12940b44dSPeter Avalos /////////////////////////////////////////////////////////////////////////////// 22940b44dSPeter Avalos // 32940b44dSPeter Avalos /// \file index.c 42940b44dSPeter Avalos /// \brief Handling of .xz Indexes and some other Stream information 52940b44dSPeter Avalos // 62940b44dSPeter Avalos // Author: Lasse Collin 72940b44dSPeter Avalos // 82940b44dSPeter Avalos // This file has been put into the public domain. 92940b44dSPeter Avalos // You can do whatever you want with this file. 102940b44dSPeter Avalos // 112940b44dSPeter Avalos /////////////////////////////////////////////////////////////////////////////// 122940b44dSPeter Avalos 132940b44dSPeter Avalos #include "index.h" 142940b44dSPeter Avalos #include "stream_flags_common.h" 152940b44dSPeter Avalos 162940b44dSPeter Avalos 172940b44dSPeter Avalos /// \brief How many Records to allocate at once 182940b44dSPeter Avalos /// 192940b44dSPeter Avalos /// This should be big enough to avoid making lots of tiny allocations 202940b44dSPeter Avalos /// but small enough to avoid too much unused memory at once. 212940b44dSPeter Avalos #define INDEX_GROUP_SIZE 512 222940b44dSPeter Avalos 232940b44dSPeter Avalos 242940b44dSPeter Avalos /// \brief How many Records can be allocated at once at maximum 252940b44dSPeter Avalos #define PREALLOC_MAX ((SIZE_MAX - sizeof(index_group)) / sizeof(index_record)) 262940b44dSPeter Avalos 272940b44dSPeter Avalos 282940b44dSPeter Avalos /// \brief Base structure for index_stream and index_group structures 292940b44dSPeter Avalos typedef struct index_tree_node_s index_tree_node; 302940b44dSPeter Avalos struct index_tree_node_s { 312940b44dSPeter Avalos /// Uncompressed start offset of this Stream (relative to the 322940b44dSPeter Avalos /// beginning of the file) or Block (relative to the beginning 332940b44dSPeter Avalos /// of the Stream) 342940b44dSPeter Avalos lzma_vli uncompressed_base; 352940b44dSPeter Avalos 362940b44dSPeter Avalos /// Compressed start offset of this Stream or Block 372940b44dSPeter Avalos lzma_vli compressed_base; 382940b44dSPeter Avalos 392940b44dSPeter Avalos index_tree_node *parent; 402940b44dSPeter Avalos index_tree_node *left; 412940b44dSPeter Avalos index_tree_node *right; 422940b44dSPeter Avalos }; 432940b44dSPeter Avalos 442940b44dSPeter Avalos 452940b44dSPeter Avalos /// \brief AVL tree to hold index_stream or index_group structures 462940b44dSPeter Avalos typedef struct { 472940b44dSPeter Avalos /// Root node 482940b44dSPeter Avalos index_tree_node *root; 492940b44dSPeter Avalos 502940b44dSPeter Avalos /// Leftmost node. Since the tree will be filled sequentially, 512940b44dSPeter Avalos /// this won't change after the first node has been added to 522940b44dSPeter Avalos /// the tree. 532940b44dSPeter Avalos index_tree_node *leftmost; 542940b44dSPeter Avalos 552940b44dSPeter Avalos /// The rightmost node in the tree. Since the tree is filled 562940b44dSPeter Avalos /// sequentially, this is always the node where to add the new data. 572940b44dSPeter Avalos index_tree_node *rightmost; 582940b44dSPeter Avalos 592940b44dSPeter Avalos /// Number of nodes in the tree 602940b44dSPeter Avalos uint32_t count; 612940b44dSPeter Avalos 622940b44dSPeter Avalos } index_tree; 632940b44dSPeter Avalos 642940b44dSPeter Avalos 652940b44dSPeter Avalos typedef struct { 662940b44dSPeter Avalos lzma_vli uncompressed_sum; 672940b44dSPeter Avalos lzma_vli unpadded_sum; 682940b44dSPeter Avalos } index_record; 692940b44dSPeter Avalos 702940b44dSPeter Avalos 712940b44dSPeter Avalos typedef struct { 722940b44dSPeter Avalos /// Every Record group is part of index_stream.groups tree. 732940b44dSPeter Avalos index_tree_node node; 742940b44dSPeter Avalos 752940b44dSPeter Avalos /// Number of Blocks in this Stream before this group. 762940b44dSPeter Avalos lzma_vli number_base; 772940b44dSPeter Avalos 782940b44dSPeter Avalos /// Number of Records that can be put in records[]. 792940b44dSPeter Avalos size_t allocated; 802940b44dSPeter Avalos 812940b44dSPeter Avalos /// Index of the last Record in use. 822940b44dSPeter Avalos size_t last; 832940b44dSPeter Avalos 842940b44dSPeter Avalos /// The sizes in this array are stored as cumulative sums relative 852940b44dSPeter Avalos /// to the beginning of the Stream. This makes it possible to 862940b44dSPeter Avalos /// use binary search in lzma_index_locate(). 872940b44dSPeter Avalos /// 882940b44dSPeter Avalos /// Note that the cumulative summing is done specially for 892940b44dSPeter Avalos /// unpadded_sum: The previous value is rounded up to the next 902940b44dSPeter Avalos /// multiple of four before adding the Unpadded Size of the new 912940b44dSPeter Avalos /// Block. The total encoded size of the Blocks in the Stream 922940b44dSPeter Avalos /// is records[last].unpadded_sum in the last Record group of 932940b44dSPeter Avalos /// the Stream. 942940b44dSPeter Avalos /// 952940b44dSPeter Avalos /// For example, if the Unpadded Sizes are 39, 57, and 81, the 962940b44dSPeter Avalos /// stored values are 39, 97 (40 + 57), and 181 (100 + 181). 972940b44dSPeter Avalos /// The total encoded size of these Blocks is 184. 982940b44dSPeter Avalos /// 992940b44dSPeter Avalos /// This is a flexible array, because it makes easy to optimize 1002940b44dSPeter Avalos /// memory usage in case someone concatenates many Streams that 1012940b44dSPeter Avalos /// have only one or few Blocks. 1022940b44dSPeter Avalos index_record records[]; 1032940b44dSPeter Avalos 1042940b44dSPeter Avalos } index_group; 1052940b44dSPeter Avalos 1062940b44dSPeter Avalos 1072940b44dSPeter Avalos typedef struct { 108*e151908bSDaniel Fojt /// Every index_stream is a node in the tree of Streams. 1092940b44dSPeter Avalos index_tree_node node; 1102940b44dSPeter Avalos 1112940b44dSPeter Avalos /// Number of this Stream (first one is 1) 1122940b44dSPeter Avalos uint32_t number; 1132940b44dSPeter Avalos 1142940b44dSPeter Avalos /// Total number of Blocks before this Stream 1152940b44dSPeter Avalos lzma_vli block_number_base; 1162940b44dSPeter Avalos 1172940b44dSPeter Avalos /// Record groups of this Stream are stored in a tree. 1182940b44dSPeter Avalos /// It's a T-tree with AVL-tree balancing. There are 1192940b44dSPeter Avalos /// INDEX_GROUP_SIZE Records per node by default. 1202940b44dSPeter Avalos /// This keeps the number of memory allocations reasonable 1212940b44dSPeter Avalos /// and finding a Record is fast. 1222940b44dSPeter Avalos index_tree groups; 1232940b44dSPeter Avalos 1242940b44dSPeter Avalos /// Number of Records in this Stream 1252940b44dSPeter Avalos lzma_vli record_count; 1262940b44dSPeter Avalos 1272940b44dSPeter Avalos /// Size of the List of Records field in this Stream. This is used 1282940b44dSPeter Avalos /// together with record_count to calculate the size of the Index 1292940b44dSPeter Avalos /// field and thus the total size of the Stream. 1302940b44dSPeter Avalos lzma_vli index_list_size; 1312940b44dSPeter Avalos 1322940b44dSPeter Avalos /// Stream Flags of this Stream. This is meaningful only if 1332940b44dSPeter Avalos /// the Stream Flags have been told us with lzma_index_stream_flags(). 1342940b44dSPeter Avalos /// Initially stream_flags.version is set to UINT32_MAX to indicate 1352940b44dSPeter Avalos /// that the Stream Flags are unknown. 1362940b44dSPeter Avalos lzma_stream_flags stream_flags; 1372940b44dSPeter Avalos 1382940b44dSPeter Avalos /// Amount of Stream Padding after this Stream. This defaults to 1392940b44dSPeter Avalos /// zero and can be set with lzma_index_stream_padding(). 1402940b44dSPeter Avalos lzma_vli stream_padding; 1412940b44dSPeter Avalos 1422940b44dSPeter Avalos } index_stream; 1432940b44dSPeter Avalos 1442940b44dSPeter Avalos 1452940b44dSPeter Avalos struct lzma_index_s { 1462940b44dSPeter Avalos /// AVL-tree containing the Stream(s). Often there is just one 1472940b44dSPeter Avalos /// Stream, but using a tree keeps lookups fast even when there 1482940b44dSPeter Avalos /// are many concatenated Streams. 