xref: /dflybsd-src/contrib/openbsd_libm/src/e_sqrt.c (revision 4382f29d99a100bd77a81697c2f699c11f6a472a)
1*05a0b428SJohn Marino /* @(#)e_sqrt.c 5.1 93/09/24 */
2*05a0b428SJohn Marino /*
3*05a0b428SJohn Marino  * ====================================================
4*05a0b428SJohn Marino  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5*05a0b428SJohn Marino  *
6*05a0b428SJohn Marino  * Developed at SunPro, a Sun Microsystems, Inc. business.
7*05a0b428SJohn Marino  * Permission to use, copy, modify, and distribute this
8*05a0b428SJohn Marino  * software is freely granted, provided that this notice
9*05a0b428SJohn Marino  * is preserved.
10*05a0b428SJohn Marino  * ====================================================
11*05a0b428SJohn Marino  */
12*05a0b428SJohn Marino 
13*05a0b428SJohn Marino /* sqrt(x)
14*05a0b428SJohn Marino  * Return correctly rounded sqrt.
15*05a0b428SJohn Marino  *           ------------------------------------------
16*05a0b428SJohn Marino  *	     |  Use the hardware sqrt if you have one |
17*05a0b428SJohn Marino  *           ------------------------------------------
18*05a0b428SJohn Marino  * Method:
19*05a0b428SJohn Marino  *   Bit by bit method using integer arithmetic. (Slow, but portable)
20*05a0b428SJohn Marino  *   1. Normalization
21*05a0b428SJohn Marino  *	Scale x to y in [1,4) with even powers of 2:
22*05a0b428SJohn Marino  *	find an integer k such that  1 <= (y=x*2^(2k)) < 4, then
23*05a0b428SJohn Marino  *		sqrt(x) = 2^k * sqrt(y)
24*05a0b428SJohn Marino  *   2. Bit by bit computation
25*05a0b428SJohn Marino  *	Let q  = sqrt(y) truncated to i bit after binary point (q = 1),
26*05a0b428SJohn Marino  *	     i							 0
27*05a0b428SJohn Marino  *                                     i+1         2
28*05a0b428SJohn Marino  *	    s  = 2*q , and	y  =  2   * ( y - q  ).		(1)
29*05a0b428SJohn Marino  *	     i      i            i                 i
30*05a0b428SJohn Marino  *
31*05a0b428SJohn Marino  *	To compute q    from q , one checks whether
32*05a0b428SJohn Marino  *		    i+1       i
33*05a0b428SJohn Marino  *
34*05a0b428SJohn Marino  *			      -(i+1) 2
35*05a0b428SJohn Marino  *			(q + 2      ) <= y.			(2)
36*05a0b428SJohn Marino  *     			  i
37*05a0b428SJohn Marino  *							      -(i+1)
38*05a0b428SJohn Marino  *	If (2) is false, then q   = q ; otherwise q   = q  + 2      .
39*05a0b428SJohn Marino  *		 	       i+1   i             i+1   i
40*05a0b428SJohn Marino  *
41*05a0b428SJohn Marino  *	With some algebric manipulation, it is not difficult to see
42*05a0b428SJohn Marino  *	that (2) is equivalent to
43*05a0b428SJohn Marino  *                             -(i+1)
44*05a0b428SJohn Marino  *			s  +  2       <= y			(3)
45*05a0b428SJohn Marino  *			 i                i
46*05a0b428SJohn Marino  *
47*05a0b428SJohn Marino  *	The advantage of (3) is that s  and y  can be computed by
48*05a0b428SJohn Marino  *				      i      i
49*05a0b428SJohn Marino  *	the following recurrence formula:
50*05a0b428SJohn Marino  *	    if (3) is false
51*05a0b428SJohn Marino  *
52*05a0b428SJohn Marino  *	    s     =  s  ,	y    = y   ;			(4)
53*05a0b428SJohn Marino  *	     i+1      i		 i+1    i
54*05a0b428SJohn Marino  *
55*05a0b428SJohn Marino  *	    otherwise,
56*05a0b428SJohn Marino  *                         -i                     -(i+1)
57*05a0b428SJohn Marino  *	    s	  =  s  + 2  ,  y    = y  -  s  - 2  		(5)
58*05a0b428SJohn Marino  *           i+1      i          i+1    i     i
59*05a0b428SJohn Marino  *
60*05a0b428SJohn Marino  *	One may easily use induction to prove (4) and (5).
