xref: /dflybsd-src/contrib/openbsd_libm/src/ld80/e_log10l.c (revision 4382f29d99a100bd77a81697c2f699c11f6a472a)
1*05a0b428SJohn Marino /*	$OpenBSD: e_log10l.c,v 1.2 2013/11/12 20:35:19 martynas Exp $	*/
2*05a0b428SJohn Marino 
3*05a0b428SJohn Marino /*
4*05a0b428SJohn Marino  * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
5*05a0b428SJohn Marino  *
6*05a0b428SJohn Marino  * Permission to use, copy, modify, and distribute this software for any
7*05a0b428SJohn Marino  * purpose with or without fee is hereby granted, provided that the above
8*05a0b428SJohn Marino  * copyright notice and this permission notice appear in all copies.
9*05a0b428SJohn Marino  *
10*05a0b428SJohn Marino  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11*05a0b428SJohn Marino  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12*05a0b428SJohn Marino  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13*05a0b428SJohn Marino  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14*05a0b428SJohn Marino  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15*05a0b428SJohn Marino  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16*05a0b428SJohn Marino  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17*05a0b428SJohn Marino  */
18*05a0b428SJohn Marino 
19*05a0b428SJohn Marino /*							log10l.c
20*05a0b428SJohn Marino  *
21*05a0b428SJohn Marino  *	Common logarithm, long double precision
22*05a0b428SJohn Marino  *
23*05a0b428SJohn Marino  *
24*05a0b428SJohn Marino  *
25*05a0b428SJohn Marino  * SYNOPSIS:
26*05a0b428SJohn Marino  *
27*05a0b428SJohn Marino  * long double x, y, log10l();
28*05a0b428SJohn Marino  *
29*05a0b428SJohn Marino  * y = log10l( x );
30*05a0b428SJohn Marino  *
31*05a0b428SJohn Marino  *
32*05a0b428SJohn Marino  *
33*05a0b428SJohn Marino  * DESCRIPTION:
34*05a0b428SJohn Marino  *
35*05a0b428SJohn Marino  * Returns the base 10 logarithm of x.
36*05a0b428SJohn Marino  *
37*05a0b428SJohn Marino  * The argument is separated into its exponent and fractional
38*05a0b428SJohn Marino  * parts.  If the exponent is between -1 and +1, the logarithm
39*05a0b428SJohn Marino  * of the fraction is approximated by
40*05a0b428SJohn Marino  *
41*05a0b428SJohn Marino  *     log(1+x) = x - 0.5 x**2 + x**3 P(x)/Q(x).
42*05a0b428SJohn Marino  *
43*05a0b428SJohn Marino  * Otherwise, setting  z = 2(x-1)/x+1),
44*05a0b428SJohn Marino  *
45*05a0b428SJohn Marino  *     log(x) = z + z**3 P(z)/Q(z).
46*05a0b428SJohn Marino  *
47*05a0b428SJohn Marino  *
48*05a0b428SJohn Marino  *
49*05a0b428SJohn Marino  * ACCURACY:
50*05a0b428SJohn Marino  *
51*05a0b428SJohn Marino  *                      Relative error:
52*05a0b428SJohn Marino  * arithmetic   domain     # trials      peak         rms
53*05a0b428SJohn Marino  *    IEEE      0.5, 2.0     30000      9.0e-20     2.6e-20
54*05a0b428SJohn Marino  *    IEEE     exp(+-10000)  30000      6.0e-20     2.3e-20
55*05a0b428SJohn Marino  *
56*05a0b428SJohn Marino  * In the tests over the interval exp(+-10000), the logarithms
57*05a0b428SJohn Marino  * of the random arguments were uniformly distributed over
58*05a0b428SJohn Marino  * [-10000, +10000].