1492940b44dSPeter Avalos index_tree streams; 1502940b44dSPeter Avalos 1512940b44dSPeter Avalos /// Uncompressed size of all the Blocks in the Stream(s) 1522940b44dSPeter Avalos lzma_vli uncompressed_size; 1532940b44dSPeter Avalos 1542940b44dSPeter Avalos /// Total size of all the Blocks in the Stream(s) 1552940b44dSPeter Avalos lzma_vli total_size; 1562940b44dSPeter Avalos 1572940b44dSPeter Avalos /// Total number of Records in all Streams in this lzma_index 1582940b44dSPeter Avalos lzma_vli record_count; 1592940b44dSPeter Avalos 1602940b44dSPeter Avalos /// Size of the List of Records field if all the Streams in this 1612940b44dSPeter Avalos /// lzma_index were packed into a single Stream (makes it simpler to 1622940b44dSPeter Avalos /// take many .xz files and combine them into a single Stream). 1632940b44dSPeter Avalos /// 1642940b44dSPeter Avalos /// This value together with record_count is needed to calculate 1652940b44dSPeter Avalos /// Backward Size that is stored into Stream Footer. 1662940b44dSPeter Avalos lzma_vli index_list_size; 1672940b44dSPeter Avalos 1682940b44dSPeter Avalos /// How many Records to allocate at once in lzma_index_append(). 169*e151908bSDaniel Fojt /// This defaults to INDEX_GROUP_SIZE but can be overridden with 1702940b44dSPeter Avalos /// lzma_index_prealloc(). 1712940b44dSPeter Avalos size_t prealloc; 1722940b44dSPeter Avalos 1732940b44dSPeter Avalos /// Bitmask indicating what integrity check types have been used 1742940b44dSPeter Avalos /// as set by lzma_index_stream_flags(). The bit of the last Stream 1752940b44dSPeter Avalos /// is not included here, since it is possible to change it by 1762940b44dSPeter Avalos /// calling lzma_index_stream_flags() again. 1772940b44dSPeter Avalos uint32_t checks; 1782940b44dSPeter Avalos }; 1792940b44dSPeter Avalos 1802940b44dSPeter Avalos 1812940b44dSPeter Avalos static void 1822940b44dSPeter Avalos index_tree_init(index_tree *tree) 1832940b44dSPeter Avalos { 1842940b44dSPeter Avalos tree->root = NULL; 1852940b44dSPeter Avalos tree->leftmost = NULL; 1862940b44dSPeter Avalos tree->rightmost = NULL; 1872940b44dSPeter Avalos tree->count = 0; 1882940b44dSPeter Avalos return; 1892940b44dSPeter Avalos } 1902940b44dSPeter Avalos 1912940b44dSPeter Avalos 1922940b44dSPeter Avalos /// Helper for index_tree_end() 1932940b44dSPeter Avalos static void 19415ab8c86SJohn Marino index_tree_node_end(index_tree_node *node, const lzma_allocator *allocator, 19515ab8c86SJohn Marino void (*free_func)(void *node, const lzma_allocator *allocator)) 1962940b44dSPeter Avalos { 1972940b44dSPeter Avalos // The tree won't ever be very huge, so recursion should be fine. 1982940b44dSPeter Avalos // 20 levels in the tree is likely quite a lot already in practice. 1992940b44dSPeter Avalos if (node->left != NULL) 2002940b44dSPeter Avalos index_tree_node_end(node->left, allocator, free_func); 2012940b44dSPeter Avalos 2022940b44dSPeter Avalos if (node->right != NULL) 2032940b44dSPeter Avalos index_tree_node_end(node->right, allocator, free_func); 2042940b44dSPeter Avalos 2052940b44dSPeter Avalos free_func(node, allocator); 2062940b44dSPeter Avalos return; 2072940b44dSPeter Avalos } 2082940b44dSPeter Avalos 2092940b44dSPeter Avalos 21046a2189dSzrj /// Free the memory allocated for a tree. Each node is freed using the 21146a2189dSzrj /// given free_func which is either &lzma_free or &index_stream_end. 21246a2189dSzrj /// The latter is used to free the Record groups from each index_stream 21346a2189dSzrj /// before freeing the index_stream itself. 2142940b44dSPeter Avalos static void 21515ab8c86SJohn Marino index_tree_end(index_tree *tree, const lzma_allocator *allocator, 21615ab8c86SJohn Marino void (*free_func)(void *node, const lzma_allocator *allocator)) 2172940b44dSPeter Avalos { 21846a2189dSzrj assert(free_func != NULL); 21946a2189dSzrj 2202940b44dSPeter Avalos if (tree->root != NULL) 2212940b44dSPeter Avalos index_tree_node_end(tree->root, allocator, free_func); 2222940b44dSPeter Avalos 2232940b44dSPeter Avalos return; 2242940b44dSPeter Avalos } 2252940b44dSPeter Avalos 2262940b44dSPeter Avalos 2272940b44dSPeter Avalos /// Add a new node to the tree. node->uncompressed_base and 2282940b44dSPeter Avalos /// node->compressed_base must have been set by the caller already. 2292940b44dSPeter Avalos static void 2302940b44dSPeter Avalos index_tree_append(index_tree *tree, index_tree_node *node) 2312940b44dSPeter Avalos { 2322940b44dSPeter Avalos node->parent = tree->rightmost; 2332940b44dSPeter Avalos node->left = NULL; 2342940b44dSPeter Avalos node->right = NULL; 2352940b44dSPeter Avalos 2362940b44dSPeter Avalos ++tree->count; 2372940b44dSPeter Avalos 2382940b44dSPeter Avalos // Handle the special case of adding the first node. 2392940b44dSPeter Avalos if (tree->root == NULL) { 2402940b44dSPeter Avalos tree->root = node; 2412940b44dSPeter Avalos tree->leftmost = node; 2422940b44dSPeter Avalos tree->rightmost = node; 2432940b44dSPeter Avalos return; 2442940b44dSPeter Avalos } 2452940b44dSPeter Avalos 2462940b44dSPeter Avalos // The tree is always filled sequentially. 2472940b44dSPeter Avalos assert(tree->rightmost->uncompressed_base <= node->uncompressed_base); 2482940b44dSPeter Avalos assert(tree->rightmost->compressed_base < node->compressed_base); 2492940b44dSPeter Avalos 2502940b44dSPeter Avalos // Add the new node after the rightmost node. It's the correct 2512940b44dSPeter Avalos // place due to the reason above. 2522940b44dSPeter Avalos tree->rightmost->right = node; 2532940b44dSPeter Avalos tree->rightmost = node; 2542940b44dSPeter Avalos 2552940b44dSPeter Avalos // Balance the AVL-tree if needed. We don't need to keep the balance 2562940b44dSPeter Avalos // factors in nodes, because we always fill the tree sequentially, 2572940b44dSPeter Avalos // and thus know the state of the tree just by looking at the node 2582940b44dSPeter Avalos // count. From the node count we can calculate how many steps to go 2592940b44dSPeter Avalos // up in the tree to find the rotation root. 2602940b44dSPeter Avalos uint32_t up = tree->count ^ (UINT32_C(1) << bsr32(tree->count)); 2612940b44dSPeter Avalos if (up != 0) { 2622940b44dSPeter Avalos // Locate the root node for the rotation. 2632940b44dSPeter Avalos up = ctz32(tree->count) + 2; 2642940b44dSPeter Avalos do { 2652940b44dSPeter Avalos node = node->parent; 2662940b44dSPeter Avalos } while (--up > 0); 2672940b44dSPeter Avalos 2682940b44dSPeter Avalos // Rotate left using node as the rotation root. 2692940b44dSPeter Avalos index_tree_node *pivot = node->right; 2702940b44dSPeter Avalos 2712940b44dSPeter Avalos if (node->parent == NULL) { 2722940b44dSPeter Avalos tree->root = pivot; 2732940b44dSPeter Avalos } else { 2742940b44dSPeter Avalos assert(node->parent->right == node); 2752940b44dSPeter Avalos node->parent->right = pivot; 2762940b44dSPeter Avalos } 2772940b44dSPeter Avalos 2782940b44dSPeter Avalos pivot->parent = node->parent; 2792940b44dSPeter Avalos 2802940b44dSPeter Avalos node->right = pivot->left; 2812940b44dSPeter Avalos if (node->right != NULL) 2822940b44dSPeter Avalos node->right->parent = node; 2832940b44dSPeter Avalos 2842940b44dSPeter Avalos pivot->left = node; 2852940b44dSPeter Avalos node->parent = pivot; 2862940b44dSPeter Avalos } 2872940b44dSPeter Avalos 2882940b44dSPeter Avalos return; 2892940b44dSPeter Avalos } 2902940b44dSPeter Avalos 2912940b44dSPeter Avalos 2922940b44dSPeter Avalos /// Get the next node in the tree. Return NULL if there are no more nodes. 2932940b44dSPeter Avalos static void * 2942940b44dSPeter Avalos index_tree_next(const index_tree_node *node) 2952940b44dSPeter Avalos { 2962940b44dSPeter Avalos if (node->right != NULL) { 2972940b44dSPeter Avalos node = node->right; 2982940b44dSPeter Avalos while (node->left != NULL) 2992940b44dSPeter Avalos node = node->left; 3002940b44dSPeter Avalos 3012940b44dSPeter Avalos return (void *)(node); 3022940b44dSPeter Avalos } 3032940b44dSPeter Avalos 3042940b44dSPeter Avalos while (node->parent != NULL && node->parent->right == node) 3052940b44dSPeter Avalos node = node->parent; 3062940b44dSPeter Avalos 3072940b44dSPeter Avalos return (void *)(node->parent); 3082940b44dSPeter Avalos } 3092940b44dSPeter Avalos 3102940b44dSPeter Avalos 3112940b44dSPeter Avalos /// Locate a node that contains the given uncompressed offset. It is 3122940b44dSPeter Avalos /// caller's job to check that target is not bigger than the uncompressed 3132940b44dSPeter Avalos /// size of the tree (the last node would be returned in that case still). 