xref: /dflybsd-src/lib/libc/stdlib/nmalloc.c (revision bda92397a52db17927aa45221364e2e555d19523)
1 /*
2  * NMALLOC.C	- New Malloc (ported from kernel slab allocator)
3  *
4  * Copyright (c) 2003,2004,2009,2010 The DragonFly Project. All rights reserved.
5  *
6  * This code is derived from software contributed to The DragonFly Project
7  * by Matthew Dillon <dillon@backplane.com> and by
8  * Venkatesh Srinivas <me@endeavour.zapto.org>.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  *
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in
18  *    the documentation and/or other materials provided with the
19  *    distribution.
20  * 3. Neither the name of The DragonFly Project nor the names of its
21  *    contributors may be used to endorse or promote products derived
22  *    from this software without specific, prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
27  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
28  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
29  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
30  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
31  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
32  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
33  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
34  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  * $Id: nmalloc.c,v 1.37 2010/07/23 08:20:35 vsrinivas Exp $
38  */
39 /*
40  * This module implements a slab allocator drop-in replacement for the
41  * libc malloc().
42  *
43  * A slab allocator reserves a ZONE for each chunk size, then lays the
44  * chunks out in an array within the zone.  Allocation and deallocation
45  * is nearly instantaneous, and overhead losses are limited to a fixed
46  * worst-case amount.
47  *
48  * The slab allocator does not have to pre-initialize the list of
49  * free chunks for each zone, and the underlying VM will not be
50  * touched at all beyond the zone header until an actual allocation
51  * needs it.
52  *
53  * Slab management and locking is done on a per-zone basis.
54  *
55  *	Alloc Size	Chunking        Number of zones
56  *	0-127		8		16
57  *	128-255		16		8
58  *	256-511		32		8
59  *	512-1023	64		8
60  *	1024-2047	128		8
61  *	2048-4095	256		8
62  *	4096-8191	512		8
63  *	8192-16383	1024		8
64  *	16384-32767	2048		8
65  *
66  *	Allocations >= ZoneLimit (16K) go directly to mmap and a hash table
67  *	is used to locate for free.  One and Two-page allocations use the
68  *	zone mechanic to avoid excessive mmap()/munmap() calls.
69  *
70  *			   API FEATURES AND SIDE EFFECTS
71  *
72  *    + power-of-2 sized allocations up to a page will be power-of-2 aligned.
73  *	Above that power-of-2 sized allocations are page-aligned.  Non
74  *	power-of-2 sized allocations are aligned the same as the chunk
75  *	size for their zone.
76  *    + malloc(0) returns a special non-NULL value
77  *    + ability to allocate arbitrarily large chunks of memory
78  *    + realloc will reuse the passed pointer if possible, within the
79  *	limitations of the zone chunking.
80  *
81  * Multithreaded enhancements for small allocations introduced August 2010.
82  * These are in the spirit of 'libumem'. See:
83  *	Bonwick, J.; Adams, J. (2001). "Magazines and Vmem: Extending the
84  *	slab allocator to many CPUs and arbitrary resources". In Proc. 2001
85  * 	USENIX Technical Conference. USENIX Association.
86  *
87  * TUNING
88  *
89  * The value of the environment variable MALLOC_OPTIONS is a character string
90  * containing various flags to tune nmalloc.
91  *
92  * 'U'   / ['u']	Generate / do not generate utrace entries for ktrace(1)
93  *			This will generate utrace events for all malloc,
94  *			realloc, and free calls. There are tools (mtrplay) to
95  *			replay and allocation pattern or to graph heap structure
96  *			(mtrgraph) which can interpret these logs.
97  * 'Z'   / ['z']	Zero out / do not zero all allocations.
98  *			Each new byte of memory allocated by malloc, realloc, or
99  *			reallocf will be initialized to 0. This is intended for
100  *			debugging and will affect performance negatively.
101  * 'H'	/  ['h']	Pass a hint to the kernel about pages unused by the
102  *			allocation functions.
103  */
104 
105 /* cc -shared -fPIC -g -O -I/usr/src/lib/libc/include -o nmalloc.so nmalloc.c */
106 
107 #include "libc_private.h"
108 
109 #include <sys/param.h>
110 #include <sys/types.h>
111 #include <sys/mman.h>
112 #include <sys/queue.h>
113 #include <sys/uio.h>
114 #include <sys/ktrace.h>
115 #include <stdio.h>
116 #include <stdint.h>
117 #include <stdlib.h>
118 #include <stdarg.h>
119 #include <stddef.h>
120 #include <unistd.h>
121 #include <string.h>
122 #include <fcntl.h>
123 #include <errno.h>
124 #include <pthread.h>
125 
126 #include "spinlock.h"
127 #include "un-namespace.h"
128 
129 /*
130  * Linked list of large allocations
131  */
132 typedef struct bigalloc {
133 	struct bigalloc *next;	/* hash link */
134 	void	*base;		/* base pointer */
135 	u_long	bytes;		/* bytes allocated */
136 } *bigalloc_t;
137 
138 /*
139  * Note that any allocations which are exact multiples of PAGE_SIZE, or
140  * which are >= ZALLOC_ZONE_LIMIT, will fall through to the kmem subsystem.
141  */
142 #define ZALLOC_ZONE_LIMIT	(16 * 1024)	/* max slab-managed alloc */
143 #define ZALLOC_MIN_ZONE_SIZE	(32 * 1024)	/* minimum zone size */
144 #define ZALLOC_MAX_ZONE_SIZE	(128 * 1024)	/* maximum zone size */
145 #define ZALLOC_ZONE_SIZE	(64 * 1024)
146 #define ZALLOC_SLAB_MAGIC	0x736c6162	/* magic sanity */
147 #define ZALLOC_SLAB_SLIDE	20		/* L1-cache skip */
148 
149 #if ZALLOC_ZONE_LIMIT == 16384
150 #define NZONES			72
151 #elif ZALLOC_ZONE_LIMIT == 32768
152 #define NZONES			80
153 #else
154 #error "I couldn't figure out NZONES"
155 #endif
156 
157 /*
158  * Chunk structure for free elements
159  */
160 typedef struct slchunk {
161 	struct slchunk *c_Next;
162 } *slchunk_t;
163 
164 /*
165  * The IN-BAND zone header is placed at the beginning of each zone.
166  */
167 struct slglobaldata;
168 
169 typedef struct slzone {
170 	int32_t		z_Magic;	/* magic number for sanity check */
171 	int		z_NFree;	/* total free chunks / ualloc space */
172 	struct slzone *z_Next;		/* ZoneAry[] link if z_NFree non-zero */
173 	int		z_NMax;		/* maximum free chunks */
174 	char		*z_BasePtr;	/* pointer to start of chunk array */
175 	int		z_UIndex;	/* current initial allocation index */
176 	int		z_UEndIndex;	/* last (first) allocation index */
177 	int		z_ChunkSize;	/* chunk size for validation */
178 	int		z_FirstFreePg;	/* chunk list on a page-by-page basis */
179 	int		z_ZoneIndex;
180 	int		z_Flags;
181 	struct slchunk *z_PageAry[ZALLOC_ZONE_SIZE / PAGE_SIZE];
182 #if defined(INVARIANTS)
183 	__uint32_t	z_Bitmap[];	/* bitmap of free chunks / sanity */
184 #endif
185 } *slzone_t;
186 
187 typedef struct slglobaldata {
188 	spinlock_t	Spinlock;
189 	slzone_t	ZoneAry[NZONES];/* linked list of zones NFree > 0 */
190 	int		JunkIndex;
191 } *slglobaldata_t;
192 
193 #define SLZF_UNOTZEROD		0x0001
194 
195 #define FASTSLABREALLOC		0x02
196 
197 /*
198  * Misc constants.  Note that allocations that are exact multiples of
199  * PAGE_SIZE, or exceed the zone limit, fall through to the kmem module.