61*05a0b428SJohn Marino  *	Note. Since the left hand side of (3) contain only i+2 bits,
62*05a0b428SJohn Marino  *	      it does not necessary to do a full (53-bit) comparison
63*05a0b428SJohn Marino  *	      in (3).
64*05a0b428SJohn Marino  *   3. Final rounding
65*05a0b428SJohn Marino  *	After generating the 53 bits result, we compute one more bit.
66*05a0b428SJohn Marino  *	Together with the remainder, we can decide whether the
67*05a0b428SJohn Marino  *	result is exact, bigger than 1/2ulp, or less than 1/2ulp
68*05a0b428SJohn Marino  *	(it will never equal to 1/2ulp).
69*05a0b428SJohn Marino  *	The rounding mode can be detected by checking whether
70*05a0b428SJohn Marino  *	huge + tiny is equal to huge, and whether huge - tiny is
71*05a0b428SJohn Marino  *	equal to huge for some floating point number "huge" and "tiny".
72*05a0b428SJohn Marino  *
73*05a0b428SJohn Marino  * Special cases:
74*05a0b428SJohn Marino  *	sqrt(+-0) = +-0 	... exact
75*05a0b428SJohn Marino  *	sqrt(inf) = inf
76*05a0b428SJohn Marino  *	sqrt(-ve) = NaN		... with invalid signal
77*05a0b428SJohn Marino  *	sqrt(NaN) = NaN		... with invalid signal for signaling NaN
78*05a0b428SJohn Marino  *
79*05a0b428SJohn Marino  * Other methods : see the appended file at the end of the program below.
80*05a0b428SJohn Marino  *---------------
81*05a0b428SJohn Marino  */
82*05a0b428SJohn Marino 
83*05a0b428SJohn Marino #include <float.h>
84*05a0b428SJohn Marino #include <math.h>
85*05a0b428SJohn Marino 
86*05a0b428SJohn Marino #include "math_private.h"
87*05a0b428SJohn Marino 
88*05a0b428SJohn Marino static	const double	one	= 1.0, tiny=1.0e-300;
89*05a0b428SJohn Marino 
90*05a0b428SJohn Marino double
sqrt(double x)91*05a0b428SJohn Marino sqrt(double x)
92*05a0b428SJohn Marino {
93*05a0b428SJohn Marino 	double z;
94*05a0b428SJohn Marino 	int32_t sign = (int)0x80000000;
95*05a0b428SJohn Marino 	int32_t ix0,s0,q,m,t,i;
96*05a0b428SJohn Marino 	u_int32_t r,t1,s1,ix1,q1;
97*05a0b428SJohn Marino 
98*05a0b428SJohn Marino 	EXTRACT_WORDS(ix0,ix1,x);
99*05a0b428SJohn Marino 
100*05a0b428SJohn Marino     /* take care of Inf and NaN */
101*05a0b428SJohn Marino 	if((ix0&0x7ff00000)==0x7ff00000) {
102*05a0b428SJohn Marino 	    return x*x+x;		/* sqrt(NaN)=NaN, sqrt(+inf)=+inf
103*05a0b428SJohn Marino 					   sqrt(-inf)=sNaN */
104*05a0b428SJohn Marino 	}
105*05a0b428SJohn Marino     /* take care of zero */
106*05a0b428SJohn Marino 	if(ix0<=0) {
107*05a0b428SJohn Marino 	    if(((ix0&(~sign))|ix1)==0) return x;/* sqrt(+-0) = +-0 */
108*05a0b428SJohn Marino 	    else if(ix0<0)
109*05a0b428SJohn Marino 		return (x-x)/(x-x);		/* sqrt(-ve) = sNaN */
110*05a0b428SJohn Marino 	}
111*05a0b428SJohn Marino     /* normalize x */
112*05a0b428SJohn Marino 	m = (ix0>>20);
113*05a0b428SJohn Marino 	if(m==0) {				/* subnormal x */
114*05a0b428SJohn Marino 	    while(ix0==0) {
115*05a0b428SJohn Marino 		m -= 21;
116*05a0b428SJohn Marino 		ix0 |= (ix1>>11); ix1 <<= 21;
117*05a0b428SJohn Marino 	    }
118*05a0b428SJohn Marino 	    for(i=0;(ix0&0x00100000)==0;i++) ix0<<=1;
119*05a0b428SJohn Marino 	    m -= i-1;
120*05a0b428SJohn Marino 	    ix0 |= (ix1>>(32-i));
121*05a0b428SJohn Marino 	    ix1 <<= i;
122*05a0b428SJohn Marino 	}
123*05a0b428SJohn Marino 	m -= 1023;	/* unbias exponent */
