1*05a0b428SJohn Marino /* @(#)e_log.c 5.1 93/09/24 */ 2*05a0b428SJohn Marino /* 3*05a0b428SJohn Marino * ==================================================== 4*05a0b428SJohn Marino * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. 5*05a0b428SJohn Marino * 6*05a0b428SJohn Marino * Developed at SunPro, a Sun Microsystems, Inc. business. 7*05a0b428SJohn Marino * Permission to use, copy, modify, and distribute this 8*05a0b428SJohn Marino * software is freely granted, provided that this notice 9*05a0b428SJohn Marino * is preserved. 10*05a0b428SJohn Marino * ==================================================== 11*05a0b428SJohn Marino */ 12*05a0b428SJohn Marino 13*05a0b428SJohn Marino /* log(x) 14*05a0b428SJohn Marino * Return the logarithm of x 15*05a0b428SJohn Marino * 16*05a0b428SJohn Marino * Method : 17*05a0b428SJohn Marino * 1. Argument Reduction: find k and f such that 18*05a0b428SJohn Marino * x = 2^k * (1+f), 19*05a0b428SJohn Marino * where sqrt(2)/2 < 1+f < sqrt(2) . 20*05a0b428SJohn Marino * 21*05a0b428SJohn Marino * 2. Approximation of log(1+f). 22*05a0b428SJohn Marino * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) 23*05a0b428SJohn Marino * = 2s + 2/3 s**3 + 2/5 s**5 + ....., 24*05a0b428SJohn Marino * = 2s + s*R 25*05a0b428SJohn Marino * We use a special Remes algorithm on [0,0.1716] to generate 26*05a0b428SJohn Marino * a polynomial of degree 14 to approximate R The maximum error 27*05a0b428SJohn Marino * of this polynomial approximation is bounded by 2**-58.45. In 28*05a0b428SJohn Marino * other words, 29*05a0b428SJohn Marino * 2 4 6 8 10 12 14 30*05a0b428SJohn Marino * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s 31*05a0b428SJohn Marino * (the values of Lg1 to Lg7 are listed in the program) 32*05a0b428SJohn Marino * and 33*05a0b428SJohn Marino * | 2 14 | -58.45 34*05a0b428SJohn Marino * | Lg1*s +...+Lg7*s - R(z) | <= 2 35*05a0b428SJohn Marino * | | 36*05a0b428SJohn Marino * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2. 37*05a0b428SJohn Marino * In order to guarantee error in log below 1ulp, we compute log 38*05a0b428SJohn Marino * by 39*05a0b428SJohn Marino * log(1+f) = f - s*(f - R) (if f is not too large) 40*05a0b428SJohn Marino * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy) 41*05a0b428SJohn Marino * 42*05a0b428SJohn Marino * 3. Finally, log(x) = k*ln2 + log(1+f). 43*05a0b428SJohn Marino * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo))) 44*05a0b428SJohn Marino * Here ln2 is split into two floating point number: 45*05a0b428SJohn Marino * ln2_hi + ln2_lo, 46*05a0b428SJohn Marino * where n*ln2_hi is always exact for |n| < 2000. 47*05a0b428SJohn Marino * 48*05a0b428SJohn Marino * Special cases: 49*05a0b428SJohn Marino * log(x) is NaN with signal if x < 0 (including -INF) ; 50*05a0b428SJohn Marino * log(+INF) is +INF; log(0) is -INF with signal; 51*05a0b428SJohn Marino * log(NaN) is that NaN with no signal. 52*05a0b428SJohn Marino * 53*05a0b428SJohn Marino * Accuracy: 54*05a0b428SJohn Marino * according to an error analysis, the error is always less than 55*05a0b428SJohn Marino * 1 ulp (unit in the last place). 56*05a0b428SJohn Marino * 57*05a0b428SJohn Marino * Constants: 58*05a0b428SJohn Marino * The hexadecimal values are the intended ones for the following 59*05a0b428SJohn Marino * constants. The decimal values may be used, provided that the 60*05a0b428SJohn Marino * compiler will convert from decimal to binary accurately enough 61*05a0b428SJohn Marino * to produce the hexadecimal values shown. 