xref: /dflybsd-src/contrib/openbsd_libm/src/s_expm1.c (revision 4382f29d99a100bd77a81697c2f699c11f6a472a)
1*05a0b428SJohn Marino /* @(#)s_expm1.c 5.1 93/09/24 */
2*05a0b428SJohn Marino /*
3*05a0b428SJohn Marino  * ====================================================
4*05a0b428SJohn Marino  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5*05a0b428SJohn Marino  *
6*05a0b428SJohn Marino  * Developed at SunPro, a Sun Microsystems, Inc. business.
7*05a0b428SJohn Marino  * Permission to use, copy, modify, and distribute this
8*05a0b428SJohn Marino  * software is freely granted, provided that this notice
9*05a0b428SJohn Marino  * is preserved.
10*05a0b428SJohn Marino  * ====================================================
11*05a0b428SJohn Marino  */
12*05a0b428SJohn Marino 
13*05a0b428SJohn Marino /* expm1(x)
14*05a0b428SJohn Marino  * Returns exp(x)-1, the exponential of x minus 1.
15*05a0b428SJohn Marino  *
16*05a0b428SJohn Marino  * Method
17*05a0b428SJohn Marino  *   1. Argument reduction:
18*05a0b428SJohn Marino  *	Given x, find r and integer k such that
19*05a0b428SJohn Marino  *
20*05a0b428SJohn Marino  *               x = k*ln2 + r,  |r| <= 0.5*ln2 ~ 0.34658
21*05a0b428SJohn Marino  *
22*05a0b428SJohn Marino  *      Here a correction term c will be computed to compensate
23*05a0b428SJohn Marino  *	the error in r when rounded to a floating-point number.
24*05a0b428SJohn Marino  *
25*05a0b428SJohn Marino  *   2. Approximating expm1(r) by a special rational function on
26*05a0b428SJohn Marino  *	the interval [0,0.34658]:
27*05a0b428SJohn Marino  *	Since
28*05a0b428SJohn Marino  *	    r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ...
29*05a0b428SJohn Marino  *	we define R1(r*r) by
30*05a0b428SJohn Marino  *	    r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r)
31*05a0b428SJohn Marino  *	That is,
32*05a0b428SJohn Marino  *	    R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r)
33*05a0b428SJohn Marino  *		     = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r))
34*05a0b428SJohn Marino  *		     = 1 - r^2/60 + r^4/2520 - r^6/100800 + ...
35*05a0b428SJohn Marino  *      We use a special Remes algorithm on [0,0.347] to generate
36*05a0b428SJohn Marino  * 	a polynomial of degree 5 in r*r to approximate R1. The
37*05a0b428SJohn Marino  *	maximum error of this polynomial approximation is bounded
38*05a0b428SJohn Marino  *	by 2**-61. In other words,
39*05a0b428SJohn Marino  *	    R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5
40*05a0b428SJohn Marino  *	where 	Q1  =  -1.6666666666666567384E-2,
41*05a0b428SJohn Marino  * 		Q2  =   3.9682539681370365873E-4,
42*05a0b428SJohn Marino  * 		Q3  =  -9.9206344733435987357E-6,
43*05a0b428SJohn Marino  * 		Q4  =   2.5051361420808517002E-7,
44*05a0b428SJohn Marino  * 		Q5  =  -6.2843505682382617102E-9;
45*05a0b428SJohn Marino  *  	(where z=r*r, and the values of Q1 to Q5 are listed below)
46*05a0b428SJohn Marino  *	with error bounded by
47*05a0b428SJohn Marino  *	    |                  5           |     -61
48*05a0b428SJohn Marino  *	    | 1.0+Q1*z+...+Q5*z   -  R1(z) | <= 2
49*05a0b428SJohn Marino  *	    |                              |
50*05a0b428SJohn Marino  *
51*05a0b428SJohn Marino  *	expm1(r) = exp(r)-1 is then computed by the following
52*05a0b428SJohn Marino  * 	specific way which minimize the accumulation rounding error:
53*05a0b428SJohn Marino  *			       2     3
