xref: /dflybsd-src/contrib/openbsd_libm/src/s_sin.c (revision 4382f29d99a100bd77a81697c2f699c11f6a472a)
1*05a0b428SJohn Marino /* @(#)s_sin.c 5.1 93/09/24 */
2*05a0b428SJohn Marino /*
3*05a0b428SJohn Marino  * ====================================================
4*05a0b428SJohn Marino  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5*05a0b428SJohn Marino  *
6*05a0b428SJohn Marino  * Developed at SunPro, a Sun Microsystems, Inc. business.
7*05a0b428SJohn Marino  * Permission to use, copy, modify, and distribute this
8*05a0b428SJohn Marino  * software is freely granted, provided that this notice
9*05a0b428SJohn Marino  * is preserved.
10*05a0b428SJohn Marino  * ====================================================
11*05a0b428SJohn Marino  */
12*05a0b428SJohn Marino 
13*05a0b428SJohn Marino /* sin(x)
14*05a0b428SJohn Marino  * Return sine function of x.
15*05a0b428SJohn Marino  *
16*05a0b428SJohn Marino  * kernel function:
17*05a0b428SJohn Marino  *	__kernel_sin		... sine function on [-pi/4,pi/4]
18*05a0b428SJohn Marino  *	__kernel_cos		... cose function on [-pi/4,pi/4]
19*05a0b428SJohn Marino  *	__ieee754_rem_pio2	... argument reduction routine
20*05a0b428SJohn Marino  *
21*05a0b428SJohn Marino  * Method.
22*05a0b428SJohn Marino  *      Let S,C and T denote the sin, cos and tan respectively on
23*05a0b428SJohn Marino  *	[-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
24*05a0b428SJohn Marino  *	in [-pi/4 , +pi/4], and let n = k mod 4.
25*05a0b428SJohn Marino  *	We have
26*05a0b428SJohn Marino  *
27*05a0b428SJohn Marino  *          n        sin(x)      cos(x)        tan(x)
28*05a0b428SJohn Marino  *     ----------------------------------------------------------
29*05a0b428SJohn Marino  *	    0	       S	   C		 T
30*05a0b428SJohn Marino  *	    1	       C	  -S		-1/T
31*05a0b428SJohn Marino  *	    2	      -S	  -C		 T
32*05a0b428SJohn Marino  *	    3	      -C	   S		-1/T
33*05a0b428SJohn Marino  *     ----------------------------------------------------------
34*05a0b428SJohn Marino  *
35*05a0b428SJohn Marino  * Special cases:
36*05a0b428SJohn Marino  *      Let trig be any of sin, cos, or tan.
37*05a0b428SJohn Marino  *      trig(+-INF)  is NaN, with signals;
38*05a0b428SJohn Marino  *      trig(NaN)    is that NaN;
39*05a0b428SJohn Marino  *
40*05a0b428SJohn Marino  * Accuracy:
41*05a0b428SJohn Marino  *	TRIG(x) returns trig(x) nearly rounded
42*05a0b428SJohn Marino  */
43*05a0b428SJohn Marino 
44*05a0b428SJohn Marino #include <float.h>
45*05a0b428SJohn Marino #include <math.h>
46*05a0b428SJohn Marino 
47*05a0b428SJohn Marino #include "math_private.h"
48*05a0b428SJohn Marino 
49*05a0b428SJohn Marino double
sin(double x)50*05a0b428SJohn Marino sin(double x)
51*05a0b428SJohn Marino {
52*05a0b428SJohn Marino 	double y[2],z=0.0;
53*05a0b428SJohn Marino 	int32_t n, ix;
54*05a0b428SJohn Marino 
55*05a0b428SJohn Marino     /* High word of x. */
56*05a0b428SJohn Marino 	GET_HIGH_WORD(ix,x);
57*05a0b428SJohn Marino 
58*05a0b428SJohn Marino     /* |x| ~< pi/4 */
59*05a0b428SJohn Marino 	ix &= 0x7fffffff;
60*05a0b428SJohn Marino 	if(ix <= 0x3fe921fb) return __kernel_sin(x,z,0);
61*05a0b428SJohn Marino 
62*05a0b428SJohn Marino     /* sin(Inf or NaN) is NaN */
63*05a0b428SJohn Marino 	else if (ix>=0x7ff00000) return x-x;
64*05a0b428SJohn Marino 
65*05a0b428SJohn Marino     /* argument reduction needed */
66*05a0b428SJohn Marino 	else {
67*05a0b428SJohn Marino 	    n = __ieee754_rem_pio2(x,y);
68*05a0b428SJohn Marino 	    switch(n&3) {
69*05a0b428SJohn Marino 		case 0: return  __kernel_sin(y[0],y[1],1);
70*05a0b428SJohn Marino 		case 1: return  __kernel_cos(y[0],y[1]);
71*05a0b428SJohn Marino 		case 2: return -__kernel_sin(y[0],y[1],1);
72*05a0b428SJohn Marino 		default:
73*05a0b428SJohn Marino 			return -__kernel_cos(y[0],y[1]);
74*05a0b428SJohn Marino 	    }
75*05a0b428SJohn Marino 	}
76*05a0b428SJohn Marino }
77*05a0b428SJohn Marino 
78*05a0b428SJohn Marino #if	LDBL_MANT_DIG == DBL_MANT_DIG
79*05a0b428SJohn Marino __strong_alias(sinl, sin);
80*05a0b428SJohn Marino #endif	/* LDBL_MANT_DIG == DBL_MANT_DIG */
81