xref: /dflybsd-src/contrib/openbsd_libm/src/ld80/e_logl.c (revision 4382f29d99a100bd77a81697c2f699c11f6a472a)
1*05a0b428SJohn Marino /*	$OpenBSD: e_logl.c,v 1.3 2013/11/12 20:35:19 martynas Exp $	*/
2*05a0b428SJohn Marino 
3*05a0b428SJohn Marino /*
4*05a0b428SJohn Marino  * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
5*05a0b428SJohn Marino  *
6*05a0b428SJohn Marino  * Permission to use, copy, modify, and distribute this software for any
7*05a0b428SJohn Marino  * purpose with or without fee is hereby granted, provided that the above
8*05a0b428SJohn Marino  * copyright notice and this permission notice appear in all copies.
9*05a0b428SJohn Marino  *
10*05a0b428SJohn Marino  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11*05a0b428SJohn Marino  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12*05a0b428SJohn Marino  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13*05a0b428SJohn Marino  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14*05a0b428SJohn Marino  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15*05a0b428SJohn Marino  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16*05a0b428SJohn Marino  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17*05a0b428SJohn Marino  */
18*05a0b428SJohn Marino 
19*05a0b428SJohn Marino /*							logl.c
20*05a0b428SJohn Marino  *
21*05a0b428SJohn Marino  *	Natural logarithm, long double precision
22*05a0b428SJohn Marino  *
23*05a0b428SJohn Marino  *
24*05a0b428SJohn Marino  *
25*05a0b428SJohn Marino  * SYNOPSIS:
26*05a0b428SJohn Marino  *
27*05a0b428SJohn Marino  * long double x, y, logl();
28*05a0b428SJohn Marino  *
29*05a0b428SJohn Marino  * y = logl( x );
30*05a0b428SJohn Marino  *
31*05a0b428SJohn Marino  *
32*05a0b428SJohn Marino  *
33*05a0b428SJohn Marino  * DESCRIPTION:
34*05a0b428SJohn Marino  *
35*05a0b428SJohn Marino  * Returns the base e (2.718...) logarithm of x.
36*05a0b428SJohn Marino  *
37*05a0b428SJohn Marino  * The argument is separated into its exponent and fractional
38*05a0b428SJohn Marino  * parts.  If the exponent is between -1 and +1, the logarithm
39*05a0b428SJohn Marino  * of the fraction is approximated by
40*05a0b428SJohn Marino  *
41*05a0b428SJohn Marino  *     log(1+x) = x - 0.5 x**2 + x**3 P(x)/Q(x).
42*05a0b428SJohn Marino  *
43*05a0b428SJohn Marino  * Otherwise, setting  z = 2(x-1)/x+1),
44*05a0b428SJohn Marino  *
45*05a0b428SJohn Marino  *     log(x) = z + z**3 P(z)/Q(z).
46*05a0b428SJohn Marino  *
47*05a0b428SJohn Marino  *
48*05a0b428SJohn Marino  *
49*05a0b428SJohn Marino  * ACCURACY:
50*05a0b428SJohn Marino  *
51*05a0b428SJohn Marino  *                      Relative error:
52*05a0b428SJohn Marino  * arithmetic   domain     # trials      peak         rms
53*05a0b428SJohn Marino  *    IEEE      0.5, 2.0    150000      8.71e-20    2.75e-20
54*05a0b428SJohn Marino  *    IEEE     exp(+-10000) 100000      5.39e-20    2.34e-20
55*05a0b428SJohn Marino  *
56*05a0b428SJohn Marino  * In the tests over the interval exp(+-10000), the logarithms
57*05a0b428SJohn Marino  * of the random arguments were uniformly distributed over
58*05a0b428SJohn Marino  * [-10000, +10000].
