xref: /dflybsd-src/contrib/openbsd_libm/src/e_log.c (revision 4382f29d99a100bd77a81697c2f699c11f6a472a)
1*05a0b428SJohn Marino /* @(#)e_log.c 5.1 93/09/24 */
2*05a0b428SJohn Marino /*
3*05a0b428SJohn Marino  * ====================================================
4*05a0b428SJohn Marino  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5*05a0b428SJohn Marino  *
6*05a0b428SJohn Marino  * Developed at SunPro, a Sun Microsystems, Inc. business.
7*05a0b428SJohn Marino  * Permission to use, copy, modify, and distribute this
8*05a0b428SJohn Marino  * software is freely granted, provided that this notice
9*05a0b428SJohn Marino  * is preserved.
10*05a0b428SJohn Marino  * ====================================================
11*05a0b428SJohn Marino  */
12*05a0b428SJohn Marino 
13*05a0b428SJohn Marino /* log(x)
14*05a0b428SJohn Marino  * Return the logarithm of x
15*05a0b428SJohn Marino  *
16*05a0b428SJohn Marino  * Method :
17*05a0b428SJohn Marino  *   1. Argument Reduction: find k and f such that
18*05a0b428SJohn Marino  *			x = 2^k * (1+f),
19*05a0b428SJohn Marino  *	   where  sqrt(2)/2 < 1+f < sqrt(2) .
20*05a0b428SJohn Marino  *
21*05a0b428SJohn Marino  *   2. Approximation of log(1+f).
22*05a0b428SJohn Marino  *	Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
23*05a0b428SJohn Marino  *		 = 2s + 2/3 s**3 + 2/5 s**5 + .....,
24*05a0b428SJohn Marino  *	     	 = 2s + s*R
25*05a0b428SJohn Marino  *      We use a special Remes algorithm on [0,0.1716] to generate
26*05a0b428SJohn Marino  * 	a polynomial of degree 14 to approximate R The maximum error
27*05a0b428SJohn Marino  *	of this polynomial approximation is bounded by 2**-58.45. In
28*05a0b428SJohn Marino  *	other words,
29*05a0b428SJohn Marino  *		        2      4      6      8      10      12      14
30*05a0b428SJohn Marino  *	    R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s  +Lg6*s  +Lg7*s
31*05a0b428SJohn Marino  *  	(the values of Lg1 to Lg7 are listed in the program)
32*05a0b428SJohn Marino  *	and
33*05a0b428SJohn Marino  *	    |      2          14          |     -58.45
34*05a0b428SJohn Marino  *	    | Lg1*s +...+Lg7*s    -  R(z) | <= 2
35*05a0b428SJohn Marino  *	    |                             |
36*05a0b428SJohn Marino  *	Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
37*05a0b428SJohn Marino  *	In order to guarantee error in log below 1ulp, we compute log
38*05a0b428SJohn Marino  *	by
39*05a0b428SJohn Marino  *		log(1+f) = f - s*(f - R)	(if f is not too large)
40*05a0b428SJohn Marino  *		log(1+f) = f - (hfsq - s*(hfsq+R)).	(better accuracy)
41*05a0b428SJohn Marino  *
42*05a0b428SJohn Marino  *	3. Finally,  log(x) = k*ln2 + log(1+f).
43*05a0b428SJohn Marino  *			    = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
44*05a0b428SJohn Marino  *	   Here ln2 is split into two floating point number:
45*05a0b428SJohn Marino  *			ln2_hi + ln2_lo,
46*05a0b428SJohn Marino  *	   where n*ln2_hi is always exact for |n| < 2000.
47*05a0b428SJohn Marino  *
48*05a0b428SJohn Marino  * Special cases:
49*05a0b428SJohn Marino  *	log(x) is NaN with signal if x < 0 (including -INF) ;
50*05a0b428SJohn Marino  *	log(+INF) is +INF; log(0) is -INF with signal;
51*05a0b428SJohn Marino  *	log(NaN) is that NaN with no signal.
52*05a0b428SJohn Marino  *
53*05a0b428SJohn Marino  * Accuracy:
54*05a0b428SJohn Marino  *	according to an error analysis, the error is always less than
55*05a0b428SJohn Marino  *	1 ulp (unit in the last place).
56*05a0b428SJohn Marino  *
57*05a0b428SJohn Marino  * Constants:
58*05a0b428SJohn Marino  * The hexadecimal values are the intended ones for the following
59*05a0b428SJohn Marino  * constants. The decimal values may be used, provided that the
60*05a0b428SJohn Marino  * compiler will convert from decimal to binary accurately enough
61*05a0b428SJohn Marino  * to produce the hexadecimal values shown.