54*05a0b428SJohn Marino  *			      r     r    [ 3 - (R1 + R1*r/2)  ]
55*05a0b428SJohn Marino  *	      expm1(r) = r + --- + --- * [--------------------]
56*05a0b428SJohn Marino  *		              2     2    [ 6 - r*(3 - R1*r/2) ]
57*05a0b428SJohn Marino  *
58*05a0b428SJohn Marino  *	To compensate the error in the argument reduction, we use
59*05a0b428SJohn Marino  *		expm1(r+c) = expm1(r) + c + expm1(r)*c
60*05a0b428SJohn Marino  *			   ~ expm1(r) + c + r*c
61*05a0b428SJohn Marino  *	Thus c+r*c will be added in as the correction terms for
62*05a0b428SJohn Marino  *	expm1(r+c). Now rearrange the term to avoid optimization
63*05a0b428SJohn Marino  * 	screw up:
64*05a0b428SJohn Marino  *		        (      2                                    2 )
65*05a0b428SJohn Marino  *		        ({  ( r    [ R1 -  (3 - R1*r/2) ]  )  }    r  )
66*05a0b428SJohn Marino  *	 expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- )
67*05a0b428SJohn Marino  *	                ({  ( 2    [ 6 - r*(3 - R1*r/2) ]  )  }    2  )
68*05a0b428SJohn Marino  *                      (                                             )
69*05a0b428SJohn Marino  *
70*05a0b428SJohn Marino  *		   = r - E
71*05a0b428SJohn Marino  *   3. Scale back to obtain expm1(x):
72*05a0b428SJohn Marino  *	From step 1, we have
73*05a0b428SJohn Marino  *	   expm1(x) = either 2^k*[expm1(r)+1] - 1
74*05a0b428SJohn Marino  *		    = or     2^k*[expm1(r) + (1-2^-k)]
75*05a0b428SJohn Marino  *   4. Implementation notes:
76*05a0b428SJohn Marino  *	(A). To save one multiplication, we scale the coefficient Qi
77*05a0b428SJohn Marino  *	     to Qi*2^i, and replace z by (x^2)/2.
78*05a0b428SJohn Marino  *	(B). To achieve maximum accuracy, we compute expm1(x) by
79*05a0b428SJohn Marino  *	  (i)   if x < -56*ln2, return -1.0, (raise inexact if x!=inf)
80*05a0b428SJohn Marino  *	  (ii)  if k=0, return r-E
81*05a0b428SJohn Marino  *	  (iii) if k=-1, return 0.5*(r-E)-0.5
82*05a0b428SJohn Marino  *        (iv)	if k=1 if r < -0.25, return 2*((r+0.5)- E)
83*05a0b428SJohn Marino  *	       	       else	     return  1.0+2.0*(r-E);
84*05a0b428SJohn Marino  *	  (v)   if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1)
85*05a0b428SJohn Marino  *	  (vi)  if k <= 20, return 2^k((1-2^-k)-(E-r)), else
86*05a0b428SJohn Marino  *	  (vii) return 2^k(1-((E+2^-k)-r))
87*05a0b428SJohn Marino  *
88*05a0b428SJohn Marino  * Special cases:
89*05a0b428SJohn Marino  *	expm1(INF) is INF, expm1(NaN) is NaN;
90*05a0b428SJohn Marino  *	expm1(-INF) is -1, and
91*05a0b428SJohn Marino  *	for finite argument, only expm1(0)=0 is exact.
92*05a0b428SJohn Marino  *
93*05a0b428SJohn Marino  * Accuracy:
94*05a0b428SJohn Marino  *	according to an error analysis, the error is always less than
95*05a0b428SJohn Marino  *	1 ulp (unit in the last place).
96*05a0b428SJohn Marino  *
97*05a0b428SJohn Marino  * Misc. info.
98*05a0b428SJohn Marino  *	For IEEE double
99*05a0b428SJohn Marino  *	    if x >  7.09782712893383973096e+02 then expm1(x) overflow
100*05a0b428SJohn Marino  *
101*05a0b428SJohn Marino  * Constants:
102*05a0b428SJohn Marino  * The hexadecimal values are the intended ones for the following
103*05a0b428SJohn Marino  * constants. The decimal values may be used, provided that the
104*05a0b428SJohn Marino  * compiler will convert from decimal to binary accurately enough
105*05a0b428SJohn Marino  * to produce the hexadecimal values shown.
