105a0b428SJohn Marino /* @(#)e_j0.c 5.1 93/09/24 */
205a0b428SJohn Marino /*
305a0b428SJohn Marino * ====================================================
405a0b428SJohn Marino * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
505a0b428SJohn Marino *
605a0b428SJohn Marino * Developed at SunPro, a Sun Microsystems, Inc. business.
705a0b428SJohn Marino * Permission to use, copy, modify, and distribute this
805a0b428SJohn Marino * software is freely granted, provided that this notice
905a0b428SJohn Marino * is preserved.
1005a0b428SJohn Marino * ====================================================
1105a0b428SJohn Marino */
1205a0b428SJohn Marino
1305a0b428SJohn Marino /* j0(x), y0(x)
1405a0b428SJohn Marino * Bessel function of the first and second kinds of order zero.
1505a0b428SJohn Marino * Method -- j0(x):
1605a0b428SJohn Marino * 1. For tiny x, we use j0(x) = 1 - x^2/4 + x^4/64 - ...
1705a0b428SJohn Marino * 2. Reduce x to |x| since j0(x)=j0(-x), and
1805a0b428SJohn Marino * for x in (0,2)
1905a0b428SJohn Marino * j0(x) = 1-z/4+ z^2*R0/S0, where z = x*x;
2005a0b428SJohn Marino * (precision: |j0-1+z/4-z^2R0/S0 |<2**-63.67 )
2105a0b428SJohn Marino * for x in (2,inf)
2205a0b428SJohn Marino * j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)-q0(x)*sin(x0))
2305a0b428SJohn Marino * where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
2405a0b428SJohn Marino * as follow:
2505a0b428SJohn Marino * cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
2605a0b428SJohn Marino * = 1/sqrt(2) * (cos(x) + sin(x))
2705a0b428SJohn Marino * sin(x0) = sin(x)cos(pi/4)-cos(x)sin(pi/4)
2805a0b428SJohn Marino * = 1/sqrt(2) * (sin(x) - cos(x))
2905a0b428SJohn Marino * (To avoid cancellation, use
3005a0b428SJohn Marino * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
3105a0b428SJohn Marino * to compute the worse one.)
3205a0b428SJohn Marino *
3305a0b428SJohn Marino * 3 Special cases
3405a0b428SJohn Marino * j0(nan)= nan
3505a0b428SJohn Marino * j0(0) = 1
3605a0b428SJohn Marino * j0(inf) = 0
3705a0b428SJohn Marino *
3805a0b428SJohn Marino * Method -- y0(x):
3905a0b428SJohn Marino * 1. For x<2.
4005a0b428SJohn Marino * Since
4105a0b428SJohn Marino * y0(x) = 2/pi*(j0(x)*(ln(x/2)+Euler) + x^2/4 - ...)
4205a0b428SJohn Marino * therefore y0(x)-2/pi*j0(x)*ln(x) is an even function.
4305a0b428SJohn Marino * We use the following function to approximate y0,
4405a0b428SJohn Marino * y0(x) = U(z)/V(z) + (2/pi)*(j0(x)*ln(x)), z= x^2
4505a0b428SJohn Marino * where
4605a0b428SJohn Marino * U(z) = u00 + u01*z + ... + u06*z^6
4705a0b428SJohn Marino * V(z) = 1 + v01*z + ... + v04*z^4
4805a0b428SJohn Marino * with absolute approximation error bounded by 2**-72.
4905a0b428SJohn Marino * Note: For tiny x, U/V = u0 and j0(x)~1, hence
5005a0b428SJohn Marino * y0(tiny) = u0 + (2/pi)*ln(tiny), (choose tiny<2**-27)
5105a0b428SJohn Marino * 2. For x>=2.
5205a0b428SJohn Marino * y0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)+q0(x)*sin(x0))
5305a0b428SJohn Marino * where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
5405a0b428SJohn Marino * by the method mentioned above.
