xref: /dflybsd-src/contrib/openbsd_libm/src/k_cos.c (revision 4382f29d99a100bd77a81697c2f699c11f6a472a)
1*05a0b428SJohn Marino /* @(#)k_cos.c 5.1 93/09/24 */
2*05a0b428SJohn Marino /*
3*05a0b428SJohn Marino  * ====================================================
4*05a0b428SJohn Marino  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5*05a0b428SJohn Marino  *
6*05a0b428SJohn Marino  * Developed at SunPro, a Sun Microsystems, Inc. business.
7*05a0b428SJohn Marino  * Permission to use, copy, modify, and distribute this
8*05a0b428SJohn Marino  * software is freely granted, provided that this notice
9*05a0b428SJohn Marino  * is preserved.
10*05a0b428SJohn Marino  * ====================================================
11*05a0b428SJohn Marino  */
12*05a0b428SJohn Marino 
13*05a0b428SJohn Marino /*
14*05a0b428SJohn Marino  * __kernel_cos( x,  y )
15*05a0b428SJohn Marino  * kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164
16*05a0b428SJohn Marino  * Input x is assumed to be bounded by ~pi/4 in magnitude.
17*05a0b428SJohn Marino  * Input y is the tail of x.
18*05a0b428SJohn Marino  *
19*05a0b428SJohn Marino  * Algorithm
20*05a0b428SJohn Marino  *	1. Since cos(-x) = cos(x), we need only to consider positive x.
21*05a0b428SJohn Marino  *	2. if x < 2^-27 (hx<0x3e400000 0), return 1 with inexact if x!=0.
22*05a0b428SJohn Marino  *	3. cos(x) is approximated by a polynomial of degree 14 on
23*05a0b428SJohn Marino  *	   [0,pi/4]
24*05a0b428SJohn Marino  *		  	                 4            14
25*05a0b428SJohn Marino  *	   	cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x
26*05a0b428SJohn Marino  *	   where the Remes error is
27*05a0b428SJohn Marino  *
28*05a0b428SJohn Marino  * 	|              2     4     6     8     10    12     14 |     -58
29*05a0b428SJohn Marino  * 	|cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x  +C6*x  )| <= 2
30*05a0b428SJohn Marino  * 	|    					               |
31*05a0b428SJohn Marino  *
32*05a0b428SJohn Marino  * 	               4     6     8     10    12     14
33*05a0b428SJohn Marino  *	4. let r = C1*x +C2*x +C3*x +C4*x +C5*x  +C6*x  , then
34*05a0b428SJohn Marino  *	       cos(x) = 1 - x*x/2 + r
35*05a0b428SJohn Marino  *	   since cos(x+y) ~ cos(x) - sin(x)*y
36*05a0b428SJohn Marino  *			  ~ cos(x) - x*y,
37*05a0b428SJohn Marino  *	   a correction term is necessary in cos(x) and hence
38*05a0b428SJohn Marino  *		cos(x+y) = 1 - (x*x/2 - (r - x*y))
39*05a0b428SJohn Marino  *	   For better accuracy when x > 0.3, let qx = |x|/4 with
40*05a0b428SJohn Marino  *	   the last 32 bits mask off, and if x > 0.78125, let qx = 0.28125.
41*05a0b428SJohn Marino  *	   Then
42*05a0b428SJohn Marino  *		cos(x+y) = (1-qx) - ((x*x/2-qx) - (r-x*y)).
43*05a0b428SJohn Marino  *	   Note that 1-qx and (x*x/2-qx) is EXACT here, and the
44*05a0b428SJohn Marino  *	   magnitude of the latter is at least a quarter of x*x/2,
45*05a0b428SJohn Marino  *	   thus, reducing the rounding error in the subtraction.
46*05a0b428SJohn Marino  */
47*05a0b428SJohn Marino 
48*05a0b428SJohn Marino #include "math.h"
49*05a0b428SJohn Marino #include "math_private.h"
50*05a0b428SJohn Marino 
51*05a0b428SJohn Marino static const double
52*05a0b428SJohn Marino one =  1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
53*05a0b428SJohn Marino C1  =  4.16666666666666019037e-02, /* 0x3FA55555, 0x5555554C */
54*05a0b428SJohn Marino C2  = -1.38888888888741095749e-03, /* 0xBF56C16C, 0x16C15177 */
55*05a0b428SJohn Marino C3  =  2.48015872894767294178e-05, /* 0x3EFA01A0, 0x19CB1590 */
56*05a0b428SJohn Marino C4  = -2.75573143513906633035e-07, /* 0xBE927E4F, 0x809C52AD */
57*05a0b428SJohn Marino C5  =  2.08757232129817482790e-09, /* 0x3E21EE9E, 0xBDB4B1C4 */
58*05a0b428SJohn Marino C6  = -1.13596475577881948265e-11; /* 0xBDA8FAE9, 0xBE8838D4 */
59*05a0b428SJohn Marino 
60*05a0b428SJohn Marino double
__kernel_cos(double x,double y)61*05a0b428SJohn Marino __kernel_cos(double x, double y)
62*05a0b428SJohn Marino {
63*05a0b428SJohn Marino 	double a,hz,z,r,qx;
64*05a0b428SJohn Marino 	int32_t ix;
65*05a0b428SJohn Marino 	GET_HIGH_WORD(ix,x);
66*05a0b428SJohn Marino 	ix &= 0x7fffffff;			/* ix = |x|'s high word*/
67*05a0b428SJohn Marino 	if(ix<0x3e400000) {			/* if x < 2**27 */
68*05a0b428SJohn Marino 	    if(((int)x)==0) return one;		/* generate inexact */
69*05a0b428SJohn Marino 	}
70*05a0b428SJohn Marino 	z  = x*x;
71*05a0b428SJohn Marino 	r  = z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*C6)))));
72*05a0b428SJohn Marino 	if(ix < 0x3FD33333) 			/* if |x| < 0.3 */
73*05a0b428SJohn Marino 	    return one - (0.5*z - (z*r - x*y));
74*05a0b428SJohn Marino 	else {
75*05a0b428SJohn Marino 	    if(ix > 0x3fe90000) {		/* x > 0.78125 */
76*05a0b428SJohn Marino 		qx = 0.28125;
77*05a0b428SJohn Marino 	    } else {
78*05a0b428SJohn Marino 	        INSERT_WORDS(qx,ix-0x00200000,0);	/* x/4 */
79*05a0b428SJohn Marino 	    }
80*05a0b428SJohn Marino 	    hz = 0.5*z-qx;
81*05a0b428SJohn Marino 	    a  = one-qx;
82*05a0b428SJohn Marino 	    return a - (hz - (z*r-x*y));
83*05a0b428SJohn Marino 	}
84*05a0b428SJohn Marino }
85