106*05a0b428SJohn Marino  */
107*05a0b428SJohn Marino 
108*05a0b428SJohn Marino #include <float.h>
109*05a0b428SJohn Marino #include <math.h>
110*05a0b428SJohn Marino 
111*05a0b428SJohn Marino #include "math_private.h"
112*05a0b428SJohn Marino 
113*05a0b428SJohn Marino static const double
114*05a0b428SJohn Marino one		= 1.0,
115*05a0b428SJohn Marino huge		= 1.0e+300,
116*05a0b428SJohn Marino tiny		= 1.0e-300,
117*05a0b428SJohn Marino o_threshold	= 7.09782712893383973096e+02,/* 0x40862E42, 0xFEFA39EF */
118*05a0b428SJohn Marino ln2_hi		= 6.93147180369123816490e-01,/* 0x3fe62e42, 0xfee00000 */
119*05a0b428SJohn Marino ln2_lo		= 1.90821492927058770002e-10,/* 0x3dea39ef, 0x35793c76 */
120*05a0b428SJohn Marino invln2		= 1.44269504088896338700e+00,/* 0x3ff71547, 0x652b82fe */
121*05a0b428SJohn Marino 	/* scaled coefficients related to expm1 */
122*05a0b428SJohn Marino Q1  =  -3.33333333333331316428e-02, /* BFA11111 111110F4 */
123*05a0b428SJohn Marino Q2  =   1.58730158725481460165e-03, /* 3F5A01A0 19FE5585 */
124*05a0b428SJohn Marino Q3  =  -7.93650757867487942473e-05, /* BF14CE19 9EAADBB7 */
125*05a0b428SJohn Marino Q4  =   4.00821782732936239552e-06, /* 3ED0CFCA 86E65239 */
126*05a0b428SJohn Marino Q5  =  -2.01099218183624371326e-07; /* BE8AFDB7 6E09C32D */
127*05a0b428SJohn Marino 
128*05a0b428SJohn Marino double
expm1(double x)129*05a0b428SJohn Marino expm1(double x)
130*05a0b428SJohn Marino {
131*05a0b428SJohn Marino 	double y,hi,lo,c,t,e,hxs,hfx,r1;
132*05a0b428SJohn Marino 	int32_t k,xsb;
133*05a0b428SJohn Marino 	u_int32_t hx;
134*05a0b428SJohn Marino 
135*05a0b428SJohn Marino 	GET_HIGH_WORD(hx,x);
136*05a0b428SJohn Marino 	xsb = hx&0x80000000;		/* sign bit of x */
137*05a0b428SJohn Marino 	if(xsb==0) y=x; else y= -x;	/* y = |x| */
138*05a0b428SJohn Marino 	hx &= 0x7fffffff;		/* high word of |x| */
139*05a0b428SJohn Marino 
140*05a0b428SJohn Marino     /* filter out huge and non-finite argument */
141*05a0b428SJohn Marino 	if(hx >= 0x4043687A) {			/* if |x|>=56*ln2 */
142*05a0b428SJohn Marino 	    if(hx >= 0x40862E42) {		/* if |x|>=709.78... */
143*05a0b428SJohn Marino                 if(hx>=0x7ff00000) {
144*05a0b428SJohn Marino 		    u_int32_t low;
145*05a0b428SJohn Marino 		    GET_LOW_WORD(low,x);
146*05a0b428SJohn Marino 		    if(((hx&0xfffff)|low)!=0)
147*05a0b428SJohn Marino 		         return x+x; 	 /* NaN */
148*05a0b428SJohn Marino 		    else return (xsb==0)? x:-1.0;/* exp(+-inf)={inf,-1} */
149*05a0b428SJohn Marino 	        }
150*05a0b428SJohn Marino 	        if(x > o_threshold) return huge*huge; /* overflow */
151*05a0b428SJohn Marino 	    }
152*05a0b428SJohn Marino 	    if(xsb!=0) { /* x < -56*ln2, return -1.0 with inexact */
153*05a0b428SJohn Marino 		if(x+tiny<0.0)		/* raise inexact */
154*05a0b428SJohn Marino 		return tiny-one;	/* return -1 */
155*05a0b428SJohn Marino 	    }
156*05a0b428SJohn Marino 	}
157*05a0b428SJohn Marino 
158*05a0b428SJohn Marino     /* argument reduction */
159*05a0b428SJohn Marino 	if(hx > 0x3fd62e42) {		/* if  |x| > 0.5 ln2 */
160*05a0b428SJohn Marino 	    if(hx < 0x3FF0A2B2) {	/* and |x| < 1.5 ln2 */
161*05a0b428SJohn Marino 		if(xsb==0)
162*05a0b428SJohn Marino 		    {hi = x - ln2_hi; lo =  ln2_lo;  k =  1;}