124*05a0b428SJohn Marino 	ix0 = (ix0&0x000fffff)|0x00100000;
125*05a0b428SJohn Marino 	if(m&1){	/* odd m, double x to make it even */
126*05a0b428SJohn Marino 	    ix0 += ix0 + ((ix1&sign)>>31);
127*05a0b428SJohn Marino 	    ix1 += ix1;
128*05a0b428SJohn Marino 	}
129*05a0b428SJohn Marino 	m >>= 1;	/* m = [m/2] */
130*05a0b428SJohn Marino 
131*05a0b428SJohn Marino     /* generate sqrt(x) bit by bit */
132*05a0b428SJohn Marino 	ix0 += ix0 + ((ix1&sign)>>31);
133*05a0b428SJohn Marino 	ix1 += ix1;
134*05a0b428SJohn Marino 	q = q1 = s0 = s1 = 0;	/* [q,q1] = sqrt(x) */
135*05a0b428SJohn Marino 	r = 0x00200000;		/* r = moving bit from right to left */
136*05a0b428SJohn Marino 
137*05a0b428SJohn Marino 	while(r!=0) {
138*05a0b428SJohn Marino 	    t = s0+r;
139*05a0b428SJohn Marino 	    if(t<=ix0) {
140*05a0b428SJohn Marino 		s0   = t+r;
141*05a0b428SJohn Marino 		ix0 -= t;
142*05a0b428SJohn Marino 		q   += r;
143*05a0b428SJohn Marino 	    }
144*05a0b428SJohn Marino 	    ix0 += ix0 + ((ix1&sign)>>31);
145*05a0b428SJohn Marino 	    ix1 += ix1;
146*05a0b428SJohn Marino 	    r>>=1;
147*05a0b428SJohn Marino 	}
148*05a0b428SJohn Marino 
149*05a0b428SJohn Marino 	r = sign;
150*05a0b428SJohn Marino 	while(r!=0) {
151*05a0b428SJohn Marino 	    t1 = s1+r;
152*05a0b428SJohn Marino 	    t  = s0;
153*05a0b428SJohn Marino 	    if((t<ix0)||((t==ix0)&&(t1<=ix1))) {
154*05a0b428SJohn Marino 		s1  = t1+r;
155*05a0b428SJohn Marino 		if(((t1&sign)==sign)&&(s1&sign)==0) s0 += 1;
156*05a0b428SJohn Marino 		ix0 -= t;
157*05a0b428SJohn Marino 		if (ix1 < t1) ix0 -= 1;
158*05a0b428SJohn Marino 		ix1 -= t1;
159*05a0b428SJohn Marino 		q1  += r;
160*05a0b428SJohn Marino 	    }
161*05a0b428SJohn Marino 	    ix0 += ix0 + ((ix1&sign)>>31);
162*05a0b428SJohn Marino 	    ix1 += ix1;
163*05a0b428SJohn Marino 	    r>>=1;
164*05a0b428SJohn Marino 	}
165*05a0b428SJohn Marino 
166*05a0b428SJohn Marino     /* use floating add to find out rounding direction */
167*05a0b428SJohn Marino 	if((ix0|ix1)!=0) {
168*05a0b428SJohn Marino 	    z = one-tiny; /* trigger inexact flag */
169*05a0b428SJohn Marino 	    if (z>=one) {
170*05a0b428SJohn Marino 	        z = one+tiny;
171*05a0b428SJohn Marino 	        if (q1==(u_int32_t)0xffffffff) { q1=0; q += 1;}
172*05a0b428SJohn Marino 		else if (z>one) {
173*05a0b428SJohn Marino 		    if (q1==(u_int32_t)0xfffffffe) q+=1;
174*05a0b428SJohn Marino 		    q1+=2;
175*05a0b428SJohn Marino 		} else
176*05a0b428SJohn Marino 	            q1 += (q1&1);
177*05a0b428SJohn Marino 	    }
178*05a0b428SJohn Marino 	}
179*05a0b428SJohn Marino 	ix0 = (q>>1)+0x3fe00000;
180*05a0b428SJohn Marino 	ix1 =  q1>>1;
181*05a0b428SJohn Marino 	if ((q&1)==1) ix1 |= sign;
182*05a0b428SJohn Marino 	ix0 += (m <<20);
183*05a0b428SJohn Marino 	INSERT_WORDS(z,ix0,ix1);
184*05a0b428SJohn Marino 	return z;
185*05a0b428SJohn Marino }
186*05a0b428SJohn Marino 
187*05a0b428SJohn Marino /*
188*05a0b428SJohn Marino Other methods  (use floating-point arithmetic)
189*05a0b428SJohn Marino -------------
190*05a0b428SJohn Marino (This is a copy of a drafted paper by Prof W. Kahan
191*05a0b428SJohn Marino and K.C. Ng, written in May, 1986)
192*05a0b428SJohn Marino 
193*05a0b428SJohn Marino 	Two algorithms are given here to implement sqrt(x)
194*05a0b428SJohn Marino 	(IEEE double precision arithmetic) in software.
