xref: /dflybsd-src/contrib/openbsd_libm/src/e_jn.c (revision 4382f29d99a100bd77a81697c2f699c11f6a472a)
1*05a0b428SJohn Marino /* @(#)e_jn.c 5.1 93/09/24 */
2*05a0b428SJohn Marino /*
3*05a0b428SJohn Marino  * ====================================================
4*05a0b428SJohn Marino  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5*05a0b428SJohn Marino  *
6*05a0b428SJohn Marino  * Developed at SunPro, a Sun Microsystems, Inc. business.
7*05a0b428SJohn Marino  * Permission to use, copy, modify, and distribute this
8*05a0b428SJohn Marino  * software is freely granted, provided that this notice
9*05a0b428SJohn Marino  * is preserved.
10*05a0b428SJohn Marino  * ====================================================
11*05a0b428SJohn Marino  */
12*05a0b428SJohn Marino 
13*05a0b428SJohn Marino /*
14*05a0b428SJohn Marino  * jn(n, x), yn(n, x)
15*05a0b428SJohn Marino  * floating point Bessel's function of the 1st and 2nd kind
16*05a0b428SJohn Marino  * of order n
17*05a0b428SJohn Marino  *
18*05a0b428SJohn Marino  * Special cases:
19*05a0b428SJohn Marino  *	y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
20*05a0b428SJohn Marino  *	y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
21*05a0b428SJohn Marino  * Note 2. About jn(n,x), yn(n,x)
22*05a0b428SJohn Marino  *	For n=0, j0(x) is called,
23*05a0b428SJohn Marino  *	for n=1, j1(x) is called,
24*05a0b428SJohn Marino  *	for n<x, forward recursion us used starting
25*05a0b428SJohn Marino  *	from values of j0(x) and j1(x).
26*05a0b428SJohn Marino  *	for n>x, a continued fraction approximation to
27*05a0b428SJohn Marino  *	j(n,x)/j(n-1,x) is evaluated and then backward
28*05a0b428SJohn Marino  *	recursion is used starting from a supposed value
29*05a0b428SJohn Marino  *	for j(n,x). The resulting value of j(0,x) is
30*05a0b428SJohn Marino  *	compared with the actual value to correct the
31*05a0b428SJohn Marino  *	supposed value of j(n,x).
32*05a0b428SJohn Marino  *
33*05a0b428SJohn Marino  *	yn(n,x) is similar in all respects, except
34*05a0b428SJohn Marino  *	that forward recursion is used for all
35*05a0b428SJohn Marino  *	values of n>1.
36*05a0b428SJohn Marino  *
37*05a0b428SJohn Marino  */
38*05a0b428SJohn Marino 
39*05a0b428SJohn Marino #include "math.h"
40*05a0b428SJohn Marino #include "math_private.h"
41*05a0b428SJohn Marino 
42*05a0b428SJohn Marino static const double
43*05a0b428SJohn Marino invsqrtpi=  5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
44*05a0b428SJohn Marino two   =  2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */
45*05a0b428SJohn Marino one   =  1.00000000000000000000e+00; /* 0x3FF00000, 0x00000000 */
46*05a0b428SJohn Marino 
47*05a0b428SJohn Marino static const double zero  =  0.00000000000000000000e+00;
48*05a0b428SJohn Marino 
49*05a0b428SJohn Marino double
jn(int n,double x)50*05a0b428SJohn Marino jn(int n, double x)
51*05a0b428SJohn Marino {
52*05a0b428SJohn Marino 	int32_t i,hx,ix,lx, sgn;
53*05a0b428SJohn Marino 	double a, b, temp, di;
54*05a0b428SJohn Marino 	double z, w;
55*05a0b428SJohn Marino 
56*05a0b428SJohn Marino     /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
57*05a0b428SJohn Marino      * Thus, J(-n,x) = J(n,-x)
58*05a0b428SJohn Marino      */
59*05a0b428SJohn Marino 	EXTRACT_WORDS(hx,lx,x);
60*05a0b428SJohn Marino 	ix = 0x7fffffff&hx;
61*05a0b428SJohn Marino     /* if J(n,NaN) is NaN */
62*05a0b428SJohn Marino 	if((ix|((u_int32_t)(lx|-lx))>>31)>0x7ff00000) return x+x;
