1*05a0b428SJohn Marino /* $OpenBSD: e_log10l.c,v 1.2 2013/11/12 20:35:19 martynas Exp $ */ 2*05a0b428SJohn Marino 3*05a0b428SJohn Marino /* 4*05a0b428SJohn Marino * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net> 5*05a0b428SJohn Marino * 6*05a0b428SJohn Marino * Permission to use, copy, modify, and distribute this software for any 7*05a0b428SJohn Marino * purpose with or without fee is hereby granted, provided that the above 8*05a0b428SJohn Marino * copyright notice and this permission notice appear in all copies. 9*05a0b428SJohn Marino * 10*05a0b428SJohn Marino * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 11*05a0b428SJohn Marino * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 12*05a0b428SJohn Marino * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 13*05a0b428SJohn Marino * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 14*05a0b428SJohn Marino * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 15*05a0b428SJohn Marino * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 16*05a0b428SJohn Marino * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 17*05a0b428SJohn Marino */ 18*05a0b428SJohn Marino 19*05a0b428SJohn Marino /* log10l.c 20*05a0b428SJohn Marino * 21*05a0b428SJohn Marino * Common logarithm, long double precision 22*05a0b428SJohn Marino * 23*05a0b428SJohn Marino * 24*05a0b428SJohn Marino * 25*05a0b428SJohn Marino * SYNOPSIS: 26*05a0b428SJohn Marino * 27*05a0b428SJohn Marino * long double x, y, log10l(); 28*05a0b428SJohn Marino * 29*05a0b428SJohn Marino * y = log10l( x ); 30*05a0b428SJohn Marino * 31*05a0b428SJohn Marino * 32*05a0b428SJohn Marino * 33*05a0b428SJohn Marino * DESCRIPTION: 34*05a0b428SJohn Marino * 35*05a0b428SJohn Marino * Returns the base 10 logarithm of x. 36*05a0b428SJohn Marino * 37*05a0b428SJohn Marino * The argument is separated into its exponent and fractional 38*05a0b428SJohn Marino * parts. If the exponent is between -1 and +1, the logarithm 39*05a0b428SJohn Marino * of the fraction is approximated by 40*05a0b428SJohn Marino * 41*05a0b428SJohn Marino * log(1+x) = x - 0.5 x**2 + x**3 P(x)/Q(x). 42*05a0b428SJohn Marino * 43*05a0b428SJohn Marino * Otherwise, setting z = 2(x-1)/x+1), 44*05a0b428SJohn Marino * 45*05a0b428SJohn Marino * log(x) = z + z**3 P(z)/Q(z). 46*05a0b428SJohn Marino * 47*05a0b428SJohn Marino * 48*05a0b428SJohn Marino * 49*05a0b428SJohn Marino * ACCURACY: 50*05a0b428SJohn Marino * 51*05a0b428SJohn Marino * Relative error: 52*05a0b428SJohn Marino * arithmetic domain # trials peak rms 53*05a0b428SJohn Marino * IEEE 0.5, 2.0 30000 9.0e-20 2.6e-20 54*05a0b428SJohn Marino * IEEE exp(+-10000) 30000 6.0e-20 2.3e-20 55*05a0b428SJohn Marino * 56*05a0b428SJohn Marino * In the tests over the interval exp(+-10000), the logarithms 57*05a0b428SJohn Marino * of the random arguments were uniformly distributed over 58*05a0b428SJohn Marino * [-10000, +10000]. 