195*05a0b428SJohn Marino 	Both supply sqrt(x) correctly rounded. The first algorithm (in
196*05a0b428SJohn Marino 	Section A) uses newton iterations and involves four divisions.
197*05a0b428SJohn Marino 	The second one uses reciproot iterations to avoid division, but
198*05a0b428SJohn Marino 	requires more multiplications. Both algorithms need the ability
199*05a0b428SJohn Marino 	to chop results of arithmetic operations instead of round them,
200*05a0b428SJohn Marino 	and the INEXACT flag to indicate when an arithmetic operation
201*05a0b428SJohn Marino 	is executed exactly with no roundoff error, all part of the
202*05a0b428SJohn Marino 	standard (IEEE 754-1985). The ability to perform shift, add,
203*05a0b428SJohn Marino 	subtract and logical AND operations upon 32-bit words is needed
204*05a0b428SJohn Marino 	too, though not part of the standard.
205*05a0b428SJohn Marino 
206*05a0b428SJohn Marino A.  sqrt(x) by Newton Iteration
207*05a0b428SJohn Marino 
208*05a0b428SJohn Marino    (1)	Initial approximation
209*05a0b428SJohn Marino 
210*05a0b428SJohn Marino 	Let x0 and x1 be the leading and the trailing 32-bit words of
211*05a0b428SJohn Marino 	a floating point number x (in IEEE double format) respectively
212*05a0b428SJohn Marino 
213*05a0b428SJohn Marino 	    1    11		     52				  ...widths
214*05a0b428SJohn Marino 	   ------------------------------------------------------
215*05a0b428SJohn Marino 	x: |s|	  e     |	      f				|
216*05a0b428SJohn Marino 	   ------------------------------------------------------
217*05a0b428SJohn Marino 	      msb    lsb  msb				      lsb ...order
218*05a0b428SJohn Marino 
219*05a0b428SJohn Marino 
220*05a0b428SJohn Marino 	     ------------------------  	     ------------------------
221*05a0b428SJohn Marino 	x0:  |s|   e    |    f1     |	 x1: |          f2           |
222*05a0b428SJohn Marino 	     ------------------------  	     ------------------------
223*05a0b428SJohn Marino 
224*05a0b428SJohn Marino 	By performing shifts and subtracts on x0 and x1 (both regarded
225*05a0b428SJohn Marino 	as integers), we obtain an 8-bit approximation of sqrt(x) as
226*05a0b428SJohn Marino 	follows.
227*05a0b428SJohn Marino 
228*05a0b428SJohn Marino 		k  := (x0>>1) + 0x1ff80000;
229*05a0b428SJohn Marino 		y0 := k - T1[31&(k>>15)].	... y ~ sqrt(x) to 8 bits
230*05a0b428SJohn Marino 	Here k is a 32-bit integer and T1[] is an integer array containing
231*05a0b428SJohn Marino 	correction terms. Now magically the floating value of y (y's
232*05a0b428SJohn Marino 	leading 32-bit word is y0, the value of its trailing word is 0)
233*05a0b428SJohn Marino 	approximates sqrt(x) to almost 8-bit.