59*05a0b428SJohn Marino  *
60*05a0b428SJohn Marino  * ERROR MESSAGES:
61*05a0b428SJohn Marino  *
62*05a0b428SJohn Marino  * log singularity:  x = 0; returns MINLOG
63*05a0b428SJohn Marino  * log domain:       x < 0; returns MINLOG
64*05a0b428SJohn Marino  */
65*05a0b428SJohn Marino 
66*05a0b428SJohn Marino #include <math.h>
67*05a0b428SJohn Marino 
68*05a0b428SJohn Marino #include "math_private.h"
69*05a0b428SJohn Marino 
70*05a0b428SJohn Marino /* Coefficients for log(1+x) = x - x**2/2 + x**3 P(x)/Q(x)
71*05a0b428SJohn Marino  * 1/sqrt(2) <= x < sqrt(2)
72*05a0b428SJohn Marino  * Theoretical peak relative error = 6.2e-22
73*05a0b428SJohn Marino  */
74*05a0b428SJohn Marino static long double P[] = {
75*05a0b428SJohn Marino  4.9962495940332550844739E-1L,
76*05a0b428SJohn Marino  1.0767376367209449010438E1L,
77*05a0b428SJohn Marino  7.7671073698359539859595E1L,
78*05a0b428SJohn Marino  2.5620629828144409632571E2L,
79*05a0b428SJohn Marino  4.2401812743503691187826E2L,
80*05a0b428SJohn Marino  3.4258224542413922935104E2L,
81*05a0b428SJohn Marino  1.0747524399916215149070E2L,
82*05a0b428SJohn Marino };
83*05a0b428SJohn Marino static long double Q[] = {
84*05a0b428SJohn Marino /* 1.0000000000000000000000E0,*/
85*05a0b428SJohn Marino  2.3479774160285863271658E1L,
86*05a0b428SJohn Marino  1.9444210022760132894510E2L,
87*05a0b428SJohn Marino  7.7952888181207260646090E2L,
88*05a0b428SJohn Marino  1.6911722418503949084863E3L,
89*05a0b428SJohn Marino  2.0307734695595183428202E3L,
90*05a0b428SJohn Marino  1.2695660352705325274404E3L,
91*05a0b428SJohn Marino  3.2242573199748645407652E2L,
92*05a0b428SJohn Marino };
93*05a0b428SJohn Marino 
94*05a0b428SJohn Marino /* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2),
95*05a0b428SJohn Marino  * where z = 2(x-1)/(x+1)
96*05a0b428SJohn Marino  * 1/sqrt(2) <= x < sqrt(2)
97*05a0b428SJohn Marino  * Theoretical peak relative error = 6.16e-22
98*05a0b428SJohn Marino  */
99*05a0b428SJohn Marino 
100*05a0b428SJohn Marino static long double R[4] = {
101*05a0b428SJohn Marino  1.9757429581415468984296E-3L,
102*05a0b428SJohn Marino -7.1990767473014147232598E-1L,
103*05a0b428SJohn Marino  1.0777257190312272158094E1L,
104*05a0b428SJohn Marino -3.5717684488096787370998E1L,
105*05a0b428SJohn Marino };
106*05a0b428SJohn Marino static long double S[4] = {
107*05a0b428SJohn Marino /* 1.00000000000000000000E0L,*/
108*05a0b428SJohn Marino -2.6201045551331104417768E1L,
109*05a0b428SJohn Marino  1.9361891836232102174846E2L,
110*05a0b428SJohn Marino -4.2861221385716144629696E2L,
111*05a0b428SJohn Marino };
112*05a0b428SJohn Marino /* log10(2) */
113*05a0b428SJohn Marino #define L102A 0.3125L
114*05a0b428SJohn Marino #define L102B -1.1470004336018804786261e-2L
115*05a0b428SJohn Marino /* log10(e) */
116*05a0b428SJohn Marino #define L10EA 0.5L
117*05a0b428SJohn Marino #define L10EB -6.5705518096748172348871e-2L
118*05a0b428SJohn Marino 
119*05a0b428SJohn Marino #define SQRTH 0.70710678118654752440L
120*05a0b428SJohn Marino 
121*05a0b428SJohn Marino long double
log10l(long double x)122*05a0b428SJohn Marino log10l(long double x)
123*05a0b428SJohn Marino {
124*05a0b428SJohn Marino long double y;
125*05a0b428SJohn Marino volatile long double z;
126*05a0b428SJohn Marino int e;
127*05a0b428SJohn Marino 
128*05a0b428SJohn Marino if( isnan(x) )
129*05a0b428SJohn Marino 	return(x);
130*05a0b428SJohn Marino /* Test for domain */
131*05a0b428SJohn Marino if( x <= 0.0L )
132*05a0b428SJohn Marino 	{
133*05a0b428SJohn Marino 	if( x == 0.0L )
134*05a0b428SJohn Marino 		return (-1.0L / (x - x));
135*05a0b428SJohn Marino 	else
136*05a0b428SJohn Marino 		return (x - x) / (x - x);
137*05a0b428SJohn Marino 	}
138*05a0b428SJohn Marino if( x == INFINITY )
139*05a0b428SJohn Marino 	return(INFINITY);
140*05a0b428SJohn Marino /* separate mantissa from exponent */
141*05a0b428SJohn Marino 
142*05a0b428SJohn Marino /* Note, frexp is used so that denormal numbers
143*05a0b428SJohn Marino  * will be handled properly.
