= 16384)
893 			alignment = 16384;
894 		while (alignment < size)
895 			alignment <<= 1;
896 		*memptr = _slaballoc(alignment, 0);
897 		return(*memptr ? 0 : ENOMEM);
898 	}
899 
900 	/*
901 	 * If the slab allocator cannot handle it use vmem_alloc().
902 	 *
903 	 * Alignment must be adjusted up to at least PAGE_SIZE in this case.
904 	 */
905 	if (alignment < PAGE_SIZE)
906 		alignment = PAGE_SIZE;
907 	if (size < alignment)
908 		size = alignment;
909 	size = (size + PAGE_MASK) & ~(size_t)PAGE_MASK;
910 	*memptr = _vmem_alloc(size, alignment, 0);
911 	if (*memptr == NULL)
912 		return(ENOMEM);
913 
914 	big = _slaballoc(sizeof(struct bigalloc), 0);
915 	if (big == NULL) {
916 		_vmem_free(*memptr, size);
917 		*memptr = NULL;
918 		return(ENOMEM);
919 	}
920 	bigp = bigalloc_lock(*memptr);
921 	big->base = *memptr;
922 	big->active = size;
923 	big->bytes = size;		/* no excess */
924 	big->next = *bigp;
925 	*bigp = big;
926 	bigalloc_unlock(*memptr);
927 
928 	return(0);
929 }
930 
931 /*
932  * free() (SLAB ALLOCATOR) - do the obvious
933  */
934 void
935 __free(void *ptr)
936 {
937 	UTRACE(ptr, 0, 0);
938 	_slabfree(ptr, 0, NULL);
939 }
940 
941 /*
942  * _slaballoc()	(SLAB ALLOCATOR)
943  *
944  *	Allocate memory via the slab allocator.  If the request is too large,
945  *	or if it page-aligned beyond a certain size, we fall back to the
946  *	KMEM subsystem
947  */
948 static void *
949 _slaballoc(size_t size, int flags)
950 {
951 	slzone_t z;
952 	slchunk_t chunk;
953 	slglobaldata_t slgd;
954 	size_t chunking;
955 	int zi;
956 	int off;
957 	void *obj;
958 
959 	/*
960 	 * Handle the degenerate size == 0 case.  Yes, this does happen.
961 	 * Return a special pointer.  This is to maintain compatibility with
962 	 * the original malloc implementation.  Certain devices, such as the
963 	 * adaptec driver, not only allocate 0 bytes, they check for NULL and
964 	 * also realloc() later on.  Joy.
965 	 */
966 	if (size == 0)
967 		size = 1;
968 
969 	/* Capture global flags */
970 	flags |= g_malloc_flags;
971 
972 	/*
973 	 * Handle large allocations directly.  There should not be very many
974 	 * of these so performance is not a big issue.
975 	 *
976 	 * The backend allocator is pretty nasty on a SMP system.   Use the
977 	 * slab allocator for one and two page-sized chunks even though we
978 	 * lose some efficiency.
979 	 */
980 	if (size >= ZoneLimit ||
981 	    ((size & PAGE_MASK) == 0 && size > PAGE_SIZE*2)) {
982 		bigalloc_t big;
983 		bigalloc_t *bigp;
984 
985 		/*
986 		 * Page-align and cache-color in case of virtually indexed
987 		 * physically tagged L1 caches (aka SandyBridge).  No sweat
988 		 * otherwise, so just do it.
989 		 *
990 		 * (don't count as excess).
991 		 */
992 		size = (size + PAGE_MASK) & ~(size_t)PAGE_MASK;
993 		if ((size & (PAGE_SIZE * 2 - 1)) == 0)
994 			size += PAGE_SIZE;
995 
996 		/*
997 		 * Try to reuse a cached big block to avoid mmap'ing.  If it
998 		 * turns out not to fit our requirements we throw it away
999 		 * and allocate normally.
