1*05a0b428SJohn Marino /* @(#)k_tan.c 5.1 93/09/24 */ 2*05a0b428SJohn Marino /* 3*05a0b428SJohn Marino * ==================================================== 4*05a0b428SJohn Marino * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. 5*05a0b428SJohn Marino * 6*05a0b428SJohn Marino * Developed at SunPro, a Sun Microsystems, Inc. business. 7*05a0b428SJohn Marino * Permission to use, copy, modify, and distribute this 8*05a0b428SJohn Marino * software is freely granted, provided that this notice 9*05a0b428SJohn Marino * is preserved. 10*05a0b428SJohn Marino * ==================================================== 11*05a0b428SJohn Marino */ 12*05a0b428SJohn Marino 13*05a0b428SJohn Marino /* __kernel_tan( x, y, k ) 14*05a0b428SJohn Marino * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854 15*05a0b428SJohn Marino * Input x is assumed to be bounded by ~pi/4 in magnitude. 16*05a0b428SJohn Marino * Input y is the tail of x. 17*05a0b428SJohn Marino * Input k indicates whether tan (if k=1) or 18*05a0b428SJohn Marino * -1/tan (if k= -1) is returned. 19*05a0b428SJohn Marino * 20*05a0b428SJohn Marino * Algorithm 21*05a0b428SJohn Marino * 1. Since tan(-x) = -tan(x), we need only to consider positive x. 22*05a0b428SJohn Marino * 2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0. 23*05a0b428SJohn Marino * 3. tan(x) is approximated by a odd polynomial of degree 27 on 24*05a0b428SJohn Marino * [0,0.67434] 25*05a0b428SJohn Marino * 3 27 26*05a0b428SJohn Marino * tan(x) ~ x + T1*x + ... + T13*x 27*05a0b428SJohn Marino * where 28*05a0b428SJohn Marino * 29*05a0b428SJohn Marino * |tan(x) 2 4 26 | -59.2 30*05a0b428SJohn Marino * |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2 31*05a0b428SJohn Marino * | x | 32*05a0b428SJohn Marino * 33*05a0b428SJohn Marino * Note: tan(x+y) = tan(x) + tan'(x)*y 34*05a0b428SJohn Marino * ~ tan(x) + (1+x*x)*y 35*05a0b428SJohn Marino * Therefore, for better accuracy in computing tan(x+y), let 36*05a0b428SJohn Marino * 3 2 2 2 2 37*05a0b428SJohn Marino * r = x *(T2+x *(T3+x *(...+x *(T12+x *T13)))) 38*05a0b428SJohn Marino * then 39*05a0b428SJohn Marino * 3 2 40*05a0b428SJohn Marino * tan(x+y) = x + (T1*x + (x *(r+y)+y)) 41*05a0b428SJohn Marino * 42*05a0b428SJohn Marino * 4. For x in [0.67434,pi/4], let y = pi/4 - x, then 43*05a0b428SJohn Marino * tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y)) 44*05a0b428SJohn Marino * = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y))) 45*05a0b428SJohn Marino */ 46*05a0b428SJohn Marino 47*05a0b428SJohn Marino #include "math.h" 48*05a0b428SJohn Marino #include "math_private.h" 49*05a0b428SJohn Marino 50*05a0b428SJohn Marino static const double xxx[] = { 51*05a0b428SJohn Marino 3.33333333333334091986e-01, /* 3FD55555, 55555563 */ 52*05a0b428SJohn Marino 1.33333333333201242699e-01, /* 3FC11111, 1110FE7A */ 53*05a0b428SJohn Marino 5.39682539762260521377e-02, /* 3FABA1BA, 1BB341FE */ 54*05a0b428SJohn Marino 2.18694882948595424599e-02, /* 3F9664F4, 8406D637 */ 55*05a0b428SJohn Marino 8.86323982359930005737e-03, /* 3F8226E3, E96E8493 */ 56*05a0b428SJohn Marino 3.59207910759131235356e-03, /* 3F6D6D22, C9560328 */ 57*05a0b428SJohn Marino 1.45620945432529025516e-03, /* 3F57DBC8, FEE08315 */ 58*05a0b428SJohn Marino 5.88041240820264096874e-04, /* 3F4344D8, F2F26501 */ 59*05a0b428SJohn Marino 2.46463134818469906812e-04, /* 3F3026F7, 1A8D1068 */ 60*05a0b428SJohn Marino 7.81794442939557092300e-05, /* 3F147E88, A03792A6 */ 61*05a0b428SJohn Marino 7.14072491382608190305e-05, /* 3F12B80F, 32F0A7E9 */ 62*05a0b428SJohn Marino -1.85586374855275456654e-05, /* BEF375CB, DB605373 */ 63*05a0b428SJohn Marino 2.59073051863633712884e-05, /* 3EFB2A70, 74BF7AD4 */ 64*05a0b428SJohn Marino /* one */ 1.00000000000000000000e+00, /* 3FF00000, 00000000 */ 65*05a0b428SJohn Marino /* pio4 */ 7.85398163397448278999e-01, /* 