200  * IN_SAME_PAGE_MASK is used to sanity-check the per-page free lists.
201  */
202 #define MIN_CHUNK_SIZE		8		/* in bytes */
203 #define MIN_CHUNK_MASK		(MIN_CHUNK_SIZE - 1)
204 #define IN_SAME_PAGE_MASK	(~(intptr_t)PAGE_MASK | MIN_CHUNK_MASK)
205 
206 /*
207  * The WEIRD_ADDR is used as known text to copy into free objects to
208  * try to create deterministic failure cases if the data is accessed after
209  * free.
210  *
211  * WARNING: A limited number of spinlocks are available, BIGXSIZE should
212  *	    not be larger then 64.
213  */
214 #define WEIRD_ADDR      0xdeadc0de
215 #define MAX_COPY        sizeof(weirdary)
216 #define ZERO_LENGTH_PTR	((void *)&malloc_dummy_pointer)
217 
218 #define BIGHSHIFT	10			/* bigalloc hash table */
219 #define BIGHSIZE	(1 << BIGHSHIFT)
220 #define BIGHMASK	(BIGHSIZE - 1)
221 #define BIGXSIZE	(BIGHSIZE / 16)		/* bigalloc lock table */
222 #define BIGXMASK	(BIGXSIZE - 1)
223 
224 #define SAFLAG_ZERO	0x0001
225 #define SAFLAG_PASSIVE	0x0002
226 
227 /*
228  * Thread control
229  */
230 
231 #define arysize(ary)	(sizeof(ary)/sizeof((ary)[0]))
232 
233 #define MASSERT(exp)	do { if (__predict_false(!(exp)))	\
234 				_mpanic("assertion: %s in %s",	\
235 				#exp, __func__);		\
236 			    } while (0)
237 
238 /*
239  * Magazines
240  */
241 
242 #define M_MAX_ROUNDS	64
243 #define M_ZONE_ROUNDS	64
244 #define M_LOW_ROUNDS	32
245 #define M_INIT_ROUNDS	8
246 #define M_BURST_FACTOR  8
247 #define M_BURST_NSCALE	2
248 
249 #define M_BURST		0x0001
250 #define M_BURST_EARLY	0x0002
251 
252 struct magazine {
253 	SLIST_ENTRY(magazine) nextmagazine;
254 
255 	int		flags;
256 	int 		capacity;	/* Max rounds in this magazine */
257 	int 		rounds;		/* Current number of free rounds */
258 	int		burst_factor;	/* Number of blocks to prefill with */
259 	int 		low_factor;	/* Free till low_factor from full mag */
260 	void		*objects[M_MAX_ROUNDS];
261 };
262 
263 SLIST_HEAD(magazinelist, magazine);
264 
265 static spinlock_t zone_mag_lock;
266 static struct magazine zone_magazine = {
267 	.flags = M_BURST | M_BURST_EARLY,
268 	.capacity = M_ZONE_ROUNDS,
269 	.rounds = 0,
270 	.burst_factor = M_BURST_FACTOR,
271 	.low_factor = M_LOW_ROUNDS
272 };
273 
274 #define MAGAZINE_FULL(mp)	(mp->rounds == mp->capacity)
275 #define MAGAZINE_NOTFULL(mp)	(mp->rounds < mp->capacity)
276 #define MAGAZINE_EMPTY(mp)	(mp->rounds == 0)
277 #define MAGAZINE_NOTEMPTY(mp)	(mp->rounds != 0)
278 
279 /* Each thread will have a pair of magazines per size-class (NZONES)
280  * The loaded magazine will support immediate allocations, the previous
281  * magazine will either be full or empty and can be swapped at need */
282 typedef struct magazine_pair {
283 	struct magazine	*loaded;
284 	struct magazine	*prev;
285 } magazine_pair;
286 
287 /* A depot is a collection of magazines for a single zone. */
288 typedef struct magazine_depot {
289 	struct magazinelist full;
290 	struct magazinelist empty;
291 	spinlock_t	lock;
292 } magazine_depot;
293 
294 typedef struct thr_mags {
295 	magazine_pair	mags[NZONES];
296 	struct magazine	*newmag;
297 	int		init;
298 } thr_mags;
299 
300 /* With this attribute set, do not require a function call for accessing
301  * this variable when the code is compiled -fPIC */
302 #define TLS_ATTRIBUTE __attribute__ ((tls_model ("initial-exec")));
303 
304 static int mtmagazine_free_live;
305 static __thread thr_mags thread_mags TLS_ATTRIBUTE;
306 static pthread_key_t thread_mags_key;
307 static pthread_once_t thread_mags_once = PTHREAD_ONCE_INIT;
308 static magazine_depot depots[NZONES];
309 
310 /*
311  * Fixed globals (not per-cpu)
312  */
313 static const int ZoneSize = ZALLOC_ZONE_SIZE;
314 static const int ZoneLimit = ZALLOC_ZONE_LIMIT;
315 static const int ZonePageCount = ZALLOC_ZONE_SIZE / PAGE_SIZE;
316 static const int ZoneMask = ZALLOC_ZONE_SIZE - 1;
317 
318 static int opt_madvise = 0;
319 static int opt_utrace = 0;
320 static int malloc_started = 0;
321 static int g_malloc_flags = 0;
322 static spinlock_t malloc_init_lock;
323 static struct slglobaldata	SLGlobalData;
324 static bigalloc_t bigalloc_array[BIGHSIZE];
325 static spinlock_t bigspin_array[BIGXSIZE];
326 static int malloc_panic;
327 static int malloc_dummy_pointer;
328 
329 static const int32_t weirdary[16] = {
330 	WEIRD_ADDR, WEIRD_ADDR, WEIRD_ADDR, WEIRD_ADDR,
331 	WEIRD_ADDR, WEIRD_ADDR, WEIRD_ADDR, WEIRD_ADDR,
332 	WEIRD_ADDR, WEIRD_ADDR, WEIRD_ADDR, WEIRD_ADDR,
333 	WEIRD_ADDR, WEIRD_ADDR, WEIRD_ADDR, WEIRD_ADDR
334 };
335 
336 static void *_slaballoc(size_t size, int flags);
337 static void *_slabrealloc(void *ptr, size_t size);
338 static void _slabfree(void *ptr, int, bigalloc_t *);
339 static void *_vmem_alloc(size_t bytes, size_t align, int flags);
340 static void _vmem_free(void *ptr, size_t bytes);
341 static void *magazine_alloc(struct magazine *, int *);
342 static int magazine_free(struct magazine *, void *);
343 static void *mtmagazine_alloc(int zi);
344 static int mtmagazine_free(int zi, void *);
345 static void mtmagazine_init(void);
346 static void mtmagazine_destructor(void *);
347 static slzone_t zone_alloc(int flags);
348 static void zone_free(void *z);
349 static void _mpanic(const char *ctl, ...);
350 static void malloc_init(void);
351 #if defined(INVARIANTS)
352 static void chunk_mark_allocated(slzone_t z, void *chunk);
353 static void chunk_mark_free(slzone_t z, void *chunk);
354 #endif
355 
356 struct nmalloc_utrace {
357 	void *p;
358 	size_t s;
359 	void *r;
360 };
361 
362 #define UTRACE(a, b, c)						\
363 	if (opt_utrace) {					\
364 		struct nmalloc_utrace ut = {			\
365 			.p = (a),				\
366 			.s = (b),				\
367 			.r = (c)				\
368 		};						\
369 		utrace(&ut, sizeof(ut));			\
370 	}
371 
372 #ifdef INVARIANTS
373 /*
374  * If enabled any memory allocated without M_ZERO is initialized to -1.