1000 		 */
1001 		big = NULL;
1002 		if (size <= BIGCACHE_LIMIT) {
1003 			big = bigcache_find_alloc(size);
1004 			if (big && big->bytes < size) {
1005 				_slabfree(big->base, FASTSLABREALLOC, &big);
1006 				big = NULL;
1007 			}
1008 		}
1009 		if (big) {
1010 			chunk = big->base;
1011 			if (flags & SAFLAG_ZERO)
1012 				bzero(chunk, size);
1013 		} else {
1014 			chunk = _vmem_alloc(size, PAGE_SIZE, flags);
1015 			if (chunk == NULL)
1016 				return(NULL);
1017 
1018 			big = _slaballoc(sizeof(struct bigalloc), 0);
1019 			if (big == NULL) {
1020 				_vmem_free(chunk, size);
1021 				return(NULL);
1022 			}
1023 			big->base = chunk;
1024 			big->bytes = size;
1025 		}
1026 		big->active = size;
1027 
1028 		bigp = bigalloc_lock(chunk);
1029 		if (big->active < big->bytes) {
1030 			atomic_add_long(&excess_alloc,
1031 					big->bytes - big->active);
1032 		}
1033 		big->next = *bigp;
1034 		*bigp = big;
1035 		bigalloc_unlock(chunk);
1036 		handle_excess_big();
1037 
1038 		return(chunk);
1039 	}
1040 
1041 	/* Compute allocation zone; zoneindex will panic on excessive sizes */
1042 	zi = zoneindex(&size, &chunking);
1043 	MASSERT(zi < NZONES);
1044 
1045 	obj = mtmagazine_alloc(zi);
1046 	if (obj != NULL) {
1047 		if (flags & SAFLAG_ZERO)
1048 			bzero(obj, size);
1049 		return (obj);
1050 	}
1051 
1052 	slgd = &SLGlobalData;
1053 	slgd_lock(slgd);
1054 
1055 	/*
1056 	 * Attempt to allocate out of an existing zone.  If all zones are
1057 	 * exhausted pull one off the free list or allocate a new one.
1058 	 */
1059 	if ((z = slgd->ZoneAry[zi]) == NULL) {
1060 		z = zone_alloc(flags);
1061 		if (z == NULL)
1062 			goto fail;
1063 
1064 		/*
1065 		 * How big is the base structure?
1066 		 */
1067 		off = sizeof(struct slzone);
1068 
1069 		/*
1070 		 * Align the storage in the zone based on the chunking.
1071 		 *
1072 		 * Guarantee power-of-2 alignment for power-of-2-sized
1073 		 * chunks.  Otherwise align based on the chunking size
1074 		 * (typically 8 or 16 bytes for small allocations).
1075 		 *
1076 		 * NOTE: Allocations >= ZoneLimit are governed by the
1077 		 * bigalloc code and typically only guarantee page-alignment.
1078 		 *
1079 		 * Set initial conditions for UIndex near the zone header
1080 		 * to reduce unecessary page faults, vs semi-randomization
1081 		 * to improve L1 cache saturation.
1082 		 */
1083 		if ((size | (size - 1)) + 1 == (size << 1))
1084 			off = roundup2(off, size);
1085 		else
1086 			off = roundup2(off, chunking);
1087 		z->z_Magic = ZALLOC_SLAB_MAGIC;
1088 		z->z_ZoneIndex = zi;
1089 		z->z_NMax = (ZoneSize - off) / size;
1090 		z->z_NFree = z->z_NMax;
1091 		z->z_BasePtr = (char *)z + off;
1092 		z->z_UIndex = z->z_UEndIndex = 0;
1093 		z->z_ChunkSize = size;
1094 		z->z_FirstFreePg = ZonePageCount;
1095 		z->z_Next = slgd->ZoneAry[zi];
1096 		slgd->ZoneAry[zi] = z;
1097 		if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
1098 			flags &= ~SAFLAG_ZERO;	/* already zero'd */
1099 			flags |= SAFLAG_PASSIVE;
1100 		}
1101 
1102 		/*
1103 		 * Slide the base index for initial allocations out of the
1104 		 * next zone we create so we do not over-weight the lower
1105 		 * part of the cpu memory caches.
1106 		 */
1107 		slgd->JunkIndex = (slgd->JunkIndex + ZALLOC_SLAB_SLIDE)
1108 					& (ZALLOC_MAX_ZONE_SIZE - 1);
1109 	}
1110 
1111 	/*
1112 	 * Ok, we have a zone from which at least one chunk is available.
1113 	 *
1114 	 * Remove us from the ZoneAry[] when we become empty
1115 	 */
1116 	MASSERT(z->z_NFree > 0);
1117 
1118 	if (--z->z_NFree == 0) {
1119 		slgd->ZoneAry[zi] = z->z_Next;
1120 		z->z_Next = NULL;
1121 	}
1122 
1123 	/*
1124 	 * Locate a chunk in a free page.  This attempts to localize
1125 	 * reallocations into earlier pages without us having to sort
1126 	 * the chunk list.  A chunk may still overlap a page boundary.
