1*05a0b428SJohn Marino /* @(#)s_erf.c 5.1 93/09/24 */
2*05a0b428SJohn Marino /*
3*05a0b428SJohn Marino * ====================================================
4*05a0b428SJohn Marino * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5*05a0b428SJohn Marino *
6*05a0b428SJohn Marino * Developed at SunPro, a Sun Microsystems, Inc. business.
7*05a0b428SJohn Marino * Permission to use, copy, modify, and distribute this
8*05a0b428SJohn Marino * software is freely granted, provided that this notice
9*05a0b428SJohn Marino * is preserved.
10*05a0b428SJohn Marino * ====================================================
11*05a0b428SJohn Marino */
12*05a0b428SJohn Marino
13*05a0b428SJohn Marino /* double erf(double x)
14*05a0b428SJohn Marino * double erfc(double x)
15*05a0b428SJohn Marino * x
16*05a0b428SJohn Marino * 2 |\
17*05a0b428SJohn Marino * erf(x) = --------- | exp(-t*t)dt
18*05a0b428SJohn Marino * sqrt(pi) \|
19*05a0b428SJohn Marino * 0
20*05a0b428SJohn Marino *
21*05a0b428SJohn Marino * erfc(x) = 1-erf(x)
22*05a0b428SJohn Marino * Note that
23*05a0b428SJohn Marino * erf(-x) = -erf(x)
24*05a0b428SJohn Marino * erfc(-x) = 2 - erfc(x)
25*05a0b428SJohn Marino *
26*05a0b428SJohn Marino * Method:
27*05a0b428SJohn Marino * 1. For |x| in [0, 0.84375]
28*05a0b428SJohn Marino * erf(x) = x + x*R(x^2)
29*05a0b428SJohn Marino * erfc(x) = 1 - erf(x) if x in [-.84375,0.25]
30*05a0b428SJohn Marino * = 0.5 + ((0.5-x)-x*R) if x in [0.25,0.84375]
31*05a0b428SJohn Marino * where R = P/Q where P is an odd poly of degree 8 and
32*05a0b428SJohn Marino * Q is an odd poly of degree 10.
33*05a0b428SJohn Marino * -57.90
34*05a0b428SJohn Marino * | R - (erf(x)-x)/x | <= 2
35*05a0b428SJohn Marino *
36*05a0b428SJohn Marino *
37*05a0b428SJohn Marino * Remark. The formula is derived by noting
38*05a0b428SJohn Marino * erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....)
39*05a0b428SJohn Marino * and that
40*05a0b428SJohn Marino * 2/sqrt(pi) = 1.128379167095512573896158903121545171688
41*05a0b428SJohn Marino * is close to one. The interval is chosen because the fix
42*05a0b428SJohn Marino * point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is
43*05a0b428SJohn Marino * near 0.6174), and by some experiment, 0.84375 is chosen to
44*05a0b428SJohn Marino * guarantee the error is less than one ulp for erf.
45*05a0b428SJohn Marino *
46*05a0b428SJohn Marino * 2. For |x| in [0.84375,1.25], let s = |x| - 1, and
47*05a0b428SJohn Marino * c = 0.84506291151 rounded to single (24 bits)
48*05a0b428SJohn Marino * erf(x) = sign(x) * (c + P1(s)/Q1(s))
49*05a0b428SJohn Marino * erfc(x) = (1-c) - P1(s)/Q1(s) if x > 0
50*05a0b428SJohn Marino * 1+(c+P1(s)/Q1(s)) if x < 0
51*05a0b428SJohn Marino * |P1/Q1 - (erf(|x|)-c)| <= 2**-59.06
52*05a0b428SJohn Marino * Remark: here we use the taylor series expansion at x=1.
