xref: /dflybsd-src/contrib/openbsd_libm/src/k_tan.c (revision 4382f29d99a100bd77a81697c2f699c11f6a472a)
1*05a0b428SJohn Marino /* @(#)k_tan.c 5.1 93/09/24 */
2*05a0b428SJohn Marino /*
3*05a0b428SJohn Marino  * ====================================================
4*05a0b428SJohn Marino  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5*05a0b428SJohn Marino  *
6*05a0b428SJohn Marino  * Developed at SunPro, a Sun Microsystems, Inc. business.
7*05a0b428SJohn Marino  * Permission to use, copy, modify, and distribute this
8*05a0b428SJohn Marino  * software is freely granted, provided that this notice
9*05a0b428SJohn Marino  * is preserved.
10*05a0b428SJohn Marino  * ====================================================
11*05a0b428SJohn Marino  */
12*05a0b428SJohn Marino 
13*05a0b428SJohn Marino /* __kernel_tan( x, y, k )
14*05a0b428SJohn Marino  * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854
15*05a0b428SJohn Marino  * Input x is assumed to be bounded by ~pi/4 in magnitude.
16*05a0b428SJohn Marino  * Input y is the tail of x.
17*05a0b428SJohn Marino  * Input k indicates whether tan (if k=1) or
18*05a0b428SJohn Marino  * -1/tan (if k= -1) is returned.
19*05a0b428SJohn Marino  *
20*05a0b428SJohn Marino  * Algorithm
21*05a0b428SJohn Marino  *	1. Since tan(-x) = -tan(x), we need only to consider positive x.
22*05a0b428SJohn Marino  *	2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0.
23*05a0b428SJohn Marino  *	3. tan(x) is approximated by a odd polynomial of degree 27 on
24*05a0b428SJohn Marino  *	   [0,0.67434]
25*05a0b428SJohn Marino  *		  	         3             27
26*05a0b428SJohn Marino  *	   	tan(x) ~ x + T1*x + ... + T13*x
27*05a0b428SJohn Marino  *	   where
28*05a0b428SJohn Marino  *
29*05a0b428SJohn Marino  * 	        |tan(x)         2     4            26   |     -59.2
30*05a0b428SJohn Marino  * 	        |----- - (1+T1*x +T2*x +.... +T13*x    )| <= 2
31*05a0b428SJohn Marino  * 	        |  x 					|
32*05a0b428SJohn Marino  *
33*05a0b428SJohn Marino  *	   Note: tan(x+y) = tan(x) + tan'(x)*y
34*05a0b428SJohn Marino  *		          ~ tan(x) + (1+x*x)*y
35*05a0b428SJohn Marino  *	   Therefore, for better accuracy in computing tan(x+y), let
36*05a0b428SJohn Marino  *		     3      2      2       2       2
37*05a0b428SJohn Marino  *		r = x *(T2+x *(T3+x *(...+x *(T12+x *T13))))
38*05a0b428SJohn Marino  *	   then
39*05a0b428SJohn Marino  *		 		    3    2
40*05a0b428SJohn Marino  *		tan(x+y) = x + (T1*x + (x *(r+y)+y))
41*05a0b428SJohn Marino  *
42*05a0b428SJohn Marino  *      4. For x in [0.67434,pi/4],  let y = pi/4 - x, then
43*05a0b428SJohn Marino  *		tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
44*05a0b428SJohn Marino  *		       = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