5505a0b428SJohn Marino * 3. Special cases: y0(0)=-inf, y0(x<0)=NaN, y0(inf)=0.
5605a0b428SJohn Marino */
5705a0b428SJohn Marino
5805a0b428SJohn Marino #include "math.h"
5905a0b428SJohn Marino #include "math_private.h"
6005a0b428SJohn Marino
6105a0b428SJohn Marino static double pzero(double), qzero(double);
6205a0b428SJohn Marino
6305a0b428SJohn Marino static const double
6405a0b428SJohn Marino huge = 1e300,
6505a0b428SJohn Marino one = 1.0,
6605a0b428SJohn Marino invsqrtpi= 5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
6705a0b428SJohn Marino tpi = 6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */
6805a0b428SJohn Marino /* R0/S0 on [0, 2.00] */
6905a0b428SJohn Marino R02 = 1.56249999999999947958e-02, /* 0x3F8FFFFF, 0xFFFFFFFD */
7005a0b428SJohn Marino R03 = -1.89979294238854721751e-04, /* 0xBF28E6A5, 0xB61AC6E9 */
7105a0b428SJohn Marino R04 = 1.82954049532700665670e-06, /* 0x3EBEB1D1, 0x0C503919 */
7205a0b428SJohn Marino R05 = -4.61832688532103189199e-09, /* 0xBE33D5E7, 0x73D63FCE */
7305a0b428SJohn Marino S01 = 1.56191029464890010492e-02, /* 0x3F8FFCE8, 0x82C8C2A4 */
7405a0b428SJohn Marino S02 = 1.16926784663337450260e-04, /* 0x3F1EA6D2, 0xDD57DBF4 */
7505a0b428SJohn Marino S03 = 5.13546550207318111446e-07, /* 0x3EA13B54, 0xCE84D5A9 */
7605a0b428SJohn Marino S04 = 1.16614003333790000205e-09; /* 0x3E1408BC, 0xF4745D8F */
7705a0b428SJohn Marino
7805a0b428SJohn Marino static const double zero = 0.0;
7905a0b428SJohn Marino
8005a0b428SJohn Marino double
j0(double x)8105a0b428SJohn Marino j0(double x)
8205a0b428SJohn Marino {
8305a0b428SJohn Marino double z, s,c,ss,cc,r,u,v;
8405a0b428SJohn Marino int32_t hx,ix;
8505a0b428SJohn Marino
8605a0b428SJohn Marino GET_HIGH_WORD(hx,x);
8705a0b428SJohn Marino ix = hx&0x7fffffff;
8805a0b428SJohn Marino if(ix>=0x7ff00000) return one/(x*x);
8905a0b428SJohn Marino x = fabs(x);
9005a0b428SJohn Marino if(ix >= 0x40000000) { /* |x| >= 2.0 */
9105a0b428SJohn Marino s = sin(x);
9205a0b428SJohn Marino c = cos(x);
9305a0b428SJohn Marino ss = s-c;
9405a0b428SJohn Marino cc = s+c;
9505a0b428SJohn Marino if(ix<0x7fe00000) { /* make sure x+x not overflow */
9605a0b428SJohn Marino z = -cos(x+x);
9705a0b428SJohn Marino if ((s*c)<zero) cc = z/ss;
9805a0b428SJohn Marino else ss = z/cc;
9905a0b428SJohn Marino }
10005a0b428SJohn Marino /*
10105a0b428SJohn Marino * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
10205a0b428SJohn Marino * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
10305a0b428SJohn Marino */
10405a0b428SJohn Marino if(ix>0x48000000) z = (invsqrtpi*cc)/sqrt(x);
10505a0b428SJohn Marino else {
10605a0b428SJohn Marino u = pzero(x); v = qzero(x);
10705a0b428SJohn Marino z = invsqrtpi*(u*cc-v*ss)/sqrt(x);
10805a0b428SJohn Marino }
10905a0b428SJohn Marino return z;
11005a0b428SJohn Marino }
11105a0b428SJohn Marino if(ix<0x3f200000) { /* |x| < 2**-13 */
11205a0b428SJohn Marino if(huge+x>one) { /* raise inexact if x != 0 */