62*05a0b428SJohn Marino  */
63*05a0b428SJohn Marino 
64*05a0b428SJohn Marino #include <float.h>
65*05a0b428SJohn Marino #include <math.h>
66*05a0b428SJohn Marino 
67*05a0b428SJohn Marino #include "math_private.h"
68*05a0b428SJohn Marino 
69*05a0b428SJohn Marino static const double
70*05a0b428SJohn Marino ln2_hi  =  6.93147180369123816490e-01,	/* 3fe62e42 fee00000 */
71*05a0b428SJohn Marino ln2_lo  =  1.90821492927058770002e-10,	/* 3dea39ef 35793c76 */
72*05a0b428SJohn Marino two54   =  1.80143985094819840000e+16,  /* 43500000 00000000 */
73*05a0b428SJohn Marino Lg1 = 6.666666666666735130e-01,  /* 3FE55555 55555593 */
74*05a0b428SJohn Marino Lg2 = 3.999999999940941908e-01,  /* 3FD99999 9997FA04 */
75*05a0b428SJohn Marino Lg3 = 2.857142874366239149e-01,  /* 3FD24924 94229359 */
76*05a0b428SJohn Marino Lg4 = 2.222219843214978396e-01,  /* 3FCC71C5 1D8E78AF */
77*05a0b428SJohn Marino Lg5 = 1.818357216161805012e-01,  /* 3FC74664 96CB03DE */
78*05a0b428SJohn Marino Lg6 = 1.531383769920937332e-01,  /* 3FC39A09 D078C69F */
79*05a0b428SJohn Marino Lg7 = 1.479819860511658591e-01;  /* 3FC2F112 DF3E5244 */
80*05a0b428SJohn Marino 
81*05a0b428SJohn Marino static const double zero   =  0.0;
82*05a0b428SJohn Marino 
83*05a0b428SJohn Marino double
log(double x)84*05a0b428SJohn Marino log(double x)
85*05a0b428SJohn Marino {
86*05a0b428SJohn Marino 	double hfsq,f,s,z,R,w,t1,t2,dk;
87*05a0b428SJohn Marino 	int32_t k,hx,i,j;
88*05a0b428SJohn Marino 	u_int32_t lx;
89*05a0b428SJohn Marino 
90*05a0b428SJohn Marino 	EXTRACT_WORDS(hx,lx,x);
91*05a0b428SJohn Marino 
92*05a0b428SJohn Marino 	k=0;
93*05a0b428SJohn Marino 	if (hx < 0x00100000) {			/* x < 2**-1022  */
94*05a0b428SJohn Marino 	    if (((hx&0x7fffffff)|lx)==0)
95*05a0b428SJohn Marino 		return -two54/zero;		/* log(+-0)=-inf */
96*05a0b428SJohn Marino 	    if (hx<0) return (x-x)/zero;	/* log(-#) = NaN */
97*05a0b428SJohn Marino 	    k -= 54; x *= two54; /* subnormal number, scale up x */
98*05a0b428SJohn Marino 	    GET_HIGH_WORD(hx,x);
99*05a0b428SJohn Marino 	}
100*05a0b428SJohn Marino 	if (hx >= 0x7ff00000) return x+x;
101*05a0b428SJohn Marino 	k += (hx>>20)-1023;
102*05a0b428SJohn Marino 	hx &= 0x000fffff;
103*05a0b428SJohn Marino 	i = (hx+0x95f64)&0x100000;
104*05a0b428SJohn Marino 	SET_HIGH_WORD(x,hx|(i^0x3ff00000));	/* normalize x or x/2 */
105*05a0b428SJohn Marino 	k += (i>>20);
106*05a0b428SJohn Marino 	f = x-1.0;
107*05a0b428SJohn Marino 	if((0x000fffff&(2+hx))<3) {	/* |f| < 2**-20 */
108*05a0b428SJohn Marino 	    if(f==zero) if(k==0) return zero;  else {dk=(double)k;
109*05a0b428SJohn Marino 				 return dk*ln2_hi+dk*ln2_lo;}
110*05a0b428SJohn Marino 	    R = f*f*(0.5-0.33333333333333333*f);
111*05a0b428SJohn Marino 	    if(k==0) return f-R; else {dk=(double)k;
112*05a0b428SJohn Marino 	    	     return dk*ln2_hi-((R-dk*ln2_lo)-f);}
113*05a0b428SJohn Marino 	}
114*05a0b428SJohn Marino  	s = f/(2.0+f);
115*05a0b428SJohn Marino 	dk = (double)k;
116*05a0b428SJohn Marino 	z = s*s;
117*05a0b428SJohn Marino 	i = hx-0x6147a;
118*05a0b428SJohn Marino 	w = z*z;
119*05a0b428SJohn Marino 	j = 0x6b851-hx;
120*05a0b428SJohn Marino 	t1= w*(Lg2+w*(Lg4+w*Lg6));
121*05a0b428SJohn Marino 	t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
122*05a0b428SJohn Marino 	i |= j;
123*05a0b428SJohn Marino 	R = t2+t1;
124*05a0b428SJohn Marino 	if(i>0) {
125*05a0b428SJohn Marino 	    hfsq=0.5*f*f;
126*05a0b428SJohn Marino 	    if(k==0) return f-(hfsq-s*(hfsq+R)); else
127*05a0b428SJohn Marino 		     return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f);
128*05a0b428SJohn Marino 	} else {
129*05a0b428SJohn Marino 	    if(k==0) return f-s*(f-R); else
130*05a0b428SJohn Marino 		     return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f);
131*05a0b428SJohn Marino 	}
132*05a0b428SJohn Marino }
133*05a0b428SJohn Marino 
134*05a0b428SJohn Marino #if	LDBL_MANT_DIG == DBL_MANT_DIG
135*05a0b428SJohn Marino __strong_alias(logl, log);
136*05a0b428SJohn Marino #endif	/* LDBL_MANT_DIG == DBL_MANT_DIG */
137