59*05a0b428SJohn Marino  *
60*05a0b428SJohn Marino  * ERROR MESSAGES:
61*05a0b428SJohn Marino  *
62*05a0b428SJohn Marino  * log singularity:  x = 0; returns -INFINITY
63*05a0b428SJohn Marino  * log domain:       x < 0; returns NAN
64*05a0b428SJohn Marino  */
65*05a0b428SJohn Marino 
66*05a0b428SJohn Marino #include <math.h>
67*05a0b428SJohn Marino 
68*05a0b428SJohn Marino #include "math_private.h"
69*05a0b428SJohn Marino 
70*05a0b428SJohn Marino /* Coefficients for log(1+x) = x - x**2/2 + x**3 P(x)/Q(x)
71*05a0b428SJohn Marino  * 1/sqrt(2) <= x < sqrt(2)
72*05a0b428SJohn Marino  * Theoretical peak relative error = 2.32e-20
73*05a0b428SJohn Marino  */
74*05a0b428SJohn Marino static long double P[] = {
75*05a0b428SJohn Marino  4.5270000862445199635215E-5L,
76*05a0b428SJohn Marino  4.9854102823193375972212E-1L,
77*05a0b428SJohn Marino  6.5787325942061044846969E0L,
78*05a0b428SJohn Marino  2.9911919328553073277375E1L,
79*05a0b428SJohn Marino  6.0949667980987787057556E1L,
80*05a0b428SJohn Marino  5.7112963590585538103336E1L,
81*05a0b428SJohn Marino  2.0039553499201281259648E1L,
82*05a0b428SJohn Marino };
83*05a0b428SJohn Marino static long double Q[] = {
84*05a0b428SJohn Marino /* 1.0000000000000000000000E0,*/
85*05a0b428SJohn Marino  1.5062909083469192043167E1L,
86*05a0b428SJohn Marino  8.3047565967967209469434E1L,
87*05a0b428SJohn Marino  2.2176239823732856465394E2L,
88*05a0b428SJohn Marino  3.0909872225312059774938E2L,
89*05a0b428SJohn Marino  2.1642788614495947685003E2L,
90*05a0b428SJohn Marino  6.0118660497603843919306E1L,
91*05a0b428SJohn Marino };
92*05a0b428SJohn Marino 
93*05a0b428SJohn Marino /* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2),
94*05a0b428SJohn Marino  * where z = 2(x-1)/(x+1)
95*05a0b428SJohn Marino  * 1/sqrt(2) <= x < sqrt(2)
96*05a0b428SJohn Marino  * Theoretical peak relative error = 6.16e-22
97*05a0b428SJohn Marino  */
98*05a0b428SJohn Marino 
99*05a0b428SJohn Marino static long double R[4] = {
100*05a0b428SJohn Marino  1.9757429581415468984296E-3L,
101*05a0b428SJohn Marino -7.1990767473014147232598E-1L,
102*05a0b428SJohn Marino  1.0777257190312272158094E1L,
103*05a0b428SJohn Marino -3.5717684488096787370998E1L,
104*05a0b428SJohn Marino };
105*05a0b428SJohn Marino static long double S[4] = {
106*05a0b428SJohn Marino /* 1.00000000000000000000E0L,*/
107*05a0b428SJohn Marino -2.6201045551331104417768E1L,
108*05a0b428SJohn Marino  1.9361891836232102174846E2L,
109*05a0b428SJohn Marino -4.2861221385716144629696E2L,
110*05a0b428SJohn Marino };
111*05a0b428SJohn Marino static const long double C1 = 6.9314575195312500000000E-1L;
112*05a0b428SJohn Marino static const long double C2 = 1.4286068203094172321215E-6L;
113*05a0b428SJohn Marino 
114*05a0b428SJohn Marino #define SQRTH 0.70710678118654752440L
115*05a0b428SJohn Marino 
116*05a0b428SJohn Marino long double
logl(long double x)117*05a0b428SJohn Marino logl(long double x)
118*05a0b428SJohn Marino {
119*05a0b428SJohn Marino long double y, z;
120*05a0b428SJohn Marino int e;
121*05a0b428SJohn Marino 
122*05a0b428SJohn Marino if( isnan(x) )
123*05a0b428SJohn Marino 	return(x);
124*05a0b428SJohn Marino if( x == INFINITY )
125*05a0b428SJohn Marino 	return(x);
126*05a0b428SJohn Marino /* Test for domain */
127*05a0b428SJohn Marino if( x <= 0.0L )
128*05a0b428SJohn Marino 	{
129*05a0b428SJohn Marino 	if( x == 0.0L )
130*05a0b428SJohn Marino 		return( -INFINITY );
131*05a0b428SJohn Marino 	else
132*05a0b428SJohn Marino 		return( NAN );
133*05a0b428SJohn Marino 	}
134*05a0b428SJohn Marino 
135*05a0b428SJohn Marino /* separate mantissa from exponent */
136*05a0b428SJohn Marino 
137*05a0b428SJohn Marino /* Note, frexp is used so that denormal numbers
138*05a0b428SJohn Marino  * will be handled properly.
