xref: /dflybsd-src/contrib/openbsd_libm/src/s_tan.c (revision 4382f29d99a100bd77a81697c2f699c11f6a472a)
1*05a0b428SJohn Marino /* @(#)s_tan.c 5.1 93/09/24 */
2*05a0b428SJohn Marino /*
3*05a0b428SJohn Marino  * ====================================================
4*05a0b428SJohn Marino  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5*05a0b428SJohn Marino  *
6*05a0b428SJohn Marino  * Developed at SunPro, a Sun Microsystems, Inc. business.
7*05a0b428SJohn Marino  * Permission to use, copy, modify, and distribute this
8*05a0b428SJohn Marino  * software is freely granted, provided that this notice
9*05a0b428SJohn Marino  * is preserved.
10*05a0b428SJohn Marino  * ====================================================
11*05a0b428SJohn Marino  */
12*05a0b428SJohn Marino 
13*05a0b428SJohn Marino /* tan(x)
14*05a0b428SJohn Marino  * Return tangent function of x.
15*05a0b428SJohn Marino  *
16*05a0b428SJohn Marino  * kernel function:
17*05a0b428SJohn Marino  *	__kernel_tan		... tangent function on [-pi/4,pi/4]
18*05a0b428SJohn Marino  *	__ieee754_rem_pio2	... argument reduction routine
19*05a0b428SJohn Marino  *
20*05a0b428SJohn Marino  * Method.
21*05a0b428SJohn Marino  *      Let S,C and T denote the sin, cos and tan respectively on
22*05a0b428SJohn Marino  *	[-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
23*05a0b428SJohn Marino  *	in [-pi/4 , +pi/4], and let n = k mod 4.
24*05a0b428SJohn Marino  *	We have
25*05a0b428SJohn Marino  *
26*05a0b428SJohn Marino  *          n        sin(x)      cos(x)        tan(x)
27*05a0b428SJohn Marino  *     ----------------------------------------------------------
28*05a0b428SJohn Marino  *	    0	       S	   C		 T
29*05a0b428SJohn Marino  *	    1	       C	  -S		-1/T
30*05a0b428SJohn Marino  *	    2	      -S	  -C		 T
31*05a0b428SJohn Marino  *	    3	      -C	   S		-1/T
32*05a0b428SJohn Marino  *     ----------------------------------------------------------
33*05a0b428SJohn Marino  *
34*05a0b428SJohn Marino  * Special cases:
35*05a0b428SJohn Marino  *      Let trig be any of sin, cos, or tan.
36*05a0b428SJohn Marino  *      trig(+-INF)  is NaN, with signals;
37*05a0b428SJohn Marino  *      trig(NaN)    is that NaN;
38*05a0b428SJohn Marino  *
39*05a0b428SJohn Marino  * Accuracy:
40*05a0b428SJohn Marino  *	TRIG(x) returns trig(x) nearly rounded
41*05a0b428SJohn Marino  */
42*05a0b428SJohn Marino 
43*05a0b428SJohn Marino #include <float.h>
44*05a0b428SJohn Marino #include <math.h>
45*05a0b428SJohn Marino 
46*05a0b428SJohn Marino #include "math_private.h"
47*05a0b428SJohn Marino 
48*05a0b428SJohn Marino double
tan(double x)49*05a0b428SJohn Marino tan(double x)
50*05a0b428SJohn Marino {
51*05a0b428SJohn Marino 	double y[2],z=0.0;
52*05a0b428SJohn Marino 	int32_t n, ix;
53*05a0b428SJohn Marino 
54*05a0b428SJohn Marino     /* High word of x. */
55*05a0b428SJohn Marino 	GET_HIGH_WORD(ix,x);
56*05a0b428SJohn Marino 
57*05a0b428SJohn Marino     /* |x| ~< pi/4 */
58*05a0b428SJohn Marino 	ix &= 0x7fffffff;
59*05a0b428SJohn Marino 	if(ix <= 0x3fe921fb) return __kernel_tan(x,z,1);
60*05a0b428SJohn Marino 
61*05a0b428SJohn Marino     /* tan(Inf or NaN) is NaN */
62*05a0b428SJohn Marino 	else if (ix>=0x7ff00000) return x-x;		/* NaN */
63*05a0b428SJohn Marino 
64*05a0b428SJohn Marino     /* argument reduction needed */
65*05a0b428SJohn Marino 	else {
66*05a0b428SJohn Marino 	    n = __ieee754_rem_pio2(x,y);
67*05a0b428SJohn Marino 	    return __kernel_tan(y[0],y[1],1-((n&1)<<1)); /*   1 -- n even
68*05a0b428SJohn Marino 							-1 -- n odd */
69*05a0b428SJohn Marino 	}
70*05a0b428SJohn Marino }
71*05a0b428SJohn Marino 
72*05a0b428SJohn Marino #if	LDBL_MANT_DIG == DBL_MANT_DIG
73*05a0b428SJohn Marino __strong_alias(tanl, tan);
74*05a0b428SJohn Marino #endif	/* LDBL_MANT_DIG == DBL_MANT_DIG */
75