1127 	 */
1128 	while (z->z_FirstFreePg < ZonePageCount) {
1129 		if ((chunk = z->z_PageAry[z->z_FirstFreePg]) != NULL) {
1130 			MASSERT((uintptr_t)chunk & ZoneMask);
1131 			z->z_PageAry[z->z_FirstFreePg] = chunk->c_Next;
1132 			goto done;
1133 		}
1134 		++z->z_FirstFreePg;
1135 	}
1136 
1137 	/*
1138 	 * No chunks are available but NFree said we had some memory,
1139 	 * so it must be available in the never-before-used-memory
1140 	 * area governed by UIndex.  The consequences are very
1141 	 * serious if our zone got corrupted so we use an explicit
1142 	 * panic rather then a KASSERT.
1143 	 */
1144 	chunk = (slchunk_t)(z->z_BasePtr + z->z_UIndex * size);
1145 
1146 	if (++z->z_UIndex == z->z_NMax)
1147 		z->z_UIndex = 0;
1148 	if (z->z_UIndex == z->z_UEndIndex) {
1149 		if (z->z_NFree != 0)
1150 			_mpanic("slaballoc: corrupted zone");
1151 	}
1152 
1153 	if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
1154 		flags &= ~SAFLAG_ZERO;
1155 		flags |= SAFLAG_PASSIVE;
1156 	}
1157 
1158 done:
1159 	slgd_unlock(slgd);
1160 	if (flags & SAFLAG_ZERO)
1161 		bzero(chunk, size);
1162 	return(chunk);
1163 fail:
1164 	slgd_unlock(slgd);
1165 	return(NULL);
1166 }
1167 
1168 /*
1169  * Reallocate memory within the chunk
1170  */
1171 static void *
1172 _slabrealloc(void *ptr, size_t size)
1173 {
1174 	bigalloc_t *bigp;
1175 	void *nptr;
1176 	slzone_t z;
1177 	size_t chunking;
1178 
1179 	if (ptr == NULL) {
1180 		return(_slaballoc(size, 0));
1181 	}
1182 
1183 	if (size == 0)
1184 		size = 1;
1185 
1186 	/*
1187 	 * Handle oversized allocations.
1188 	 */
1189 	if ((bigp = bigalloc_check_and_lock(ptr)) != NULL) {
1190 		bigalloc_t big;
1191 		size_t bigbytes;
1192 
1193 		while ((big = *bigp) != NULL) {
1194 			if (big->base == ptr) {
1195 				size = (size + PAGE_MASK) & ~(size_t)PAGE_MASK;
1196 				bigbytes = big->bytes;
1197 
1198 				/*
1199 				 * If it already fits determine if it makes
1200 				 * sense to shrink/reallocate.  Try to optimize
1201 				 * programs which stupidly make incremental
1202 				 * reallocations larger or smaller by scaling
1203 				 * the allocation.  Also deal with potential
1204 				 * coloring.
1205 				 */
1206 				if (size >= (bigbytes >> 1) &&
1207 				    size <= bigbytes) {
1208 					if (big->active != size) {
1209 						atomic_add_long(&excess_alloc,
1210 								big->active -
1211 								size);
1212 					}
1213 					big->active = size;
1214 					bigalloc_unlock(ptr);
1215 					return(ptr);
1216 				}
1217 
1218 				/*
1219 				 * For large reallocations, allocate more space
1220 				 * than we need to try to avoid excessive
1221 				 * reallocations later on.
1222 				 */
1223 				chunking = size + (size >> 3);
1224 				chunking = (chunking + PAGE_MASK) &
1225 					   ~(size_t)PAGE_MASK;
1226 
1227 				/*
1228 				 * Try to allocate adjacently in case the
1229 				 * program is idiotically realloc()ing a
1230 				 * huge memory block just slightly bigger.
1231 				 * (llvm's llc tends to do this a lot).
1232 				 *
1233 				 * (MAP_TRYFIXED forces mmap to fail if there
1234 				 *  is already something at the address).
1235 				 */
1236 				if (chunking > bigbytes) {
1237 					char *addr;
1238 					int errno_save = errno;
1239 
1240 					addr = mmap((char *)ptr + bigbytes,
1241 						    chunking - bigbytes,
1242 						    PROT_READ|PROT_WRITE,
1243 						    MAP_PRIVATE|MAP_ANON|
1244 						    MAP_TRYFIXED,
1245 						    -1, 0);
1246 					errno = errno_save;
1247 					if (addr == (char *)ptr + bigbytes) {
1248 						atomic_add_long(&excess_alloc,
1249 								big->active -
1250 								big->bytes +
1251 								chunking -
1252 								size);
1253 						big->bytes = chunking;
1254 						big->active = size;
1255 						bigalloc_unlock(ptr);
1256 
1257 						return(ptr);
1258 					}
1259 					MASSERT((void *)addr == MAP_FAILED);
1260 				}
1261 
1262 				/*
1263 				 * Failed, unlink big and allocate fresh.