11305a0b428SJohn Marino if(ix<0x3e400000) return one; /* |x|<2**-27 */
11405a0b428SJohn Marino else return one - 0.25*x*x;
11505a0b428SJohn Marino }
11605a0b428SJohn Marino }
11705a0b428SJohn Marino z = x*x;
11805a0b428SJohn Marino r = z*(R02+z*(R03+z*(R04+z*R05)));
11905a0b428SJohn Marino s = one+z*(S01+z*(S02+z*(S03+z*S04)));
12005a0b428SJohn Marino if(ix < 0x3FF00000) { /* |x| < 1.00 */
12105a0b428SJohn Marino return one + z*(-0.25+(r/s));
12205a0b428SJohn Marino } else {
12305a0b428SJohn Marino u = 0.5*x;
12405a0b428SJohn Marino return((one+u)*(one-u)+z*(r/s));
12505a0b428SJohn Marino }
12605a0b428SJohn Marino }
12705a0b428SJohn Marino
12805a0b428SJohn Marino static const double
12905a0b428SJohn Marino u00 = -7.38042951086872317523e-02, /* 0xBFB2E4D6, 0x99CBD01F */
13005a0b428SJohn Marino u01 = 1.76666452509181115538e-01, /* 0x3FC69D01, 0x9DE9E3FC */
13105a0b428SJohn Marino u02 = -1.38185671945596898896e-02, /* 0xBF8C4CE8, 0xB16CFA97 */
13205a0b428SJohn Marino u03 = 3.47453432093683650238e-04, /* 0x3F36C54D, 0x20B29B6B */
13305a0b428SJohn Marino u04 = -3.81407053724364161125e-06, /* 0xBECFFEA7, 0x73D25CAD */
13405a0b428SJohn Marino u05 = 1.95590137035022920206e-08, /* 0x3E550057, 0x3B4EABD4 */
13505a0b428SJohn Marino u06 = -3.98205194132103398453e-11, /* 0xBDC5E43D, 0x693FB3C8 */
13605a0b428SJohn Marino v01 = 1.27304834834123699328e-02, /* 0x3F8A1270, 0x91C9C71A */
13705a0b428SJohn Marino v02 = 7.60068627350353253702e-05, /* 0x3F13ECBB, 0xF578C6C1 */
13805a0b428SJohn Marino v03 = 2.59150851840457805467e-07, /* 0x3E91642D, 0x7FF202FD */
13905a0b428SJohn Marino v04 = 4.41110311332675467403e-10; /* 0x3DFE5018, 0x3BD6D9EF */
14005a0b428SJohn Marino
14105a0b428SJohn Marino double
y0(double x)14205a0b428SJohn Marino y0(double x)
14305a0b428SJohn Marino {
14405a0b428SJohn Marino double z, s,c,ss,cc,u,v;
14505a0b428SJohn Marino int32_t hx,ix,lx;
14605a0b428SJohn Marino
14705a0b428SJohn Marino EXTRACT_WORDS(hx,lx,x);
14805a0b428SJohn Marino ix = 0x7fffffff&hx;
14905a0b428SJohn Marino /* Y0(NaN) is NaN, y0(-inf) is Nan, y0(inf) is 0 */
15005a0b428SJohn Marino if(ix>=0x7ff00000) return one/(x+x*x);
15105a0b428SJohn Marino if((ix|lx)==0) return -one/zero;
15205a0b428SJohn Marino if(hx<0) return zero/zero;
15305a0b428SJohn Marino if(ix >= 0x40000000) { /* |x| >= 2.0 */
15405a0b428SJohn Marino /* y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x0)+q0(x)*cos(x0))
15505a0b428SJohn Marino * where x0 = x-pi/4
15605a0b428SJohn Marino * Better formula:
15705a0b428SJohn Marino * cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
15805a0b428SJohn Marino * = 1/sqrt(2) * (sin(x) + cos(x))
15905a0b428SJohn Marino * sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
16005a0b428SJohn Marino * = 1/sqrt(2) * (sin(x) - cos(x))
16105a0b428SJohn Marino * To avoid cancellation, use
16205a0b428SJohn Marino * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
16305a0b428SJohn Marino * to compute the worse one.