59*05a0b428SJohn Marino * 60*05a0b428SJohn Marino * ERROR MESSAGES: 61*05a0b428SJohn Marino * 62*05a0b428SJohn Marino * log singularity: x = 0; returns MINLOG 63*05a0b428SJohn Marino * log domain: x < 0; returns MINLOG 64*05a0b428SJohn Marino */ 65*05a0b428SJohn Marino 66*05a0b428SJohn Marino #include <math.h> 67*05a0b428SJohn Marino 68*05a0b428SJohn Marino #include "math_private.h" 69*05a0b428SJohn Marino 70*05a0b428SJohn Marino /* Coefficients for log(1+x) = x - x**2/2 + x**3 P(x)/Q(x) 71*05a0b428SJohn Marino * 1/sqrt(2) <= x < sqrt(2) 72*05a0b428SJohn Marino * Theoretical peak relative error = 6.2e-22 73*05a0b428SJohn Marino */ 74*05a0b428SJohn Marino static long double P[] = { 75*05a0b428SJohn Marino 4.9962495940332550844739E-1L, 76*05a0b428SJohn Marino 1.0767376367209449010438E1L, 77*05a0b428SJohn Marino 7.7671073698359539859595E1L, 78*05a0b428SJohn Marino 2.5620629828144409632571E2L, 79*05a0b428SJohn Marino 4.2401812743503691187826E2L, 80*05a0b428SJohn Marino 3.4258224542413922935104E2L, 81*05a0b428SJohn Marino 1.0747524399916215149070E2L, 82*05a0b428SJohn Marino }; 83*05a0b428SJohn Marino static long double Q[] = { 84*05a0b428SJohn Marino /* 1.0000000000000000000000E0,*/ 85*05a0b428SJohn Marino 2.3479774160285863271658E1L, 86*05a0b428SJohn Marino 1.9444210022760132894510E2L, 87*05a0b428SJohn Marino 7.7952888181207260646090E2L, 88*05a0b428SJohn Marino 1.6911722418503949084863E3L, 89*05a0b428SJohn Marino 2.0307734695595183428202E3L, 90*05a0b428SJohn Marino 1.2695660352705325274404E3L, 91*05a0b428SJohn Marino 3.2242573199748645407652E2L, 92*05a0b428SJohn Marino }; 93*05a0b428SJohn Marino 94*05a0b428SJohn Marino /* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2), 95*05a0b428SJohn Marino * where z = 2(x-1)/(x+1) 96*05a0b428SJohn Marino * 1/sqrt(2) <= x < sqrt(2) 97*05a0b428SJohn Marino * Theoretical peak relative error = 6.16e-22 98*05a0b428SJohn Marino */ 99*05a0b428SJohn Marino 100*05a0b428SJohn Marino static long double R[4] = { 101*05a0b428SJohn Marino 1.9757429581415468984296E-3L, 102*05a0b428SJohn Marino -7.1990767473014147232598E-1L, 103*05a0b428SJohn Marino 1.0777257190312272158094E1L, 104*05a0b428SJohn Marino -3.5717684488096787370998E1L, 105*05a0b428SJohn Marino }; 106*05a0b428SJohn Marino static long double S[4] = { 107*05a0b428SJohn Marino /* 1.00000000000000000000E0L,*/ 108*05a0b428SJohn Marino -2.6201045551331104417768E1L, 109*05a0b428SJohn Marino 1.9361891836232102174846E2L, 110*05a0b428SJohn Marino -4.2861221385716144629696E2L, 111*05a0b428SJohn Marino }; 112*05a0b428SJohn Marino /* log10(2) */ 113*05a0b428SJohn Marino #define L102A 0.3125L 114*05a0b428SJohn Marino #define L102B -1.1470004336018804786261e-2L 115*05a0b428SJohn Marino /* log10(e) */ 116*05a0b428SJohn Marino #define L10EA 0.5L 117*05a0b428SJohn Marino #define L10EB -6.5705518096748172348871e-2L 118*05a0b428SJohn Marino 119*05a0b428SJohn Marino #define SQRTH 0.70710678118654752440L 120*05a0b428SJohn Marino 121*05a0b428SJohn Marino long double 122*05a0b428SJohn Marino log10l(long double x) 123*05a0b428SJohn Marino { 124*05a0b428SJohn Marino long double y; 125*05a0b428SJohn Marino volatile long double z; 126*05a0b428SJohn Marino int e; 127*05a0b428SJohn Marino 128*05a0b428SJohn Marino if( isnan(x) ) 129*05a0b428SJohn Marino return(x); 130*05a0b428SJohn Marino /* Test for domain */ 131*05a0b428SJohn Marino if( x <= 0.0L ) 132*05a0b428SJohn Marino { 133*05a0b428SJohn Marino if( x == 0.0L ) 134*05a0b428SJohn Marino return (-1.0L / (x - x)); 135*05a0b428SJohn Marino else 136*05a0b428SJohn Marino return (x - x) / (x - x); 137*05a0b428SJohn Marino } 138*05a0b428SJohn Marino if( x == INFINITY ) 139*05a0b428SJohn Marino return(INFINITY); 140*05a0b428SJohn Marino /* separate mantissa from exponent */ 141*05a0b428SJohn Marino 142*05a0b428SJohn Marino /* Note, frexp is used so that denormal numbers 143*05a0b428SJohn Marino * will be handled properly. 144*05a0b428SJohn Marino */ 145*05a0b428SJohn Marino x = frexpl( x, &e ); 146*05a0b428SJohn Marino 147*05a0b428SJohn Marino 148*05a0b428SJohn Marino /* logarithm using log(x) = z + z**3 P(z)/Q(z), 149*05a0b428SJohn Marino * where z = 2(x-1)/x+1) 150*05a0b428SJohn Marino */ 151*05a0b428SJohn Marino if( (e > 2) || (e < -2) ) 152*05a0b428SJohn Marino { 153*05a0b428SJohn Marino if( x < SQRTH ) 154*05a0b428SJohn Marino { /* 2( 2x-1 )/( 2x+1 ) */ 155*05a0b428SJohn Marino e -= 1; 156*05a0b428SJohn Marino z = x - 0.5L; 157*05a0b428SJohn Marino y = 0.5L * z + 0.5L; 158*05a0b428SJohn Marino } 159*05a0b428SJohn Marino else 160*05a0b428SJohn Marino { /* 2 (x-1)/(x+1) */ 161*05a0b428SJohn Marino z = x - 0.5L; 162*05a0b428SJohn Marino z -= 0.5L; 163*05a0b428SJohn Marino y = 0.5L * x + 0.5L; 164*05a0b428SJohn Marino } 165*05a0b428SJohn Marino x = z / y; 166*05a0b428SJohn Marino z = x*x; 167*05a0b428SJohn Marino y = x * ( z * __polevll( z, R, 3 ) / __p1evll( z, S, 3 ) ); 168*05a0b428SJohn Marino goto done; 169*05a0b428SJohn Marino } 170*05a0b428SJohn Marino 171*05a0b428SJohn Marino 172*05a0b428SJohn Marino /* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */ 173*05a0b428SJohn Marino 174*05a0b428SJohn Marino if( x < SQRTH ) 175*05a0b428SJohn Marino { 176*05a0b428SJohn Marino e -= 1; 177*05a0b428SJohn Marino x = ldexpl( x, 1 ) - 1.0L; /* 2x - 1 */ 178*05a0b428SJohn Marino } 179*05a0b428SJohn Marino else 180*05a0b428SJohn Marino { 181*05a0b428SJohn Marino x = x - 1.0L; 182*05a0b428SJohn Marino } 183*05a0b428SJohn Marino z = x*x; 184*05a0b428SJohn Marino y = x * ( z * __polevll( x, P, 6 ) / __p1evll( x, Q, 7 ) ); 185*05a0b428SJohn Marino y = y - ldexpl( z, -1 ); /* -0.5x^2 + ... */ 186*05a0b428SJohn Marino 187*05a0b428SJohn Marino done: 188*05a0b428SJohn Marino 189*05a0b428SJohn Marino /* Multiply log of fraction by log10(e) 190*05a0b428SJohn Marino * and base 2 exponent by log10(2). 191*05a0b428SJohn Marino * 192*05a0b428SJohn Marino * ***CAUTION*** 193*05a0b428SJohn Marino * 194*05a0b428SJohn Marino * This sequence of operations is critical and it may 195*05a0b428SJohn Marino * be horribly defeated by some compiler optimizers. 196*05a0b428SJohn Marino */ 197*05a0b428SJohn Marino z = y * (L10EB); 198*05a0b428SJohn Marino z += x * (L10EB); 199*05a0b428SJohn Marino z += e * (L102B); 200*05a0b428SJohn Marino z += y * (L10EA); 201*05a0b428SJohn Marino z += x * (L10EA); 202*05a0b428SJohn Marino z += e * (L102A); 203*05a0b428SJohn Marino 204*05a0b428SJohn Marino return( z ); 205*05a0b428SJohn Marino } 206