1264 				 * (note that we have to leave (big) intact
1265 				 * in case the slaballoc fails).
1266 				 */
1267 				*bigp = big->next;
1268 				bigalloc_unlock(ptr);
1269 				if ((nptr = _slaballoc(size, 0)) == NULL) {
1270 					/* Relink block */
1271 					bigp = bigalloc_lock(ptr);
1272 					big->next = *bigp;
1273 					*bigp = big;
1274 					bigalloc_unlock(ptr);
1275 					return(NULL);
1276 				}
1277 				if (size > bigbytes)
1278 					size = bigbytes;
1279 				bcopy(ptr, nptr, size);
1280 				atomic_add_long(&excess_alloc, big->active -
1281 							       big->bytes);
1282 				_slabfree(ptr, FASTSLABREALLOC, &big);
1283 
1284 				return(nptr);
1285 			}
1286 			bigp = &big->next;
1287 		}
1288 		bigalloc_unlock(ptr);
1289 		handle_excess_big();
1290 	}
1291 
1292 	/*
1293 	 * Get the original allocation's zone.  If the new request winds
1294 	 * up using the same chunk size we do not have to do anything.
1295 	 *
1296 	 * NOTE: We don't have to lock the globaldata here, the fields we
1297 	 * access here will not change at least as long as we have control
1298 	 * over the allocation.
1299 	 */
1300 	z = (slzone_t)((uintptr_t)ptr & ~(uintptr_t)ZoneMask);
1301 	MASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
1302 
1303 	/*
1304 	 * Use zoneindex() to chunk-align the new size, as long as the
1305 	 * new size is not too large.
1306 	 */
1307 	if (size < ZoneLimit) {
1308 		zoneindex(&size, &chunking);
1309 		if (z->z_ChunkSize == size) {
1310 			return(ptr);
1311 		}
1312 	}
1313 
1314 	/*
1315 	 * Allocate memory for the new request size and copy as appropriate.
1316 	 */
1317 	if ((nptr = _slaballoc(size, 0)) != NULL) {
1318 		if (size > z->z_ChunkSize)
1319 			size = z->z_ChunkSize;
1320 		bcopy(ptr, nptr, size);
1321 		_slabfree(ptr, 0, NULL);
1322 	}
1323 
1324 	return(nptr);
1325 }
1326 
1327 /*
1328  * free (SLAB ALLOCATOR)
1329  *
1330  * Free a memory block previously allocated by malloc.  Note that we do not
1331  * attempt to uplodate ks_loosememuse as MP races could prevent us from
1332  * checking memory limits in malloc.
1333  *
1334  * flags:
1335  *	FASTSLABREALLOC		Fast call from realloc, *rbigp already
1336  *				unlinked.
1337  *
1338  * MPSAFE
1339  */
1340 static void
1341 _slabfree(void *ptr, int flags, bigalloc_t *rbigp)
1342 {
1343 	slzone_t z;
1344 	slchunk_t chunk;
1345 	bigalloc_t big;
1346 	bigalloc_t *bigp;
1347 	slglobaldata_t slgd;
1348 	size_t size;
1349 	int zi;
1350 	int pgno;
1351 
1352 	/* Fast realloc path for big allocations */
1353 	if (flags & FASTSLABREALLOC) {
1354 		big = *rbigp;
1355 		goto fastslabrealloc;
1356 	}
1357 
1358 	/*
1359 	 * Handle NULL frees and special 0-byte allocations
1360 	 */
1361 	if (ptr == NULL)
1362 		return;
1363 
1364 	/*
1365 	 * Handle oversized allocations.
1366 	 */
1367 	if ((bigp = bigalloc_check_and_lock(ptr)) != NULL) {
1368 		while ((big = *bigp) != NULL) {
1369 			if (big->base == ptr) {
1370 				*bigp = big->next;
1371 				atomic_add_long(&excess_alloc, big->active -
1372 							       big->bytes);
1373 				bigalloc_unlock(ptr);
1374 
1375 				/*
1376 				 * Try to stash the block we are freeing,
1377 				 * potentially receiving another block in
1378 				 * return which must be freed.