375  */
376 static int  use_malloc_pattern;
377 #endif
378 
379 static void
380 malloc_init(void)
381 {
382 	const char *p = NULL;
383 
384 	if (__isthreaded) {
385 		_SPINLOCK(&malloc_init_lock);
386 		if (malloc_started) {
387 			_SPINUNLOCK(&malloc_init_lock);
388 			return;
389 		}
390 	}
391 
392 	if (issetugid() == 0)
393 		p = getenv("MALLOC_OPTIONS");
394 
395 	for (; p != NULL && *p != '\0'; p++) {
396 		switch(*p) {
397 		case 'u':	opt_utrace = 0; break;
398 		case 'U':	opt_utrace = 1; break;
399 		case 'h':	opt_madvise = 0; break;
400 		case 'H':	opt_madvise = 1; break;
401 		case 'z':	g_malloc_flags = 0; break;
402 		case 'Z': 	g_malloc_flags = SAFLAG_ZERO; break;
403 		default:
404 			break;
405 		}
406 	}
407 
408 	malloc_started = 1;
409 
410 	if (__isthreaded)
411 		_SPINUNLOCK(&malloc_init_lock);
412 
413 	UTRACE((void *) -1, 0, NULL);
414 }
415 
416 /*
417  * We have to install a handler for nmalloc thread teardowns when
418  * the thread is created.  We cannot delay this because destructors in
419  * sophisticated userland programs can call malloc() for the first time
420  * during their thread exit.
421  *
422  * This routine is called directly from pthreads.
423  */
424 void
425 _nmalloc_thr_init(void)
426 {
427 	thr_mags *tp;
428 
429 	/*
430 	 * Disallow mtmagazine operations until the mtmagazine is
431 	 * initialized.
432 	 */
433 	tp = &thread_mags;
434 	tp->init = -1;
435 
436 	pthread_setspecific(thread_mags_key, tp);
437 	if (mtmagazine_free_live == 0) {
438 		mtmagazine_free_live = 1;
439 		pthread_once(&thread_mags_once, mtmagazine_init);
440 	}
441 	tp->init = 1;
442 }
443 
444 /*
445  * Thread locks.
446  */
447 static __inline void
448 slgd_lock(slglobaldata_t slgd)
449 {
450 	if (__isthreaded)
451 		_SPINLOCK(&slgd->Spinlock);
452 }
453 
454 static __inline void
455 slgd_unlock(slglobaldata_t slgd)
456 {
457 	if (__isthreaded)
458 		_SPINUNLOCK(&slgd->Spinlock);
459 }
460 
461 static __inline void
462 depot_lock(magazine_depot *dp)
463 {
464 	if (__isthreaded)
465 		_SPINLOCK(&dp->lock);
466 }
467 
468 static __inline void
469 depot_unlock(magazine_depot *dp)
470 {
471 	if (__isthreaded)
472 		_SPINUNLOCK(&dp->lock);
473 }
474 
475 static __inline void
476 zone_magazine_lock(void)
477 {
478 	if (__isthreaded)
479 		_SPINLOCK(&zone_mag_lock);
480 }
481 
482 static __inline void
483 zone_magazine_unlock(void)
484 {
485 	if (__isthreaded)
486 		_SPINUNLOCK(&zone_mag_lock);
487 }
488 
489 static __inline void
490 swap_mags(magazine_pair *mp)
491 {
492 	struct magazine *tmp;
493 	tmp = mp->loaded;
494 	mp->loaded = mp->prev;
495 	mp->prev = tmp;
496 }
497 
498 /*
499  * bigalloc hashing and locking support.
500  *
501  * Return an unmasked hash code for the passed pointer.
502  */
503 static __inline int
504 _bigalloc_hash(void *ptr)
505 {
506 	int hv;
507 
508 	hv = ((int)(intptr_t)ptr >> PAGE_SHIFT) ^
509 	      ((int)(intptr_t)ptr >> (PAGE_SHIFT + BIGHSHIFT));
510 
511 	return(hv);
512 }
513 
514 /*
515  * Lock the hash chain and return a pointer to its base for the specified
516  * address.
517  */
518 static __inline bigalloc_t *
519 bigalloc_lock(void *ptr)
520 {
521 	int hv = _bigalloc_hash(ptr);
522 	bigalloc_t *bigp;
523 
524 	bigp = &bigalloc_array[hv & BIGHMASK];
525 	if (__isthreaded)
526 		_SPINLOCK(&bigspin_array[hv & BIGXMASK]);
527 	return(bigp);
528 }
529 
530 /*
531  * Lock the hash chain and return a pointer to its base for the specified
532  * address.
533  *
534  * BUT, if the hash chain is empty, just return NULL and do not bother
535  * to lock anything.
536  */
537 static __inline bigalloc_t *
538 bigalloc_check_and_lock(void *ptr)
539 {
540 	int hv = _bigalloc_hash(ptr);
541 	bigalloc_t *bigp;
542 
543 	bigp = &bigalloc_array[hv & BIGHMASK];
544 	if (*bigp == NULL)
545 		return(NULL);
546 	if (__isthreaded) {
547 		_SPINLOCK(&bigspin_array[hv & BIGXMASK]);
548 	}
549 	return(bigp);
550 }
551 
552 static __inline void
553 bigalloc_unlock(void *ptr)
554 {
555 	int hv;
556 
557 	if (__isthreaded) {
558 		hv = _bigalloc_hash(ptr);
559 		_SPINUNLOCK(&bigspin_array[hv & BIGXMASK]);
560 	}
561 }
562 
563 /*
564  * Calculate the zone index for the allocation request size and set the
565  * allocation request size to that particular zone's chunk size.
566  */
567 static __inline int
568 zoneindex(size_t *bytes, size_t *chunking)
569 {
570 	size_t n = (unsigned int)*bytes;	/* unsigned for shift opt */
571 	if (n < 128) {
572 		*bytes = n = (n + 7) & ~7;
573 		*chunking = 8;
574 		return(n / 8 - 1);		/* 8 byte chunks, 16 zones */
575 	}
576 	if (n < 256) {
577 		*bytes = n = (n + 15) & ~15;
578 		*chunking = 16;
579 		return(n / 16 + 7);
580 	}
581 	if (n < 8192) {
582 		if (n < 512) {
583 			*bytes = n = (n + 31) & ~31;
584 			*chunking = 32;
585 			return(n / 32 + 15);
586 		}
587 		if (n < 1024) {
588 			*bytes = n = (n + 63) & ~63;
589 			*chunking = 64;
590 			return(n / 64 + 23);
591 		}
592 		if (n < 2048) {
593 			*bytes = n = (n + 127) & ~127;
594 			*chunking = 128;
595 			return(n / 128 + 31);
596 		}
597 		if (n < 4096) {
598 			*bytes = n = (n + 255) & ~255;
599 			*chunking = 256;
600 			return(n / 256 + 39);
601 		}
602 		*bytes = n = (n + 511) & ~511;
603 		*chunking = 512;
604 		return(n / 512 + 47);
605 	}
606 #if ZALLOC_ZONE_LIMIT > 8192
607 	if (n < 16384) {
608 		*bytes = n = (n + 1023) & ~1023;
609 		*chunking = 1024;
610 		return(n / 1024 + 55);
611 	}
612 #endif
613 #if ZALLOC_ZONE_LIMIT > 16384
614 	if (n < 32768) {
615 		*bytes = n = (n + 2047) & ~2047;
616 		*chunking = 2048;
617 		return(n / 2048 + 63);
618 	}
619 #endif
620 	_mpanic("Unexpected byte count %d", n);
621 	return(0);
622 }
623 
624 /*
625  * malloc() - call internal slab allocator
626  */
627 void *
628 malloc(size_t size)
629 {
630 	void *ptr;
631 
632 	ptr = _slaballoc(size, 0);
633 	if (ptr == NULL)
634 		errno = ENOMEM;
635 	else
636 		UTRACE(0, size, ptr);
637 	return(ptr);
638 }
639 
640 /*
641  * calloc() - call internal slab allocator
642  */
643 void *
644 calloc(size_t number, size_t size)
645 {
646 	void *ptr;
647 
648 	ptr = _slaballoc(number * size, SAFLAG_ZERO);
649 	if (ptr == NULL)
650 		errno = ENOMEM;
651 	else
652 		UTRACE(0, number * size, ptr);
653 	return(ptr);
654 }
655 
656 /*
657  * realloc() (SLAB ALLOCATOR)
658  *
659  * We do not attempt to optimize this routine beyond reusing the same
660  * pointer if the new size fits within the chunking of the old pointer's
661  * zone.