234*05a0b428SJohn Marino 
235*05a0b428SJohn Marino 	Value of T1:
236*05a0b428SJohn Marino 	static int T1[32]= {
237*05a0b428SJohn Marino 	0,	1024,	3062,	5746,	9193,	13348,	18162,	23592,
238*05a0b428SJohn Marino 	29598,	36145,	43202,	50740,	58733,	67158,	75992,	85215,
239*05a0b428SJohn Marino 	83599,	71378,	60428,	50647,	41945,	34246,	27478,	21581,
240*05a0b428SJohn Marino 	16499,	12183,	8588,	5674,	3403,	1742,	661,	130,};
241*05a0b428SJohn Marino 
242*05a0b428SJohn Marino     (2)	Iterative refinement
243*05a0b428SJohn Marino 
244*05a0b428SJohn Marino 	Apply Heron's rule three times to y, we have y approximates
245*05a0b428SJohn Marino 	sqrt(x) to within 1 ulp (Unit in the Last Place):
246*05a0b428SJohn Marino 
247*05a0b428SJohn Marino 		y := (y+x/y)/2		... almost 17 sig. bits
248*05a0b428SJohn Marino 		y := (y+x/y)/2		... almost 35 sig. bits
249*05a0b428SJohn Marino 		y := y-(y-x/y)/2	... within 1 ulp
250*05a0b428SJohn Marino 
251*05a0b428SJohn Marino 
252*05a0b428SJohn Marino 	Remark 1.
253*05a0b428SJohn Marino 	    Another way to improve y to within 1 ulp is:
254*05a0b428SJohn Marino 
255*05a0b428SJohn Marino 		y := (y+x/y)		... almost 17 sig. bits to 2*sqrt(x)
256*05a0b428SJohn Marino 		y := y - 0x00100006	... almost 18 sig. bits to sqrt(x)
257*05a0b428SJohn Marino 
258*05a0b428SJohn Marino 				2
259*05a0b428SJohn Marino 			    (x-y )*y
260*05a0b428SJohn Marino 		y := y + 2* ----------	...within 1 ulp
261*05a0b428SJohn Marino 			       2
262*05a0b428SJohn Marino 			     3y  + x
263*05a0b428SJohn Marino 
264*05a0b428SJohn Marino 
265*05a0b428SJohn Marino 	This formula has one division fewer than the one above; however,
266*05a0b428SJohn Marino 	it requires more multiplications and additions. Also x must be
267*05a0b428SJohn Marino 	scaled in advance to avoid spurious overflow in evaluating the
268*05a0b428SJohn Marino 	expression 3y*y+x. Hence it is not recommended uless division
269*05a0b428SJohn Marino 	is slow. If division is very slow, then one should use the
270*05a0b428SJohn Marino 	reciproot algorithm given in section B.
271*05a0b428SJohn Marino 
272*05a0b428SJohn Marino     (3) Final adjustment
273*05a0b428SJohn Marino 
274*05a0b428SJohn Marino 	By twiddling y's last bit it is possible to force y to be
275*05a0b428SJohn Marino 	correctly rounded according to the prevailing rounding mode
276*05a0b428SJohn Marino 	as follows. Let r and i be copies of the rounding mode and
277*05a0b428SJohn Marino 	inexact flag before entering the square root program. Also we
278*05a0b428SJohn Marino 	use the expression y+-ulp for the next representable floating
279*05a0b428SJohn Marino 	numbers (up and down) of y. Note that y+-ulp = either fixed
280*05a0b428SJohn Marino 	point y+-1, or multiply y by nextafter(1,+-inf) in chopped
281*05a0b428SJohn Marino 	mode.
282*05a0b428SJohn Marino 
283*05a0b428SJohn Marino 		I := FALSE;	... reset INEXACT flag I
284*05a0b428SJohn Marino 		R := RZ;	... set rounding mode to round-toward-zero
285*05a0b428SJohn Marino 		z := x/y;	... chopped quotient, possibly inexact
286*05a0b428SJohn Marino 		If(not I) then {	... if the quotient is exact
287*05a0b428SJohn Marino 		    if(z=y) {
288*05a0b428SJohn Marino 		        I := i;	 ... restore inexact flag
289*05a0b428SJohn Marino 		        R := r;  ... restore rounded mode
290*05a0b428SJohn Marino 		        return sqrt(x):=y.