16405a0b428SJohn Marino */
16505a0b428SJohn Marino s = sin(x);
16605a0b428SJohn Marino c = cos(x);
16705a0b428SJohn Marino ss = s-c;
16805a0b428SJohn Marino cc = s+c;
16905a0b428SJohn Marino /*
17005a0b428SJohn Marino * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
17105a0b428SJohn Marino * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
17205a0b428SJohn Marino */
17305a0b428SJohn Marino if(ix<0x7fe00000) { /* make sure x+x not overflow */
17405a0b428SJohn Marino z = -cos(x+x);
17505a0b428SJohn Marino if ((s*c)<zero) cc = z/ss;
17605a0b428SJohn Marino else ss = z/cc;
17705a0b428SJohn Marino }
17805a0b428SJohn Marino if(ix>0x48000000) z = (invsqrtpi*ss)/sqrt(x);
17905a0b428SJohn Marino else {
18005a0b428SJohn Marino u = pzero(x); v = qzero(x);
18105a0b428SJohn Marino z = invsqrtpi*(u*ss+v*cc)/sqrt(x);
18205a0b428SJohn Marino }
18305a0b428SJohn Marino return z;
18405a0b428SJohn Marino }
18505a0b428SJohn Marino if(ix<=0x3e400000) { /* x < 2**-27 */
18605a0b428SJohn Marino return(u00 + tpi*log(x));
18705a0b428SJohn Marino }
18805a0b428SJohn Marino z = x*x;
18905a0b428SJohn Marino u = u00+z*(u01+z*(u02+z*(u03+z*(u04+z*(u05+z*u06)))));
19005a0b428SJohn Marino v = one+z*(v01+z*(v02+z*(v03+z*v04)));
19105a0b428SJohn Marino return(u/v + tpi*(j0(x)*log(x)));
19205a0b428SJohn Marino }
19305a0b428SJohn Marino
19405a0b428SJohn Marino /* The asymptotic expansions of pzero is
19505a0b428SJohn Marino * 1 - 9/128 s^2 + 11025/98304 s^4 - ..., where s = 1/x.
19605a0b428SJohn Marino * For x >= 2, We approximate pzero by
19705a0b428SJohn Marino * pzero(x) = 1 + (R/S)
19805a0b428SJohn Marino * where R = pR0 + pR1*s^2 + pR2*s^4 + ... + pR5*s^10
19905a0b428SJohn Marino * S = 1 + pS0*s^2 + ... + pS4*s^10
20005a0b428SJohn Marino * and
20105a0b428SJohn Marino * | pzero(x)-1-R/S | <= 2 ** ( -60.26)
20205a0b428SJohn Marino */
20305a0b428SJohn Marino static const double pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
20405a0b428SJohn Marino 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
20505a0b428SJohn Marino -7.03124999999900357484e-02, /* 0xBFB1FFFF, 0xFFFFFD32 */
20605a0b428SJohn Marino -8.08167041275349795626e+00, /* 0xC02029D0, 0xB44FA779 */
20705a0b428SJohn Marino -2.57063105679704847262e+02, /* 0xC0701102, 0x7B19E863 */
20805a0b428SJohn Marino -2.48521641009428822144e+03, /* 0xC0A36A6E, 0xCD4DCAFC */
20905a0b428SJohn Marino -5.25304380490729545272e+03, /* 0xC0B4850B, 0x36CC643D */
21005a0b428SJohn Marino };