63*05a0b428SJohn Marino 	if(n<0){
64*05a0b428SJohn Marino 		n = -n;
65*05a0b428SJohn Marino 		x = -x;
66*05a0b428SJohn Marino 		hx ^= 0x80000000;
67*05a0b428SJohn Marino 	}
68*05a0b428SJohn Marino 	if(n==0) return(j0(x));
69*05a0b428SJohn Marino 	if(n==1) return(j1(x));
70*05a0b428SJohn Marino 	sgn = (n&1)&(hx>>31);	/* even n -- 0, odd n -- sign(x) */
71*05a0b428SJohn Marino 	x = fabs(x);
72*05a0b428SJohn Marino 	if((ix|lx)==0||ix>=0x7ff00000) 	/* if x is 0 or inf */
73*05a0b428SJohn Marino 	    b = zero;
74*05a0b428SJohn Marino 	else if((double)n<=x) {
75*05a0b428SJohn Marino 		/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
76*05a0b428SJohn Marino 	    if(ix>=0x52D00000) { /* x > 2**302 */
77*05a0b428SJohn Marino     /* (x >> n**2)
78*05a0b428SJohn Marino      *	    Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
79*05a0b428SJohn Marino      *	    Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
80*05a0b428SJohn Marino      *	    Let s=sin(x), c=cos(x),
81*05a0b428SJohn Marino      *		xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
82*05a0b428SJohn Marino      *
83*05a0b428SJohn Marino      *		   n	sin(xn)*sqt2	cos(xn)*sqt2
84*05a0b428SJohn Marino      *		----------------------------------
85*05a0b428SJohn Marino      *		   0	 s-c		 c+s
86*05a0b428SJohn Marino      *		   1	-s-c 		-c+s
87*05a0b428SJohn Marino      *		   2	-s+c		-c-s
88*05a0b428SJohn Marino      *		   3	 s+c		 c-s
89*05a0b428SJohn Marino      */
90*05a0b428SJohn Marino 		switch(n&3) {
91*05a0b428SJohn Marino 		    case 0: temp =  cos(x)+sin(x); break;
92*05a0b428SJohn Marino 		    case 1: temp = -cos(x)+sin(x); break;
93*05a0b428SJohn Marino 		    case 2: temp = -cos(x)-sin(x); break;
94*05a0b428SJohn Marino 		    case 3: temp =  cos(x)-sin(x); break;
95*05a0b428SJohn Marino 		}
96*05a0b428SJohn Marino 		b = invsqrtpi*temp/sqrt(x);
97*05a0b428SJohn Marino 	    } else {
98*05a0b428SJohn Marino 	        a = j0(x);
99*05a0b428SJohn Marino 	        b = j1(x);
100*05a0b428SJohn Marino 	        for(i=1;i<n;i++){
101*05a0b428SJohn Marino 		    temp = b;
102*05a0b428SJohn Marino 		    b = b*((double)(i+i)/x) - a; /* avoid underflow */
103*05a0b428SJohn Marino 		    a = temp;
104*05a0b428SJohn Marino 	        }
105*05a0b428SJohn Marino 	    }
106*05a0b428SJohn Marino 	} else {
107*05a0b428SJohn Marino 	    if(ix<0x3e100000) {	/* x < 2**-29 */
108*05a0b428SJohn Marino     /* x is tiny, return the first Taylor expansion of J(n,x)
109*05a0b428SJohn Marino      * J(n,x) = 1/n!*(x/2)^n  - ...
110*05a0b428SJohn Marino      */
111*05a0b428SJohn Marino 		if(n>33)	/* underflow */
112*05a0b428SJohn Marino 		    b = zero;
113*05a0b428SJohn Marino 		else {
114*05a0b428SJohn Marino 		    temp = x*0.5; b = temp;
115*05a0b428SJohn Marino 		    for (a=one,i=2;i<=n;i++) {
116*05a0b428SJohn Marino 			a *= (double)i;		/* a = n! */
117*05a0b428SJohn Marino 			b *= temp;		/* b = (x/2)^n */
118*05a0b428SJohn Marino 		    }
119*05a0b428SJohn Marino 		    b = b/a;
120*05a0b428SJohn Marino 		}
121*05a0b428SJohn Marino 	    } else {
122*05a0b428SJohn Marino 		/* use backward recurrence */
123*05a0b428SJohn Marino 		/* 			x      x^2      x^2
124*05a0b428SJohn Marino 		 *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
125*05a0b428SJohn Marino 		 *			2n  - 2(n+1) - 2(n+2)
126*05a0b428SJohn Marino 		 *
127*05a0b428SJohn Marino 		 * 			1      1        1
128*05a0b428SJohn Marino 		 *  (for large x)   =  ----  ------   ------   .....