291*05a0b428SJohn Marino 		    } else {
292*05a0b428SJohn Marino 			z := z - ulp;	... special rounding
293*05a0b428SJohn Marino 		    }
294*05a0b428SJohn Marino 		}
295*05a0b428SJohn Marino 		i := TRUE;		... sqrt(x) is inexact
296*05a0b428SJohn Marino 		If (r=RN) then z=z+ulp	... rounded-to-nearest
297*05a0b428SJohn Marino 		If (r=RP) then {	... round-toward-+inf
298*05a0b428SJohn Marino 		    y = y+ulp; z=z+ulp;
299*05a0b428SJohn Marino 		}
300*05a0b428SJohn Marino 		y := y+z;		... chopped sum
301*05a0b428SJohn Marino 		y0:=y0-0x00100000;	... y := y/2 is correctly rounded.
302*05a0b428SJohn Marino 	        I := i;	 		... restore inexact flag
303*05a0b428SJohn Marino 	        R := r;  		... restore rounded mode
304*05a0b428SJohn Marino 	        return sqrt(x):=y.
305*05a0b428SJohn Marino 
306*05a0b428SJohn Marino     (4)	Special cases
307*05a0b428SJohn Marino 
308*05a0b428SJohn Marino 	Square root of +inf, +-0, or NaN is itself;
309*05a0b428SJohn Marino 	Square root of a negative number is NaN with invalid signal.
310*05a0b428SJohn Marino 
311*05a0b428SJohn Marino 
312*05a0b428SJohn Marino B.  sqrt(x) by Reciproot Iteration
313*05a0b428SJohn Marino 
314*05a0b428SJohn Marino    (1)	Initial approximation
315*05a0b428SJohn Marino 
316*05a0b428SJohn Marino 	Let x0 and x1 be the leading and the trailing 32-bit words of
317*05a0b428SJohn Marino 	a floating point number x (in IEEE double format) respectively
318*05a0b428SJohn Marino 	(see section A). By performing shifs and subtracts on x0 and y0,
319*05a0b428SJohn Marino 	we obtain a 7.8-bit approximation of 1/sqrt(x) as follows.
320*05a0b428SJohn Marino 
321*05a0b428SJohn Marino 	    k := 0x5fe80000 - (x0>>1);
322*05a0b428SJohn Marino 	    y0:= k - T2[63&(k>>14)].	... y ~ 1/sqrt(x) to 7.8 bits
323*05a0b428SJohn Marino 
324*05a0b428SJohn Marino 	Here k is a 32-bit integer and T2[] is an integer array
325*05a0b428SJohn Marino 	containing correction terms. Now magically the floating
326*05a0b428SJohn Marino 	value of y (y's leading 32-bit word is y0, the value of
327*05a0b428SJohn Marino 	its trailing word y1 is set to zero) approximates 1/sqrt(x)
328*05a0b428SJohn Marino 	to almost 7.8-bit.
329*05a0b428SJohn Marino 
330*05a0b428SJohn Marino 	Value of T2:
331*05a0b428SJohn Marino 	static int T2[64]= {
332*05a0b428SJohn Marino 	0x1500,	0x2ef8,	0x4d67,	0x6b02,	0x87be,	0xa395,	0xbe7a,	0xd866,
333*05a0b428SJohn Marino 	0xf14a,	0x1091b,0x11fcd,0x13552,0x14999,0x15c98,0x16e34,0x17e5f,
334*05a0b428SJohn Marino 	0x18d03,0x19a01,0x1a545,0x1ae8a,0x1b5c4,0x1bb01,0x1bfde,0x1c28d,
335*05a0b428SJohn Marino 	0x1c2de,0x1c0db,0x1ba73,0x1b11c,0x1a4b5,0x1953d,0x18266,0x16be0,
336*05a0b428SJohn Marino 	0x1683e,0x179d8,0x18a4d,0x19992,0x1a789,0x1b445,0x1bf61,0x1c989,
337*05a0b428SJohn Marino 	0x1d16d,0x1d77b,0x1dddf,0x1e2ad,0x1e5bf,0x1e6e8,0x1e654,0x1e3cd,
338*05a0b428SJohn Marino 	0x1df2a,0x1d635,0x1cb16,0x1be2c,0x1ae4e,0x19bde,0x1868e,0x16e2e,
339*05a0b428SJohn Marino 	0x1527f,0x1334a,0x11051,0xe951,	0xbe01,	0x8e0d,	0x5924,	0x1edd,};
340*05a0b428SJohn Marino 
341*05a0b428SJohn Marino     (2)	Iterative refinement
342*05a0b428SJohn Marino 
343*05a0b428SJohn Marino 	Apply Reciproot iteration three times to y and multiply the
344*05a0b428SJohn Marino 	result by x to get an approximation z that matches sqrt(x)
345*05a0b428SJohn Marino 	to about 1 ulp. To be exact, we will have
346*05a0b428SJohn Marino 		-1ulp < sqrt(x)-z<1.0625ulp.