662  */
663 void *
664 realloc(void *ptr, size_t size)
665 {
666 	void *ret;
667 	ret = _slabrealloc(ptr, size);
668 	if (ret == NULL)
669 		errno = ENOMEM;
670 	else
671 		UTRACE(ptr, size, ret);
672 	return(ret);
673 }
674 
675 /*
676  * posix_memalign()
677  *
678  * Allocate (size) bytes with a alignment of (alignment), where (alignment)
679  * is a power of 2 >= sizeof(void *).
680  *
681  * The slab allocator will allocate on power-of-2 boundaries up to
682  * at least PAGE_SIZE.  We use the zoneindex mechanic to find a
683  * zone matching the requirements, and _vmem_alloc() otherwise.
684  */
685 int
686 posix_memalign(void **memptr, size_t alignment, size_t size)
687 {
688 	bigalloc_t *bigp;
689 	bigalloc_t big;
690 	size_t chunking;
691 	int zi;
692 
693 	/*
694 	 * OpenGroup spec issue 6 checks
695 	 */
696 	if ((alignment | (alignment - 1)) + 1 != (alignment << 1)) {
697 		*memptr = NULL;
698 		return(EINVAL);
699 	}
700 	if (alignment < sizeof(void *)) {
701 		*memptr = NULL;
702 		return(EINVAL);
703 	}
704 
705 	/*
706 	 * Our zone mechanism guarantees same-sized alignment for any
707 	 * power-of-2 allocation.  If size is a power-of-2 and reasonable
708 	 * we can just call _slaballoc() and be done.  We round size up
709 	 * to the nearest alignment boundary to improve our odds of
710 	 * it becoming a power-of-2 if it wasn't before.
711 	 */
712 	if (size <= alignment)
713 		size = alignment;
714 	else
715 		size = (size + alignment - 1) & ~(size_t)(alignment - 1);
716 	if (size < PAGE_SIZE && (size | (size - 1)) + 1 == (size << 1)) {
717 		*memptr = _slaballoc(size, 0);
718 		return(*memptr ? 0 : ENOMEM);
719 	}
720 
721 	/*
722 	 * Otherwise locate a zone with a chunking that matches
723 	 * the requested alignment, within reason.   Consider two cases:
724 	 *
725 	 * (1) A 1K allocation on a 32-byte alignment.  The first zoneindex
726 	 *     we find will be the best fit because the chunking will be
727 	 *     greater or equal to the alignment.
728 	 *
729 	 * (2) A 513 allocation on a 256-byte alignment.  In this case
730 	 *     the first zoneindex we find will be for 576 byte allocations
731 	 *     with a chunking of 64, which is not sufficient.  To fix this
732 	 *     we simply find the nearest power-of-2 >= size and use the
733 	 *     same side-effect of _slaballoc() which guarantees
734 	 *     same-alignment on a power-of-2 allocation.
735 	 */
736 	if (size < PAGE_SIZE) {
737 		zi = zoneindex(&size, &chunking);
738 		if (chunking >= alignment) {
739 			*memptr = _slaballoc(size, 0);
740 			return(*memptr ? 0 : ENOMEM);
741 		}
742 		if (size >= 1024)
743 			alignment = 1024;
744 		if (size >= 16384)
745 			alignment = 16384;
746 		while (alignment < size)
747 			alignment <<= 1;
748 		*memptr = _slaballoc(alignment, 0);
749 		return(*memptr ? 0 : ENOMEM);
750 	}
751 
752 	/*
753 	 * If the slab allocator cannot handle it use vmem_alloc().
754 	 *
755 	 * Alignment must be adjusted up to at least PAGE_SIZE in this case.
756 	 */
757 	if (alignment < PAGE_SIZE)
758 		alignment = PAGE_SIZE;
759 	if (size < alignment)
760 		size = alignment;
761 	size = (size + PAGE_MASK) & ~(size_t)PAGE_MASK;
762 	*memptr = _vmem_alloc(size, alignment, 0);
763 	if (*memptr == NULL)
764 		return(ENOMEM);
765 
766 	big = _slaballoc(sizeof(struct bigalloc), 0);
767 	if (big == NULL) {
768 		_vmem_free(*memptr, size);
769 		*memptr = NULL;
770 		return(ENOMEM);
771 	}
772 	bigp = bigalloc_lock(*memptr);
773 	big->base = *memptr;
774 	big->bytes = size;
775 	big->next = *bigp;
776 	*bigp = big;
777 	bigalloc_unlock(*memptr);
778 
779 	return(0);
780 }
781 
782 /*
783  * free() (SLAB ALLOCATOR) - do the obvious
784  */
785 void
786 free(void *ptr)
787 {
788 	UTRACE(ptr, 0, 0);
789 	_slabfree(ptr, 0, NULL);
790 }
791 
792 /*
793  * _slaballoc()	(SLAB ALLOCATOR)
794  *
795  *	Allocate memory via the slab allocator.  If the request is too large,
796  *	or if it page-aligned beyond a certain size, we fall back to the
797  *	KMEM subsystem
798  */
799 static void *
800 _slaballoc(size_t size, int flags)
801 {
802 	slzone_t z;
803 	slchunk_t chunk;
804 	slglobaldata_t slgd;
805 	size_t chunking;
806 	int zi;
807 #ifdef INVARIANTS
808 	int i;
809 #endif
810 	int off;
811 	void *obj;
812 
813 	if (!malloc_started)
814 		malloc_init();
815 
816 	/*
817 	 * Handle the degenerate size == 0 case.  Yes, this does happen.
818 	 * Return a special pointer.  This is to maintain compatibility with
819 	 * the original malloc implementation.  Certain devices, such as the
820 	 * adaptec driver, not only allocate 0 bytes, they check for NULL and
821 	 * also realloc() later on.  Joy.
822 	 */
823 	if (size == 0)
824 		return(ZERO_LENGTH_PTR);
825 
826 	/* Capture global flags */
827 	flags |= g_malloc_flags;
828 
829 	/*
830 	 * Handle large allocations directly.  There should not be very many
831 	 * of these so performance is not a big issue.
832 	 *
833 	 * The backend allocator is pretty nasty on a SMP system.   Use the
834 	 * slab allocator for one and two page-sized chunks even though we
835 	 * lose some efficiency.
836 	 */
837 	if (size >= ZoneLimit ||
838 	    ((size & PAGE_MASK) == 0 && size > PAGE_SIZE*2)) {
839 		bigalloc_t big;
840 		bigalloc_t *bigp;
841 
842 		size = (size + PAGE_MASK) & ~(size_t)PAGE_MASK;
843 		chunk = _vmem_alloc(size, PAGE_SIZE, flags);
844 		if (chunk == NULL)
845 			return(NULL);
846 
847 		big = _slaballoc(sizeof(struct bigalloc), 0);
848 		if (big == NULL) {
849 			_vmem_free(chunk, size);
850 			return(NULL);
851 		}
852 		bigp = bigalloc_lock(chunk);
853 		big->base = chunk;
854 		big->bytes = size;
855 		big->next = *bigp;
856 		*bigp = big;
857 		bigalloc_unlock(chunk);
858 
859 		return(chunk);
860 	}
861 
862 	/* Compute allocation zone; zoneindex will panic on excessive sizes */
863 	zi = zoneindex(&size, &chunking);
864 	MASSERT(zi < NZONES);
865 
866 	obj = mtmagazine_alloc(zi);
867 	if (obj != NULL) {
868 		if (flags & SAFLAG_ZERO)
869 			bzero(obj, size);
870 		return (obj);
871 	}
872 
873 	slgd = &SLGlobalData;
874 	slgd_lock(slgd);
875 
876 	/*
877 	 * Attempt to allocate out of an existing zone.  If all zones are
878 	 * exhausted pull one off the free list or allocate a new one.