45*05a0b428SJohn Marino  */
46*05a0b428SJohn Marino 
47*05a0b428SJohn Marino #include "math.h"
48*05a0b428SJohn Marino #include "math_private.h"
49*05a0b428SJohn Marino 
50*05a0b428SJohn Marino static const double xxx[] = {
51*05a0b428SJohn Marino 		 3.33333333333334091986e-01,	/* 3FD55555, 55555563 */
52*05a0b428SJohn Marino 		 1.33333333333201242699e-01,	/* 3FC11111, 1110FE7A */
53*05a0b428SJohn Marino 		 5.39682539762260521377e-02,	/* 3FABA1BA, 1BB341FE */
54*05a0b428SJohn Marino 		 2.18694882948595424599e-02,	/* 3F9664F4, 8406D637 */
55*05a0b428SJohn Marino 		 8.86323982359930005737e-03,	/* 3F8226E3, E96E8493 */
56*05a0b428SJohn Marino 		 3.59207910759131235356e-03,	/* 3F6D6D22, C9560328 */
57*05a0b428SJohn Marino 		 1.45620945432529025516e-03,	/* 3F57DBC8, FEE08315 */
58*05a0b428SJohn Marino 		 5.88041240820264096874e-04,	/* 3F4344D8, F2F26501 */
59*05a0b428SJohn Marino 		 2.46463134818469906812e-04,	/* 3F3026F7, 1A8D1068 */
60*05a0b428SJohn Marino 		 7.81794442939557092300e-05,	/* 3F147E88, A03792A6 */
61*05a0b428SJohn Marino 		 7.14072491382608190305e-05,	/* 3F12B80F, 32F0A7E9 */
62*05a0b428SJohn Marino 		-1.85586374855275456654e-05,	/* BEF375CB, DB605373 */
63*05a0b428SJohn Marino 		 2.59073051863633712884e-05,	/* 3EFB2A70, 74BF7AD4 */
64*05a0b428SJohn Marino /* one */	 1.00000000000000000000e+00,	/* 3FF00000, 00000000 */
65*05a0b428SJohn Marino /* pio4 */	 7.85398163397448278999e-01,	/* 3FE921FB, 54442D18 */
66*05a0b428SJohn Marino /* pio4lo */	 3.06161699786838301793e-17	/* 3C81A626, 33145C07 */
67*05a0b428SJohn Marino };
68*05a0b428SJohn Marino #define	one	xxx[13]
69*05a0b428SJohn Marino #define	pio4	xxx[14]
70*05a0b428SJohn Marino #define	pio4lo	xxx[15]
71*05a0b428SJohn Marino #define	T	xxx
72*05a0b428SJohn Marino 
73*05a0b428SJohn Marino double
__kernel_tan(double x,double y,int iy)74*05a0b428SJohn Marino __kernel_tan(double x, double y, int iy)
75*05a0b428SJohn Marino {
76*05a0b428SJohn Marino 	double z, r, v, w, s;
77*05a0b428SJohn Marino 	int32_t ix, hx;
78*05a0b428SJohn Marino 
79*05a0b428SJohn Marino 	GET_HIGH_WORD(hx, x);	/* high word of x */
80*05a0b428SJohn Marino 	ix = hx & 0x7fffffff;			/* high word of |x| */
81*05a0b428SJohn Marino 	if (ix < 0x3e300000) {			/* x < 2**-28 */
82*05a0b428SJohn Marino 		if ((int) x == 0) {		/* generate inexact */
83*05a0b428SJohn Marino 			u_int32_t low;
84*05a0b428SJohn Marino 			GET_LOW_WORD(low, x);
85*05a0b428SJohn Marino 			if(((ix | low) | (iy + 1)) == 0)
86*05a0b428SJohn Marino 				return one / fabs(x);
87*05a0b428SJohn Marino 			else {
88*05a0b428SJohn Marino 				if (iy == 1)
89*05a0b428SJohn Marino 					return x;
90*05a0b428SJohn Marino 				else {	/* compute -1 / (x+y) carefully */
91*05a0b428SJohn Marino 					double a, t;