3142940b44dSPeter Avalos static void * 3152940b44dSPeter Avalos index_tree_locate(const index_tree *tree, lzma_vli target) 3162940b44dSPeter Avalos { 3172940b44dSPeter Avalos const index_tree_node *result = NULL; 3182940b44dSPeter Avalos const index_tree_node *node = tree->root; 3192940b44dSPeter Avalos 3202940b44dSPeter Avalos assert(tree->leftmost == NULL 3212940b44dSPeter Avalos || tree->leftmost->uncompressed_base == 0); 3222940b44dSPeter Avalos 3232940b44dSPeter Avalos // Consecutive nodes may have the same uncompressed_base. 3242940b44dSPeter Avalos // We must pick the rightmost one. 3252940b44dSPeter Avalos while (node != NULL) { 3262940b44dSPeter Avalos if (node->uncompressed_base > target) { 3272940b44dSPeter Avalos node = node->left; 3282940b44dSPeter Avalos } else { 3292940b44dSPeter Avalos result = node; 3302940b44dSPeter Avalos node = node->right; 3312940b44dSPeter Avalos } 3322940b44dSPeter Avalos } 3332940b44dSPeter Avalos 3342940b44dSPeter Avalos return (void *)(result); 3352940b44dSPeter Avalos } 3362940b44dSPeter Avalos 3372940b44dSPeter Avalos 3382940b44dSPeter Avalos /// Allocate and initialize a new Stream using the given base offsets. 3392940b44dSPeter Avalos static index_stream * 3402940b44dSPeter Avalos index_stream_init(lzma_vli compressed_base, lzma_vli uncompressed_base, 34115ab8c86SJohn Marino uint32_t stream_number, lzma_vli block_number_base, 34215ab8c86SJohn Marino const lzma_allocator *allocator) 3432940b44dSPeter Avalos { 3442940b44dSPeter Avalos index_stream *s = lzma_alloc(sizeof(index_stream), allocator); 3452940b44dSPeter Avalos if (s == NULL) 3462940b44dSPeter Avalos return NULL; 3472940b44dSPeter Avalos 3482940b44dSPeter Avalos s->node.uncompressed_base = uncompressed_base; 3492940b44dSPeter Avalos s->node.compressed_base = compressed_base; 3502940b44dSPeter Avalos s->node.parent = NULL; 3512940b44dSPeter Avalos s->node.left = NULL; 3522940b44dSPeter Avalos s->node.right = NULL; 3532940b44dSPeter Avalos 3542940b44dSPeter Avalos s->number = stream_number; 3552940b44dSPeter Avalos s->block_number_base = block_number_base; 3562940b44dSPeter Avalos 3572940b44dSPeter Avalos index_tree_init(&s->groups); 3582940b44dSPeter Avalos 3592940b44dSPeter Avalos s->record_count = 0; 3602940b44dSPeter Avalos s->index_list_size = 0; 3612940b44dSPeter Avalos s->stream_flags.version = UINT32_MAX; 3622940b44dSPeter Avalos s->stream_padding = 0; 3632940b44dSPeter Avalos 3642940b44dSPeter Avalos return s; 3652940b44dSPeter Avalos } 3662940b44dSPeter Avalos 3672940b44dSPeter Avalos 3682940b44dSPeter Avalos /// Free the memory allocated for a Stream and its Record groups. 3692940b44dSPeter Avalos static void 37015ab8c86SJohn Marino index_stream_end(void *node, const lzma_allocator *allocator) 3712940b44dSPeter Avalos { 3722940b44dSPeter Avalos index_stream *s = node; 37346a2189dSzrj index_tree_end(&s->groups, allocator, &lzma_free); 37446a2189dSzrj lzma_free(s, allocator); 3752940b44dSPeter Avalos return; 3762940b44dSPeter Avalos } 3772940b44dSPeter Avalos 3782940b44dSPeter Avalos 3792940b44dSPeter Avalos static lzma_index * 38015ab8c86SJohn Marino index_init_plain(const lzma_allocator *allocator) 3812940b44dSPeter Avalos { 3822940b44dSPeter Avalos lzma_index *i = lzma_alloc(sizeof(lzma_index), allocator); 3832940b44dSPeter Avalos if (i != NULL) { 3842940b44dSPeter Avalos index_tree_init(&i->streams); 3852940b44dSPeter Avalos i->uncompressed_size = 0; 3862940b44dSPeter Avalos i->total_size = 0; 3872940b44dSPeter Avalos i->record_count = 0; 3882940b44dSPeter Avalos i->index_list_size = 0; 3892940b44dSPeter Avalos i->prealloc = INDEX_GROUP_SIZE; 3902940b44dSPeter Avalos i->checks = 0; 3912940b44dSPeter Avalos } 3922940b44dSPeter Avalos 3932940b44dSPeter Avalos return i; 3942940b44dSPeter Avalos } 3952940b44dSPeter Avalos 3962940b44dSPeter Avalos 3972940b44dSPeter Avalos extern LZMA_API(lzma_index *) 39815ab8c86SJohn Marino lzma_index_init(const lzma_allocator *allocator) 3992940b44dSPeter Avalos { 4002940b44dSPeter Avalos lzma_index *i = index_init_plain(allocator); 401b892b6baSPeter Avalos if (i == NULL) 402b892b6baSPeter Avalos return NULL; 403b892b6baSPeter Avalos 4042940b44dSPeter Avalos index_stream *s = index_stream_init(0, 0, 1, 0, allocator); 405b892b6baSPeter Avalos if (s == NULL) { 4062940b44dSPeter Avalos lzma_free(i, allocator); 407b892b6baSPeter Avalos return NULL; 4082940b44dSPeter Avalos } 4092940b44dSPeter Avalos 4102940b44dSPeter Avalos index_tree_append(&i->streams, &s->node); 4112940b44dSPeter Avalos 4122940b44dSPeter Avalos return i; 4132940b44dSPeter Avalos } 4142940b44dSPeter Avalos 4152940b44dSPeter Avalos 4162940b44dSPeter Avalos extern LZMA_API(void) 41715ab8c86SJohn Marino lzma_index_end(lzma_index *i, const lzma_allocator *allocator) 4182940b44dSPeter Avalos { 4192940b44dSPeter Avalos // NOTE: If you modify this function, check also the bottom 4202940b44dSPeter Avalos // of lzma_index_cat(). 4212940b44dSPeter Avalos if (i != NULL) { 4222940b44dSPeter Avalos index_tree_end(&i->streams, allocator, &index_stream_end); 4232940b44dSPeter Avalos lzma_free(i, allocator); 4242940b44dSPeter Avalos } 4252940b44dSPeter Avalos 4262940b44dSPeter Avalos return; 4272940b44dSPeter Avalos } 4282940b44dSPeter Avalos 4292940b44dSPeter Avalos 4302940b44dSPeter Avalos extern void 4312940b44dSPeter Avalos lzma_index_prealloc(lzma_index *i, lzma_vli records) 4322940b44dSPeter Avalos { 4332940b44dSPeter Avalos if (records > PREALLOC_MAX) 4342940b44dSPeter Avalos records = PREALLOC_MAX; 4352940b44dSPeter Avalos 4362940b44dSPeter Avalos i->prealloc = (size_t)(records); 4372940b44dSPeter Avalos return; 4382940b44dSPeter Avalos } 4392940b44dSPeter Avalos 4402940b44dSPeter Avalos 4412940b44dSPeter Avalos extern LZMA_API(uint64_t) 4422940b44dSPeter Avalos lzma_index_memusage(lzma_vli streams, lzma_vli blocks) 4432940b44dSPeter Avalos { 4442940b44dSPeter Avalos // This calculates an upper bound that is only a little bit 4452940b44dSPeter Avalos // bigger than the exact maximum memory usage with the given 4462940b44dSPeter Avalos // parameters. 4472940b44dSPeter Avalos 4482940b44dSPeter Avalos // Typical malloc() overhead is 2 * sizeof(void *) but we take 4492940b44dSPeter Avalos // a little bit extra just in case. Using LZMA_MEMUSAGE_BASE 4502940b44dSPeter Avalos // instead would give too inaccurate estimate. 4512940b44dSPeter Avalos const size_t alloc_overhead = 4 * sizeof(void *); 4522940b44dSPeter Avalos 4532940b44dSPeter Avalos // Amount of memory needed for each Stream base structures. 4542940b44dSPeter Avalos // We assume that every Stream has at least one Block and 4552940b44dSPeter Avalos // thus at least one group. 4562940b44dSPeter Avalos const size_t stream_base = sizeof(index_stream) 4572940b44dSPeter Avalos + sizeof(index_group) + 2 * alloc_overhead; 4582940b44dSPeter Avalos 4592940b44dSPeter Avalos // Amount of memory needed per group. 4602940b44dSPeter Avalos const size_t group_base = sizeof(index_group) 4612940b44dSPeter Avalos + INDEX_GROUP_SIZE * sizeof(index_record) 4622940b44dSPeter Avalos + alloc_overhead; 4632940b44dSPeter Avalos 4642940b44dSPeter Avalos // Number of groups. There may actually be more, but that overhead 4652940b44dSPeter Avalos // has been taken into account in stream_base already. 4662940b44dSPeter Avalos const lzma_vli groups 4672940b44dSPeter Avalos = (blocks + INDEX_GROUP_SIZE - 1) / INDEX_GROUP_SIZE; 4682940b44dSPeter Avalos 4692940b44dSPeter Avalos // Memory used by index_stream and index_group structures. 4702940b44dSPeter Avalos const uint64_t streams_mem = streams * stream_base; 4712940b44dSPeter Avalos const uint64_t groups_mem = groups * group_base; 4722940b44dSPeter Avalos 4732940b44dSPeter Avalos // Memory used by the base structure. 4742940b44dSPeter Avalos const uint64_t index_base = sizeof(lzma_index) + alloc_overhead; 4752940b44dSPeter Avalos 4762940b44dSPeter Avalos // Validate the arguments and catch integer overflows. 