879 	 */
880 	if ((z = slgd->ZoneAry[zi]) == NULL) {
881 		z = zone_alloc(flags);
882 		if (z == NULL)
883 			goto fail;
884 
885 		/*
886 		 * How big is the base structure?
887 		 */
888 #if defined(INVARIANTS)
889 		/*
890 		 * Make room for z_Bitmap.  An exact calculation is
891 		 * somewhat more complicated so don't make an exact
892 		 * calculation.
893 		 */
894 		off = offsetof(struct slzone,
895 				z_Bitmap[(ZoneSize / size + 31) / 32]);
896 		bzero(z->z_Bitmap, (ZoneSize / size + 31) / 8);
897 #else
898 		off = sizeof(struct slzone);
899 #endif
900 
901 		/*
902 		 * Align the storage in the zone based on the chunking.
903 		 *
904 		 * Guarantee power-of-2 alignment for power-of-2-sized
905 		 * chunks.  Otherwise align based on the chunking size
906 		 * (typically 8 or 16 bytes for small allocations).
907 		 *
908 		 * NOTE: Allocations >= ZoneLimit are governed by the
909 		 * bigalloc code and typically only guarantee page-alignment.
910 		 *
911 		 * Set initial conditions for UIndex near the zone header
912 		 * to reduce unecessary page faults, vs semi-randomization
913 		 * to improve L1 cache saturation.
914 		 */
915 		if ((size | (size - 1)) + 1 == (size << 1))
916 			off = (off + size - 1) & ~(size - 1);
917 		else
918 			off = (off + chunking - 1) & ~(chunking - 1);
919 		z->z_Magic = ZALLOC_SLAB_MAGIC;
920 		z->z_ZoneIndex = zi;
921 		z->z_NMax = (ZoneSize - off) / size;
922 		z->z_NFree = z->z_NMax;
923 		z->z_BasePtr = (char *)z + off;
924 		z->z_UIndex = z->z_UEndIndex = 0;
925 		z->z_ChunkSize = size;
926 		z->z_FirstFreePg = ZonePageCount;
927 		z->z_Next = slgd->ZoneAry[zi];
928 		slgd->ZoneAry[zi] = z;
929 		if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
930 			flags &= ~SAFLAG_ZERO;	/* already zero'd */
931 			flags |= SAFLAG_PASSIVE;
932 		}
933 
934 		/*
935 		 * Slide the base index for initial allocations out of the
936 		 * next zone we create so we do not over-weight the lower
937 		 * part of the cpu memory caches.
938 		 */
939 		slgd->JunkIndex = (slgd->JunkIndex + ZALLOC_SLAB_SLIDE)
940 					& (ZALLOC_MAX_ZONE_SIZE - 1);
941 	}
942 
943 	/*
944 	 * Ok, we have a zone from which at least one chunk is available.
945 	 *
946 	 * Remove us from the ZoneAry[] when we become empty
947 	 */
948 	MASSERT(z->z_NFree > 0);
949 
950 	if (--z->z_NFree == 0) {
951 		slgd->ZoneAry[zi] = z->z_Next;
952 		z->z_Next = NULL;
953 	}
954 
955 	/*
956 	 * Locate a chunk in a free page.  This attempts to localize
957 	 * reallocations into earlier pages without us having to sort
958 	 * the chunk list.  A chunk may still overlap a page boundary.
959 	 */
960 	while (z->z_FirstFreePg < ZonePageCount) {
961 		if ((chunk = z->z_PageAry[z->z_FirstFreePg]) != NULL) {
962 #ifdef DIAGNOSTIC
963 			/*
964 			 * Diagnostic: c_Next is not total garbage.
965 			 */
966 			MASSERT(chunk->c_Next == NULL ||
967 			    ((intptr_t)chunk->c_Next & IN_SAME_PAGE_MASK) ==
968 			    ((intptr_t)chunk & IN_SAME_PAGE_MASK));
969 #endif
970 #ifdef INVARIANTS
971 			chunk_mark_allocated(z, chunk);
972 #endif
973 			MASSERT((uintptr_t)chunk & ZoneMask);
974 			z->z_PageAry[z->z_FirstFreePg] = chunk->c_Next;
975 			goto done;
976 		}
977 		++z->z_FirstFreePg;
978 	}
979 
980 	/*
981 	 * No chunks are available but NFree said we had some memory,
982 	 * so it must be available in the never-before-used-memory
983 	 * area governed by UIndex.  The consequences are very
984 	 * serious if our zone got corrupted so we use an explicit
985 	 * panic rather then a KASSERT.
986 	 */
987 	chunk = (slchunk_t)(z->z_BasePtr + z->z_UIndex * size);
988 
989 	if (++z->z_UIndex == z->z_NMax)
990 		z->z_UIndex = 0;
991 	if (z->z_UIndex == z->z_UEndIndex) {
992 		if (z->z_NFree != 0)
993 			_mpanic("slaballoc: corrupted zone");
994 	}
995 
996 	if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
997 		flags &= ~SAFLAG_ZERO;
998 		flags |= SAFLAG_PASSIVE;
999 	}
1000 #if defined(INVARIANTS)
1001 	chunk_mark_allocated(z, chunk);
1002 #endif
1003 
1004 done:
1005 	slgd_unlock(slgd);
1006 	if (flags & SAFLAG_ZERO) {
1007 		bzero(chunk, size);
1008 #ifdef INVARIANTS
1009 	} else if ((flags & (SAFLAG_ZERO|SAFLAG_PASSIVE)) == 0) {
1010 		if (use_malloc_pattern) {
1011 			for (i = 0; i < size; i += sizeof(int)) {
1012 				*(int *)((char *)chunk + i) = -1;
1013 			}
1014 		}
1015 		/* avoid accidental double-free check */
1016 		chunk->c_Next = (void *)-1;
1017 #endif
1018 	}
1019 	return(chunk);
1020 fail:
1021 	slgd_unlock(slgd);
1022 	return(NULL);
1023 }
1024 
1025 /*
1026  * Reallocate memory within the chunk
1027  */
1028 static void *
1029 _slabrealloc(void *ptr, size_t size)
1030 {
1031 	bigalloc_t *bigp;
1032 	void *nptr;
1033 	slzone_t z;
1034 	size_t chunking;
1035 
1036 	if (ptr == NULL || ptr == ZERO_LENGTH_PTR) {
1037 		return(_slaballoc(size, 0));
1038 	}
1039 
1040 	if (size == 0) {
1041 		free(ptr);
1042 		return(ZERO_LENGTH_PTR);
1043 	}
1044 
1045 	/*
1046 	 * Handle oversized allocations.
1047 	 */
1048 	if ((bigp = bigalloc_check_and_lock(ptr)) != NULL) {
1049 		bigalloc_t big;
1050 		size_t bigbytes;
1051 
1052 		while ((big = *bigp) != NULL) {
1053 			if (big->base == ptr) {
1054 				size = (size + PAGE_MASK) & ~(size_t)PAGE_MASK;
1055 				bigbytes = big->bytes;
1056 				if (bigbytes == size) {
1057 					bigalloc_unlock(ptr);
1058 					return(ptr);
1059 				}
1060 				*bigp = big->next;
1061 				bigalloc_unlock(ptr);
1062 				if ((nptr = _slaballoc(size, 0)) == NULL) {
1063 					/* Relink block */
1064 					bigp = bigalloc_lock(ptr);
1065 					big->next = *bigp;
1066 					*bigp = big;
1067 					bigalloc_unlock(ptr);
1068 					return(NULL);
1069 				}
1070 				if (size > bigbytes)
1071 					size = bigbytes;
1072 				bcopy(ptr, nptr, size);
1073 				_slabfree(ptr, FASTSLABREALLOC, &big);
1074 				return(nptr);
1075 			}
1076 			bigp = &big->next;
1077 		}
1078 		bigalloc_unlock(ptr);
1079 	}
1080 
1081 	/*
1082 	 * Get the original allocation's zone.  If the new request winds
1083 	 * up using the same chunk size we do not have to do anything.