163*05a0b428SJohn Marino 		else
164*05a0b428SJohn Marino 		    {hi = x + ln2_hi; lo = -ln2_lo;  k = -1;}
165*05a0b428SJohn Marino 	    } else {
166*05a0b428SJohn Marino 		k  = invln2*x+((xsb==0)?0.5:-0.5);
167*05a0b428SJohn Marino 		t  = k;
168*05a0b428SJohn Marino 		hi = x - t*ln2_hi;	/* t*ln2_hi is exact here */
169*05a0b428SJohn Marino 		lo = t*ln2_lo;
170*05a0b428SJohn Marino 	    }
171*05a0b428SJohn Marino 	    x  = hi - lo;
172*05a0b428SJohn Marino 	    c  = (hi-x)-lo;
173*05a0b428SJohn Marino 	}
174*05a0b428SJohn Marino 	else if(hx < 0x3c900000) {  	/* when |x|<2**-54, return x */
175*05a0b428SJohn Marino 	    t = huge+x;	/* return x with inexact flags when x!=0 */
176*05a0b428SJohn Marino 	    return x - (t-(huge+x));
177*05a0b428SJohn Marino 	}
178*05a0b428SJohn Marino 	else k = 0;
179*05a0b428SJohn Marino 
180*05a0b428SJohn Marino     /* x is now in primary range */
181*05a0b428SJohn Marino 	hfx = 0.5*x;
182*05a0b428SJohn Marino 	hxs = x*hfx;
183*05a0b428SJohn Marino 	r1 = one+hxs*(Q1+hxs*(Q2+hxs*(Q3+hxs*(Q4+hxs*Q5))));
184*05a0b428SJohn Marino 	t  = 3.0-r1*hfx;
185*05a0b428SJohn Marino 	e  = hxs*((r1-t)/(6.0 - x*t));
186*05a0b428SJohn Marino 	if(k==0) return x - (x*e-hxs);		/* c is 0 */
187*05a0b428SJohn Marino 	else {
188*05a0b428SJohn Marino 	    e  = (x*(e-c)-c);
189*05a0b428SJohn Marino 	    e -= hxs;
190*05a0b428SJohn Marino 	    if(k== -1) return 0.5*(x-e)-0.5;
191*05a0b428SJohn Marino 	    if(k==1) {
192*05a0b428SJohn Marino 	       	if(x < -0.25) return -2.0*(e-(x+0.5));
193*05a0b428SJohn Marino 	       	else 	      return  one+2.0*(x-e);
194*05a0b428SJohn Marino 	    }
195*05a0b428SJohn Marino 	    if (k <= -2 || k>56) {   /* suffice to return exp(x)-1 */
196*05a0b428SJohn Marino 	        u_int32_t high;
197*05a0b428SJohn Marino 	        y = one-(e-x);
198*05a0b428SJohn Marino 		GET_HIGH_WORD(high,y);
199*05a0b428SJohn Marino 		SET_HIGH_WORD(y,high+(k<<20));	/* add k to y's exponent */
200*05a0b428SJohn Marino 	        return y-one;
201*05a0b428SJohn Marino 	    }
202*05a0b428SJohn Marino 	    t = one;
203*05a0b428SJohn Marino 	    if(k<20) {
204*05a0b428SJohn Marino 	        u_int32_t high;
205*05a0b428SJohn Marino 	        SET_HIGH_WORD(t,0x3ff00000 - (0x200000>>k));  /* t=1-2^-k */
206*05a0b428SJohn Marino 	       	y = t-(e-x);
207*05a0b428SJohn Marino 		GET_HIGH_WORD(high,y);
208*05a0b428SJohn Marino 		SET_HIGH_WORD(y,high+(k<<20));	/* add k to y's exponent */
209*05a0b428SJohn Marino 	   } else {
210*05a0b428SJohn Marino 	        u_int32_t high;
211*05a0b428SJohn Marino 		SET_HIGH_WORD(t,((0x3ff-k)<<20));	/* 2^-k */
212*05a0b428SJohn Marino 	       	y = x-(e+t);
213*05a0b428SJohn Marino 	       	y += one;
214*05a0b428SJohn Marino 		GET_HIGH_WORD(high,y);
215*05a0b428SJohn Marino 		SET_HIGH_WORD(y,high+(k<<20));	/* add k to y's exponent */
216*05a0b428SJohn Marino 	    }
217*05a0b428SJohn Marino 	}
218*05a0b428SJohn Marino 	return y;
219*05a0b428SJohn Marino }
220*05a0b428SJohn Marino 
221*05a0b428SJohn Marino #if	LDBL_MANT_DIG == DBL_MANT_DIG
222*05a0b428SJohn Marino __strong_alias(expm1l, expm1);
223*05a0b428SJohn Marino #endif	/* LDBL_MANT_DIG == DBL_MANT_DIG */
224