4772940b44dSPeter Avalos // Maximum number of Streams is "only" UINT32_MAX, because 4782940b44dSPeter Avalos // that limit is used by the tree containing the Streams. 4792940b44dSPeter Avalos const uint64_t limit = UINT64_MAX - index_base; 4802940b44dSPeter Avalos if (streams == 0 || streams > UINT32_MAX || blocks > LZMA_VLI_MAX 4812940b44dSPeter Avalos || streams > limit / stream_base 4822940b44dSPeter Avalos || groups > limit / group_base 4832940b44dSPeter Avalos || limit - streams_mem < groups_mem) 4842940b44dSPeter Avalos return UINT64_MAX; 4852940b44dSPeter Avalos 4862940b44dSPeter Avalos return index_base + streams_mem + groups_mem; 4872940b44dSPeter Avalos } 4882940b44dSPeter Avalos 4892940b44dSPeter Avalos 4902940b44dSPeter Avalos extern LZMA_API(uint64_t) 4912940b44dSPeter Avalos lzma_index_memused(const lzma_index *i) 4922940b44dSPeter Avalos { 4932940b44dSPeter Avalos return lzma_index_memusage(i->streams.count, i->record_count); 4942940b44dSPeter Avalos } 4952940b44dSPeter Avalos 4962940b44dSPeter Avalos 4972940b44dSPeter Avalos extern LZMA_API(lzma_vli) 4982940b44dSPeter Avalos lzma_index_block_count(const lzma_index *i) 4992940b44dSPeter Avalos { 5002940b44dSPeter Avalos return i->record_count; 5012940b44dSPeter Avalos } 5022940b44dSPeter Avalos 5032940b44dSPeter Avalos 5042940b44dSPeter Avalos extern LZMA_API(lzma_vli) 5052940b44dSPeter Avalos lzma_index_stream_count(const lzma_index *i) 5062940b44dSPeter Avalos { 5072940b44dSPeter Avalos return i->streams.count; 5082940b44dSPeter Avalos } 5092940b44dSPeter Avalos 5102940b44dSPeter Avalos 5112940b44dSPeter Avalos extern LZMA_API(lzma_vli) 5122940b44dSPeter Avalos lzma_index_size(const lzma_index *i) 5132940b44dSPeter Avalos { 5142940b44dSPeter Avalos return index_size(i->record_count, i->index_list_size); 5152940b44dSPeter Avalos } 5162940b44dSPeter Avalos 5172940b44dSPeter Avalos 5182940b44dSPeter Avalos extern LZMA_API(lzma_vli) 5192940b44dSPeter Avalos lzma_index_total_size(const lzma_index *i) 5202940b44dSPeter Avalos { 5212940b44dSPeter Avalos return i->total_size; 5222940b44dSPeter Avalos } 5232940b44dSPeter Avalos 5242940b44dSPeter Avalos 5252940b44dSPeter Avalos extern LZMA_API(lzma_vli) 5262940b44dSPeter Avalos lzma_index_stream_size(const lzma_index *i) 5272940b44dSPeter Avalos { 5282940b44dSPeter Avalos // Stream Header + Blocks + Index + Stream Footer 5292940b44dSPeter Avalos return LZMA_STREAM_HEADER_SIZE + i->total_size 5302940b44dSPeter Avalos + index_size(i->record_count, i->index_list_size) 5312940b44dSPeter Avalos + LZMA_STREAM_HEADER_SIZE; 5322940b44dSPeter Avalos } 5332940b44dSPeter Avalos 5342940b44dSPeter Avalos 5352940b44dSPeter Avalos static lzma_vli 5362940b44dSPeter Avalos index_file_size(lzma_vli compressed_base, lzma_vli unpadded_sum, 5372940b44dSPeter Avalos lzma_vli record_count, lzma_vli index_list_size, 5382940b44dSPeter Avalos lzma_vli stream_padding) 5392940b44dSPeter Avalos { 5402940b44dSPeter Avalos // Earlier Streams and Stream Paddings + Stream Header 5412940b44dSPeter Avalos // + Blocks + Index + Stream Footer + Stream Padding 5422940b44dSPeter Avalos // 5432940b44dSPeter Avalos // This might go over LZMA_VLI_MAX due to too big unpadded_sum 5442940b44dSPeter Avalos // when this function is used in lzma_index_append(). 5452940b44dSPeter Avalos lzma_vli file_size = compressed_base + 2 * LZMA_STREAM_HEADER_SIZE 5462940b44dSPeter Avalos + stream_padding + vli_ceil4(unpadded_sum); 5472940b44dSPeter Avalos if (file_size > LZMA_VLI_MAX) 5482940b44dSPeter Avalos return LZMA_VLI_UNKNOWN; 5492940b44dSPeter Avalos 5502940b44dSPeter Avalos // The same applies here. 5512940b44dSPeter Avalos file_size += index_size(record_count, index_list_size); 5522940b44dSPeter Avalos if (file_size > LZMA_VLI_MAX) 5532940b44dSPeter Avalos return LZMA_VLI_UNKNOWN; 5542940b44dSPeter Avalos 5552940b44dSPeter Avalos return file_size; 5562940b44dSPeter Avalos } 5572940b44dSPeter Avalos 5582940b44dSPeter Avalos 5592940b44dSPeter Avalos extern LZMA_API(lzma_vli) 5602940b44dSPeter Avalos lzma_index_file_size(const lzma_index *i) 5612940b44dSPeter Avalos { 5622940b44dSPeter Avalos const index_stream *s = (const index_stream *)(i->streams.rightmost); 5632940b44dSPeter Avalos const index_group *g = (const index_group *)(s->groups.rightmost); 5642940b44dSPeter Avalos return index_file_size(s->node.compressed_base, 5652940b44dSPeter Avalos g == NULL ? 0 : g->records[g->last].unpadded_sum, 5662940b44dSPeter Avalos s->record_count, s->index_list_size, 5672940b44dSPeter Avalos s->stream_padding); 5682940b44dSPeter Avalos } 5692940b44dSPeter Avalos 5702940b44dSPeter Avalos 5712940b44dSPeter Avalos extern LZMA_API(lzma_vli) 5722940b44dSPeter Avalos lzma_index_uncompressed_size(const lzma_index *i) 5732940b44dSPeter Avalos { 5742940b44dSPeter Avalos return i->uncompressed_size; 5752940b44dSPeter Avalos } 5762940b44dSPeter Avalos 5772940b44dSPeter Avalos 5782940b44dSPeter Avalos extern LZMA_API(uint32_t) 5792940b44dSPeter Avalos lzma_index_checks(const lzma_index *i) 5802940b44dSPeter Avalos { 5812940b44dSPeter Avalos uint32_t checks = i->checks; 5822940b44dSPeter Avalos 5832940b44dSPeter Avalos // Get the type of the Check of the last Stream too. 5842940b44dSPeter Avalos const index_stream *s = (const index_stream *)(i->streams.rightmost); 5852940b44dSPeter Avalos if (s->stream_flags.version != UINT32_MAX) 5862940b44dSPeter Avalos checks |= UINT32_C(1) << s->stream_flags.check; 5872940b44dSPeter Avalos 5882940b44dSPeter Avalos return checks; 5892940b44dSPeter Avalos } 5902940b44dSPeter Avalos 5912940b44dSPeter Avalos 5922940b44dSPeter Avalos extern uint32_t 5932940b44dSPeter Avalos lzma_index_padding_size(const lzma_index *i) 5942940b44dSPeter Avalos { 5952940b44dSPeter Avalos return (LZMA_VLI_C(4) - index_size_unpadded( 5962940b44dSPeter Avalos i->record_count, i->index_list_size)) & 3; 5972940b44dSPeter Avalos } 5982940b44dSPeter Avalos 5992940b44dSPeter Avalos 6002940b44dSPeter Avalos extern LZMA_API(lzma_ret) 6012940b44dSPeter Avalos lzma_index_stream_flags(lzma_index *i, const lzma_stream_flags *stream_flags) 6022940b44dSPeter Avalos { 6032940b44dSPeter Avalos if (i == NULL || stream_flags == NULL) 6042940b44dSPeter Avalos return LZMA_PROG_ERROR; 6052940b44dSPeter Avalos 6062940b44dSPeter Avalos // Validate the Stream Flags. 6072940b44dSPeter Avalos return_if_error(lzma_stream_flags_compare( 6082940b44dSPeter Avalos stream_flags, stream_flags)); 6092940b44dSPeter Avalos 6102940b44dSPeter Avalos index_stream *s = (index_stream *)(i->streams.rightmost); 6112940b44dSPeter Avalos s->stream_flags = *stream_flags; 6122940b44dSPeter Avalos 6132940b44dSPeter Avalos return LZMA_OK; 6142940b44dSPeter Avalos } 6152940b44dSPeter Avalos 6162940b44dSPeter Avalos 6172940b44dSPeter Avalos extern LZMA_API(lzma_ret) 6182940b44dSPeter Avalos lzma_index_stream_padding(lzma_index *i, lzma_vli stream_padding) 6192940b44dSPeter Avalos { 6202940b44dSPeter Avalos if (i == NULL || stream_padding > LZMA_VLI_MAX 6212940b44dSPeter Avalos || (stream_padding & 3) != 0) 6222940b44dSPeter Avalos return LZMA_PROG_ERROR; 6232940b44dSPeter Avalos 6242940b44dSPeter Avalos index_stream *s = (index_stream *)(i->streams.rightmost); 6252940b44dSPeter Avalos 6262940b44dSPeter Avalos // Check that the new value won't make the file grow too big. 6272940b44dSPeter Avalos const lzma_vli old_stream_padding = s->stream_padding; 6282940b44dSPeter Avalos s->stream_padding = 0; 6292940b44dSPeter Avalos if (lzma_index_file_size(i) + stream_padding > LZMA_VLI_MAX) { 6302940b44dSPeter Avalos s->stream_padding = old_stream_padding; 6312940b44dSPeter Avalos return LZMA_DATA_ERROR; 6322940b44dSPeter Avalos } 6332940b44dSPeter Avalos 6342940b44dSPeter Avalos s->stream_padding = stream_padding; 6352940b44dSPeter Avalos return LZMA_OK; 6362940b44dSPeter Avalos } 6372940b44dSPeter Avalos 6382940b44dSPeter Avalos 6392940b44dSPeter Avalos extern LZMA_API(lzma_ret) 64015ab8c86SJohn Marino lzma_index_append(lzma_index *i, const lzma_allocator *allocator, 6412940b44dSPeter Avalos lzma_vli unpadded_size, lzma_vli uncompressed_size) 6422940b44dSPeter Avalos { 6432940b44dSPeter Avalos // Validate. 