53*05a0b428SJohn Marino * erf(1+s) = erf(1) + s*Poly(s)
54*05a0b428SJohn Marino * = 0.845.. + P1(s)/Q1(s)
55*05a0b428SJohn Marino * That is, we use rational approximation to approximate
56*05a0b428SJohn Marino * erf(1+s) - (c = (single)0.84506291151)
57*05a0b428SJohn Marino * Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]
58*05a0b428SJohn Marino * where
59*05a0b428SJohn Marino * P1(s) = degree 6 poly in s
60*05a0b428SJohn Marino * Q1(s) = degree 6 poly in s
61*05a0b428SJohn Marino *
62*05a0b428SJohn Marino * 3. For x in [1.25,1/0.35(~2.857143)],
63*05a0b428SJohn Marino * erfc(x) = (1/x)*exp(-x*x-0.5625+R1/S1)
64*05a0b428SJohn Marino * erf(x) = 1 - erfc(x)
65*05a0b428SJohn Marino * where
66*05a0b428SJohn Marino * R1(z) = degree 7 poly in z, (z=1/x^2)
67*05a0b428SJohn Marino * S1(z) = degree 8 poly in z
68*05a0b428SJohn Marino *
69*05a0b428SJohn Marino * 4. For x in [1/0.35,28]
70*05a0b428SJohn Marino * erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0
71*05a0b428SJohn Marino * = 2.0 - (1/x)*exp(-x*x-0.5625+R2/S2) if -6<x<0
72*05a0b428SJohn Marino * = 2.0 - tiny (if x <= -6)
73*05a0b428SJohn Marino * erf(x) = sign(x)*(1.0 - erfc(x)) if x < 6, else
74*05a0b428SJohn Marino * erf(x) = sign(x)*(1.0 - tiny)
75*05a0b428SJohn Marino * where
76*05a0b428SJohn Marino * R2(z) = degree 6 poly in z, (z=1/x^2)
77*05a0b428SJohn Marino * S2(z) = degree 7 poly in z
78*05a0b428SJohn Marino *
79*05a0b428SJohn Marino * Note1:
80*05a0b428SJohn Marino * To compute exp(-x*x-0.5625+R/S), let s be a single
81*05a0b428SJohn Marino * precision number and s := x; then
82*05a0b428SJohn Marino * -x*x = -s*s + (s-x)*(s+x)
83*05a0b428SJohn Marino * exp(-x*x-0.5626+R/S) =
84*05a0b428SJohn Marino * exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S);
85*05a0b428SJohn Marino * Note2:
86*05a0b428SJohn Marino * Here 4 and 5 make use of the asymptotic series
87*05a0b428SJohn Marino * exp(-x*x)
88*05a0b428SJohn Marino * erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) )
89*05a0b428SJohn Marino * x*sqrt(pi)
90*05a0b428SJohn Marino * We use rational approximation to approximate
91*05a0b428SJohn Marino * g(s)=f(1/x^2) = log(erfc(x)*x) - x*x + 0.5625
92*05a0b428SJohn Marino * Here is the error bound for R1/S1 and R2/S2
93*05a0b428SJohn Marino * |R1/S1 - f(x)| < 2**(-62.57)
94*05a0b428SJohn Marino * |R2/S2 - f(x)| < 2**(-61.52)
95*05a0b428SJohn Marino *
96*05a0b428SJohn Marino * 5. For inf > x >= 28
97*05a0b428SJohn Marino * erf(x) = sign(x) *(1 - tiny) (raise inexact)
98*05a0b428SJohn Marino * erfc(x) = tiny*tiny (raise underflow) if x > 0
99*05a0b428SJohn Marino * = 2 - tiny if x<0
100*05a0b428SJohn Marino *
101*05a0b428SJohn Marino * 7. Special case:
102*05a0b428SJohn Marino * erf(0) = 0, erf(inf) = 1, erf(-inf) = -1,
103*05a0b428SJohn Marino * erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,
104*05a0b428SJohn Marino * erfc/erf(NaN) is NaN
105*05a0b428SJohn Marino */
106*05a0b428SJohn Marino
107*05a0b428SJohn Marino #include <float.h>
108*05a0b428SJohn Marino #include <math.h>