139*05a0b428SJohn Marino  */
140*05a0b428SJohn Marino x = frexpl( x, &e );
141*05a0b428SJohn Marino 
142*05a0b428SJohn Marino /* logarithm using log(x) = z + z**3 P(z)/Q(z),
143*05a0b428SJohn Marino  * where z = 2(x-1)/x+1)
144*05a0b428SJohn Marino  */
145*05a0b428SJohn Marino if( (e > 2) || (e < -2) )
146*05a0b428SJohn Marino {
147*05a0b428SJohn Marino if( x < SQRTH )
148*05a0b428SJohn Marino 	{ /* 2( 2x-1 )/( 2x+1 ) */
149*05a0b428SJohn Marino 	e -= 1;
150*05a0b428SJohn Marino 	z = x - 0.5L;
151*05a0b428SJohn Marino 	y = 0.5L * z + 0.5L;
152*05a0b428SJohn Marino 	}
153*05a0b428SJohn Marino else
154*05a0b428SJohn Marino 	{ /*  2 (x-1)/(x+1)   */
155*05a0b428SJohn Marino 	z = x - 0.5L;
156*05a0b428SJohn Marino 	z -= 0.5L;
157*05a0b428SJohn Marino 	y = 0.5L * x  + 0.5L;
158*05a0b428SJohn Marino 	}
159*05a0b428SJohn Marino x = z / y;
160*05a0b428SJohn Marino z = x*x;
161*05a0b428SJohn Marino z = x * ( z * __polevll( z, R, 3 ) / __p1evll( z, S, 3 ) );
162*05a0b428SJohn Marino z = z + e * C2;
163*05a0b428SJohn Marino z = z + x;
164*05a0b428SJohn Marino z = z + e * C1;
165*05a0b428SJohn Marino return( z );
166*05a0b428SJohn Marino }
167*05a0b428SJohn Marino 
168*05a0b428SJohn Marino 
169*05a0b428SJohn Marino /* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */
170*05a0b428SJohn Marino 
171*05a0b428SJohn Marino if( x < SQRTH )
172*05a0b428SJohn Marino 	{
173*05a0b428SJohn Marino 	e -= 1;
174*05a0b428SJohn Marino 	x = ldexpl( x, 1 ) - 1.0L; /*  2x - 1  */
175*05a0b428SJohn Marino 	}
176*05a0b428SJohn Marino else
177*05a0b428SJohn Marino 	{
178*05a0b428SJohn Marino 	x = x - 1.0L;
179*05a0b428SJohn Marino 	}
180*05a0b428SJohn Marino z = x*x;
181*05a0b428SJohn Marino y = x * ( z * __polevll( x, P, 6 ) / __p1evll( x, Q, 6 ) );
182*05a0b428SJohn Marino y = y + e * C2;
183*05a0b428SJohn Marino z = y - ldexpl( z, -1 );   /*  y - 0.5 * z  */
184*05a0b428SJohn Marino /* Note, the sum of above terms does not exceed x/4,
185*05a0b428SJohn Marino  * so it contributes at most about 1/4 lsb to the error.
186*05a0b428SJohn Marino  */
187*05a0b428SJohn Marino z = z + x;
188*05a0b428SJohn Marino z = z + e * C1; /* This sum has an error of 1/2 lsb. */
189*05a0b428SJohn Marino return( z );
190*05a0b428SJohn Marino }
191