1084 	 *
1085 	 * NOTE: We don't have to lock the globaldata here, the fields we
1086 	 * access here will not change at least as long as we have control
1087 	 * over the allocation.
1088 	 */
1089 	z = (slzone_t)((uintptr_t)ptr & ~(uintptr_t)ZoneMask);
1090 	MASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
1091 
1092 	/*
1093 	 * Use zoneindex() to chunk-align the new size, as long as the
1094 	 * new size is not too large.
1095 	 */
1096 	if (size < ZoneLimit) {
1097 		zoneindex(&size, &chunking);
1098 		if (z->z_ChunkSize == size) {
1099 			return(ptr);
1100 		}
1101 	}
1102 
1103 	/*
1104 	 * Allocate memory for the new request size and copy as appropriate.
1105 	 */
1106 	if ((nptr = _slaballoc(size, 0)) != NULL) {
1107 		if (size > z->z_ChunkSize)
1108 			size = z->z_ChunkSize;
1109 		bcopy(ptr, nptr, size);
1110 		_slabfree(ptr, 0, NULL);
1111 	}
1112 
1113 	return(nptr);
1114 }
1115 
1116 /*
1117  * free (SLAB ALLOCATOR)
1118  *
1119  * Free a memory block previously allocated by malloc.  Note that we do not
1120  * attempt to uplodate ks_loosememuse as MP races could prevent us from
1121  * checking memory limits in malloc.
1122  *
1123  * flags:
1124  *	FASTSLABREALLOC		Fast call from realloc, *rbigp already
1125  *				unlinked.
1126  *
1127  * MPSAFE
1128  */
1129 static void
1130 _slabfree(void *ptr, int flags, bigalloc_t *rbigp)
1131 {
1132 	slzone_t z;
1133 	slchunk_t chunk;
1134 	bigalloc_t big;
1135 	bigalloc_t *bigp;
1136 	slglobaldata_t slgd;
1137 	size_t size;
1138 	int zi;
1139 	int pgno;
1140 
1141 	/* Fast realloc path for big allocations */
1142 	if (flags & FASTSLABREALLOC) {
1143 		big = *rbigp;
1144 		goto fastslabrealloc;
1145 	}
1146 
1147 	/*
1148 	 * Handle NULL frees and special 0-byte allocations
1149 	 */
1150 	if (ptr == NULL)
1151 		return;
1152 	if (ptr == ZERO_LENGTH_PTR)
1153 		return;
1154 
1155 	/*
1156 	 * Handle oversized allocations.
1157 	 */
1158 	if ((bigp = bigalloc_check_and_lock(ptr)) != NULL) {
1159 		while ((big = *bigp) != NULL) {
1160 			if (big->base == ptr) {
1161 				*bigp = big->next;
1162 				bigalloc_unlock(ptr);
1163 fastslabrealloc:
1164 				size = big->bytes;
1165 				_slabfree(big, 0, NULL);
1166 #ifdef INVARIANTS
1167 				MASSERT(sizeof(weirdary) <= size);
1168 				bcopy(weirdary, ptr, sizeof(weirdary));
1169 #endif
1170 				_vmem_free(ptr, size);
1171 				return;
1172 			}
1173 			bigp = &big->next;
1174 		}
1175 		bigalloc_unlock(ptr);
1176 	}
1177 
1178 	/*
1179 	 * Zone case.  Figure out the zone based on the fact that it is
1180 	 * ZoneSize aligned.
1181 	 */
1182 	z = (slzone_t)((uintptr_t)ptr & ~(uintptr_t)ZoneMask);
1183 	MASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
1184 
1185 	size = z->z_ChunkSize;
1186 	zi = z->z_ZoneIndex;
1187 
1188 	if (g_malloc_flags & SAFLAG_ZERO)
1189 		bzero(ptr, size);
1190 
1191 	if (mtmagazine_free(zi, ptr) == 0)
1192 		return;
1193 
1194 	pgno = ((char *)ptr - (char *)z) >> PAGE_SHIFT;
1195 	chunk = ptr;
1196 	slgd = &SLGlobalData;
1197 	slgd_lock(slgd);
1198 
1199 #ifdef INVARIANTS
1200 	/*
1201 	 * Attempt to detect a double-free.  To reduce overhead we only check
1202 	 * if there appears to be link pointer at the base of the data.
1203 	 */
1204 	if (((intptr_t)chunk->c_Next - (intptr_t)z) >> PAGE_SHIFT == pgno) {
1205 		slchunk_t scan;
1206 
1207 		for (scan = z->z_PageAry[pgno]; scan; scan = scan->c_Next) {
1208 			if (scan == chunk)
1209 				_mpanic("Double free at %p", chunk);
1210 		}
1211 	}
1212 	chunk_mark_free(z, chunk);
1213 #endif
1214 
1215 	/*
1216 	 * Put weird data into the memory to detect modifications after
1217 	 * freeing, illegal pointer use after freeing (we should fault on
1218 	 * the odd address), and so forth.
1219 	 */
1220 #ifdef INVARIANTS
1221 	if (z->z_ChunkSize < sizeof(weirdary))
1222 		bcopy(weirdary, chunk, z->z_ChunkSize);
1223 	else
1224 		bcopy(weirdary, chunk, sizeof(weirdary));
1225 #endif
1226 
1227 	/*
1228 	 * Add this free non-zero'd chunk to a linked list for reuse, adjust
1229 	 * z_FirstFreePg.
1230 	 */
1231 	chunk->c_Next = z->z_PageAry[pgno];
1232 	z->z_PageAry[pgno] = chunk;
1233 	if (z->z_FirstFreePg > pgno)
1234 		z->z_FirstFreePg = pgno;
1235 
1236 	/*
1237 	 * Bump the number of free chunks.  If it becomes non-zero the zone
1238 	 * must be added back onto the appropriate list.
1239 	 */
1240 	if (z->z_NFree++ == 0) {
1241 		z->z_Next = slgd->ZoneAry[z->z_ZoneIndex];
1242 		slgd->ZoneAry[z->z_ZoneIndex] = z;
1243 	}
1244 
1245 	/*
1246 	 * If the zone becomes totally free then release it.
1247 	 */
1248 	if (z->z_NFree == z->z_NMax) {
1249 		slzone_t *pz;
1250 
1251 		pz = &slgd->ZoneAry[z->z_ZoneIndex];
1252 		while (z != *pz)
1253 			pz = &(*pz)->z_Next;
1254 		*pz = z->z_Next;
1255 		z->z_Magic = -1;
1256 		z->z_Next = NULL;
1257 		zone_free(z);
1258 		/* slgd lock released */
1259 		return;
1260 	}
1261 	slgd_unlock(slgd);
1262 }
1263 
1264 #if defined(INVARIANTS)
1265 /*
1266  * Helper routines for sanity checks
1267  */
1268 static
1269 void
1270 chunk_mark_allocated(slzone_t z, void *chunk)
1271 {
1272 	int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize;
1273 	__uint32_t *bitptr;
1274 
1275 	MASSERT(bitdex >= 0 && bitdex < z->z_NMax);
1276 	bitptr = &z->z_Bitmap[bitdex >> 5];
1277 	bitdex &= 31;
1278 	MASSERT((*bitptr & (1 << bitdex)) == 0);
1279 	*bitptr |= 1 << bitdex;
1280 }
1281 
1282 static
1283 void
1284 chunk_mark_free(slzone_t z, void *chunk)
1285 {
1286 	int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize;
1287 	__uint32_t *bitptr;
1288 
1289 	MASSERT(bitdex >= 0 && bitdex < z->z_NMax);
1290 	bitptr = &z->z_Bitmap[bitdex >> 5];
1291 	bitdex &= 31;
1292 	MASSERT((*bitptr & (1 << bitdex)) != 0);
1293 	*bitptr &= ~(1 << bitdex);
1294 }
1295 
1296 #endif
1297 
1298 /*
1299  * Allocate and return a magazine.  NULL is returned and *burst is adjusted
1300  * if the magazine is empty.