21105a0b428SJohn Marino static const double pS8[5] = {
21205a0b428SJohn Marino 1.16534364619668181717e+02, /* 0x405D2233, 0x07A96751 */
21305a0b428SJohn Marino 3.83374475364121826715e+03, /* 0x40ADF37D, 0x50596938 */
21405a0b428SJohn Marino 4.05978572648472545552e+04, /* 0x40E3D2BB, 0x6EB6B05F */
21505a0b428SJohn Marino 1.16752972564375915681e+05, /* 0x40FC810F, 0x8F9FA9BD */
21605a0b428SJohn Marino 4.76277284146730962675e+04, /* 0x40E74177, 0x4F2C49DC */
21705a0b428SJohn Marino };
21805a0b428SJohn Marino
21905a0b428SJohn Marino static const double pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
22005a0b428SJohn Marino -1.14125464691894502584e-11, /* 0xBDA918B1, 0x47E495CC */
22105a0b428SJohn Marino -7.03124940873599280078e-02, /* 0xBFB1FFFF, 0xE69AFBC6 */
22205a0b428SJohn Marino -4.15961064470587782438e+00, /* 0xC010A370, 0xF90C6BBF */
22305a0b428SJohn Marino -6.76747652265167261021e+01, /* 0xC050EB2F, 0x5A7D1783 */
22405a0b428SJohn Marino -3.31231299649172967747e+02, /* 0xC074B3B3, 0x6742CC63 */
22505a0b428SJohn Marino -3.46433388365604912451e+02, /* 0xC075A6EF, 0x28A38BD7 */
22605a0b428SJohn Marino };
22705a0b428SJohn Marino static const double pS5[5] = {
22805a0b428SJohn Marino 6.07539382692300335975e+01, /* 0x404E6081, 0x0C98C5DE */
22905a0b428SJohn Marino 1.05125230595704579173e+03, /* 0x40906D02, 0x5C7E2864 */
23005a0b428SJohn Marino 5.97897094333855784498e+03, /* 0x40B75AF8, 0x8FBE1D60 */
23105a0b428SJohn Marino 9.62544514357774460223e+03, /* 0x40C2CCB8, 0xFA76FA38 */
23205a0b428SJohn Marino 2.40605815922939109441e+03, /* 0x40A2CC1D, 0xC70BE864 */
23305a0b428SJohn Marino };
23405a0b428SJohn Marino
23505a0b428SJohn Marino static const double pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
23605a0b428SJohn Marino -2.54704601771951915620e-09, /* 0xBE25E103, 0x6FE1AA86 */
23705a0b428SJohn Marino -7.03119616381481654654e-02, /* 0xBFB1FFF6, 0xF7C0E24B */
23805a0b428SJohn Marino -2.40903221549529611423e+00, /* 0xC00345B2, 0xAEA48074 */
23905a0b428SJohn Marino -2.19659774734883086467e+01, /* 0xC035F74A, 0x4CB94E14 */
24005a0b428SJohn Marino -5.80791704701737572236e+01, /* 0xC04D0A22, 0x420A1A45 */
24105a0b428SJohn Marino -3.14479470594888503854e+01, /* 0xC03F72AC, 0xA892D80F */
24205a0b428SJohn Marino };
24305a0b428SJohn Marino static const double pS3[5] = {
24405a0b428SJohn Marino 3.58560338055209726349e+01, /* 0x4041ED92, 0x84077DD3 */
24505a0b428SJohn Marino 3.61513983050303863820e+02, /* 0x40769839, 0x464A7C0E */