109*05a0b428SJohn Marino
110*05a0b428SJohn Marino #include "math_private.h"
111*05a0b428SJohn Marino
112*05a0b428SJohn Marino static const double
113*05a0b428SJohn Marino tiny = 1e-300,
114*05a0b428SJohn Marino half= 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
115*05a0b428SJohn Marino one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
116*05a0b428SJohn Marino two = 2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */
117*05a0b428SJohn Marino /* c = (float)0.84506291151 */
118*05a0b428SJohn Marino erx = 8.45062911510467529297e-01, /* 0x3FEB0AC1, 0x60000000 */
119*05a0b428SJohn Marino /*
120*05a0b428SJohn Marino * Coefficients for approximation to erf on [0,0.84375]
121*05a0b428SJohn Marino */
122*05a0b428SJohn Marino efx = 1.28379167095512586316e-01, /* 0x3FC06EBA, 0x8214DB69 */
123*05a0b428SJohn Marino efx8= 1.02703333676410069053e+00, /* 0x3FF06EBA, 0x8214DB69 */
124*05a0b428SJohn Marino pp0 = 1.28379167095512558561e-01, /* 0x3FC06EBA, 0x8214DB68 */
125*05a0b428SJohn Marino pp1 = -3.25042107247001499370e-01, /* 0xBFD4CD7D, 0x691CB913 */
126*05a0b428SJohn Marino pp2 = -2.84817495755985104766e-02, /* 0xBF9D2A51, 0xDBD7194F */
127*05a0b428SJohn Marino pp3 = -5.77027029648944159157e-03, /* 0xBF77A291, 0x236668E4 */
128*05a0b428SJohn Marino pp4 = -2.37630166566501626084e-05, /* 0xBEF8EAD6, 0x120016AC */
129*05a0b428SJohn Marino qq1 = 3.97917223959155352819e-01, /* 0x3FD97779, 0xCDDADC09 */
130*05a0b428SJohn Marino qq2 = 6.50222499887672944485e-02, /* 0x3FB0A54C, 0x5536CEBA */
131*05a0b428SJohn Marino qq3 = 5.08130628187576562776e-03, /* 0x3F74D022, 0xC4D36B0F */
132*05a0b428SJohn Marino qq4 = 1.32494738004321644526e-04, /* 0x3F215DC9, 0x221C1A10 */
133*05a0b428SJohn Marino qq5 = -3.96022827877536812320e-06, /* 0xBED09C43, 0x42A26120 */
134*05a0b428SJohn Marino /*
135*05a0b428SJohn Marino * Coefficients for approximation to erf in [0.84375,1.25]
136*05a0b428SJohn Marino */
137*05a0b428SJohn Marino pa0 = -2.36211856075265944077e-03, /* 0xBF6359B8, 0xBEF77538 */
138*05a0b428SJohn Marino pa1 = 4.14856118683748331666e-01, /* 0x3FDA8D00, 0xAD92B34D */
139*05a0b428SJohn Marino pa2 = -3.72207876035701323847e-01, /* 0xBFD7D240, 0xFBB8C3F1 */
140*05a0b428SJohn Marino pa3 = 3.18346619901161753674e-01, /* 0x3FD45FCA, 0x805120E4 */
141*05a0b428SJohn Marino pa4 = -1.10894694282396677476e-01, /* 0xBFBC6398, 0x3D3E28EC */
142*05a0b428SJohn Marino pa5 = 3.54783043256182359371e-02, /* 0x3FA22A36, 0x599795EB */
143*05a0b428SJohn Marino pa6 = -2.16637559486879084300e-03, /* 0xBF61BF38, 0x0A96073F */
144*05a0b428SJohn Marino qa1 = 1.06420880400844228286e-01, /* 0x3FBB3E66, 0x18EEE323 */
145*05a0b428SJohn Marino qa2 = 5.40397917702171048937e-01, /* 0x3FE14AF0, 0x92EB6F33 */
146*05a0b428SJohn Marino qa3 = 7.18286544141962662868e-02, /* 0x3FB2635C, 0xD99FE9A7 */
147*05a0b428SJohn Marino qa4 = 1.26171219808761642112e-01, /* 0x3FC02660, 0xE763351F */
148*05a0b428SJohn Marino qa5 = 1.36370839120290507362e-02, /* 0x3F8BEDC2, 0x6B51DD1C */