1301  */
1302 static __inline void *
1303 magazine_alloc(struct magazine *mp, int *burst)
1304 {
1305 	void *obj;
1306 
1307 	if (mp == NULL)
1308 		return(NULL);
1309 	if (MAGAZINE_NOTEMPTY(mp)) {
1310 		obj = mp->objects[--mp->rounds];
1311 		return(obj);
1312 	}
1313 
1314 	/*
1315 	 * Return burst factor to caller along with NULL
1316 	 */
1317 	if ((mp->flags & M_BURST) && (burst != NULL)) {
1318 		*burst = mp->burst_factor;
1319 	}
1320 	/* Reduce burst factor by NSCALE; if it hits 1, disable BURST */
1321 	if ((mp->flags & M_BURST) && (mp->flags & M_BURST_EARLY) &&
1322 	    (burst != NULL)) {
1323 		mp->burst_factor -= M_BURST_NSCALE;
1324 		if (mp->burst_factor <= 1) {
1325 			mp->burst_factor = 1;
1326 			mp->flags &= ~(M_BURST);
1327 			mp->flags &= ~(M_BURST_EARLY);
1328 		}
1329 	}
1330 	return (NULL);
1331 }
1332 
1333 static __inline int
1334 magazine_free(struct magazine *mp, void *p)
1335 {
1336 	if (mp != NULL && MAGAZINE_NOTFULL(mp)) {
1337 		mp->objects[mp->rounds++] = p;
1338 		return 0;
1339 	}
1340 
1341 	return -1;
1342 }
1343 
1344 static void *
1345 mtmagazine_alloc(int zi)
1346 {
1347 	thr_mags *tp;
1348 	struct magazine *mp, *emptymag;
1349 	magazine_depot *d;
1350 	void *obj;
1351 
1352 	/*
1353 	 * Do not try to access per-thread magazines while the mtmagazine
1354 	 * is being initialized or destroyed.
1355 	 */
1356 	tp = &thread_mags;
1357 	if (tp->init < 0)
1358 		return(NULL);
1359 
1360 	/*
1361 	 * Primary per-thread allocation loop
1362 	 */
1363 	for (;;) {
1364 		/*
1365 		 * If the loaded magazine has rounds, allocate and return
1366 		 */
1367 		mp = tp->mags[zi].loaded;
1368 		obj = magazine_alloc(mp, NULL);
1369 		if (obj)
1370 			break;
1371 
1372 		/*
1373 		 * If the prev magazine is full, swap with the loaded
1374 		 * magazine and retry.
1375 		 */
1376 		mp = tp->mags[zi].prev;
1377 		if (mp && MAGAZINE_FULL(mp)) {
1378 			MASSERT(mp->rounds != 0);
1379 			swap_mags(&tp->mags[zi]);	/* prev now empty */
1380 			continue;
1381 		}
1382 
1383 		/*
1384 		 * Try to get a full magazine from the depot.  Cycle
1385 		 * through depot(full)->loaded->prev->depot(empty).
1386 		 * Retry if a full magazine was available from the depot.
1387 		 *
1388 		 * Return NULL (caller will fall through) if no magazines
1389 		 * can be found anywhere.
1390 		 */
1391 		d = &depots[zi];
1392 		depot_lock(d);
1393 		emptymag = tp->mags[zi].prev;
1394 		if (emptymag)
1395 			SLIST_INSERT_HEAD(&d->empty, emptymag, nextmagazine);
1396 		tp->mags[zi].prev = tp->mags[zi].loaded;
1397 		mp = SLIST_FIRST(&d->full);	/* loaded magazine */
1398 		tp->mags[zi].loaded = mp;
1399 		if (mp) {
1400 			SLIST_REMOVE_HEAD(&d->full, nextmagazine);
1401 			MASSERT(MAGAZINE_NOTEMPTY(mp));
1402 			depot_unlock(d);
1403 			continue;
1404 		}
1405 		depot_unlock(d);
1406 		break;
1407 	}
1408 
1409 	return (obj);
1410 }
1411 
1412 static int
1413 mtmagazine_free(int zi, void *ptr)
1414 {
1415 	thr_mags *tp;
1416 	struct magazine *mp, *loadedmag;
1417 	magazine_depot *d;
1418 	int rc = -1;
1419 
1420 	/*
1421 	 * Do not try to access per-thread magazines while the mtmagazine
1422 	 * is being initialized or destroyed.
1423 	 */
1424 	tp = &thread_mags;
1425 	if (tp->init < 0)
1426 		return(-1);
1427 
1428 	/*
1429 	 * Primary per-thread freeing loop
1430 	 */
1431 	for (;;) {
1432 		/*
1433 		 * Make sure a new magazine is available in case we have
1434 		 * to use it.  Staging the newmag allows us to avoid
1435 		 * some locking/reentrancy complexity.
1436 		 *
1437 		 * Temporarily disable the per-thread caches for this
1438 		 * allocation to avoid reentrancy and/or to avoid a
1439 		 * stack overflow if the [zi] happens to be the same that
1440 		 * would be used to allocate the new magazine.
1441 		 */
1442 		if (tp->newmag == NULL) {
1443 			tp->init = -1;
1444 			tp->newmag = _slaballoc(sizeof(struct magazine),
1445 						SAFLAG_ZERO);
1446 			tp->init = 1;
1447 			if (tp->newmag == NULL) {
1448 				rc = -1;
1449 				break;
1450 			}
1451 		}
1452 
1453 		/*
1454 		 * If the loaded magazine has space, free directly to it
1455 		 */
1456 		rc = magazine_free(tp->mags[zi].loaded, ptr);
1457 		if (rc == 0)
1458 			break;
1459 
1460 		/*
1461 		 * If the prev magazine is empty, swap with the loaded
1462 		 * magazine and retry.
1463 		 */
1464 		mp = tp->mags[zi].prev;
1465 		if (mp && MAGAZINE_EMPTY(mp)) {
1466 			MASSERT(mp->rounds == 0);
1467 			swap_mags(&tp->mags[zi]);	/* prev now full */
1468 			continue;
1469 		}
1470 
1471 		/*
1472 		 * Try to get an empty magazine from the depot.  Cycle
1473 		 * through depot(empty)->loaded->prev->depot(full).
1474 		 * Retry if an empty magazine was available from the depot.
1475 		 */
1476 		d = &depots[zi];
1477 		depot_lock(d);
1478 
1479 		if ((loadedmag = tp->mags[zi].prev) != NULL)
1480 			SLIST_INSERT_HEAD(&d->full, loadedmag, nextmagazine);
1481 		tp->mags[zi].prev = tp->mags[zi].loaded;
1482 		mp = SLIST_FIRST(&d->empty);
1483 		if (mp) {
1484 			tp->mags[zi].loaded = mp;
1485 			SLIST_REMOVE_HEAD(&d->empty, nextmagazine);
1486 			MASSERT(MAGAZINE_NOTFULL(mp));
1487 		} else {
1488 			mp = tp->newmag;
1489 			tp->newmag = NULL;
1490 			mp->capacity = M_MAX_ROUNDS;
1491 			mp->rounds = 0;
1492 			mp->flags = 0;
1493 			tp->mags[zi].loaded = mp;
1494 		}
1495 		depot_unlock(d);
1496 	}
1497 
1498 	return rc;
1499 }
1500 
1501 static void
1502 mtmagazine_init(void)
1503 {
1504 	int error;
1505 
1506 	error = pthread_key_create(&thread_mags_key, mtmagazine_destructor);
1507 	if (error)
1508 		abort();
1509 }
1510 
1511 /*
1512  * This function is only used by the thread exit destructor
1513  */
1514 static void
1515 mtmagazine_drain(struct magazine *mp)
1516 {
1517 	void *obj;
1518 
1519 	while (MAGAZINE_NOTEMPTY(mp)) {
1520 		obj = magazine_alloc(mp, NULL);
1521 		_slabfree(obj, 0, NULL);
1522 	}
1523 }
1524 
1525 /*
1526  * mtmagazine_destructor()
1527  *
1528  * When a thread exits, we reclaim all its resources; all its magazines are
1529  * drained and the structures are freed.