1379 				 */
1380 fastslabrealloc:
1381 				if (big->bytes <= BIGCACHE_LIMIT) {
1382 					big = bigcache_find_free(big);
1383 					if (big == NULL)
1384 						return;
1385 				}
1386 				ptr = big->base;	/* reload */
1387 				size = big->bytes;
1388 				_slabfree(big, 0, NULL);
1389 				_vmem_free(ptr, size);
1390 				return;
1391 			}
1392 			bigp = &big->next;
1393 		}
1394 		bigalloc_unlock(ptr);
1395 		handle_excess_big();
1396 	}
1397 
1398 	/*
1399 	 * Zone case.  Figure out the zone based on the fact that it is
1400 	 * ZoneSize aligned.
1401 	 */
1402 	z = (slzone_t)((uintptr_t)ptr & ~(uintptr_t)ZoneMask);
1403 	MASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
1404 
1405 	size = z->z_ChunkSize;
1406 	zi = z->z_ZoneIndex;
1407 
1408 	if (g_malloc_flags & SAFLAG_ZERO)
1409 		bzero(ptr, size);
1410 
1411 	if (mtmagazine_free(zi, ptr) == 0)
1412 		return;
1413 
1414 	pgno = ((char *)ptr - (char *)z) >> PAGE_SHIFT;
1415 	chunk = ptr;
1416 	slgd = &SLGlobalData;
1417 	slgd_lock(slgd);
1418 
1419 	/*
1420 	 * Add this free non-zero'd chunk to a linked list for reuse, adjust
1421 	 * z_FirstFreePg.
1422 	 */
1423 	chunk->c_Next = z->z_PageAry[pgno];
1424 	z->z_PageAry[pgno] = chunk;
1425 	if (z->z_FirstFreePg > pgno)
1426 		z->z_FirstFreePg = pgno;
1427 
1428 	/*
1429 	 * Bump the number of free chunks.  If it becomes non-zero the zone
1430 	 * must be added back onto the appropriate list.
1431 	 */
1432 	if (z->z_NFree++ == 0) {
1433 		z->z_Next = slgd->ZoneAry[z->z_ZoneIndex];
1434 		slgd->ZoneAry[z->z_ZoneIndex] = z;
1435 	}
1436 
1437 	/*
1438 	 * If the zone becomes totally free then release it.
1439 	 */
1440 	if (z->z_NFree == z->z_NMax) {
1441 		slzone_t *pz;
1442 
1443 		pz = &slgd->ZoneAry[z->z_ZoneIndex];
1444 		while (z != *pz)
1445 			pz = &(*pz)->z_Next;
1446 		*pz = z->z_Next;
1447 		z->z_Magic = -1;
1448 		z->z_Next = NULL;
1449 		zone_free(z);
1450 		/* slgd lock released */
1451 		return;
1452 	}
1453 	slgd_unlock(slgd);
1454 }
1455 
1456 /*
1457  * Allocate and return a magazine.  NULL is returned and *burst is adjusted
1458  * if the magazine is empty.
1459  */
1460 static __inline void *
1461 magazine_alloc(struct magazine *mp, int *burst)
1462 {
1463 	void *obj;
1464 
1465 	if (mp == NULL)
1466 		return(NULL);
1467 	if (MAGAZINE_NOTEMPTY(mp)) {
1468 		obj = mp->objects[--mp->rounds];
1469 		return(obj);
1470 	}
1471 
1472 	/*
1473 	 * Return burst factor to caller along with NULL
1474 	 */
1475 	if ((mp->flags & M_BURST) && (burst != NULL)) {
1476 		*burst = mp->burst_factor;
1477 	}
1478 	/* Reduce burst factor by NSCALE; if it hits 1, disable BURST */
1479 	if ((mp->flags & M_BURST) && (mp->flags & M_BURST_EARLY) &&
1480 	    (burst != NULL)) {
1481 		mp->burst_factor -= M_BURST_NSCALE;
1482 		if (mp->burst_factor <= 1) {
1483 			mp->burst_factor = 1;
1484 			mp->flags &= ~(M_BURST);
1485 			mp->flags &= ~(M_BURST_EARLY);
1486 		}
1487 	}
1488 	return (NULL);
1489 }
1490 
1491 static __inline int
1492 magazine_free(struct magazine *mp, void *p)
1493 {
1494 	if (mp != NULL && MAGAZINE_NOTFULL(mp)) {
1495 		mp->objects[mp->rounds++] = p;
1496 		return 0;
1497 	}
1498 
1499 	return -1;
1500 }
1501 
1502 static void *
1503 mtmagazine_alloc(int zi)
1504 {
1505 	thr_mags *tp;
1506 	struct magazine *mp, *emptymag;
1507 	magazine_depot *d;
1508 	void *obj;
1509 
1510 	/*
1511 	 * Do not try to access per-thread magazines while the mtmagazine
1512 	 * is being initialized or destroyed.