3FE921FB, 54442D18 */ 66*05a0b428SJohn Marino /* pio4lo */ 3.06161699786838301793e-17 /* 3C81A626, 33145C07 */ 67*05a0b428SJohn Marino }; 68*05a0b428SJohn Marino #define one xxx[13] 69*05a0b428SJohn Marino #define pio4 xxx[14] 70*05a0b428SJohn Marino #define pio4lo xxx[15] 71*05a0b428SJohn Marino #define T xxx 72*05a0b428SJohn Marino 73*05a0b428SJohn Marino double 74*05a0b428SJohn Marino __kernel_tan(double x, double y, int iy) 75*05a0b428SJohn Marino { 76*05a0b428SJohn Marino double z, r, v, w, s; 77*05a0b428SJohn Marino int32_t ix, hx; 78*05a0b428SJohn Marino 79*05a0b428SJohn Marino GET_HIGH_WORD(hx, x); /* high word of x */ 80*05a0b428SJohn Marino ix = hx & 0x7fffffff; /* high word of |x| */ 81*05a0b428SJohn Marino if (ix < 0x3e300000) { /* x < 2**-28 */ 82*05a0b428SJohn Marino if ((int) x == 0) { /* generate inexact */ 83*05a0b428SJohn Marino u_int32_t low; 84*05a0b428SJohn Marino GET_LOW_WORD(low, x); 85*05a0b428SJohn Marino if(((ix | low) | (iy + 1)) == 0) 86*05a0b428SJohn Marino return one / fabs(x); 87*05a0b428SJohn Marino else { 88*05a0b428SJohn Marino if (iy == 1) 89*05a0b428SJohn Marino return x; 90*05a0b428SJohn Marino else { /* compute -1 / (x+y) carefully */ 91*05a0b428SJohn Marino double a, t; 92*05a0b428SJohn Marino 93*05a0b428SJohn Marino z = w = x + y; 94*05a0b428SJohn Marino SET_LOW_WORD(z, 0); 95*05a0b428SJohn Marino v = y - (z - x); 96*05a0b428SJohn Marino t = a = -one / w; 97*05a0b428SJohn Marino SET_LOW_WORD(t, 0); 98*05a0b428SJohn Marino s = one + t * z; 99*05a0b428SJohn Marino return t + a * (s + t * v); 100*05a0b428SJohn Marino } 101*05a0b428SJohn Marino } 102*05a0b428SJohn Marino } 103*05a0b428SJohn Marino } 104*05a0b428SJohn Marino if (ix >= 0x3FE59428) { /* |x| >= 0.6744 */ 105*05a0b428SJohn Marino if (hx < 0) { 106*05a0b428SJohn Marino x = -x; 107*05a0b428SJohn Marino y = -y; 108*05a0b428SJohn Marino } 109*05a0b428SJohn Marino z = pio4 - x; 110*05a0b428SJohn Marino w = pio4lo - y; 111*05a0b428SJohn Marino x = z + w; 112*05a0b428SJohn Marino y = 0.0; 113*05a0b428SJohn Marino } 114*05a0b428SJohn Marino z = x * x; 115*05a0b428SJohn Marino w = z * z; 116*05a0b428SJohn Marino /* 117*05a0b428SJohn Marino * Break x^5*(T[1]+x^2*T[2]+...) into 118*05a0b428SJohn Marino * x^5(T[1]+x^4*T[3]+...+x^20*T[11]) + 119*05a0b428SJohn Marino * x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12])) 120*05a0b428SJohn Marino */ 121*05a0b428SJohn Marino r = T[1] + w * (T[3] + w * (T[5] + w * (T[7] + w * (T[9] + 122*05a0b428SJohn Marino w * T[11])))); 123*05a0b428SJohn Marino v = z * (T[2] + w * (T[4] + w * (T[6] + w * (T[8] + w * (T[10] + 124*05a0b428SJohn Marino w * T[12]))))); 125*05a0b428SJohn Marino s = z * x; 126*05a0b428SJohn Marino r = y + z * (s * (r + v) + y); 127*05a0b428SJohn Marino r += T[0] * s; 128*05a0b428SJohn Marino w = x + r; 129*05a0b428SJohn Marino if (ix >= 0x3FE59428) { 130*05a0b428SJohn Marino v = (double) iy; 131*05a0b428SJohn Marino return (double) (1 - ((hx >> 30) & 2)) * 132*05a0b428SJohn Marino (v - 2.0 * (x - (w * w / (w + v) - r))); 133*05a0b428SJohn Marino } 134*05a0b428SJohn Marino if (iy == 1) 135*05a0b428SJohn Marino return w; 136*05a0b428SJohn Marino else { 137*05a0b428SJohn Marino /* 138*05a0b428SJohn Marino * if allow error up to 2 ulp, simply return 139*05a0b428SJohn Marino * -1.0 / (x+r) here 140*05a0b428SJohn Marino */ 141*05a0b428SJohn Marino /* compute -1.0 / (x+r) accurately */ 142*05a0b428SJohn Marino double a, t; 143*05a0b428SJohn Marino z = w; 144*05a0b428SJohn Marino SET_LOW_WORD(z, 0); 145*05a0b428SJohn Marino v = r - (z - x); /* z+v = r+x */ 146*05a0b428SJohn Marino t = a = -1.0 / w; /* a = -1.0/w */ 147*05a0b428SJohn Marino SET_LOW_WORD(t, 0); 148*05a0b428SJohn Marino s = 1.0 + t * z; 149*05a0b428SJohn Marino return t + a * (s + t * v); 150*05a0b428SJohn Marino } 151*05a0b428SJohn Marino } 152