62*05a0b428SJohn Marino */ 63*05a0b428SJohn Marino 64*05a0b428SJohn Marino #include <float.h> 65*05a0b428SJohn Marino #include <math.h> 66*05a0b428SJohn Marino 67*05a0b428SJohn Marino #include "math_private.h" 68*05a0b428SJohn Marino 69*05a0b428SJohn Marino static const double 70*05a0b428SJohn Marino ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */ 71*05a0b428SJohn Marino ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */ 72*05a0b428SJohn Marino two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */ 73*05a0b428SJohn Marino Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */ 74*05a0b428SJohn Marino Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */ 75*05a0b428SJohn Marino Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */ 76*05a0b428SJohn Marino Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */ 77*05a0b428SJohn Marino Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */ 78*05a0b428SJohn Marino Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */ 79*05a0b428SJohn Marino Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */ 80*05a0b428SJohn Marino 81*05a0b428SJohn Marino static const double zero = 0.0; 82*05a0b428SJohn Marino 83*05a0b428SJohn Marino double 84*05a0b428SJohn Marino log(double x) 85*05a0b428SJohn Marino { 86*05a0b428SJohn Marino double hfsq,f,s,z,R,w,t1,t2,dk; 87*05a0b428SJohn Marino int32_t k,hx,i,j; 88*05a0b428SJohn Marino u_int32_t lx; 89*05a0b428SJohn Marino 90*05a0b428SJohn Marino EXTRACT_WORDS(hx,lx,x); 91*05a0b428SJohn Marino 92*05a0b428SJohn Marino k=0; 93*05a0b428SJohn Marino if (hx < 0x00100000) { /* x < 2**-1022 */ 94*05a0b428SJohn Marino if (((hx&0x7fffffff)|lx)==0) 95*05a0b428SJohn Marino return -two54/zero; /* log(+-0)=-inf */ 96*05a0b428SJohn Marino if (hx<0) return (x-x)/zero; /* log(-#) = NaN */ 97*05a0b428SJohn Marino k -= 54; x *= two54; /* subnormal number, scale up x */ 98*05a0b428SJohn Marino GET_HIGH_WORD(hx,x); 99*05a0b428SJohn Marino } 100*05a0b428SJohn Marino if (hx >= 0x7ff00000) return x+x; 101*05a0b428SJohn Marino k += (hx>>20)-1023; 102*05a0b428SJohn Marino hx &= 0x000fffff; 103*05a0b428SJohn Marino i = (hx+0x95f64)&0x100000; 104*05a0b428SJohn Marino SET_HIGH_WORD(x,hx|(i^0x3ff00000)); /* normalize x or x/2 */ 105*05a0b428SJohn Marino k += (i>>20); 106*05a0b428SJohn Marino f = x-1.0; 107*05a0b428SJohn Marino if((0x000fffff&(2+hx))<3) { /* |f| < 2**-20 */ 108*05a0b428SJohn Marino if(f==zero) if(k==0) return zero; else {dk=(double)k; 109*05a0b428SJohn Marino return dk*ln2_hi+dk*ln2_lo;} 110*05a0b428SJohn Marino R = f*f*(0.5-0.33333333333333333*f); 111*05a0b428SJohn Marino if(k==0) return f-R; else {dk=(double)k; 112*05a0b428SJohn Marino return dk*ln2_hi-((R-dk*ln2_lo)-f);} 113*05a0b428SJohn Marino } 114*05a0b428SJohn Marino s = f/(2.0+f); 115*05a0b428SJohn Marino dk = (double)k; 116*05a0b428SJohn Marino z = s*s; 117*05a0b428SJohn Marino i = hx-0x6147a; 118*05a0b428SJohn Marino w = z*z; 119*05a0b428SJohn Marino j = 0x6b851-hx; 120*05a0b428SJohn Marino t1= w*(Lg2+w*(Lg4+w*Lg6)); 121*05a0b428SJohn Marino t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7))); 122*05a0b428SJohn Marino i |= j; 123*05a0b428SJohn Marino R = t2+t1; 124*05a0b428SJohn Marino if(i>0) { 125*05a0b428SJohn Marino hfsq=0.5*f*f; 126*05a0b428SJohn Marino if(k==0) return f-(hfsq-s*(hfsq+R)); else 127*05a0b428SJohn Marino return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f); 128*05a0b428SJohn Marino } else { 129*05a0b428SJohn Marino if(k==0) return f-s*(f-R); else 130*05a0b428SJohn Marino return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f); 131*05a0b428SJohn Marino } 132*05a0b428SJohn Marino } 133*05a0b428SJohn Marino 134*05a0b428SJohn Marino #if LDBL_MANT_DIG == DBL_MANT_DIG 135*05a0b428SJohn Marino __strong_alias(logl, log); 136*05a0b428SJohn Marino #endif /* LDBL_MANT_DIG == DBL_MANT_DIG */ 137