149*05a0b428SJohn Marino qa6 = 1.19844998467991074170e-02, /* 0x3F888B54, 0x5735151D */
150*05a0b428SJohn Marino /*
151*05a0b428SJohn Marino * Coefficients for approximation to erfc in [1.25,1/0.35]
152*05a0b428SJohn Marino */
153*05a0b428SJohn Marino ra0 = -9.86494403484714822705e-03, /* 0xBF843412, 0x600D6435 */
154*05a0b428SJohn Marino ra1 = -6.93858572707181764372e-01, /* 0xBFE63416, 0xE4BA7360 */
155*05a0b428SJohn Marino ra2 = -1.05586262253232909814e+01, /* 0xC0251E04, 0x41B0E726 */
156*05a0b428SJohn Marino ra3 = -6.23753324503260060396e+01, /* 0xC04F300A, 0xE4CBA38D */
157*05a0b428SJohn Marino ra4 = -1.62396669462573470355e+02, /* 0xC0644CB1, 0x84282266 */
158*05a0b428SJohn Marino ra5 = -1.84605092906711035994e+02, /* 0xC067135C, 0xEBCCABB2 */
159*05a0b428SJohn Marino ra6 = -8.12874355063065934246e+01, /* 0xC0545265, 0x57E4D2F2 */
160*05a0b428SJohn Marino ra7 = -9.81432934416914548592e+00, /* 0xC023A0EF, 0xC69AC25C */
161*05a0b428SJohn Marino sa1 = 1.96512716674392571292e+01, /* 0x4033A6B9, 0xBD707687 */
162*05a0b428SJohn Marino sa2 = 1.37657754143519042600e+02, /* 0x4061350C, 0x526AE721 */
163*05a0b428SJohn Marino sa3 = 4.34565877475229228821e+02, /* 0x407B290D, 0xD58A1A71 */
164*05a0b428SJohn Marino sa4 = 6.45387271733267880336e+02, /* 0x40842B19, 0x21EC2868 */
165*05a0b428SJohn Marino sa5 = 4.29008140027567833386e+02, /* 0x407AD021, 0x57700314 */
166*05a0b428SJohn Marino sa6 = 1.08635005541779435134e+02, /* 0x405B28A3, 0xEE48AE2C */
167*05a0b428SJohn Marino sa7 = 6.57024977031928170135e+00, /* 0x401A47EF, 0x8E484A93 */
168*05a0b428SJohn Marino sa8 = -6.04244152148580987438e-02, /* 0xBFAEEFF2, 0xEE749A62 */
169*05a0b428SJohn Marino /*
170*05a0b428SJohn Marino * Coefficients for approximation to erfc in [1/.35,28]
171*05a0b428SJohn Marino */
172*05a0b428SJohn Marino rb0 = -9.86494292470009928597e-03, /* 0xBF843412, 0x39E86F4A */
173*05a0b428SJohn Marino rb1 = -7.99283237680523006574e-01, /* 0xBFE993BA, 0x70C285DE */
174*05a0b428SJohn Marino rb2 = -1.77579549177547519889e+01, /* 0xC031C209, 0x555F995A */
175*05a0b428SJohn Marino rb3 = -1.60636384855821916062e+02, /* 0xC064145D, 0x43C5ED98 */
176*05a0b428SJohn Marino rb4 = -6.37566443368389627722e+02, /* 0xC083EC88, 0x1375F228 */
177*05a0b428SJohn Marino rb5 = -1.02509513161107724954e+03, /* 0xC0900461, 0x6A2E5992 */
178*05a0b428SJohn Marino rb6 = -4.83519191608651397019e+02, /* 0xC07E384E, 0x9BDC383F */
179*05a0b428SJohn Marino sb1 = 3.03380607434824582924e+01, /* 0x403E568B, 0x261D5190 */
180*05a0b428SJohn Marino sb2 = 3.25792512996573918826e+02, /* 0x40745CAE, 0x221B9F0A */
181*05a0b428SJohn Marino sb3 = 1.53672958608443695994e+03, /* 0x409802EB, 0x189D5118 */
182*05a0b428SJohn Marino sb4 = 3.19985821950859553908e+03, /* 0x40A8FFB7, 0x688C246A */
183*05a0b428SJohn Marino sb5 = 2.55305040643316442583e+03, /* 0x40A3F219, 0xCEDF3BE6 */
184*05a0b428SJohn Marino sb6 = 4.74528541206955367215e+02, /* 0x407DA874, 0xE79FE763 */
185*05a0b428SJohn Marino sb7 = -2.24409524465858183362e+01; /* 0xC03670E2, 0x42712D62 */