144*05a0b428SJohn Marino  */
145*05a0b428SJohn Marino x = frexpl( x, &e );
146*05a0b428SJohn Marino 
147*05a0b428SJohn Marino 
148*05a0b428SJohn Marino /* logarithm using log(x) = z + z**3 P(z)/Q(z),
149*05a0b428SJohn Marino  * where z = 2(x-1)/x+1)
150*05a0b428SJohn Marino  */
151*05a0b428SJohn Marino if( (e > 2) || (e < -2) )
152*05a0b428SJohn Marino {
153*05a0b428SJohn Marino if( x < SQRTH )
154*05a0b428SJohn Marino 	{ /* 2( 2x-1 )/( 2x+1 ) */
155*05a0b428SJohn Marino 	e -= 1;
156*05a0b428SJohn Marino 	z = x - 0.5L;
157*05a0b428SJohn Marino 	y = 0.5L * z + 0.5L;
158*05a0b428SJohn Marino 	}
159*05a0b428SJohn Marino else
160*05a0b428SJohn Marino 	{ /*  2 (x-1)/(x+1)   */
161*05a0b428SJohn Marino 	z = x - 0.5L;
162*05a0b428SJohn Marino 	z -= 0.5L;
163*05a0b428SJohn Marino 	y = 0.5L * x  + 0.5L;
164*05a0b428SJohn Marino 	}
165*05a0b428SJohn Marino x = z / y;
166*05a0b428SJohn Marino z = x*x;
167*05a0b428SJohn Marino y = x * ( z * __polevll( z, R, 3 ) / __p1evll( z, S, 3 ) );
168*05a0b428SJohn Marino goto done;
169*05a0b428SJohn Marino }
170*05a0b428SJohn Marino 
171*05a0b428SJohn Marino 
172*05a0b428SJohn Marino /* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */
173*05a0b428SJohn Marino 
174*05a0b428SJohn Marino if( x < SQRTH )
175*05a0b428SJohn Marino 	{
176*05a0b428SJohn Marino 	e -= 1;
177*05a0b428SJohn Marino 	x = ldexpl( x, 1 ) - 1.0L; /*  2x - 1  */
178*05a0b428SJohn Marino 	}
179*05a0b428SJohn Marino else
180*05a0b428SJohn Marino 	{
181*05a0b428SJohn Marino 	x = x - 1.0L;
182*05a0b428SJohn Marino 	}
183*05a0b428SJohn Marino z = x*x;
184*05a0b428SJohn Marino y = x * ( z * __polevll( x, P, 6 ) / __p1evll( x, Q, 7 ) );
185*05a0b428SJohn Marino y = y - ldexpl( z, -1 );   /* -0.5x^2 + ... */
186*05a0b428SJohn Marino 
187*05a0b428SJohn Marino done:
188*05a0b428SJohn Marino 
189*05a0b428SJohn Marino /* Multiply log of fraction by log10(e)
190*05a0b428SJohn Marino  * and base 2 exponent by log10(2).
191*05a0b428SJohn Marino  *
192*05a0b428SJohn Marino  * ***CAUTION***
193*05a0b428SJohn Marino  *
194*05a0b428SJohn Marino  * This sequence of operations is critical and it may
195*05a0b428SJohn Marino  * be horribly defeated by some compiler optimizers.
196*05a0b428SJohn Marino  */
197*05a0b428SJohn Marino z = y * (L10EB);
198*05a0b428SJohn Marino z += x * (L10EB);
199*05a0b428SJohn Marino z += e * (L102B);
200*05a0b428SJohn Marino z += y * (L10EA);
201*05a0b428SJohn Marino z += x * (L10EA);
202*05a0b428SJohn Marino z += e * (L102A);
203*05a0b428SJohn Marino 
204*05a0b428SJohn Marino return( z );
205*05a0b428SJohn Marino }
206