1513 	 */
1514 	tp = &thread_mags;
1515 	if (tp->init < 0)
1516 		return(NULL);
1517 
1518 	/*
1519 	 * Primary per-thread allocation loop
1520 	 */
1521 	for (;;) {
1522 		/*
1523 		 * If the loaded magazine has rounds, allocate and return
1524 		 */
1525 		mp = tp->mags[zi].loaded;
1526 		obj = magazine_alloc(mp, NULL);
1527 		if (obj)
1528 			break;
1529 
1530 		/*
1531 		 * If the prev magazine is full, swap with the loaded
1532 		 * magazine and retry.
1533 		 */
1534 		mp = tp->mags[zi].prev;
1535 		if (mp && MAGAZINE_FULL(mp)) {
1536 			MASSERT(mp->rounds != 0);
1537 			swap_mags(&tp->mags[zi]);	/* prev now empty */
1538 			continue;
1539 		}
1540 
1541 		/*
1542 		 * Try to get a full magazine from the depot.  Cycle
1543 		 * through depot(full)->loaded->prev->depot(empty).
1544 		 * Retry if a full magazine was available from the depot.
1545 		 *
1546 		 * Return NULL (caller will fall through) if no magazines
1547 		 * can be found anywhere.
1548 		 */
1549 		d = &depots[zi];
1550 		depot_lock(d);
1551 		emptymag = tp->mags[zi].prev;
1552 		if (emptymag)
1553 			SLIST_INSERT_HEAD(&d->empty, emptymag, nextmagazine);
1554 		tp->mags[zi].prev = tp->mags[zi].loaded;
1555 		mp = SLIST_FIRST(&d->full);	/* loaded magazine */
1556 		tp->mags[zi].loaded = mp;
1557 		if (mp) {
1558 			SLIST_REMOVE_HEAD(&d->full, nextmagazine);
1559 			MASSERT(MAGAZINE_NOTEMPTY(mp));
1560 			depot_unlock(d);
1561 			continue;
1562 		}
1563 		depot_unlock(d);
1564 		break;
1565 	}
1566 
1567 	return (obj);
1568 }
1569 
1570 static int
1571 mtmagazine_free(int zi, void *ptr)
1572 {
1573 	thr_mags *tp;
1574 	struct magazine *mp, *loadedmag;
1575 	magazine_depot *d;
1576 	int rc = -1;
1577 
1578 	/*
1579 	 * Do not try to access per-thread magazines while the mtmagazine
1580 	 * is being initialized or destroyed.
1581 	 */
1582 	tp = &thread_mags;
1583 	if (tp->init < 0)
1584 		return(-1);
1585 
1586 	/*
1587 	 * Primary per-thread freeing loop
1588 	 */
1589 	for (;;) {
1590 		/*
1591 		 * Make sure a new magazine is available in case we have
1592 		 * to use it.  Staging the newmag allows us to avoid
1593 		 * some locking/reentrancy complexity.
1594 		 *
1595 		 * Temporarily disable the per-thread caches for this
1596 		 * allocation to avoid reentrancy and/or to avoid a
1597 		 * stack overflow if the [zi] happens to be the same that
1598 		 * would be used to allocate the new magazine.
1599 		 */
1600 		if (tp->newmag == NULL) {
1601 			tp->init = -1;
1602 			tp->newmag = _slaballoc(sizeof(struct magazine),
1603 						SAFLAG_ZERO);
1604 			tp->init = 1;
1605 			if (tp->newmag == NULL) {
1606 				rc = -1;
1607 				break;
1608 			}
1609 		}
1610 
1611 		/*
1612 		 * If the loaded magazine has space, free directly to it
1613 		 */
1614 		rc = magazine_free(tp->mags[zi].loaded, ptr);
1615 		if (rc == 0)
1616 			break;
1617 
1618 		/*
1619 		 * If the prev magazine is empty, swap with the loaded
1620 		 * magazine and retry.
1621 		 */
1622 		mp = tp->mags[zi].prev;
1623 		if (mp && MAGAZINE_EMPTY(mp)) {
1624 			MASSERT(mp->rounds == 0);
1625 			swap_mags(&tp->mags[zi]);	/* prev now full */
1626 			continue;
1627 		}
1628 
1629 		/*
1630 		 * Try to get an empty magazine from the depot.  Cycle
1631 		 * through depot(empty)->loaded->prev->depot(full).
1632 		 * Retry if an empty magazine was available from the depot.
