xref: /dflybsd-src/contrib/openbsd_libm/src/s_log1p.c (revision 4382f29d99a100bd77a81697c2f699c11f6a472a)
1*05a0b428SJohn Marino /* @(#)s_log1p.c 5.1 93/09/24 */
2*05a0b428SJohn Marino /*
3*05a0b428SJohn Marino  * ====================================================
4*05a0b428SJohn Marino  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5*05a0b428SJohn Marino  *
6*05a0b428SJohn Marino  * Developed at SunPro, a Sun Microsystems, Inc. business.
7*05a0b428SJohn Marino  * Permission to use, copy, modify, and distribute this
8*05a0b428SJohn Marino  * software is freely granted, provided that this notice
9*05a0b428SJohn Marino  * is preserved.
10*05a0b428SJohn Marino  * ====================================================
11*05a0b428SJohn Marino  */
12*05a0b428SJohn Marino 
13*05a0b428SJohn Marino /* double log1p(double x)
14*05a0b428SJohn Marino  *
15*05a0b428SJohn Marino  * Method :
16*05a0b428SJohn Marino  *   1. Argument Reduction: find k and f such that
17*05a0b428SJohn Marino  *			1+x = 2^k * (1+f),
18*05a0b428SJohn Marino  *	   where  sqrt(2)/2 < 1+f < sqrt(2) .
19*05a0b428SJohn Marino  *
20*05a0b428SJohn Marino  *      Note. If k=0, then f=x is exact. However, if k!=0, then f
21*05a0b428SJohn Marino  *	may not be representable exactly. In that case, a correction
22*05a0b428SJohn Marino  *	term is need. Let u=1+x rounded. Let c = (1+x)-u, then
23*05a0b428SJohn Marino  *	log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
24*05a0b428SJohn Marino  *	and add back the correction term c/u.
25*05a0b428SJohn Marino  *	(Note: when x > 2**53, one can simply return log(x))
26*05a0b428SJohn Marino  *
27*05a0b428SJohn Marino  *   2. Approximation of log1p(f).
28*05a0b428SJohn Marino  *	Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
29*05a0b428SJohn Marino  *		 = 2s + 2/3 s**3 + 2/5 s**5 + .....,
30*05a0b428SJohn Marino  *	     	 = 2s + s*R
31*05a0b428SJohn Marino  *      We use a special Remes algorithm on [0,0.1716] to generate
32*05a0b428SJohn Marino  * 	a polynomial of degree 14 to approximate R The maximum error
33*05a0b428SJohn Marino  *	of this polynomial approximation is bounded by 2**-58.45. In
34*05a0b428SJohn Marino  *	other words,
35*05a0b428SJohn Marino  *		        2      4      6      8      10      12      14
36*05a0b428SJohn Marino  *	    R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s  +Lp6*s  +Lp7*s
37*05a0b428SJohn Marino  *  	(the values of Lp1 to Lp7 are listed in the program)
38*05a0b428SJohn Marino  *	and
39*05a0b428SJohn Marino  *	    |      2          14          |     -58.45
40*05a0b428SJohn Marino  *	    | Lp1*s +...+Lp7*s    -  R(z) | <= 2
41*05a0b428SJohn Marino  *	    |                             |
42*05a0b428SJohn Marino  *	Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
43*05a0b428SJohn Marino  *	In order to guarantee error in log below 1ulp, we compute log
44*05a0b428SJohn Marino  *	by
45*05a0b428SJohn Marino  *		log1p(f) = f - (hfsq - s*(hfsq+R)).
46*05a0b428SJohn Marino  *
47*05a0b428SJohn Marino  *	3. Finally, log1p(x) = k*ln2 + log1p(f).
48*05a0b428SJohn Marino  *		 	     = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
49*05a0b428SJohn Marino  *	   Here ln2 is split into two floating point number:
50*05a0b428SJohn Marino  *			ln2_hi + ln2_lo,
51*05a0b428SJohn Marino  *	   where n*ln2_hi is always exact for |n| < 2000.
52*05a0b428SJohn Marino  *
53*05a0b428SJohn Marino  * Special cases:
54*05a0b428SJohn Marino  *	log1p(x) is NaN with signal if x < -1 (including -INF) ;
55*05a0b428SJohn Marino  *	log1p(+INF) is +INF; log1p(-1) is -INF with signal;
56*05a0b428SJohn Marino  *	log1p(NaN) is that NaN with no signal.