6442940b44dSPeter Avalos if (i == NULL || unpadded_size < UNPADDED_SIZE_MIN 6452940b44dSPeter Avalos || unpadded_size > UNPADDED_SIZE_MAX 6462940b44dSPeter Avalos || uncompressed_size > LZMA_VLI_MAX) 6472940b44dSPeter Avalos return LZMA_PROG_ERROR; 6482940b44dSPeter Avalos 6492940b44dSPeter Avalos index_stream *s = (index_stream *)(i->streams.rightmost); 6502940b44dSPeter Avalos index_group *g = (index_group *)(s->groups.rightmost); 6512940b44dSPeter Avalos 6522940b44dSPeter Avalos const lzma_vli compressed_base = g == NULL ? 0 6532940b44dSPeter Avalos : vli_ceil4(g->records[g->last].unpadded_sum); 6542940b44dSPeter Avalos const lzma_vli uncompressed_base = g == NULL ? 0 6552940b44dSPeter Avalos : g->records[g->last].uncompressed_sum; 6562940b44dSPeter Avalos const uint32_t index_list_size_add = lzma_vli_size(unpadded_size) 6572940b44dSPeter Avalos + lzma_vli_size(uncompressed_size); 6582940b44dSPeter Avalos 6592940b44dSPeter Avalos // Check that the file size will stay within limits. 6602940b44dSPeter Avalos if (index_file_size(s->node.compressed_base, 6612940b44dSPeter Avalos compressed_base + unpadded_size, s->record_count + 1, 6622940b44dSPeter Avalos s->index_list_size + index_list_size_add, 6632940b44dSPeter Avalos s->stream_padding) == LZMA_VLI_UNKNOWN) 6642940b44dSPeter Avalos return LZMA_DATA_ERROR; 6652940b44dSPeter Avalos 6662940b44dSPeter Avalos // The size of the Index field must not exceed the maximum value 6672940b44dSPeter Avalos // that can be stored in the Backward Size field. 6682940b44dSPeter Avalos if (index_size(i->record_count + 1, 6692940b44dSPeter Avalos i->index_list_size + index_list_size_add) 6702940b44dSPeter Avalos > LZMA_BACKWARD_SIZE_MAX) 6712940b44dSPeter Avalos return LZMA_DATA_ERROR; 6722940b44dSPeter Avalos 6732940b44dSPeter Avalos if (g != NULL && g->last + 1 < g->allocated) { 6742940b44dSPeter Avalos // There is space in the last group at least for one Record. 6752940b44dSPeter Avalos ++g->last; 6762940b44dSPeter Avalos } else { 6772940b44dSPeter Avalos // We need to allocate a new group. 6782940b44dSPeter Avalos g = lzma_alloc(sizeof(index_group) 6792940b44dSPeter Avalos + i->prealloc * sizeof(index_record), 6802940b44dSPeter Avalos allocator); 6812940b44dSPeter Avalos if (g == NULL) 6822940b44dSPeter Avalos return LZMA_MEM_ERROR; 6832940b44dSPeter Avalos 6842940b44dSPeter Avalos g->last = 0; 6852940b44dSPeter Avalos g->allocated = i->prealloc; 6862940b44dSPeter Avalos 6872940b44dSPeter Avalos // Reset prealloc so that if the application happens to 6882940b44dSPeter Avalos // add new Records, the allocation size will be sane. 6892940b44dSPeter Avalos i->prealloc = INDEX_GROUP_SIZE; 6902940b44dSPeter Avalos 6912940b44dSPeter Avalos // Set the start offsets of this group. 6922940b44dSPeter Avalos g->node.uncompressed_base = uncompressed_base; 6932940b44dSPeter Avalos g->node.compressed_base = compressed_base; 6942940b44dSPeter Avalos g->number_base = s->record_count + 1; 6952940b44dSPeter Avalos 6962940b44dSPeter Avalos // Add the new group to the Stream. 6972940b44dSPeter Avalos index_tree_append(&s->groups, &g->node); 6982940b44dSPeter Avalos } 6992940b44dSPeter Avalos 7002940b44dSPeter Avalos // Add the new Record to the group. 7012940b44dSPeter Avalos g->records[g->last].uncompressed_sum 7022940b44dSPeter Avalos = uncompressed_base + uncompressed_size; 7032940b44dSPeter Avalos g->records[g->last].unpadded_sum 7042940b44dSPeter Avalos = compressed_base + unpadded_size; 7052940b44dSPeter Avalos 7062940b44dSPeter Avalos // Update the totals. 7072940b44dSPeter Avalos ++s->record_count; 7082940b44dSPeter Avalos s->index_list_size += index_list_size_add; 7092940b44dSPeter Avalos 7102940b44dSPeter Avalos i->total_size += vli_ceil4(unpadded_size); 7112940b44dSPeter Avalos i->uncompressed_size += uncompressed_size; 7122940b44dSPeter Avalos ++i->record_count; 7132940b44dSPeter Avalos i->index_list_size += index_list_size_add; 7142940b44dSPeter Avalos 7152940b44dSPeter Avalos return LZMA_OK; 7162940b44dSPeter Avalos } 7172940b44dSPeter Avalos 7182940b44dSPeter Avalos 7192940b44dSPeter Avalos /// Structure to pass info to index_cat_helper() 7202940b44dSPeter Avalos typedef struct { 7212940b44dSPeter Avalos /// Uncompressed size of the destination 7222940b44dSPeter Avalos lzma_vli uncompressed_size; 7232940b44dSPeter Avalos 7242940b44dSPeter Avalos /// Compressed file size of the destination 7252940b44dSPeter Avalos lzma_vli file_size; 7262940b44dSPeter Avalos 7272940b44dSPeter Avalos /// Same as above but for Block numbers 7282940b44dSPeter Avalos lzma_vli block_number_add; 7292940b44dSPeter Avalos 7302940b44dSPeter Avalos /// Number of Streams that were in the destination index before we 7312940b44dSPeter Avalos /// started appending new Streams from the source index. This is 7322940b44dSPeter Avalos /// used to fix the Stream numbering. 7332940b44dSPeter Avalos uint32_t stream_number_add; 7342940b44dSPeter Avalos 7352940b44dSPeter Avalos /// Destination index' Stream tree 7362940b44dSPeter Avalos index_tree *streams; 7372940b44dSPeter Avalos 7382940b44dSPeter Avalos } index_cat_info; 7392940b44dSPeter Avalos 7402940b44dSPeter Avalos 7412940b44dSPeter Avalos /// Add the Stream nodes from the source index to dest using recursion. 7422940b44dSPeter Avalos /// Simplest iterative traversal of the source tree wouldn't work, because 7432940b44dSPeter Avalos /// we update the pointers in nodes when moving them to the destination tree. 7442940b44dSPeter Avalos static void 7452940b44dSPeter Avalos index_cat_helper(const index_cat_info *info, index_stream *this) 7462940b44dSPeter Avalos { 7472940b44dSPeter Avalos index_stream *left = (index_stream *)(this->node.left); 7482940b44dSPeter Avalos index_stream *right = (index_stream *)(this->node.right); 7492940b44dSPeter Avalos 7502940b44dSPeter Avalos if (left != NULL) 7512940b44dSPeter Avalos index_cat_helper(info, left); 7522940b44dSPeter Avalos 7532940b44dSPeter Avalos this->node.uncompressed_base += info->uncompressed_size; 7542940b44dSPeter Avalos this->node.compressed_base += info->file_size; 7552940b44dSPeter Avalos this->number += info->stream_number_add; 7562940b44dSPeter Avalos this->block_number_base += info->block_number_add; 7572940b44dSPeter Avalos index_tree_append(info->streams, &this->node); 7582940b44dSPeter Avalos 7592940b44dSPeter Avalos if (right != NULL) 7602940b44dSPeter Avalos index_cat_helper(info, right); 7612940b44dSPeter Avalos 7622940b44dSPeter Avalos return; 7632940b44dSPeter Avalos } 7642940b44dSPeter Avalos 7652940b44dSPeter Avalos 7662940b44dSPeter Avalos extern LZMA_API(lzma_ret) 7672940b44dSPeter Avalos lzma_index_cat(lzma_index *restrict dest, lzma_index *restrict src, 76815ab8c86SJohn Marino const lzma_allocator *allocator) 7692940b44dSPeter Avalos { 7702940b44dSPeter Avalos const lzma_vli dest_file_size = lzma_index_file_size(dest); 7712940b44dSPeter Avalos 7722940b44dSPeter Avalos // Check that we don't exceed the file size limits. 7732940b44dSPeter Avalos if (dest_file_size + lzma_index_file_size(src) > LZMA_VLI_MAX 7742940b44dSPeter Avalos || dest->uncompressed_size + src->uncompressed_size 7752940b44dSPeter Avalos > LZMA_VLI_MAX) 7762940b44dSPeter Avalos return LZMA_DATA_ERROR; 7772940b44dSPeter Avalos 7782940b44dSPeter Avalos // Check that the encoded size of the combined lzma_indexes stays 7792940b44dSPeter Avalos // within limits. In theory, this should be done only if we know 7802940b44dSPeter Avalos // that the user plans to actually combine the Streams and thus 7812940b44dSPeter Avalos // construct a single Index (probably rare). However, exceeding 7822940b44dSPeter Avalos // this limit is quite theoretical, so we do this check always 7832940b44dSPeter Avalos // to simplify things elsewhere. 