1633 		 */
1634 		d = &depots[zi];
1635 		depot_lock(d);
1636 
1637 		if ((loadedmag = tp->mags[zi].prev) != NULL)
1638 			SLIST_INSERT_HEAD(&d->full, loadedmag, nextmagazine);
1639 		tp->mags[zi].prev = tp->mags[zi].loaded;
1640 		mp = SLIST_FIRST(&d->empty);
1641 		if (mp) {
1642 			tp->mags[zi].loaded = mp;
1643 			SLIST_REMOVE_HEAD(&d->empty, nextmagazine);
1644 			MASSERT(MAGAZINE_NOTFULL(mp));
1645 		} else {
1646 			mp = tp->newmag;
1647 			tp->newmag = NULL;
1648 			mp->capacity = M_MAX_ROUNDS;
1649 			mp->rounds = 0;
1650 			mp->flags = 0;
1651 			tp->mags[zi].loaded = mp;
1652 		}
1653 		depot_unlock(d);
1654 	}
1655 
1656 	return rc;
1657 }
1658 
1659 static void
1660 mtmagazine_init(void)
1661 {
1662 	int error;
1663 
1664 	error = pthread_key_create(&thread_mags_key, mtmagazine_destructor);
1665 	if (error)
1666 		abort();
1667 }
1668 
1669 /*
1670  * This function is only used by the thread exit destructor
1671  */
1672 static void
1673 mtmagazine_drain(struct magazine *mp)
1674 {
1675 	void *obj;
1676 
1677 	while (MAGAZINE_NOTEMPTY(mp)) {
1678 		obj = magazine_alloc(mp, NULL);
1679 		_slabfree(obj, 0, NULL);
1680 	}
1681 }
1682 
1683 /*
1684  * mtmagazine_destructor()
1685  *
1686  * When a thread exits, we reclaim all its resources; all its magazines are
1687  * drained and the structures are freed.
1688  *
1689  * WARNING!  The destructor can be called multiple times if the larger user
1690  *	     program has its own destructors which run after ours which
1691  *	     allocate or free memory.
1692  */
1693 static void
1694 mtmagazine_destructor(void *thrp)
1695 {
1696 	thr_mags *tp = thrp;
1697 	struct magazine *mp;
1698 	int i;
1699 
1700 	/*
1701 	 * Prevent further use of mtmagazines while we are destructing
1702 	 * them, as well as for any destructors which are run after us
1703 	 * prior to the thread actually being destroyed.
1704 	 */
1705 	tp->init = -1;
1706 
1707 	for (i = 0; i < NZONES; i++) {
1708 		mp = tp->mags[i].loaded;
1709 		tp->mags[i].loaded = NULL;
1710 		if (mp) {
1711 			if (MAGAZINE_NOTEMPTY(mp))
1712 				mtmagazine_drain(mp);
1713 			_slabfree(mp, 0, NULL);
1714 		}
1715 
1716 		mp = tp->mags[i].prev;
1717 		tp->mags[i].prev = NULL;
1718 		if (mp) {
1719 			if (MAGAZINE_NOTEMPTY(mp))
1720 				mtmagazine_drain(mp);
1721 			_slabfree(mp, 0, NULL);
1722 		}
1723 	}
1724 
1725 	if (tp->newmag) {
1726 		mp = tp->newmag;
1727 		tp->newmag = NULL;
1728 		_slabfree(mp, 0, NULL);
1729 	}
1730 }
1731 
1732 /*
1733  * zone_alloc()
1734  *
1735  * Attempt to allocate a zone from the zone magazine; the zone magazine has
1736  * M_BURST_EARLY enabled, so honor the burst request from the magazine.
1737  */
1738 static slzone_t
1739 zone_alloc(int flags)
1740 {
1741 	slglobaldata_t slgd = &SLGlobalData;
1742 	int burst = 1;
1743 	int i, j;
1744 	slzone_t z;
1745 
1746 	zone_magazine_lock();
1747 	slgd_unlock(slgd);
1748 
1749 	z = magazine_alloc(&zone_magazine, &burst);
1750 	if (z == NULL && burst == 1) {
1751 		zone_magazine_unlock();
1752 		z = _vmem_alloc(ZoneSize * burst, ZoneSize, flags);
1753 	} else if (z == NULL) {
1754 		z = _vmem_alloc(ZoneSize * burst, ZoneSize, flags);
1755 		if (z) {
1756 			for (i = 1; i < burst; i++) {
1757 				j = magazine_free(&zone_magazine,
1758 						  (char *) z + (ZoneSize * i));
1759 				MASSERT(j == 0);
1760 			}
1761 		}
1762 		zone_magazine_unlock();
1763 	} else {
1764 		z->z_Flags |= SLZF_UNOTZEROD;
1765 		zone_magazine_unlock();
1766 	}
1767 	slgd_lock(slgd);
1768 	return z;
1769 }
1770 
1771 /*
1772  * zone_free()
1773  *
1774  * Release a zone and unlock the slgd lock.