24605a0b428SJohn Marino 1.19360783792111533330e+03, /* 0x4092A66E, 0x6D1061D6 */
24705a0b428SJohn Marino 1.12799679856907414432e+03, /* 0x40919FFC, 0xB8C39B7E */
24805a0b428SJohn Marino 1.73580930813335754692e+02, /* 0x4065B296, 0xFC379081 */
24905a0b428SJohn Marino };
25005a0b428SJohn Marino
25105a0b428SJohn Marino static const double pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
25205a0b428SJohn Marino -8.87534333032526411254e-08, /* 0xBE77D316, 0xE927026D */
25305a0b428SJohn Marino -7.03030995483624743247e-02, /* 0xBFB1FF62, 0x495E1E42 */
25405a0b428SJohn Marino -1.45073846780952986357e+00, /* 0xBFF73639, 0x8A24A843 */
25505a0b428SJohn Marino -7.63569613823527770791e+00, /* 0xC01E8AF3, 0xEDAFA7F3 */
25605a0b428SJohn Marino -1.11931668860356747786e+01, /* 0xC02662E6, 0xC5246303 */
25705a0b428SJohn Marino -3.23364579351335335033e+00, /* 0xC009DE81, 0xAF8FE70F */
25805a0b428SJohn Marino };
25905a0b428SJohn Marino static const double pS2[5] = {
26005a0b428SJohn Marino 2.22202997532088808441e+01, /* 0x40363865, 0x908B5959 */
26105a0b428SJohn Marino 1.36206794218215208048e+02, /* 0x4061069E, 0x0EE8878F */
26205a0b428SJohn Marino 2.70470278658083486789e+02, /* 0x4070E786, 0x42EA079B */
26305a0b428SJohn Marino 1.53875394208320329881e+02, /* 0x40633C03, 0x3AB6FAFF */
26405a0b428SJohn Marino 1.46576176948256193810e+01, /* 0x402D50B3, 0x44391809 */
26505a0b428SJohn Marino };
26605a0b428SJohn Marino
26705a0b428SJohn Marino static double
pzero(double x)26805a0b428SJohn Marino pzero(double x)
26905a0b428SJohn Marino {
27005a0b428SJohn Marino const double *p,*q;
27105a0b428SJohn Marino double z,r,s;
27205a0b428SJohn Marino int32_t ix;
27305a0b428SJohn Marino GET_HIGH_WORD(ix,x);
27405a0b428SJohn Marino ix &= 0x7fffffff;
27505a0b428SJohn Marino if(ix>=0x40200000) {p = pR8; q= pS8;}
27605a0b428SJohn Marino else if(ix>=0x40122E8B){p = pR5; q= pS5;}
27705a0b428SJohn Marino else if(ix>=0x4006DB6D){p = pR3; q= pS3;}
278*74b7c7a8SJohn Marino else /*if(ix>=0x40000000)*/ {p = pR2; q= pS2;}
27905a0b428SJohn Marino z = one/(x*x);
28005a0b428SJohn Marino r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
28105a0b428SJohn Marino s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
28205a0b428SJohn Marino return one+ r/s;
28305a0b428SJohn Marino }
28405a0b428SJohn Marino
28505a0b428SJohn Marino
28605a0b428SJohn Marino /* For x >= 8, the asymptotic expansions of qzero is
28705a0b428SJohn Marino * -1/8 s + 75/1024 s^3 - ..., where s = 1/x.