347*05a0b428SJohn Marino 
348*05a0b428SJohn Marino 	... set rounding mode to Round-to-nearest
349*05a0b428SJohn Marino 	   y := y*(1.5-0.5*x*y*y)	... almost 15 sig. bits to 1/sqrt(x)
350*05a0b428SJohn Marino 	   y := y*((1.5-2^-30)+0.5*x*y*y)... about 29 sig. bits to 1/sqrt(x)
351*05a0b428SJohn Marino 	... special arrangement for better accuracy
352*05a0b428SJohn Marino 	   z := x*y			... 29 bits to sqrt(x), with z*y<1
353*05a0b428SJohn Marino 	   z := z + 0.5*z*(1-z*y)	... about 1 ulp to sqrt(x)
354*05a0b428SJohn Marino 
355*05a0b428SJohn Marino 	Remark 2. The constant 1.5-2^-30 is chosen to bias the error so that
356*05a0b428SJohn Marino 	(a) the term z*y in the final iteration is always less than 1;
357*05a0b428SJohn Marino 	(b) the error in the final result is biased upward so that
358*05a0b428SJohn Marino 		-1 ulp < sqrt(x) - z < 1.0625 ulp
359*05a0b428SJohn Marino 	    instead of |sqrt(x)-z|<1.03125ulp.
360*05a0b428SJohn Marino 
361*05a0b428SJohn Marino     (3)	Final adjustment
362*05a0b428SJohn Marino 
363*05a0b428SJohn Marino 	By twiddling y's last bit it is possible to force y to be
364*05a0b428SJohn Marino 	correctly rounded according to the prevailing rounding mode
365*05a0b428SJohn Marino 	as follows. Let r and i be copies of the rounding mode and
366*05a0b428SJohn Marino 	inexact flag before entering the square root program. Also we
367*05a0b428SJohn Marino 	use the expression y+-ulp for the next representable floating
368*05a0b428SJohn Marino 	numbers (up and down) of y. Note that y+-ulp = either fixed
369*05a0b428SJohn Marino 	point y+-1, or multiply y by nextafter(1,+-inf) in chopped
370*05a0b428SJohn Marino 	mode.
371*05a0b428SJohn Marino 
372*05a0b428SJohn Marino 	R := RZ;		... set rounding mode to round-toward-zero
373*05a0b428SJohn Marino 	switch(r) {
374*05a0b428SJohn Marino 	    case RN:		... round-to-nearest
375*05a0b428SJohn Marino 	       if(x<= z*(z-ulp)...chopped) z = z - ulp; else
376*05a0b428SJohn Marino 	       if(x<= z*(z+ulp)...chopped) z = z; else z = z+ulp;
377*05a0b428SJohn Marino 	       break;
378*05a0b428SJohn Marino 	    case RZ:case RM:	... round-to-zero or round-to--inf
379*05a0b428SJohn Marino 	       R:=RP;		... reset rounding mod to round-to-+inf
380*05a0b428SJohn Marino 	       if(x<z*z ... rounded up) z = z - ulp; else
381*05a0b428SJohn Marino 	       if(x>=(z+ulp)*(z+ulp) ...rounded up) z = z+ulp;
382*05a0b428SJohn Marino 	       break;
383*05a0b428SJohn Marino 	    case RP:		... round-to-+inf
384*05a0b428SJohn Marino 	       if(x>(z+ulp)*(z+ulp)...chopped) z = z+2*ulp; else
385*05a0b428SJohn Marino 	       if(x>z*z ...chopped) z = z+ulp;
386*05a0b428SJohn Marino 	       break;
387*05a0b428SJohn Marino 	}
388*05a0b428SJohn Marino 
389*05a0b428SJohn Marino 	Remark 3. The above comparisons can be done in fixed point. For
390*05a0b428SJohn Marino 	example, to compare x and w=z*z chopped, it suffices to compare
391*05a0b428SJohn Marino 	x1 and w1 (the trailing parts of x and w), regarding them as
392*05a0b428SJohn Marino 	two's complement integers.
