1 /* 2 * Copyright (c) 1996, David Mazieres <dm@uun.org> 3 * Copyright (c) 2008, Damien Miller <djm@openbsd.org> 4 * 5 * Permission to use, copy, modify, and distribute this software for any 6 * purpose with or without fee is hereby granted, provided that the above 7 * copyright notice and this permission notice appear in all copies. 8 * 9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 16 */ 17 18 /* 19 * Arc4 random number generator for OpenBSD. 20 * 21 * This code is derived from section 17.1 of Applied Cryptography, 22 * second edition, which describes a stream cipher allegedly 23 * compatible with RSA Labs "RC4" cipher (the actual description of 24 * which is a trade secret). The same algorithm is used as a stream 25 * cipher called "arcfour" in Tatu Ylonen's ssh package. 26 * 27 * RC4 is a registered trademark of RSA Laboratories. 28 * 29 * $OpenBSD: arc4random.c,v 1.24 2013/06/11 16:59:50 deraadt Exp $ 30 * $FreeBSD: src/lib/libc/gen/arc4random.c,v 1.25 2008/09/09 09:46:36 ache Exp $ 31 */ 32 33 #include "namespace.h" 34 #include <sys/types.h> 35 #include <sys/time.h> 36 #include <sys/sysctl.h> 37 #include <stdlib.h> 38 #include <fcntl.h> 39 #include <unistd.h> 40 #include <pthread.h> 41 42 #include "libc_private.h" 43 #include "un-namespace.h" 44 45 /* 46 * Misc constants 47 */ 48 #define RANDOMDEV "/dev/random" 49 #define KEYSIZE 128 50 #define _ARC4_LOCK() \ 51 do { \ 52 if (__isthreaded) \ 53 _pthread_mutex_lock(&arc4random_mtx); \ 54 } while (0) 55 56 #define _ARC4_UNLOCK() \ 57 do { \ 58 if (__isthreaded) \ 59 _pthread_mutex_unlock(&arc4random_mtx); \ 60 } while (0) 61 62 struct arc4_stream { 63 u_int8_t i; 64 u_int8_t j; 65 u_int8_t s[KEYSIZE * 2]; 66 }; 67 68 static pthread_mutex_t arc4random_mtx = PTHREAD_MUTEX_INITIALIZER; 69 70 static struct arc4_stream rs; 71 static int rs_initialized; 72 static int rs_stired; 73 static int arc4_count; 74 75 static u_int8_t arc4_getbyte(void); 76 static void arc4_stir(void); 77 78 static inline void 79 arc4_init(void) 80 { 81 int n; 82 83 for (n = 0; n < KEYSIZE * 2; n++) 84 rs.s[n] = n; 85 rs.i = 0; 86 rs.j = 0; 87 } 88 89 static inline void 90 arc4_addrandom(u_char *dat, size_t datlen) 91 { 92 size_t n; 93 u_int8_t si; 94 95 rs.i--; 96 for (n = 0; n < KEYSIZE * 2; n++) { 97 rs.i = (rs.i + 1); 98 si = rs.s[rs.i]; 99 rs.j = (rs.j + si + dat[n % datlen]); 100 rs.s[rs.i] = rs.s[rs.j]; 101 rs.s[rs.j] = si; 102 } 103 rs.j = rs.i; 104 } 105 106 struct pray { 107 struct timeval tv; 108 pid_t pid; 109 }; 110 111 static void 112 arc4_stir(void) 113 { 114 u_int8_t rnd[KEYSIZE*2]; 115 size_t n; 116 int fd; 117 118 /* 119 * NOTE: Don't assume that the garbage on the stack is actually 120 * random. 121 */ 122 n = 0; 123 fd = _open(RANDOMDEV, O_RDONLY | O_CLOEXEC, 0); 124 if (fd >= 0) { 125 n = _read(fd, rnd, sizeof(rnd)); 126 _close(fd); 127 if ((ssize_t)n < 0) 128 n = 0; 129 } 130 131 /* 132 * Align for added entropy, sysctl back-off for chroots that might 133 * not have access to /dev/random. 134 */ 135 n = n & ~15; /* align for added entropy */ 136 if (n < sizeof(rnd)) { 137 size_t r = sizeof(rnd) - n; 138 if (sysctlbyname("kern.random", rnd + n, &r, NULL, 0) == 0) 139 n += r; 140 } 141 142 /* 143 * Pray if this code ever gets triggered. 