28805a0b428SJohn Marino * We approximate pzero by
28905a0b428SJohn Marino * qzero(x) = s*(-1.25 + (R/S))
29005a0b428SJohn Marino * where R = qR0 + qR1*s^2 + qR2*s^4 + ... + qR5*s^10
29105a0b428SJohn Marino * S = 1 + qS0*s^2 + ... + qS5*s^12
29205a0b428SJohn Marino * and
29305a0b428SJohn Marino * | qzero(x)/s +1.25-R/S | <= 2 ** ( -61.22)
29405a0b428SJohn Marino */
29505a0b428SJohn Marino static const double qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
29605a0b428SJohn Marino 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
29705a0b428SJohn Marino 7.32421874999935051953e-02, /* 0x3FB2BFFF, 0xFFFFFE2C */
29805a0b428SJohn Marino 1.17682064682252693899e+01, /* 0x40278952, 0x5BB334D6 */
29905a0b428SJohn Marino 5.57673380256401856059e+02, /* 0x40816D63, 0x15301825 */
30005a0b428SJohn Marino 8.85919720756468632317e+03, /* 0x40C14D99, 0x3E18F46D */
30105a0b428SJohn Marino 3.70146267776887834771e+04, /* 0x40E212D4, 0x0E901566 */
30205a0b428SJohn Marino };
30305a0b428SJohn Marino static const double qS8[6] = {
30405a0b428SJohn Marino 1.63776026895689824414e+02, /* 0x406478D5, 0x365B39BC */
30505a0b428SJohn Marino 8.09834494656449805916e+03, /* 0x40BFA258, 0x4E6B0563 */
30605a0b428SJohn Marino 1.42538291419120476348e+05, /* 0x41016652, 0x54D38C3F */
30705a0b428SJohn Marino 8.03309257119514397345e+05, /* 0x412883DA, 0x83A52B43 */
30805a0b428SJohn Marino 8.40501579819060512818e+05, /* 0x4129A66B, 0x28DE0B3D */
30905a0b428SJohn Marino -3.43899293537866615225e+05, /* 0xC114FD6D, 0x2C9530C5 */
31005a0b428SJohn Marino };
31105a0b428SJohn Marino
31205a0b428SJohn Marino static const double qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
31305a0b428SJohn Marino 1.84085963594515531381e-11, /* 0x3DB43D8F, 0x29CC8CD9 */
31405a0b428SJohn Marino 7.32421766612684765896e-02, /* 0x3FB2BFFF, 0xD172B04C */
31505a0b428SJohn Marino 5.83563508962056953777e+00, /* 0x401757B0, 0xB9953DD3 */
31605a0b428SJohn Marino 1.35111577286449829671e+02, /* 0x4060E392, 0x0A8788E9 */
31705a0b428SJohn Marino 1.02724376596164097464e+03, /* 0x40900CF9, 0x9DC8C481 */
31805a0b428SJohn Marino 1.98997785864605384631e+03, /* 0x409F17E9, 0x53C6E3A6 */
31905a0b428SJohn Marino };
32005a0b428SJohn Marino static const double qS5[6] = {
32105a0b428SJohn Marino 8.27766102236537761883e+01, /* 0x4054B1B3, 0xFB5E1543 */
32205a0b428SJohn Marino 2.07781416421392987104e+03, /* 0x40A03BA0, 0xDA21C0CE */
32305a0b428SJohn Marino 1.88472887785718085070e+04, /* 0x40D267D2, 0x7B591E6D */
32405a0b428SJohn Marino 5.67511122894947329769e+04, /* 0x40EBB5E3, 0x97E02372 */
32505a0b428SJohn Marino 3.59767538425114471465e+04, /* 0x40E19118, 0x1F7A54A0 */
32605a0b428SJohn Marino -5.35434275601944773371e+03, /* 0xC0B4EA57, 0xBEDBC609 */
32705a0b428SJohn Marino };
32805a0b428SJohn Marino
32905a0b428SJohn Marino static const double qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
33005a0b428SJohn Marino 4.37741014089738620906e-09, /* 0x3E32CD03, 0x6ADECB82 */
33105a0b428SJohn Marino 7.32411180042911447163e-02, /* 0x3FB2BFEE, 0x0E8D0842 */