7842940b44dSPeter Avalos { 7852940b44dSPeter Avalos const lzma_vli dest_size = index_size_unpadded( 7862940b44dSPeter Avalos dest->record_count, dest->index_list_size); 7872940b44dSPeter Avalos const lzma_vli src_size = index_size_unpadded( 7882940b44dSPeter Avalos src->record_count, src->index_list_size); 7892940b44dSPeter Avalos if (vli_ceil4(dest_size + src_size) > LZMA_BACKWARD_SIZE_MAX) 7902940b44dSPeter Avalos return LZMA_DATA_ERROR; 7912940b44dSPeter Avalos } 7922940b44dSPeter Avalos 7932940b44dSPeter Avalos // Optimize the last group to minimize memory usage. Allocation has 7942940b44dSPeter Avalos // to be done before modifying dest or src. 7952940b44dSPeter Avalos { 7962940b44dSPeter Avalos index_stream *s = (index_stream *)(dest->streams.rightmost); 7972940b44dSPeter Avalos index_group *g = (index_group *)(s->groups.rightmost); 7982940b44dSPeter Avalos if (g != NULL && g->last + 1 < g->allocated) { 7992940b44dSPeter Avalos assert(g->node.left == NULL); 8002940b44dSPeter Avalos assert(g->node.right == NULL); 8012940b44dSPeter Avalos 8022940b44dSPeter Avalos index_group *newg = lzma_alloc(sizeof(index_group) 8032940b44dSPeter Avalos + (g->last + 1) 8042940b44dSPeter Avalos * sizeof(index_record), 8052940b44dSPeter Avalos allocator); 8062940b44dSPeter Avalos if (newg == NULL) 8072940b44dSPeter Avalos return LZMA_MEM_ERROR; 8082940b44dSPeter Avalos 8092940b44dSPeter Avalos newg->node = g->node; 8102940b44dSPeter Avalos newg->allocated = g->last + 1; 8112940b44dSPeter Avalos newg->last = g->last; 8122940b44dSPeter Avalos newg->number_base = g->number_base; 8132940b44dSPeter Avalos 8142940b44dSPeter Avalos memcpy(newg->records, g->records, newg->allocated 8152940b44dSPeter Avalos * sizeof(index_record)); 8162940b44dSPeter Avalos 8172940b44dSPeter Avalos if (g->node.parent != NULL) { 8182940b44dSPeter Avalos assert(g->node.parent->right == &g->node); 8192940b44dSPeter Avalos g->node.parent->right = &newg->node; 8202940b44dSPeter Avalos } 8212940b44dSPeter Avalos 8222940b44dSPeter Avalos if (s->groups.leftmost == &g->node) { 8232940b44dSPeter Avalos assert(s->groups.root == &g->node); 8242940b44dSPeter Avalos s->groups.leftmost = &newg->node; 8252940b44dSPeter Avalos s->groups.root = &newg->node; 8262940b44dSPeter Avalos } 8272940b44dSPeter Avalos 828*e151908bSDaniel Fojt assert(s->groups.rightmost == &g->node); 8292940b44dSPeter Avalos s->groups.rightmost = &newg->node; 8302940b44dSPeter Avalos 8312940b44dSPeter Avalos lzma_free(g, allocator); 83246a2189dSzrj 83346a2189dSzrj // NOTE: newg isn't leaked here because 83446a2189dSzrj // newg == (void *)&newg->node. 8352940b44dSPeter Avalos } 8362940b44dSPeter Avalos } 8372940b44dSPeter Avalos 8382940b44dSPeter Avalos // Add all the Streams from src to dest. Update the base offsets 8392940b44dSPeter Avalos // of each Stream from src. 8402940b44dSPeter Avalos const index_cat_info info = { 8412940b44dSPeter Avalos .uncompressed_size = dest->uncompressed_size, 8422940b44dSPeter Avalos .file_size = dest_file_size, 8432940b44dSPeter Avalos .stream_number_add = dest->streams.count, 8442940b44dSPeter Avalos .block_number_add = dest->record_count, 8452940b44dSPeter Avalos .streams = &dest->streams, 8462940b44dSPeter Avalos }; 8472940b44dSPeter Avalos index_cat_helper(&info, (index_stream *)(src->streams.root)); 8482940b44dSPeter Avalos 8492940b44dSPeter Avalos // Update info about all the combined Streams. 8502940b44dSPeter Avalos dest->uncompressed_size += src->uncompressed_size; 8512940b44dSPeter Avalos dest->total_size += src->total_size; 8522940b44dSPeter Avalos dest->record_count += src->record_count; 8532940b44dSPeter Avalos dest->index_list_size += src->index_list_size; 8542940b44dSPeter Avalos dest->checks = lzma_index_checks(dest) | src->checks; 8552940b44dSPeter Avalos 8562940b44dSPeter Avalos // There's nothing else left in src than the base structure. 8572940b44dSPeter Avalos lzma_free(src, allocator); 8582940b44dSPeter Avalos 8592940b44dSPeter Avalos return LZMA_OK; 8602940b44dSPeter Avalos } 8612940b44dSPeter Avalos 8622940b44dSPeter Avalos 8632940b44dSPeter Avalos /// Duplicate an index_stream. 8642940b44dSPeter Avalos static index_stream * 86515ab8c86SJohn Marino index_dup_stream(const index_stream *src, const lzma_allocator *allocator) 8662940b44dSPeter Avalos { 8672940b44dSPeter Avalos // Catch a somewhat theoretical integer overflow. 8682940b44dSPeter Avalos if (src->record_count > PREALLOC_MAX) 8692940b44dSPeter Avalos return NULL; 8702940b44dSPeter Avalos 8712940b44dSPeter Avalos // Allocate and initialize a new Stream. 8722940b44dSPeter Avalos index_stream *dest = index_stream_init(src->node.compressed_base, 8732940b44dSPeter Avalos src->node.uncompressed_base, src->number, 8742940b44dSPeter Avalos src->block_number_base, allocator); 87546a2189dSzrj if (dest == NULL) 87646a2189dSzrj return NULL; 8772940b44dSPeter Avalos 8782940b44dSPeter Avalos // Copy the overall information. 8792940b44dSPeter Avalos dest->record_count = src->record_count; 8802940b44dSPeter Avalos dest->index_list_size = src->index_list_size; 8812940b44dSPeter Avalos dest->stream_flags = src->stream_flags; 8822940b44dSPeter Avalos dest->stream_padding = src->stream_padding; 8832940b44dSPeter Avalos 88446a2189dSzrj // Return if there are no groups to duplicate. 88546a2189dSzrj if (src->groups.leftmost == NULL) 88646a2189dSzrj return dest; 88746a2189dSzrj 8882940b44dSPeter Avalos // Allocate memory for the Records. We put all the Records into 8892940b44dSPeter Avalos // a single group. It's simplest and also tends to make 8902940b44dSPeter Avalos // lzma_index_locate() a little bit faster with very big Indexes. 8912940b44dSPeter Avalos index_group *destg = lzma_alloc(sizeof(index_group) 8922940b44dSPeter Avalos + src->record_count * sizeof(index_record), 8932940b44dSPeter Avalos allocator); 8942940b44dSPeter Avalos if (destg == NULL) { 8952940b44dSPeter Avalos index_stream_end(dest, allocator); 8962940b44dSPeter Avalos return NULL; 8972940b44dSPeter Avalos } 8982940b44dSPeter Avalos 8992940b44dSPeter Avalos // Initialize destg. 9002940b44dSPeter Avalos destg->node.uncompressed_base = 0; 9012940b44dSPeter Avalos destg->node.compressed_base = 0; 9022940b44dSPeter Avalos destg->number_base = 1; 9032940b44dSPeter Avalos destg->allocated = src->record_count; 9042940b44dSPeter Avalos destg->last = src->record_count - 1; 9052940b44dSPeter Avalos 9062940b44dSPeter Avalos // Go through all the groups in src and copy the Records into destg. 9072940b44dSPeter Avalos const index_group *srcg = (const index_group *)(src->groups.leftmost); 9082940b44dSPeter Avalos size_t i = 0; 9092940b44dSPeter Avalos do { 9102940b44dSPeter Avalos memcpy(destg->records + i, srcg->records, 9112940b44dSPeter Avalos (srcg->last + 1) * sizeof(index_record)); 9122940b44dSPeter Avalos i += srcg->last + 1; 9132940b44dSPeter Avalos srcg = index_tree_next(&srcg->node); 9142940b44dSPeter Avalos } while (srcg != NULL); 9152940b44dSPeter Avalos 9162940b44dSPeter Avalos assert(i == destg->allocated); 9172940b44dSPeter Avalos 9182940b44dSPeter Avalos // Add the group to the new Stream. 9192940b44dSPeter Avalos index_tree_append(&dest->groups, &destg->node); 9202940b44dSPeter Avalos 9212940b44dSPeter Avalos return dest; 9222940b44dSPeter Avalos } 9232940b44dSPeter Avalos 9242940b44dSPeter Avalos 9252940b44dSPeter Avalos extern LZMA_API(lzma_index *) 92615ab8c86SJohn Marino lzma_index_dup(const lzma_index *src, const lzma_allocator *allocator) 9272940b44dSPeter Avalos { 9282940b44dSPeter Avalos // Allocate the base structure (no initial Stream). 9292940b44dSPeter Avalos lzma_index *dest = index_init_plain(allocator); 9302940b44dSPeter Avalos if (dest == NULL) 9312940b44dSPeter Avalos return NULL; 9322940b44dSPeter Avalos 9332940b44dSPeter Avalos // Copy the totals. 