186*05a0b428SJohn Marino
187*05a0b428SJohn Marino double
erf(double x)188*05a0b428SJohn Marino erf(double x)
189*05a0b428SJohn Marino {
190*05a0b428SJohn Marino int32_t hx,ix,i;
191*05a0b428SJohn Marino double R,S,P,Q,s,y,z,r;
192*05a0b428SJohn Marino GET_HIGH_WORD(hx,x);
193*05a0b428SJohn Marino ix = hx&0x7fffffff;
194*05a0b428SJohn Marino if(ix>=0x7ff00000) { /* erf(nan)=nan */
195*05a0b428SJohn Marino i = ((u_int32_t)hx>>31)<<1;
196*05a0b428SJohn Marino return (double)(1-i)+one/x; /* erf(+-inf)=+-1 */
197*05a0b428SJohn Marino }
198*05a0b428SJohn Marino
199*05a0b428SJohn Marino if(ix < 0x3feb0000) { /* |x|<0.84375 */
200*05a0b428SJohn Marino if(ix < 0x3e300000) { /* |x|<2**-28 */
201*05a0b428SJohn Marino if (ix < 0x00800000)
202*05a0b428SJohn Marino return 0.125*(8.0*x+efx8*x); /*avoid underflow */
203*05a0b428SJohn Marino return x + efx*x;
204*05a0b428SJohn Marino }
205*05a0b428SJohn Marino z = x*x;
206*05a0b428SJohn Marino r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
207*05a0b428SJohn Marino s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
208*05a0b428SJohn Marino y = r/s;
209*05a0b428SJohn Marino return x + x*y;
210*05a0b428SJohn Marino }
211*05a0b428SJohn Marino if(ix < 0x3ff40000) { /* 0.84375 <= |x| < 1.25 */
212*05a0b428SJohn Marino s = fabs(x)-one;
213*05a0b428SJohn Marino P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
214*05a0b428SJohn Marino Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
215*05a0b428SJohn Marino if(hx>=0) return erx + P/Q; else return -erx - P/Q;
216*05a0b428SJohn Marino }
217*05a0b428SJohn Marino if (ix >= 0x40180000) { /* inf>|x|>=6 */
218*05a0b428SJohn Marino if(hx>=0) return one-tiny; else return tiny-one;
219*05a0b428SJohn Marino }
220*05a0b428SJohn Marino x = fabs(x);
221*05a0b428SJohn Marino s = one/(x*x);
222*05a0b428SJohn Marino if(ix< 0x4006DB6E) { /* |x| < 1/0.35 */
223*05a0b428SJohn Marino R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
224*05a0b428SJohn Marino ra5+s*(ra6+s*ra7))))));
225*05a0b428SJohn Marino S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
226*05a0b428SJohn Marino sa5+s*(sa6+s*(sa7+s*sa8)))))));
227*05a0b428SJohn Marino } else { /* |x| >= 1/0.35 */
228*05a0b428SJohn Marino R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
229*05a0b428SJohn Marino rb5+s*rb6)))));
230*05a0b428SJohn Marino S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
231*05a0b428SJohn Marino sb5+s*(sb6+s*sb7))))));
232*05a0b428SJohn Marino }
233*05a0b428SJohn Marino z = x;
234*05a0b428SJohn Marino SET_LOW_WORD(z,0);
235*05a0b428SJohn Marino r = exp(-z*z-0.5625)*exp((z-x)*(z+x)+R/S);
236*05a0b428SJohn Marino if(hx>=0) return one-r/x; else return r/x-one;
237*05a0b428SJohn Marino }
238*05a0b428SJohn Marino
239*05a0b428SJohn Marino double
erfc(double x)240*05a0b428SJohn Marino erfc(double x)
241*05a0b428SJohn Marino {
242*05a0b428SJohn Marino int32_t hx,ix;
243*05a0b428SJohn Marino double R,S,P,Q,s,y,z,r;
244*05a0b428SJohn Marino GET_HIGH_WORD(hx,x);