393*05a0b428SJohn Marino 
394*05a0b428SJohn Marino 	...Is z an exact square root?
395*05a0b428SJohn Marino 	To determine whether z is an exact square root of x, let z1 be the
396*05a0b428SJohn Marino 	trailing part of z, and also let x0 and x1 be the leading and
397*05a0b428SJohn Marino 	trailing parts of x.
398*05a0b428SJohn Marino 
399*05a0b428SJohn Marino 	If ((z1&0x03ffffff)!=0)	... not exact if trailing 26 bits of z!=0
400*05a0b428SJohn Marino 	    I := 1;		... Raise Inexact flag: z is not exact
401*05a0b428SJohn Marino 	else {
402*05a0b428SJohn Marino 	    j := 1 - [(x0>>20)&1]	... j = logb(x) mod 2
403*05a0b428SJohn Marino 	    k := z1 >> 26;		... get z's 25-th and 26-th
404*05a0b428SJohn Marino 					    fraction bits
405*05a0b428SJohn Marino 	    I := i or (k&j) or ((k&(j+j+1))!=(x1&3));
406*05a0b428SJohn Marino 	}
407*05a0b428SJohn Marino 	R:= r		... restore rounded mode
408*05a0b428SJohn Marino 	return sqrt(x):=z.
409*05a0b428SJohn Marino 
410*05a0b428SJohn Marino 	If multiplication is cheaper then the foregoing red tape, the
411*05a0b428SJohn Marino 	Inexact flag can be evaluated by
412*05a0b428SJohn Marino 
413*05a0b428SJohn Marino 	    I := i;
414*05a0b428SJohn Marino 	    I := (z*z!=x) or I.
415*05a0b428SJohn Marino 
416*05a0b428SJohn Marino 	Note that z*z can overwrite I; this value must be sensed if it is
417*05a0b428SJohn Marino 	True.
418*05a0b428SJohn Marino 
419*05a0b428SJohn Marino 	Remark 4. If z*z = x exactly, then bit 25 to bit 0 of z1 must be
420*05a0b428SJohn Marino 	zero.
421*05a0b428SJohn Marino 
422*05a0b428SJohn Marino 		    --------------------
423*05a0b428SJohn Marino 		z1: |        f2        |
424*05a0b428SJohn Marino 		    --------------------
425*05a0b428SJohn Marino 		bit 31		   bit 0
426*05a0b428SJohn Marino 
427*05a0b428SJohn Marino 	Further more, bit 27 and 26 of z1, bit 0 and 1 of x1, and the odd
428*05a0b428SJohn Marino 	or even of logb(x) have the following relations:
429*05a0b428SJohn Marino 
430*05a0b428SJohn Marino 	-------------------------------------------------
431*05a0b428SJohn Marino 	bit 27,26 of z1		bit 1,0 of x1	logb(x)
432*05a0b428SJohn Marino 	-------------------------------------------------
433*05a0b428SJohn Marino 	00			00		odd and even
434*05a0b428SJohn Marino 	01			01		even
435*05a0b428SJohn Marino 	10			10		odd
436*05a0b428SJohn Marino 	10			00		even
437*05a0b428SJohn Marino 	11			01		even
438*05a0b428SJohn Marino 	-------------------------------------------------
439*05a0b428SJohn Marino 
440*05a0b428SJohn Marino     (4)	Special cases (see (4) of Section A).
441*05a0b428SJohn Marino 
442*05a0b428SJohn Marino  */
443*05a0b428SJohn Marino 
444*05a0b428SJohn Marino #if	LDBL_MANT_DIG == DBL_MANT_DIG
445*05a0b428SJohn Marino __strong_alias(sqrtl, sqrt);
446*05a0b428SJohn Marino #endif	/* LDBL_MANT_DIG == DBL_MANT_DIG */
447