57*05a0b428SJohn Marino  *
58*05a0b428SJohn Marino  * Accuracy:
59*05a0b428SJohn Marino  *	according to an error analysis, the error is always less than
60*05a0b428SJohn Marino  *	1 ulp (unit in the last place).
61*05a0b428SJohn Marino  *
62*05a0b428SJohn Marino  * Constants:
63*05a0b428SJohn Marino  * The hexadecimal values are the intended ones for the following
64*05a0b428SJohn Marino  * constants. The decimal values may be used, provided that the
65*05a0b428SJohn Marino  * compiler will convert from decimal to binary accurately enough
66*05a0b428SJohn Marino  * to produce the hexadecimal values shown.
67*05a0b428SJohn Marino  *
68*05a0b428SJohn Marino  * Note: Assuming log() return accurate answer, the following
69*05a0b428SJohn Marino  * 	 algorithm can be used to compute log1p(x) to within a few ULP:
70*05a0b428SJohn Marino  *
71*05a0b428SJohn Marino  *		u = 1+x;
72*05a0b428SJohn Marino  *		if(u==1.0) return x ; else
73*05a0b428SJohn Marino  *			   return log(u)*(x/(u-1.0));
74*05a0b428SJohn Marino  *
75*05a0b428SJohn Marino  *	 See HP-15C Advanced Functions Handbook, p.193.
76*05a0b428SJohn Marino  */
77*05a0b428SJohn Marino 
78*05a0b428SJohn Marino #include <float.h>
79*05a0b428SJohn Marino #include <math.h>
80*05a0b428SJohn Marino 
81*05a0b428SJohn Marino #include "math_private.h"
82*05a0b428SJohn Marino 
83*05a0b428SJohn Marino static const double
84*05a0b428SJohn Marino ln2_hi  =  6.93147180369123816490e-01,	/* 3fe62e42 fee00000 */
85*05a0b428SJohn Marino ln2_lo  =  1.90821492927058770002e-10,	/* 3dea39ef 35793c76 */
86*05a0b428SJohn Marino two54   =  1.80143985094819840000e+16,  /* 43500000 00000000 */
87*05a0b428SJohn Marino Lp1 = 6.666666666666735130e-01,  /* 3FE55555 55555593 */
88*05a0b428SJohn Marino Lp2 = 3.999999999940941908e-01,  /* 3FD99999 9997FA04 */
89*05a0b428SJohn Marino Lp3 = 2.857142874366239149e-01,  /* 3FD24924 94229359 */
90*05a0b428SJohn Marino Lp4 = 2.222219843214978396e-01,  /* 3FCC71C5 1D8E78AF */
91*05a0b428SJohn Marino Lp5 = 1.818357216161805012e-01,  /* 3FC74664 96CB03DE */
92*05a0b428SJohn Marino Lp6 = 1.531383769920937332e-01,  /* 3FC39A09 D078C69F */
93*05a0b428SJohn Marino Lp7 = 1.479819860511658591e-01;  /* 3FC2F112 DF3E5244 */
94*05a0b428SJohn Marino 
95*05a0b428SJohn Marino static const double zero = 0.0;
96*05a0b428SJohn Marino 
97*05a0b428SJohn Marino double
log1p(double x)98*05a0b428SJohn Marino log1p(double x)
99*05a0b428SJohn Marino {
100*05a0b428SJohn Marino 	double hfsq,f,c,s,z,R,u;
101*05a0b428SJohn Marino 	int32_t k,hx,hu,ax;
102*05a0b428SJohn Marino 
103*05a0b428SJohn Marino 	GET_HIGH_WORD(hx,x);
104*05a0b428SJohn Marino 	ax = hx&0x7fffffff;
105*05a0b428SJohn Marino 
106*05a0b428SJohn Marino 	k = 1;
107*05a0b428SJohn Marino 	if (hx < 0x3FDA827A) {			/* x < 0.41422  */
108*05a0b428SJohn Marino 	    if(ax>=0x3ff00000) {		/* x <= -1.0 */