245*05a0b428SJohn Marino ix = hx&0x7fffffff;
246*05a0b428SJohn Marino if(ix>=0x7ff00000) { /* erfc(nan)=nan */
247*05a0b428SJohn Marino /* erfc(+-inf)=0,2 */
248*05a0b428SJohn Marino return (double)(((u_int32_t)hx>>31)<<1)+one/x;
249*05a0b428SJohn Marino }
250*05a0b428SJohn Marino
251*05a0b428SJohn Marino if(ix < 0x3feb0000) { /* |x|<0.84375 */
252*05a0b428SJohn Marino if(ix < 0x3c700000) /* |x|<2**-56 */
253*05a0b428SJohn Marino return one-x;
254*05a0b428SJohn Marino z = x*x;
255*05a0b428SJohn Marino r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
256*05a0b428SJohn Marino s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
257*05a0b428SJohn Marino y = r/s;
258*05a0b428SJohn Marino if(hx < 0x3fd00000) { /* x<1/4 */
259*05a0b428SJohn Marino return one-(x+x*y);
260*05a0b428SJohn Marino } else {
261*05a0b428SJohn Marino r = x*y;
262*05a0b428SJohn Marino r += (x-half);
263*05a0b428SJohn Marino return half - r ;
264*05a0b428SJohn Marino }
265*05a0b428SJohn Marino }
266*05a0b428SJohn Marino if(ix < 0x3ff40000) { /* 0.84375 <= |x| < 1.25 */
267*05a0b428SJohn Marino s = fabs(x)-one;
268*05a0b428SJohn Marino P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
269*05a0b428SJohn Marino Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
270*05a0b428SJohn Marino if(hx>=0) {
271*05a0b428SJohn Marino z = one-erx; return z - P/Q;
272*05a0b428SJohn Marino } else {
273*05a0b428SJohn Marino z = erx+P/Q; return one+z;
274*05a0b428SJohn Marino }
275*05a0b428SJohn Marino }
276*05a0b428SJohn Marino if (ix < 0x403c0000) { /* |x|<28 */
277*05a0b428SJohn Marino x = fabs(x);
278*05a0b428SJohn Marino s = one/(x*x);
279*05a0b428SJohn Marino if(ix< 0x4006DB6D) { /* |x| < 1/.35 ~ 2.857143*/
280*05a0b428SJohn Marino R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
281*05a0b428SJohn Marino ra5+s*(ra6+s*ra7))))));
282*05a0b428SJohn Marino S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
283*05a0b428SJohn Marino sa5+s*(sa6+s*(sa7+s*sa8)))))));
284*05a0b428SJohn Marino } else { /* |x| >= 1/.35 ~ 2.857143 */
285*05a0b428SJohn Marino if(hx<0&&ix>=0x40180000) return two-tiny;/* x < -6 */
286*05a0b428SJohn Marino R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
287*05a0b428SJohn Marino rb5+s*rb6)))));
288*05a0b428SJohn Marino S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
289*05a0b428SJohn Marino sb5+s*(sb6+s*sb7))))));
290*05a0b428SJohn Marino }
291*05a0b428SJohn Marino z = x;
292*05a0b428SJohn Marino SET_LOW_WORD(z,0);
293*05a0b428SJohn Marino r = exp(-z*z-0.5625) * exp((z-x)*(z+x)+R/S);
294*05a0b428SJohn Marino if(hx>0) return r/x; else return two-r/x;
295*05a0b428SJohn Marino } else {
296*05a0b428SJohn Marino if(hx>0) return tiny*tiny; else return two-tiny;
297*05a0b428SJohn Marino }
298*05a0b428SJohn Marino }
299*05a0b428SJohn Marino
300*05a0b428SJohn Marino #if LDBL_MANT_DIG == DBL_MANT_DIG
301*05a0b428SJohn Marino __strong_alias(erfl, erf);
302*05a0b428SJohn Marino __strong_alias(erfcl, erf);
303*05a0b428SJohn Marino #endif /* LDBL_MANT_DIG == DBL_MANT_DIG */
304