1530  *
1531  * WARNING!  The destructor can be called multiple times if the larger user
1532  *	     program has its own destructors which run after ours which
1533  *	     allocate or free memory.
1534  */
1535 static void
1536 mtmagazine_destructor(void *thrp)
1537 {
1538 	thr_mags *tp = thrp;
1539 	struct magazine *mp;
1540 	int i;
1541 
1542 	/*
1543 	 * Prevent further use of mtmagazines while we are destructing
1544 	 * them, as well as for any destructors which are run after us
1545 	 * prior to the thread actually being destroyed.
1546 	 */
1547 	tp->init = -1;
1548 
1549 	for (i = 0; i < NZONES; i++) {
1550 		mp = tp->mags[i].loaded;
1551 		tp->mags[i].loaded = NULL;
1552 		if (mp) {
1553 			if (MAGAZINE_NOTEMPTY(mp))
1554 				mtmagazine_drain(mp);
1555 			_slabfree(mp, 0, NULL);
1556 		}
1557 
1558 		mp = tp->mags[i].prev;
1559 		tp->mags[i].prev = NULL;
1560 		if (mp) {
1561 			if (MAGAZINE_NOTEMPTY(mp))
1562 				mtmagazine_drain(mp);
1563 			_slabfree(mp, 0, NULL);
1564 		}
1565 	}
1566 
1567 	if (tp->newmag) {
1568 		mp = tp->newmag;
1569 		tp->newmag = NULL;
1570 		_slabfree(mp, 0, NULL);
1571 	}
1572 }
1573 
1574 /*
1575  * zone_alloc()
1576  *
1577  * Attempt to allocate a zone from the zone magazine; the zone magazine has
1578  * M_BURST_EARLY enabled, so honor the burst request from the magazine.
1579  */
1580 static slzone_t
1581 zone_alloc(int flags)
1582 {
1583 	slglobaldata_t slgd = &SLGlobalData;
1584 	int burst = 1;
1585 	int i, j;
1586 	slzone_t z;
1587 
1588 	zone_magazine_lock();
1589 	slgd_unlock(slgd);
1590 
1591 	z = magazine_alloc(&zone_magazine, &burst);
1592 	if (z == NULL && burst == 1) {
1593 		zone_magazine_unlock();
1594 		z = _vmem_alloc(ZoneSize * burst, ZoneSize, flags);
1595 	} else if (z == NULL) {
1596 		z = _vmem_alloc(ZoneSize * burst, ZoneSize, flags);
1597 		if (z) {
1598 			for (i = 1; i < burst; i++) {
1599 				j = magazine_free(&zone_magazine,
1600 						  (char *) z + (ZoneSize * i));
1601 				MASSERT(j == 0);
1602 			}
1603 		}
1604 		zone_magazine_unlock();
1605 	} else {
1606 		z->z_Flags |= SLZF_UNOTZEROD;
1607 		zone_magazine_unlock();
1608 	}
1609 	slgd_lock(slgd);
1610 	return z;
1611 }
1612 
1613 /*
1614  * zone_free()
1615  *
1616  * Release a zone and unlock the slgd lock.
1617  */
1618 static void
1619 zone_free(void *z)
1620 {
1621 	slglobaldata_t slgd = &SLGlobalData;
1622 	void *excess[M_ZONE_ROUNDS - M_LOW_ROUNDS] = {};
1623 	int i, j;
1624 
1625 	zone_magazine_lock();
1626 	slgd_unlock(slgd);
1627 
1628 	bzero(z, sizeof(struct slzone));
1629 
1630 	if (opt_madvise)
1631 		madvise(z, ZoneSize, MADV_FREE);
1632 
1633 	i = magazine_free(&zone_magazine, z);
1634 
1635 	/*
1636 	 * If we failed to free, collect excess magazines; release the zone
1637 	 * magazine lock, and then free to the system via _vmem_free. Re-enable
1638 	 * BURST mode for the magazine.
1639 	 */
1640 	if (i == -1) {
1641 		j = zone_magazine.rounds - zone_magazine.low_factor;
1642 		for (i = 0; i < j; i++) {
1643 			excess[i] = magazine_alloc(&zone_magazine, NULL);
1644 			MASSERT(excess[i] !=  NULL);
1645 		}
1646 
1647 		zone_magazine_unlock();
1648 
1649 		for (i = 0; i < j; i++)
1650 			_vmem_free(excess[i], ZoneSize);
1651 
1652 		_vmem_free(z, ZoneSize);
1653 	} else {
1654 		zone_magazine_unlock();
1655 	}
1656 }
1657 
1658 /*
1659  * _vmem_alloc()
1660  *
1661  *	Directly map memory in PAGE_SIZE'd chunks with the specified
1662  *	alignment.
1663  *
1664  *	Alignment must be a multiple of PAGE_SIZE.
1665  *
1666  *	Size must be >= alignment.
1667  */
1668 static void *
1669 _vmem_alloc(size_t size, size_t align, int flags)
1670 {
1671 	char *addr;
1672 	char *save;
1673 	size_t excess;
1674 
1675 	/*
1676 	 * Map anonymous private memory.
1677 	 */
1678 	addr = mmap(NULL, size, PROT_READ|PROT_WRITE,
1679 		    MAP_PRIVATE|MAP_ANON, -1, 0);
1680 	if (addr == MAP_FAILED)
1681 		return(NULL);
1682 
1683 	/*
1684 	 * Check alignment.  The misaligned offset is also the excess
1685 	 * amount.  If misaligned unmap the excess so we have a chance of
1686 	 * mapping at the next alignment point and recursively try again.
1687 	 *
1688 	 * BBBBBBBBBBB BBBBBBBBBBB BBBBBBBBBBB	block alignment
1689 	 *   aaaaaaaaa aaaaaaaaaaa aa		mis-aligned allocation
1690 	 *   xxxxxxxxx				final excess calculation
1691 	 *   ^ returned address
1692 	 */
1693 	excess = (uintptr_t)addr & (align - 1);
1694 
1695 	if (excess) {
1696 		excess = align - excess;
1697 		save = addr;
1698 
1699 		munmap(save + excess, size - excess);
1700 		addr = _vmem_alloc(size, align, flags);
1701 		munmap(save, excess);
1702 	}
1703 	return((void *)addr);
1704 }
1705 
1706 /*
1707  * _vmem_free()
1708  *
1709  *	Free a chunk of memory allocated with _vmem_alloc()
1710  */
1711 static void
1712 _vmem_free(void *ptr, size_t size)
1713 {
1714 	munmap(ptr, size);
1715 }
1716 
1717 /*
1718  * Panic on fatal conditions
1719  */
1720 static void
1721 _mpanic(const char *ctl, ...)
1722 {
1723 	va_list va;
1724 
1725 	if (malloc_panic == 0) {
1726 		malloc_panic = 1;
1727 		va_start(va, ctl);
1728 		vfprintf(stderr, ctl, va);
1729 		fprintf(stderr, "\n");
1730 		fflush(stderr);
1731 		va_end(va);
1732 	}
1733 	abort();
1734 }
1735