109*05a0b428SJohn Marino 		if(x==-1.0) return -two54/zero; /* log1p(-1)=+inf */
110*05a0b428SJohn Marino 		else return (x-x)/(x-x);	/* log1p(x<-1)=NaN */
111*05a0b428SJohn Marino 	    }
112*05a0b428SJohn Marino 	    if(ax<0x3e200000) {			/* |x| < 2**-29 */
113*05a0b428SJohn Marino 		if(two54+x>zero			/* raise inexact */
114*05a0b428SJohn Marino 	            &&ax<0x3c900000) 		/* |x| < 2**-54 */
115*05a0b428SJohn Marino 		    return x;
116*05a0b428SJohn Marino 		else
117*05a0b428SJohn Marino 		    return x - x*x*0.5;
118*05a0b428SJohn Marino 	    }
119*05a0b428SJohn Marino 	    if(hx>0||hx<=((int32_t)0xbfd2bec3)) {
120*05a0b428SJohn Marino 		k=0;f=x;hu=1;}	/* -0.2929<x<0.41422 */
121*05a0b428SJohn Marino 	}
122*05a0b428SJohn Marino 	if (hx >= 0x7ff00000) return x+x;
123*05a0b428SJohn Marino 	if(k!=0) {
124*05a0b428SJohn Marino 	    if(hx<0x43400000) {
125*05a0b428SJohn Marino 		u  = 1.0+x;
126*05a0b428SJohn Marino 		GET_HIGH_WORD(hu,u);
127*05a0b428SJohn Marino 	        k  = (hu>>20)-1023;
128*05a0b428SJohn Marino 	        c  = (k>0)? 1.0-(u-x):x-(u-1.0);/* correction term */
129*05a0b428SJohn Marino 		c /= u;
130*05a0b428SJohn Marino 	    } else {
131*05a0b428SJohn Marino 		u  = x;
132*05a0b428SJohn Marino 		GET_HIGH_WORD(hu,u);
133*05a0b428SJohn Marino 	        k  = (hu>>20)-1023;
134*05a0b428SJohn Marino 		c  = 0;
135*05a0b428SJohn Marino 	    }
136*05a0b428SJohn Marino 	    hu &= 0x000fffff;
137*05a0b428SJohn Marino 	    if(hu<0x6a09e) {
138*05a0b428SJohn Marino 	        SET_HIGH_WORD(u,hu|0x3ff00000);	/* normalize u */
139*05a0b428SJohn Marino 	    } else {
140*05a0b428SJohn Marino 	        k += 1;
141*05a0b428SJohn Marino 		SET_HIGH_WORD(u,hu|0x3fe00000);	/* normalize u/2 */
142*05a0b428SJohn Marino 	        hu = (0x00100000-hu)>>2;
143*05a0b428SJohn Marino 	    }
144*05a0b428SJohn Marino 	    f = u-1.0;
145*05a0b428SJohn Marino 	}
146*05a0b428SJohn Marino 	hfsq=0.5*f*f;
147*05a0b428SJohn Marino 	if(hu==0) {	/* |f| < 2**-20 */
148*05a0b428SJohn Marino 	    if(f==zero) if(k==0) return zero;
149*05a0b428SJohn Marino 			else {c += k*ln2_lo; return k*ln2_hi+c;}
150*05a0b428SJohn Marino 	    R = hfsq*(1.0-0.66666666666666666*f);
151*05a0b428SJohn Marino 	    if(k==0) return f-R; else
152*05a0b428SJohn Marino 	    	     return k*ln2_hi-((R-(k*ln2_lo+c))-f);
153*05a0b428SJohn Marino 	}
154*05a0b428SJohn Marino  	s = f/(2.0+f);
155*05a0b428SJohn Marino 	z = s*s;
156*05a0b428SJohn Marino 	R = z*(Lp1+z*(Lp2+z*(Lp3+z*(Lp4+z*(Lp5+z*(Lp6+z*Lp7))))));
157*05a0b428SJohn Marino 	if(k==0) return f-(hfsq-s*(hfsq+R)); else
158*05a0b428SJohn Marino 		 return k*ln2_hi-((hfsq-(s*(hfsq+R)+(k*ln2_lo+c)))-f);
159*05a0b428SJohn Marino }
160*05a0b428SJohn Marino 
161*05a0b428SJohn Marino #if	LDBL_MANT_DIG == DBL_MANT_DIG
162*05a0b428SJohn Marino __strong_alias(log1pl, log1p);
163*05a0b428SJohn Marino #endif	/* LDBL_MANT_DIG == DBL_MANT_DIG */
164