1*05a0b428SJohn Marino /* $OpenBSD: s_tanl.c,v 1.1 2008/12/09 20:00:35 martynas Exp $ */
2*05a0b428SJohn Marino /*-
3*05a0b428SJohn Marino * Copyright (c) 2007 Steven G. Kargl
4*05a0b428SJohn Marino * All rights reserved.
5*05a0b428SJohn Marino *
6*05a0b428SJohn Marino * Redistribution and use in source and binary forms, with or without
7*05a0b428SJohn Marino * modification, are permitted provided that the following conditions
8*05a0b428SJohn Marino * are met:
9*05a0b428SJohn Marino * 1. Redistributions of source code must retain the above copyright
10*05a0b428SJohn Marino * notice unmodified, this list of conditions, and the following
11*05a0b428SJohn Marino * disclaimer.
12*05a0b428SJohn Marino * 2. Redistributions in binary form must reproduce the above copyright
13*05a0b428SJohn Marino * notice, this list of conditions and the following disclaimer in the
14*05a0b428SJohn Marino * documentation and/or other materials provided with the distribution.
15*05a0b428SJohn Marino *
16*05a0b428SJohn Marino * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17*05a0b428SJohn Marino * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18*05a0b428SJohn Marino * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19*05a0b428SJohn Marino * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20*05a0b428SJohn Marino * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21*05a0b428SJohn Marino * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22*05a0b428SJohn Marino * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23*05a0b428SJohn Marino * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24*05a0b428SJohn Marino * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25*05a0b428SJohn Marino * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26*05a0b428SJohn Marino */
27*05a0b428SJohn Marino
28*05a0b428SJohn Marino /*
29*05a0b428SJohn Marino * Compute tan(x) for x where x is reduced to y = x - k * pi / 2.
30*05a0b428SJohn Marino * Limited testing on pseudorandom numbers drawn within [0:4e8] shows
31*05a0b428SJohn Marino * an accuracy of <= 1.5 ULP where 247024 values of x out of 40 million
32*05a0b428SJohn Marino * possibles resulted in tan(x) that exceeded 0.5 ULP (ie., 0.6%).
33*05a0b428SJohn Marino */
34*05a0b428SJohn Marino
35*05a0b428SJohn Marino #include <sys/types.h>
36*05a0b428SJohn Marino #include <machine/ieee.h>
37*05a0b428SJohn Marino #include <float.h>
38*05a0b428SJohn Marino #include <math.h>
39*05a0b428SJohn Marino
40*05a0b428SJohn Marino #include "math_private.h"
41*05a0b428SJohn Marino
42*05a0b428SJohn Marino #if LDBL_MANT_DIG == 64
43*05a0b428SJohn Marino #define NX 3
44*05a0b428SJohn Marino #define PREC 2
45*05a0b428SJohn Marino #elif LDBL_MANT_DIG == 113
46*05a0b428SJohn Marino #define NX 5
47*05a0b428SJohn Marino #define PREC 3
48*05a0b428SJohn Marino #else
49*05a0b428SJohn Marino #error "Unsupported long double format"
50*05a0b428SJohn Marino #endif
51*05a0b428SJohn Marino
52*05a0b428SJohn Marino static const long double two24 = 1.67772160000000000000e+07L;
53*05a0b428SJohn Marino
54*05a0b428SJohn Marino long double
tanl(long double x)55*05a0b428SJohn Marino tanl(long double x)
56*05a0b428SJohn Marino {
57*05a0b428SJohn Marino union {
58*05a0b428SJohn Marino long double e;
59*05a0b428SJohn Marino struct ieee_ext bits;
60*05a0b428SJohn Marino } z;
61*05a0b428SJohn Marino int i, e0, s;
62*05a0b428SJohn Marino double xd[NX], yd[PREC];
63*05a0b428SJohn Marino long double hi, lo;
64*05a0b428SJohn Marino
65*05a0b428SJohn Marino z.e = x;
66*05a0b428SJohn Marino s = z.bits.ext_sign;
67*05a0b428SJohn Marino z.bits.ext_sign = 0;
68*05a0b428SJohn Marino
69*05a0b428SJohn Marino /* If x = +-0 or x is subnormal, then tan(x) = x. */
70*05a0b428SJohn Marino if (z.bits.ext_exp == 0)
71*05a0b428SJohn Marino return (x);
72*05a0b428SJohn Marino
73*05a0b428SJohn Marino /* If x = NaN or Inf, then tan(x) = NaN. */
74*05a0b428SJohn Marino if (z.bits.ext_exp == 32767)
75*05a0b428SJohn Marino return ((x - x) / (x - x));
76*05a0b428SJohn Marino
77*05a0b428SJohn Marino /* Optimize the case where x is already within range. */
78*05a0b428SJohn Marino if (z.e < M_PI_4) {
79*05a0b428SJohn Marino hi = __kernel_tanl(z.e, 0, 0);
80*05a0b428SJohn Marino return (s ? -hi : hi);
81*05a0b428SJohn Marino }
82*05a0b428SJohn Marino
83*05a0b428SJohn Marino /* Split z.e into a 24-bit representation. */
84*05a0b428SJohn Marino e0 = ilogbl(z.e) - 23;
85*05a0b428SJohn Marino z.e = scalbnl(z.e, -e0);
86*05a0b428SJohn Marino for (i = 0; i < NX; i++) {
87*05a0b428SJohn Marino xd[i] = (double)((int32_t)z.e);
88*05a0b428SJohn Marino z.e = (z.e - xd[i]) * two24;
89*05a0b428SJohn Marino }
90*05a0b428SJohn Marino
91*05a0b428SJohn Marino /* yd contains the pieces of xd rem pi/2 such that |yd| < pi/4. */
92*05a0b428SJohn Marino e0 = __kernel_rem_pio2(xd, yd, e0, NX, PREC);
93*05a0b428SJohn Marino
94*05a0b428SJohn Marino #if PREC == 2
95*05a0b428SJohn Marino hi = (long double)yd[0] + yd[1];
96*05a0b428SJohn Marino lo = yd[1] - (hi - yd[0]);
97*05a0b428SJohn Marino #else /* PREC == 3 */
98*05a0b428SJohn Marino long double t;
99*05a0b428SJohn Marino t = (long double)yd[2] + yd[1];
100*05a0b428SJohn Marino hi = t + yd[0];
101*05a0b428SJohn Marino lo = yd[0] - (hi - t);
102*05a0b428SJohn Marino #endif
103*05a0b428SJohn Marino
104*05a0b428SJohn Marino switch (e0 & 3) {
105*05a0b428SJohn Marino case 0:
106*05a0b428SJohn Marino case 2:
107*05a0b428SJohn Marino hi = __kernel_tanl(hi, lo, 0);
108*05a0b428SJohn Marino break;
109*05a0b428SJohn Marino case 1:
110*05a0b428SJohn Marino case 3:
111*05a0b428SJohn Marino hi = __kernel_tanl(hi, lo, 1);
112*05a0b428SJohn Marino break;
113*05a0b428SJohn Marino }
114*05a0b428SJohn Marino
115*05a0b428SJohn Marino return (s ? -hi : hi);
116*05a0b428SJohn Marino }
117