129*05a0b428SJohn Marino 		 *			2n   2(n+1)   2(n+2)
130*05a0b428SJohn Marino 		 *			-- - ------ - ------ -
131*05a0b428SJohn Marino 		 *			 x     x         x
132*05a0b428SJohn Marino 		 *
133*05a0b428SJohn Marino 		 * Let w = 2n/x and h=2/x, then the above quotient
134*05a0b428SJohn Marino 		 * is equal to the continued fraction:
135*05a0b428SJohn Marino 		 *		    1
136*05a0b428SJohn Marino 		 *	= -----------------------
137*05a0b428SJohn Marino 		 *		       1
138*05a0b428SJohn Marino 		 *	   w - -----------------
139*05a0b428SJohn Marino 		 *			  1
140*05a0b428SJohn Marino 		 * 	        w+h - ---------
141*05a0b428SJohn Marino 		 *		       w+2h - ...
142*05a0b428SJohn Marino 		 *
143*05a0b428SJohn Marino 		 * To determine how many terms needed, let
144*05a0b428SJohn Marino 		 * Q(0) = w, Q(1) = w(w+h) - 1,
145*05a0b428SJohn Marino 		 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
146*05a0b428SJohn Marino 		 * When Q(k) > 1e4	good for single
147*05a0b428SJohn Marino 		 * When Q(k) > 1e9	good for double
148*05a0b428SJohn Marino 		 * When Q(k) > 1e17	good for quadruple
149*05a0b428SJohn Marino 		 */
150*05a0b428SJohn Marino 	    /* determine k */
151*05a0b428SJohn Marino 		double t,v;
152*05a0b428SJohn Marino 		double q0,q1,h,tmp; int32_t k,m;
153*05a0b428SJohn Marino 		w  = (n+n)/(double)x; h = 2.0/(double)x;
154*05a0b428SJohn Marino 		q0 = w;  z = w+h; q1 = w*z - 1.0; k=1;
155*05a0b428SJohn Marino 		while(q1<1.0e9) {
156*05a0b428SJohn Marino 			k += 1; z += h;
157*05a0b428SJohn Marino 			tmp = z*q1 - q0;
158*05a0b428SJohn Marino 			q0 = q1;
159*05a0b428SJohn Marino 			q1 = tmp;
160*05a0b428SJohn Marino 		}
161*05a0b428SJohn Marino 		m = n+n;
162*05a0b428SJohn Marino 		for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
163*05a0b428SJohn Marino 		a = t;
164*05a0b428SJohn Marino 		b = one;
165*05a0b428SJohn Marino 		/*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
166*05a0b428SJohn Marino 		 *  Hence, if n*(log(2n/x)) > ...
167*05a0b428SJohn Marino 		 *  single 8.8722839355e+01
168*05a0b428SJohn Marino 		 *  double 7.09782712893383973096e+02
169*05a0b428SJohn Marino 		 *  long double 1.1356523406294143949491931077970765006170e+04
170*05a0b428SJohn Marino 		 *  then recurrent value may overflow and the result is
171*05a0b428SJohn Marino 		 *  likely underflow to zero
172*05a0b428SJohn Marino 		 */
173*05a0b428SJohn Marino 		tmp = n;
174*05a0b428SJohn Marino 		v = two/x;
175*05a0b428SJohn Marino 		tmp = tmp*log(fabs(v*tmp));
176*05a0b428SJohn Marino 		if(tmp<7.09782712893383973096e+02) {
177*05a0b428SJohn Marino 	    	    for(i=n-1,di=(double)(i+i);i>0;i--){
178*05a0b428SJohn Marino 		        temp = b;
179*05a0b428SJohn Marino 			b *= di;
180*05a0b428SJohn Marino 			b  = b/x - a;
181*05a0b428SJohn Marino 		        a = temp;
182*05a0b428SJohn Marino 			di -= two;
183*05a0b428SJohn Marino 	     	    }
184*05a0b428SJohn Marino 		} else {
185*05a0b428SJohn Marino 	    	    for(i=n-1,di=(double)(i+i);i>0;i--){
186*05a0b428SJohn Marino 		        temp = b;
187*05a0b428SJohn Marino 			b *= di;
188*05a0b428SJohn Marino 			b  = b/x - a;
189*05a0b428SJohn Marino 		        a = temp;
190*05a0b428SJohn Marino 			di -= two;
191*05a0b428SJohn Marino 		    /* scale b to avoid spurious overflow */
192*05a0b428SJohn Marino 			if(b>1e100) {