92*05a0b428SJohn Marino 
93*05a0b428SJohn Marino 					z = w = x + y;
94*05a0b428SJohn Marino 					SET_LOW_WORD(z, 0);
95*05a0b428SJohn Marino 					v = y - (z - x);
96*05a0b428SJohn Marino 					t = a = -one / w;
97*05a0b428SJohn Marino 					SET_LOW_WORD(t, 0);
98*05a0b428SJohn Marino 					s = one + t * z;
99*05a0b428SJohn Marino 					return t + a * (s + t * v);
100*05a0b428SJohn Marino 				}
101*05a0b428SJohn Marino 			}
102*05a0b428SJohn Marino 		}
103*05a0b428SJohn Marino 	}
104*05a0b428SJohn Marino 	if (ix >= 0x3FE59428) {	/* |x| >= 0.6744 */
105*05a0b428SJohn Marino 		if (hx < 0) {
106*05a0b428SJohn Marino 			x = -x;
107*05a0b428SJohn Marino 			y = -y;
108*05a0b428SJohn Marino 		}
109*05a0b428SJohn Marino 		z = pio4 - x;
110*05a0b428SJohn Marino 		w = pio4lo - y;
111*05a0b428SJohn Marino 		x = z + w;
112*05a0b428SJohn Marino 		y = 0.0;
113*05a0b428SJohn Marino 	}
114*05a0b428SJohn Marino 	z = x * x;
115*05a0b428SJohn Marino 	w = z * z;
116*05a0b428SJohn Marino 	/*
117*05a0b428SJohn Marino 	 * Break x^5*(T[1]+x^2*T[2]+...) into
118*05a0b428SJohn Marino 	 * x^5(T[1]+x^4*T[3]+...+x^20*T[11]) +
119*05a0b428SJohn Marino 	 * x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12]))
120*05a0b428SJohn Marino 	 */
121*05a0b428SJohn Marino 	r = T[1] + w * (T[3] + w * (T[5] + w * (T[7] + w * (T[9] +
122*05a0b428SJohn Marino 		w * T[11]))));
123*05a0b428SJohn Marino 	v = z * (T[2] + w * (T[4] + w * (T[6] + w * (T[8] + w * (T[10] +
124*05a0b428SJohn Marino 		w * T[12])))));
125*05a0b428SJohn Marino 	s = z * x;
126*05a0b428SJohn Marino 	r = y + z * (s * (r + v) + y);
127*05a0b428SJohn Marino 	r += T[0] * s;
128*05a0b428SJohn Marino 	w = x + r;
129*05a0b428SJohn Marino 	if (ix >= 0x3FE59428) {
130*05a0b428SJohn Marino 		v = (double) iy;
131*05a0b428SJohn Marino 		return (double) (1 - ((hx >> 30) & 2)) *
132*05a0b428SJohn Marino 			(v - 2.0 * (x - (w * w / (w + v) - r)));
133*05a0b428SJohn Marino 	}
134*05a0b428SJohn Marino 	if (iy == 1)
135*05a0b428SJohn Marino 		return w;
136*05a0b428SJohn Marino 	else {
137*05a0b428SJohn Marino 		/*
138*05a0b428SJohn Marino 		 * if allow error up to 2 ulp, simply return
139*05a0b428SJohn Marino 		 * -1.0 / (x+r) here
140*05a0b428SJohn Marino 		 */
141*05a0b428SJohn Marino 		/* compute -1.0 / (x+r) accurately */
142*05a0b428SJohn Marino 		double a, t;
143*05a0b428SJohn Marino 		z = w;
144*05a0b428SJohn Marino 		SET_LOW_WORD(z, 0);
145*05a0b428SJohn Marino 		v = r - (z - x);	/* z+v = r+x */
146*05a0b428SJohn Marino 		t = a = -1.0 / w;	/* a = -1.0/w */
147*05a0b428SJohn Marino 		SET_LOW_WORD(t, 0);
148*05a0b428SJohn Marino 		s = 1.0 + t * z;
149*05a0b428SJohn Marino 		return t + a * (s + t * v);
150*05a0b428SJohn Marino 	}
151*05a0b428SJohn Marino }
152