1775  */
1776 static void
1777 zone_free(void *z)
1778 {
1779 	slglobaldata_t slgd = &SLGlobalData;
1780 	void *excess[M_ZONE_ROUNDS - M_LOW_ROUNDS] = {};
1781 	int i, j;
1782 
1783 	zone_magazine_lock();
1784 	slgd_unlock(slgd);
1785 
1786 	bzero(z, sizeof(struct slzone));
1787 
1788 	if (opt_madvise)
1789 		madvise(z, ZoneSize, MADV_FREE);
1790 
1791 	i = magazine_free(&zone_magazine, z);
1792 
1793 	/*
1794 	 * If we failed to free, collect excess magazines; release the zone
1795 	 * magazine lock, and then free to the system via _vmem_free. Re-enable
1796 	 * BURST mode for the magazine.
1797 	 */
1798 	if (i == -1) {
1799 		j = zone_magazine.rounds - zone_magazine.low_factor;
1800 		for (i = 0; i < j; i++) {
1801 			excess[i] = magazine_alloc(&zone_magazine, NULL);
1802 			MASSERT(excess[i] !=  NULL);
1803 		}
1804 
1805 		zone_magazine_unlock();
1806 
1807 		for (i = 0; i < j; i++)
1808 			_vmem_free(excess[i], ZoneSize);
1809 
1810 		_vmem_free(z, ZoneSize);
1811 	} else {
1812 		zone_magazine_unlock();
1813 	}
1814 }
1815 
1816 /*
1817  * _vmem_alloc()
1818  *
1819  *	Directly map memory in PAGE_SIZE'd chunks with the specified
1820  *	alignment.
1821  *
1822  *	Alignment must be a multiple of PAGE_SIZE.
1823  *
1824  *	Size must be >= alignment.
1825  */
1826 static void *
1827 _vmem_alloc(size_t size, size_t align, int flags)
1828 {
1829 	char *addr;
1830 	char *save;
1831 	size_t excess;
1832 
1833 	/*
1834 	 * Map anonymous private memory.
1835 	 */
1836 	addr = mmap(NULL, size, PROT_READ|PROT_WRITE,
1837 		    MAP_PRIVATE|MAP_ANON, -1, 0);
1838 	if (addr == MAP_FAILED)
1839 		return(NULL);
1840 
1841 	/*
1842 	 * Check alignment.  The misaligned offset is also the excess
1843 	 * amount.  If misaligned unmap the excess so we have a chance of
1844 	 * mapping at the next alignment point and recursively try again.
1845 	 *
1846 	 * BBBBBBBBBBB BBBBBBBBBBB BBBBBBBBBBB	block alignment
1847 	 *   aaaaaaaaa aaaaaaaaaaa aa		mis-aligned allocation
1848 	 *   xxxxxxxxx				final excess calculation
1849 	 *   ^ returned address
1850 	 */
1851 	excess = (uintptr_t)addr & (align - 1);
1852 
1853 	if (excess) {
1854 		excess = align - excess;
1855 		save = addr;
1856 
1857 		munmap(save + excess, size - excess);
1858 		addr = _vmem_alloc(size, align, flags);
1859 		munmap(save, excess);
1860 	}
1861 	return((void *)addr);
1862 }
1863 
1864 /*
1865  * _vmem_free()
1866  *
1867  *	Free a chunk of memory allocated with _vmem_alloc()
1868  */
1869 static void
1870 _vmem_free(void *ptr, size_t size)
1871 {
1872 	munmap(ptr, size);
1873 }
1874 
1875 /*
1876  * Panic on fatal conditions
1877  */
1878 static void
1879 _mpanic(const char *ctl, ...)
1880 {
1881 	va_list va;
1882 
1883 	if (malloc_panic == 0) {
1884 		malloc_panic = 1;
1885 		va_start(va, ctl);
1886 		vfprintf(stderr, ctl, va);
1887 		fprintf(stderr, "\n");
1888 		fflush(stderr);
1889 		va_end(va);
1890 	}
1891 	abort();
1892 }
1893 
1894 __weak_reference(__malloc, malloc);
1895 __weak_reference(__calloc, calloc);
1896 __weak_reference(__posix_memalign, posix_memalign);
1897 __weak_reference(__realloc, realloc);
1898 __weak_reference(__free, free);
1899