xref: /dflybsd-src/contrib/openbsd_libm/src/e_exp.c (revision 4382f29d99a100bd77a81697c2f699c11f6a472a)
1*05a0b428SJohn Marino /* @(#)e_exp.c 5.1 93/09/24 */
2*05a0b428SJohn Marino /*
3*05a0b428SJohn Marino  * ====================================================
4*05a0b428SJohn Marino  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5*05a0b428SJohn Marino  *
6*05a0b428SJohn Marino  * Developed at SunPro, a Sun Microsystems, Inc. business.
7*05a0b428SJohn Marino  * Permission to use, copy, modify, and distribute this
8*05a0b428SJohn Marino  * software is freely granted, provided that this notice
9*05a0b428SJohn Marino  * is preserved.
10*05a0b428SJohn Marino  * ====================================================
11*05a0b428SJohn Marino  */
12*05a0b428SJohn Marino 
13*05a0b428SJohn Marino /* exp(x)
14*05a0b428SJohn Marino  * Returns the exponential of x.
15*05a0b428SJohn Marino  *
16*05a0b428SJohn Marino  * Method
17*05a0b428SJohn Marino  *   1. Argument reduction:
18*05a0b428SJohn Marino  *      Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
19*05a0b428SJohn Marino  *	Given x, find r and integer k such that
20*05a0b428SJohn Marino  *
21*05a0b428SJohn Marino  *               x = k*ln2 + r,  |r| <= 0.5*ln2.
22*05a0b428SJohn Marino  *
23*05a0b428SJohn Marino  *      Here r will be represented as r = hi-lo for better
24*05a0b428SJohn Marino  *	accuracy.
25*05a0b428SJohn Marino  *
26*05a0b428SJohn Marino  *   2. Approximation of exp(r) by a special rational function on
27*05a0b428SJohn Marino  *	the interval [0,0.34658]:
28*05a0b428SJohn Marino  *	Write
29*05a0b428SJohn Marino  *	    R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
30*05a0b428SJohn Marino  *      We use a special Remes algorithm on [0,0.34658] to generate
31*05a0b428SJohn Marino  * 	a polynomial of degree 5 to approximate R. The maximum error
32*05a0b428SJohn Marino  *	of this polynomial approximation is bounded by 2**-59. In
33*05a0b428SJohn Marino  *	other words,
34*05a0b428SJohn Marino  *	    R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
35*05a0b428SJohn Marino  *  	(where z=r*r, and the values of P1 to P5 are listed below)
36*05a0b428SJohn Marino  *	and
37*05a0b428SJohn Marino  *	    |                  5          |     -59
38*05a0b428SJohn Marino  *	    | 2.0+P1*z+...+P5*z   -  R(z) | <= 2
39*05a0b428SJohn Marino  *	    |                             |
40*05a0b428SJohn Marino  *	The computation of exp(r) thus becomes
41*05a0b428SJohn Marino  *                             2*r
42*05a0b428SJohn Marino  *		exp(r) = 1 + -------
43*05a0b428SJohn Marino  *		              R - r
44*05a0b428SJohn Marino  *                                 r*R1(r)
45*05a0b428SJohn Marino  *		       = 1 + r + ----------- (for better accuracy)
46*05a0b428SJohn Marino  *		                  2 - R1(r)
47*05a0b428SJohn Marino  *	where
48*05a0b428SJohn Marino  *			         2       4             10
49*05a0b428SJohn Marino  *		R1(r) = r - (P1*r  + P2*r  + ... + P5*r   ).
50*05a0b428SJohn Marino  *
51*05a0b428SJohn Marino  *   3. Scale back to obtain exp(x):
52*05a0b428SJohn Marino  *	From step 1, we have
53*05a0b428SJohn Marino  *	   exp(x) = 2^k * exp(r)
54*05a0b428SJohn Marino  *
55*05a0b428SJohn Marino  * Special cases:
56*05a0b428SJohn Marino  *	exp(INF) is INF, exp(NaN) is NaN;
57*05a0b428SJohn Marino  *	exp(-INF) is 0, and
58*05a0b428SJohn Marino  *	for finite argument, only exp(0)=1 is exact.
59*05a0b428SJohn Marino  *
60*05a0b428SJohn Marino  * Accuracy:
61*05a0b428SJohn Marino  *	according to an error analysis, the error is always less than
62*05a0b428SJohn Marino  *	1 ulp (unit in the last place).
63*05a0b428SJohn Marino  *
64*05a0b428SJohn Marino  * Misc. info.
65*05a0b428SJohn Marino  *	For IEEE double
66*05a0b428SJohn Marino  *	    if x >  7.09782712893383973096e+02 then exp(x) overflow
67*05a0b428SJohn Marino  *	    if x < -7.45133219101941108420e+02 then exp(x) underflow
68*05a0b428SJohn Marino  *
69*05a0b428SJohn Marino  * Constants:
70*05a0b428SJohn Marino  * The hexadecimal values are the intended ones for the following
71*05a0b428SJohn Marino  * constants. The decimal values may be used, provided that the
72*05a0b428SJohn Marino  * compiler will convert from decimal to binary accurately enough
73*05a0b428SJohn Marino  * to produce the hexadecimal values shown.