9342940b44dSPeter Avalos dest->uncompressed_size = src->uncompressed_size; 9352940b44dSPeter Avalos dest->total_size = src->total_size; 9362940b44dSPeter Avalos dest->record_count = src->record_count; 9372940b44dSPeter Avalos dest->index_list_size = src->index_list_size; 9382940b44dSPeter Avalos 9392940b44dSPeter Avalos // Copy the Streams and the groups in them. 9402940b44dSPeter Avalos const index_stream *srcstream 9412940b44dSPeter Avalos = (const index_stream *)(src->streams.leftmost); 9422940b44dSPeter Avalos do { 9432940b44dSPeter Avalos index_stream *deststream = index_dup_stream( 9442940b44dSPeter Avalos srcstream, allocator); 9452940b44dSPeter Avalos if (deststream == NULL) { 9462940b44dSPeter Avalos lzma_index_end(dest, allocator); 9472940b44dSPeter Avalos return NULL; 9482940b44dSPeter Avalos } 9492940b44dSPeter Avalos 9502940b44dSPeter Avalos index_tree_append(&dest->streams, &deststream->node); 9512940b44dSPeter Avalos 9522940b44dSPeter Avalos srcstream = index_tree_next(&srcstream->node); 9532940b44dSPeter Avalos } while (srcstream != NULL); 9542940b44dSPeter Avalos 9552940b44dSPeter Avalos return dest; 9562940b44dSPeter Avalos } 9572940b44dSPeter Avalos 9582940b44dSPeter Avalos 9592940b44dSPeter Avalos /// Indexing for lzma_index_iter.internal[] 9602940b44dSPeter Avalos enum { 9612940b44dSPeter Avalos ITER_INDEX, 9622940b44dSPeter Avalos ITER_STREAM, 9632940b44dSPeter Avalos ITER_GROUP, 9642940b44dSPeter Avalos ITER_RECORD, 9652940b44dSPeter Avalos ITER_METHOD, 9662940b44dSPeter Avalos }; 9672940b44dSPeter Avalos 9682940b44dSPeter Avalos 9692940b44dSPeter Avalos /// Values for lzma_index_iter.internal[ITER_METHOD].s 9702940b44dSPeter Avalos enum { 9712940b44dSPeter Avalos ITER_METHOD_NORMAL, 9722940b44dSPeter Avalos ITER_METHOD_NEXT, 9732940b44dSPeter Avalos ITER_METHOD_LEFTMOST, 9742940b44dSPeter Avalos }; 9752940b44dSPeter Avalos 9762940b44dSPeter Avalos 9772940b44dSPeter Avalos static void 9782940b44dSPeter Avalos iter_set_info(lzma_index_iter *iter) 9792940b44dSPeter Avalos { 9802940b44dSPeter Avalos const lzma_index *i = iter->internal[ITER_INDEX].p; 9812940b44dSPeter Avalos const index_stream *stream = iter->internal[ITER_STREAM].p; 9822940b44dSPeter Avalos const index_group *group = iter->internal[ITER_GROUP].p; 9832940b44dSPeter Avalos const size_t record = iter->internal[ITER_RECORD].s; 9842940b44dSPeter Avalos 9852940b44dSPeter Avalos // lzma_index_iter.internal must not contain a pointer to the last 9862940b44dSPeter Avalos // group in the index, because that may be reallocated by 9872940b44dSPeter Avalos // lzma_index_cat(). 9882940b44dSPeter Avalos if (group == NULL) { 9892940b44dSPeter Avalos // There are no groups. 9902940b44dSPeter Avalos assert(stream->groups.root == NULL); 9912940b44dSPeter Avalos iter->internal[ITER_METHOD].s = ITER_METHOD_LEFTMOST; 9922940b44dSPeter Avalos 9932940b44dSPeter Avalos } else if (i->streams.rightmost != &stream->node 9942940b44dSPeter Avalos || stream->groups.rightmost != &group->node) { 9952940b44dSPeter Avalos // The group is not not the last group in the index. 9962940b44dSPeter Avalos iter->internal[ITER_METHOD].s = ITER_METHOD_NORMAL; 9972940b44dSPeter Avalos 9982940b44dSPeter Avalos } else if (stream->groups.leftmost != &group->node) { 9992940b44dSPeter Avalos // The group isn't the only group in the Stream, thus we 10002940b44dSPeter Avalos // know that it must have a parent group i.e. it's not 10012940b44dSPeter Avalos // the root node. 10022940b44dSPeter Avalos assert(stream->groups.root != &group->node); 10032940b44dSPeter Avalos assert(group->node.parent->right == &group->node); 10042940b44dSPeter Avalos iter->internal[ITER_METHOD].s = ITER_METHOD_NEXT; 10052940b44dSPeter Avalos iter->internal[ITER_GROUP].p = group->node.parent; 10062940b44dSPeter Avalos 10072940b44dSPeter Avalos } else { 10082940b44dSPeter Avalos // The Stream has only one group. 10092940b44dSPeter Avalos assert(stream->groups.root == &group->node); 10102940b44dSPeter Avalos assert(group->node.parent == NULL); 10112940b44dSPeter Avalos iter->internal[ITER_METHOD].s = ITER_METHOD_LEFTMOST; 10122940b44dSPeter Avalos iter->internal[ITER_GROUP].p = NULL; 10132940b44dSPeter Avalos } 10142940b44dSPeter Avalos 101515ab8c86SJohn Marino // NOTE: lzma_index_iter.stream.number is lzma_vli but we use uint32_t 101615ab8c86SJohn Marino // internally. 10172940b44dSPeter Avalos iter->stream.number = stream->number; 10182940b44dSPeter Avalos iter->stream.block_count = stream->record_count; 10192940b44dSPeter Avalos iter->stream.compressed_offset = stream->node.compressed_base; 10202940b44dSPeter Avalos iter->stream.uncompressed_offset = stream->node.uncompressed_base; 10212940b44dSPeter Avalos 10222940b44dSPeter Avalos // iter->stream.flags will be NULL if the Stream Flags haven't been 10232940b44dSPeter Avalos // set with lzma_index_stream_flags(). 10242940b44dSPeter Avalos iter->stream.flags = stream->stream_flags.version == UINT32_MAX 10252940b44dSPeter Avalos ? NULL : &stream->stream_flags; 10262940b44dSPeter Avalos iter->stream.padding = stream->stream_padding; 10272940b44dSPeter Avalos 10282940b44dSPeter Avalos if (stream->groups.rightmost == NULL) { 10292940b44dSPeter Avalos // Stream has no Blocks. 10302940b44dSPeter Avalos iter->stream.compressed_size = index_size(0, 0) 10312940b44dSPeter Avalos + 2 * LZMA_STREAM_HEADER_SIZE; 10322940b44dSPeter Avalos iter->stream.uncompressed_size = 0; 10332940b44dSPeter Avalos } else { 10342940b44dSPeter Avalos const index_group *g = (const index_group *)( 10352940b44dSPeter Avalos stream->groups.rightmost); 10362940b44dSPeter Avalos 10372940b44dSPeter Avalos // Stream Header + Stream Footer + Index + Blocks 10382940b44dSPeter Avalos iter->stream.compressed_size = 2 * LZMA_STREAM_HEADER_SIZE 10392940b44dSPeter Avalos + index_size(stream->record_count, 10402940b44dSPeter Avalos stream->index_list_size) 10412940b44dSPeter Avalos + vli_ceil4(g->records[g->last].unpadded_sum); 10422940b44dSPeter Avalos iter->stream.uncompressed_size 10432940b44dSPeter Avalos = g->records[g->last].uncompressed_sum; 10442940b44dSPeter Avalos } 10452940b44dSPeter Avalos 10462940b44dSPeter Avalos if (group != NULL) { 10472940b44dSPeter Avalos iter->block.number_in_stream = group->number_base + record; 10482940b44dSPeter Avalos iter->block.number_in_file = iter->block.number_in_stream 10492940b44dSPeter Avalos + stream->block_number_base; 10502940b44dSPeter Avalos 10512940b44dSPeter Avalos iter->block.compressed_stream_offset 10522940b44dSPeter Avalos = record == 0 ? group->node.compressed_base 10532940b44dSPeter Avalos : vli_ceil4(group->records[ 10542940b44dSPeter Avalos record - 1].unpadded_sum); 10552940b44dSPeter Avalos iter->block.uncompressed_stream_offset 10562940b44dSPeter Avalos = record == 0 ? group->node.uncompressed_base 10572940b44dSPeter Avalos : group->records[record - 1].uncompressed_sum; 10582940b44dSPeter Avalos 10592940b44dSPeter Avalos iter->block.uncompressed_size 10602940b44dSPeter Avalos = group->records[record].uncompressed_sum 10612940b44dSPeter Avalos - iter->block.uncompressed_stream_offset; 10622940b44dSPeter Avalos iter->block.unpadded_size 10632940b44dSPeter Avalos = group->records[record].unpadded_sum 10642940b44dSPeter Avalos - iter->block.compressed_stream_offset; 10652940b44dSPeter Avalos iter->block.total_size = vli_ceil4(iter->block.unpadded_size); 10662940b44dSPeter Avalos 10672940b44dSPeter Avalos iter->block.compressed_stream_offset 10682940b44dSPeter Avalos += LZMA_STREAM_HEADER_SIZE; 10692940b44dSPeter Avalos 10702940b44dSPeter Avalos iter->block.compressed_file_offset 10712940b44dSPeter Avalos = iter->block.compressed_stream_offset 10722940b44dSPeter Avalos + iter->stream.compressed_offset; 10732940b44dSPeter Avalos iter->block.uncompressed_file_offset 10742940b44dSPeter Avalos = iter->block.uncompressed_stream_offset 10752940b44dSPeter Avalos + iter->stream.uncompressed_offset; 10762940b44dSPeter Avalos } 10772940b44dSPeter Avalos 10782940b44dSPeter Avalos return; 10792940b44dSPeter Avalos } 10802940b44dSPeter Avalos 10812940b44dSPeter Avalos 10822940b44dSPeter Avalos extern LZMA_API(void) 10832940b44dSPeter Avalos lzma_index_iter_init(lzma_index_iter *iter, const lzma_index *i) 10842940b44dSPeter Avalos { 10852940b44dSPeter Avalos iter->internal[ITER_INDEX].p = i; 10862940b44dSPeter Avalos lzma_index_iter_rewind(iter); 10872940b44dSPeter Avalos return; 10882940b44dSPeter Avalos } 10892940b44dSPeter Avalos 10902940b44dSPeter Avalos 10912940b44dSPeter Avalos extern LZMA_API(void) 10922940b44dSPeter Avalos lzma_index_iter_rewind(lzma_index_iter *iter) 10932940b44dSPeter Avalos { 10942940b44dSPeter Avalos iter->internal[ITER_STREAM].p = NULL; 10952940b44dSPeter Avalos iter->internal[ITER_GROUP].p = NULL; 10962940b44dSPeter Avalos iter->internal[ITER_RECORD].s = 0; 10972940b44dSPeter Avalos iter->internal[ITER_METHOD].s = ITER_METHOD_NORMAL; 10982940b44dSPeter Avalos return; 10992940b44dSPeter Avalos } 11002940b44dSPeter Avalos 11012940b44dSPeter Avalos 11022940b44dSPeter Avalos extern LZMA_API(lzma_bool) 11032940b44dSPeter Avalos lzma_index_iter_next(lzma_index_iter *iter, lzma_index_iter_mode mode) 11042940b44dSPeter Avalos { 11052940b44dSPeter Avalos // Catch unsupported mode values. 