144 */ 145 n = n & ~15; 146 if (n <= sizeof(rnd) - sizeof(struct pray)) { 147 struct pray *pray = (void *)(rnd + n); 148 gettimeofday(&pray->tv, NULL); 149 pray->pid = getpid(); 150 n += sizeof(struct pray); 151 } 152 arc4_addrandom((u_char *)rnd, n); 153 154 /* 155 * Throw away the first N bytes of output, as suggested in the 156 * paper "Weaknesses in the Key Scheduling Algorithm of RC4" 157 * by Fluher, Mantin, and Shamir. N=1024 is based on 158 * suggestions in the paper "(Not So) Random Shuffles of RC4" 159 * by Ilya Mironov. 160 */ 161 for (n = 0; n < 1024; n++) 162 arc4_getbyte(); 163 164 /* 165 * Theoretically we can set arc4_count to 1600000. Realistically, 166 * it makes no sense to use a number that high. Use something 167 * reasonable. 168 */ 169 arc4_count = 65539; 170 } 171 172 static u_int8_t 173 arc4_getbyte(void) 174 { 175 u_int8_t si, sj; 176 177 rs.i = (rs.i + 1); 178 si = rs.s[rs.i]; 179 rs.j = (rs.j + si); 180 sj = rs.s[rs.j]; 181 rs.s[rs.i] = sj; 182 rs.s[rs.j] = si; 183 184 return (rs.s[(si + sj) & 0xff]); 185 } 186 187 static u_int32_t 188 arc4_getword(void) 189 { 190 u_int32_t val; 191 192 val = arc4_getbyte() << 24; 193 val |= arc4_getbyte() << 16; 194 val |= arc4_getbyte() << 8; 195 val |= arc4_getbyte(); 196 197 return (val); 198 } 199 200 static void 201 arc4_check_init(void) 202 { 203 if (!rs_initialized) { 204 arc4_init(); 205 rs_initialized = 1; 206 } 207 } 208 209 static inline void 210 arc4_check_stir(void) 211 { 212 if (!rs_stired || arc4_count <= 0) { 213 arc4_stir(); 214 rs_stired = 1; 215 } 216 } 217 218 void 219 arc4random_stir(void) 220 { 221 _ARC4_LOCK(); 222 arc4_check_init(); 223 arc4_stir(); 224 rs_stired = 1; 225 _ARC4_UNLOCK(); 226 } 227 228 void 229 arc4random_addrandom(uint8_t *dat, size_t datlen) 230 { 231 _ARC4_LOCK(); 232 arc4_check_init(); 233 arc4_check_stir(); 234 arc4_addrandom(dat, datlen); 235 _ARC4_UNLOCK(); 236 } 237 238 u_int32_t 239 arc4random(void) 240 { 241 u_int32_t rnd; 242 243 _ARC4_LOCK(); 244 arc4_check_init(); 245 arc4_check_stir(); 246 rnd = arc4_getword(); 247 arc4_count -= 4; 248 _ARC4_UNLOCK(); 249 250 return (rnd); 251 } 252 253 void 254 arc4random_buf(void *_buf, size_t n) 255 { 256 u_char *buf = (u_char *)_buf; 257 258 _ARC4_LOCK(); 259 arc4_check_init(); 260 while (n--) { 261 arc4_check_stir(); 262 buf[n] = arc4_getbyte(); 263 arc4_count--; 264 } 265 _ARC4_UNLOCK(); 266 } 267 268 /* 269 * Calculate a uniformly distributed random number less than upper_bound 270 * avoiding "modulo bias". 271 * 272 * Uniformity is achieved by generating new random numbers until the one 273 * returned is outside the range [0, 2**32 % upper_bound). This 274 * guarantees the selected random number will be inside 275 * [2**32 % upper_bound, 2**32) which maps back to [0, upper_bound) 276 * after reduction modulo upper_bound. 277 */ 278 u_int32_t 279 arc4random_uniform(u_int32_t upper_bound) 280 { 281 u_int32_t r, min; 282 283 if (upper_bound < 2) 284 return 0; 285 286 /* 2**32 % x == (2**32 - x) % x */ 287 min = -upper_bound % upper_bound; 288 /* 289 * This could theoretically loop forever but each retry has 290 * p > 0.5 (worst case, usually far better) of selecting a 291 * number inside the range we need, so it should rarely need 292 * to re-roll. 293 */ 294 for (;;) { 295 r = arc4random(); 296 if (r >= min) 297 break; 298 } 299 300 return (r % upper_bound); 301 } 302 303 #if 0 304 /*-------- Test code for i386 --------*/ 305 #include <stdio.h> 306 #include <machine/pctr.h> 307 int 308 main(int argc, char **argv) 309 { 310 const int iter = 1000000; 311 int i; 312 pctrval v; 313 314 v = rdtsc(); 315 for (i = 0; i < iter; i++) 316 arc4random(); 317 v = rdtsc() - v; 318 v /= iter; 319 320 printf("%qd cycles\n", v); 321 } 322 #endif 323