193*05a0b428SJohn Marino 			    a /= b;
194*05a0b428SJohn Marino 			    t /= b;
195*05a0b428SJohn Marino 			    b  = one;
196*05a0b428SJohn Marino 			}
197*05a0b428SJohn Marino 	     	    }
198*05a0b428SJohn Marino 		}
199*05a0b428SJohn Marino 	    	b = (t*j0(x)/b);
200*05a0b428SJohn Marino 	    }
201*05a0b428SJohn Marino 	}
202*05a0b428SJohn Marino 	if(sgn==1) return -b; else return b;
203*05a0b428SJohn Marino }
204*05a0b428SJohn Marino 
205*05a0b428SJohn Marino double
yn(int n,double x)206*05a0b428SJohn Marino yn(int n, double x)
207*05a0b428SJohn Marino {
208*05a0b428SJohn Marino 	int32_t i,hx,ix,lx;
209*05a0b428SJohn Marino 	int32_t sign;
210*05a0b428SJohn Marino 	double a, b, temp;
211*05a0b428SJohn Marino 
212*05a0b428SJohn Marino 	EXTRACT_WORDS(hx,lx,x);
213*05a0b428SJohn Marino 	ix = 0x7fffffff&hx;
214*05a0b428SJohn Marino     /* if Y(n,NaN) is NaN */
215*05a0b428SJohn Marino 	if((ix|((u_int32_t)(lx|-lx))>>31)>0x7ff00000) return x+x;
216*05a0b428SJohn Marino 	if((ix|lx)==0) return -one/zero;
217*05a0b428SJohn Marino 	if(hx<0) return zero/zero;
218*05a0b428SJohn Marino 	sign = 1;
219*05a0b428SJohn Marino 	if(n<0){
220*05a0b428SJohn Marino 		n = -n;
221*05a0b428SJohn Marino 		sign = 1 - ((n&1)<<1);
222*05a0b428SJohn Marino 	}
223*05a0b428SJohn Marino 	if(n==0) return(y0(x));
224*05a0b428SJohn Marino 	if(n==1) return(sign*y1(x));
225*05a0b428SJohn Marino 	if(ix==0x7ff00000) return zero;
226*05a0b428SJohn Marino 	if(ix>=0x52D00000) { /* x > 2**302 */
227*05a0b428SJohn Marino     /* (x >> n**2)
228*05a0b428SJohn Marino      *	    Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
229*05a0b428SJohn Marino      *	    Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
230*05a0b428SJohn Marino      *	    Let s=sin(x), c=cos(x),
231*05a0b428SJohn Marino      *		xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
232*05a0b428SJohn Marino      *
233*05a0b428SJohn Marino      *		   n	sin(xn)*sqt2	cos(xn)*sqt2
234*05a0b428SJohn Marino      *		----------------------------------
235*05a0b428SJohn Marino      *		   0	 s-c		 c+s
236*05a0b428SJohn Marino      *		   1	-s-c 		-c+s
237*05a0b428SJohn Marino      *		   2	-s+c		-c-s
238*05a0b428SJohn Marino      *		   3	 s+c		 c-s
239*05a0b428SJohn Marino      */
240*05a0b428SJohn Marino 		switch(n&3) {
241*05a0b428SJohn Marino 		    case 0: temp =  sin(x)-cos(x); break;
242*05a0b428SJohn Marino 		    case 1: temp = -sin(x)-cos(x); break;
243*05a0b428SJohn Marino 		    case 2: temp = -sin(x)+cos(x); break;
244*05a0b428SJohn Marino 		    case 3: temp =  sin(x)+cos(x); break;
245*05a0b428SJohn Marino 		}
246*05a0b428SJohn Marino 		b = invsqrtpi*temp/sqrt(x);
247*05a0b428SJohn Marino 	} else {
248*05a0b428SJohn Marino 	    u_int32_t high;
249*05a0b428SJohn Marino 	    a = y0(x);
250*05a0b428SJohn Marino 	    b = y1(x);
251*05a0b428SJohn Marino 	/* quit if b is -inf */
252*05a0b428SJohn Marino 	    GET_HIGH_WORD(high,b);
253*05a0b428SJohn Marino 	    for(i=1;i<n&&high!=0xfff00000;i++){
254*05a0b428SJohn Marino 		temp = b;
255*05a0b428SJohn Marino 		b = ((double)(i+i)/x)*b - a;
256*05a0b428SJohn Marino 		GET_HIGH_WORD(high,b);
257*05a0b428SJohn Marino 		a = temp;
258*05a0b428SJohn Marino 	    }
259*05a0b428SJohn Marino 	}
260*05a0b428SJohn Marino 	if(sign>0) return b; else return -b;
261*05a0b428SJohn Marino }
262