33205a0b428SJohn Marino 3.34423137516170720929e+00, /* 0x400AC0FC, 0x61149CF5 */
33305a0b428SJohn Marino 4.26218440745412650017e+01, /* 0x40454F98, 0x962DAEDD */
33405a0b428SJohn Marino 1.70808091340565596283e+02, /* 0x406559DB, 0xE25EFD1F */
33505a0b428SJohn Marino 1.66733948696651168575e+02, /* 0x4064D77C, 0x81FA21E0 */
33605a0b428SJohn Marino };
33705a0b428SJohn Marino static const double qS3[6] = {
33805a0b428SJohn Marino 4.87588729724587182091e+01, /* 0x40486122, 0xBFE343A6 */
33905a0b428SJohn Marino 7.09689221056606015736e+02, /* 0x40862D83, 0x86544EB3 */
34005a0b428SJohn Marino 3.70414822620111362994e+03, /* 0x40ACF04B, 0xE44DFC63 */
34105a0b428SJohn Marino 6.46042516752568917582e+03, /* 0x40B93C6C, 0xD7C76A28 */
34205a0b428SJohn Marino 2.51633368920368957333e+03, /* 0x40A3A8AA, 0xD94FB1C0 */
34305a0b428SJohn Marino -1.49247451836156386662e+02, /* 0xC062A7EB, 0x201CF40F */
34405a0b428SJohn Marino };
34505a0b428SJohn Marino
34605a0b428SJohn Marino static const double qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
34705a0b428SJohn Marino 1.50444444886983272379e-07, /* 0x3E84313B, 0x54F76BDB */
34805a0b428SJohn Marino 7.32234265963079278272e-02, /* 0x3FB2BEC5, 0x3E883E34 */
34905a0b428SJohn Marino 1.99819174093815998816e+00, /* 0x3FFFF897, 0xE727779C */
35005a0b428SJohn Marino 1.44956029347885735348e+01, /* 0x402CFDBF, 0xAAF96FE5 */
35105a0b428SJohn Marino 3.16662317504781540833e+01, /* 0x403FAA8E, 0x29FBDC4A */
35205a0b428SJohn Marino 1.62527075710929267416e+01, /* 0x403040B1, 0x71814BB4 */
35305a0b428SJohn Marino };
35405a0b428SJohn Marino static const double qS2[6] = {
35505a0b428SJohn Marino 3.03655848355219184498e+01, /* 0x403E5D96, 0xF7C07AED */
35605a0b428SJohn Marino 2.69348118608049844624e+02, /* 0x4070D591, 0xE4D14B40 */
35705a0b428SJohn Marino 8.44783757595320139444e+02, /* 0x408A6645, 0x22B3BF22 */
35805a0b428SJohn Marino 8.82935845112488550512e+02, /* 0x408B977C, 0x9C5CC214 */
35905a0b428SJohn Marino 2.12666388511798828631e+02, /* 0x406A9553, 0x0E001365 */
36005a0b428SJohn Marino -5.31095493882666946917e+00, /* 0xC0153E6A, 0xF8B32931 */
36105a0b428SJohn Marino };
36205a0b428SJohn Marino
36305a0b428SJohn Marino static double
qzero(double x)36405a0b428SJohn Marino qzero(double x)
36505a0b428SJohn Marino {
36605a0b428SJohn Marino const double *p,*q;
36705a0b428SJohn Marino double s,r,z;
36805a0b428SJohn Marino int32_t ix;
36905a0b428SJohn Marino GET_HIGH_WORD(ix,x);
37005a0b428SJohn Marino ix &= 0x7fffffff;
37105a0b428SJohn Marino if(ix>=0x40200000) {p = qR8; q= qS8;}
37205a0b428SJohn Marino else if(ix>=0x40122E8B){p = qR5; q= qS5;}
37305a0b428SJohn Marino else if(ix>=0x4006DB6D){p = qR3; q= qS3;}
374*74b7c7a8SJohn Marino else /*if(ix>=0x40000000)*/ {p = qR2; q= qS2;}
37505a0b428SJohn Marino z = one/(x*x);
37605a0b428SJohn Marino r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
37705a0b428SJohn Marino s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
37805a0b428SJohn Marino return (-.125 + r/s)/x;
37905a0b428SJohn Marino }
380