11062940b44dSPeter Avalos if ((unsigned int)(mode) > LZMA_INDEX_ITER_NONEMPTY_BLOCK) 11072940b44dSPeter Avalos return true; 11082940b44dSPeter Avalos 11092940b44dSPeter Avalos const lzma_index *i = iter->internal[ITER_INDEX].p; 11102940b44dSPeter Avalos const index_stream *stream = iter->internal[ITER_STREAM].p; 11112940b44dSPeter Avalos const index_group *group = NULL; 11122940b44dSPeter Avalos size_t record = iter->internal[ITER_RECORD].s; 11132940b44dSPeter Avalos 11142940b44dSPeter Avalos // If we are being asked for the next Stream, leave group to NULL 11152940b44dSPeter Avalos // so that the rest of the this function thinks that this Stream 11162940b44dSPeter Avalos // has no groups and will thus go to the next Stream. 11172940b44dSPeter Avalos if (mode != LZMA_INDEX_ITER_STREAM) { 11182940b44dSPeter Avalos // Get the pointer to the current group. See iter_set_inf() 11192940b44dSPeter Avalos // for explanation. 11202940b44dSPeter Avalos switch (iter->internal[ITER_METHOD].s) { 11212940b44dSPeter Avalos case ITER_METHOD_NORMAL: 11222940b44dSPeter Avalos group = iter->internal[ITER_GROUP].p; 11232940b44dSPeter Avalos break; 11242940b44dSPeter Avalos 11252940b44dSPeter Avalos case ITER_METHOD_NEXT: 11262940b44dSPeter Avalos group = index_tree_next(iter->internal[ITER_GROUP].p); 11272940b44dSPeter Avalos break; 11282940b44dSPeter Avalos 11292940b44dSPeter Avalos case ITER_METHOD_LEFTMOST: 11302940b44dSPeter Avalos group = (const index_group *)( 11312940b44dSPeter Avalos stream->groups.leftmost); 11322940b44dSPeter Avalos break; 11332940b44dSPeter Avalos } 11342940b44dSPeter Avalos } 11352940b44dSPeter Avalos 11362940b44dSPeter Avalos again: 11372940b44dSPeter Avalos if (stream == NULL) { 11382940b44dSPeter Avalos // We at the beginning of the lzma_index. 11392940b44dSPeter Avalos // Locate the first Stream. 11402940b44dSPeter Avalos stream = (const index_stream *)(i->streams.leftmost); 11412940b44dSPeter Avalos if (mode >= LZMA_INDEX_ITER_BLOCK) { 11422940b44dSPeter Avalos // Since we are being asked to return information 11432940b44dSPeter Avalos // about the first a Block, skip Streams that have 11442940b44dSPeter Avalos // no Blocks. 11452940b44dSPeter Avalos while (stream->groups.leftmost == NULL) { 11462940b44dSPeter Avalos stream = index_tree_next(&stream->node); 11472940b44dSPeter Avalos if (stream == NULL) 11482940b44dSPeter Avalos return true; 11492940b44dSPeter Avalos } 11502940b44dSPeter Avalos } 11512940b44dSPeter Avalos 11522940b44dSPeter Avalos // Start from the first Record in the Stream. 11532940b44dSPeter Avalos group = (const index_group *)(stream->groups.leftmost); 11542940b44dSPeter Avalos record = 0; 11552940b44dSPeter Avalos 11562940b44dSPeter Avalos } else if (group != NULL && record < group->last) { 11572940b44dSPeter Avalos // The next Record is in the same group. 11582940b44dSPeter Avalos ++record; 11592940b44dSPeter Avalos 11602940b44dSPeter Avalos } else { 11612940b44dSPeter Avalos // This group has no more Records or this Stream has 11622940b44dSPeter Avalos // no Blocks at all. 11632940b44dSPeter Avalos record = 0; 11642940b44dSPeter Avalos 11652940b44dSPeter Avalos // If group is not NULL, this Stream has at least one Block 11662940b44dSPeter Avalos // and thus at least one group. Find the next group. 11672940b44dSPeter Avalos if (group != NULL) 11682940b44dSPeter Avalos group = index_tree_next(&group->node); 11692940b44dSPeter Avalos 11702940b44dSPeter Avalos if (group == NULL) { 11712940b44dSPeter Avalos // This Stream has no more Records. Find the next 11722940b44dSPeter Avalos // Stream. If we are being asked to return information 11732940b44dSPeter Avalos // about a Block, we skip empty Streams. 11742940b44dSPeter Avalos do { 11752940b44dSPeter Avalos stream = index_tree_next(&stream->node); 11762940b44dSPeter Avalos if (stream == NULL) 11772940b44dSPeter Avalos return true; 11782940b44dSPeter Avalos } while (mode >= LZMA_INDEX_ITER_BLOCK 11792940b44dSPeter Avalos && stream->groups.leftmost == NULL); 11802940b44dSPeter Avalos 11812940b44dSPeter Avalos group = (const index_group *)( 11822940b44dSPeter Avalos stream->groups.leftmost); 11832940b44dSPeter Avalos } 11842940b44dSPeter Avalos } 11852940b44dSPeter Avalos 11862940b44dSPeter Avalos if (mode == LZMA_INDEX_ITER_NONEMPTY_BLOCK) { 11872940b44dSPeter Avalos // We need to look for the next Block again if this Block 11882940b44dSPeter Avalos // is empty. 11892940b44dSPeter Avalos if (record == 0) { 11902940b44dSPeter Avalos if (group->node.uncompressed_base 11912940b44dSPeter Avalos == group->records[0].uncompressed_sum) 11922940b44dSPeter Avalos goto again; 11932940b44dSPeter Avalos } else if (group->records[record - 1].uncompressed_sum 11942940b44dSPeter Avalos == group->records[record].uncompressed_sum) { 11952940b44dSPeter Avalos goto again; 11962940b44dSPeter Avalos } 11972940b44dSPeter Avalos } 11982940b44dSPeter Avalos 11992940b44dSPeter Avalos iter->internal[ITER_STREAM].p = stream; 12002940b44dSPeter Avalos iter->internal[ITER_GROUP].p = group; 12012940b44dSPeter Avalos iter->internal[ITER_RECORD].s = record; 12022940b44dSPeter Avalos 12032940b44dSPeter Avalos iter_set_info(iter); 12042940b44dSPeter Avalos 12052940b44dSPeter Avalos return false; 12062940b44dSPeter Avalos } 12072940b44dSPeter Avalos 12082940b44dSPeter Avalos 12092940b44dSPeter Avalos extern LZMA_API(lzma_bool) 12102940b44dSPeter Avalos lzma_index_iter_locate(lzma_index_iter *iter, lzma_vli target) 12112940b44dSPeter Avalos { 12122940b44dSPeter Avalos const lzma_index *i = iter->internal[ITER_INDEX].p; 12132940b44dSPeter Avalos 12142940b44dSPeter Avalos // If the target is past the end of the file, return immediately. 12152940b44dSPeter Avalos if (i->uncompressed_size <= target) 12162940b44dSPeter Avalos return true; 12172940b44dSPeter Avalos 12182940b44dSPeter Avalos // Locate the Stream containing the target offset. 12192940b44dSPeter Avalos const index_stream *stream = index_tree_locate(&i->streams, target); 12202940b44dSPeter Avalos assert(stream != NULL); 12212940b44dSPeter Avalos target -= stream->node.uncompressed_base; 12222940b44dSPeter Avalos 12232940b44dSPeter Avalos // Locate the group containing the target offset. 12242940b44dSPeter Avalos const index_group *group = index_tree_locate(&stream->groups, target); 12252940b44dSPeter Avalos assert(group != NULL); 12262940b44dSPeter Avalos 12272940b44dSPeter Avalos // Use binary search to locate the exact Record. It is the first 12282940b44dSPeter Avalos // Record whose uncompressed_sum is greater than target. 12292940b44dSPeter Avalos // This is because we want the rightmost Record that fullfills the 12302940b44dSPeter Avalos // search criterion. It is possible that there are empty Blocks; 12312940b44dSPeter Avalos // we don't want to return them. 12322940b44dSPeter Avalos size_t left = 0; 12332940b44dSPeter Avalos size_t right = group->last; 12342940b44dSPeter Avalos 12352940b44dSPeter Avalos while (left < right) { 12362940b44dSPeter Avalos const size_t pos = left + (right - left) / 2; 12372940b44dSPeter Avalos if (group->records[pos].uncompressed_sum <= target) 12382940b44dSPeter Avalos left = pos + 1; 12392940b44dSPeter Avalos else 12402940b44dSPeter Avalos right = pos; 12412940b44dSPeter Avalos } 12422940b44dSPeter Avalos 12432940b44dSPeter Avalos iter->internal[ITER_STREAM].p = stream; 12442940b44dSPeter Avalos iter->internal[ITER_GROUP].p = group; 12452940b44dSPeter Avalos iter->internal[ITER_RECORD].s = left; 12462940b44dSPeter Avalos 12472940b44dSPeter Avalos iter_set_info(iter); 12482940b44dSPeter Avalos 12492940b44dSPeter Avalos return false; 12502940b44dSPeter Avalos } 1251