74*05a0b428SJohn Marino  */
75*05a0b428SJohn Marino 
76*05a0b428SJohn Marino #include <float.h>
77*05a0b428SJohn Marino #include <math.h>
78*05a0b428SJohn Marino 
79*05a0b428SJohn Marino #include "math_private.h"
80*05a0b428SJohn Marino 
81*05a0b428SJohn Marino static const double
82*05a0b428SJohn Marino one	= 1.0,
83*05a0b428SJohn Marino halF[2]	= {0.5,-0.5,},
84*05a0b428SJohn Marino huge	= 1.0e+300,
85*05a0b428SJohn Marino twom1000= 9.33263618503218878990e-302,     /* 2**-1000=0x01700000,0*/
86*05a0b428SJohn Marino o_threshold=  7.09782712893383973096e+02,  /* 0x40862E42, 0xFEFA39EF */
87*05a0b428SJohn Marino u_threshold= -7.45133219101941108420e+02,  /* 0xc0874910, 0xD52D3051 */
88*05a0b428SJohn Marino ln2HI[2]   ={ 6.93147180369123816490e-01,  /* 0x3fe62e42, 0xfee00000 */
89*05a0b428SJohn Marino 	     -6.93147180369123816490e-01,},/* 0xbfe62e42, 0xfee00000 */
90*05a0b428SJohn Marino ln2LO[2]   ={ 1.90821492927058770002e-10,  /* 0x3dea39ef, 0x35793c76 */
91*05a0b428SJohn Marino 	     -1.90821492927058770002e-10,},/* 0xbdea39ef, 0x35793c76 */
92*05a0b428SJohn Marino invln2 =  1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */
93*05a0b428SJohn Marino P1   =  1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
94*05a0b428SJohn Marino P2   = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
95*05a0b428SJohn Marino P3   =  6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
96*05a0b428SJohn Marino P4   = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
97*05a0b428SJohn Marino P5   =  4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
98*05a0b428SJohn Marino 
99*05a0b428SJohn Marino 
100*05a0b428SJohn Marino double
exp(double x)101*05a0b428SJohn Marino exp(double x)	/* default IEEE double exp */
102*05a0b428SJohn Marino {
103*05a0b428SJohn Marino 	double y,hi,lo,c,t;
104*05a0b428SJohn Marino 	int32_t k,xsb;
105*05a0b428SJohn Marino 	u_int32_t hx;
106*05a0b428SJohn Marino 
107*05a0b428SJohn Marino 	GET_HIGH_WORD(hx,x);
108*05a0b428SJohn Marino 	xsb = (hx>>31)&1;		/* sign bit of x */
109*05a0b428SJohn Marino 	hx &= 0x7fffffff;		/* high word of |x| */
110*05a0b428SJohn Marino 
111*05a0b428SJohn Marino     /* filter out non-finite argument */
112*05a0b428SJohn Marino 	if(hx >= 0x40862E42) {			/* if |x|>=709.78... */
113*05a0b428SJohn Marino             if(hx>=0x7ff00000) {
114*05a0b428SJohn Marino 	        u_int32_t lx;
115*05a0b428SJohn Marino 		GET_LOW_WORD(lx,x);
116*05a0b428SJohn Marino 		if(((hx&0xfffff)|lx)!=0)
117*05a0b428SJohn Marino 		     return x+x; 		/* NaN */
118*05a0b428SJohn Marino 		else return (xsb==0)? x:0.0;	/* exp(+-inf)={inf,0} */
119*05a0b428SJohn Marino 	    }
120*05a0b428SJohn Marino 	    if(x > o_threshold) return huge*huge; /* overflow */
121*05a0b428SJohn Marino 	    if(x < u_threshold) return twom1000*twom1000; /* underflow */
122*05a0b428SJohn Marino 	}
123*05a0b428SJohn Marino 
124*05a0b428SJohn Marino     /* argument reduction */
125*05a0b428SJohn Marino 	if(hx > 0x3fd62e42) {		/* if  |x| > 0.5 ln2 */
126*05a0b428SJohn Marino 	    if(hx < 0x3FF0A2B2) {	/* and |x| < 1.5 ln2 */
127*05a0b428SJohn Marino 		hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb;
128*05a0b428SJohn Marino 	    } else {
129*05a0b428SJohn Marino 		k  = invln2*x+halF[xsb];
130*05a0b428SJohn Marino 		t  = k;
131*05a0b428SJohn Marino 		hi = x - t*ln2HI[0];	/* t*ln2HI is exact here */
132*05a0b428SJohn Marino 		lo = t*ln2LO[0];
133*05a0b428SJohn Marino 	    }
134*05a0b428SJohn Marino 	    x  = hi - lo;
135*05a0b428SJohn Marino 	}
136*05a0b428SJohn Marino 	else if(hx < 0x3e300000)  {	/* when |x|<2**-28 */
137*05a0b428SJohn Marino 	    if(huge+x>one) return one+x;/* trigger inexact */
138*05a0b428SJohn Marino 	}
139*05a0b428SJohn Marino 	else k = 0;
140*05a0b428SJohn Marino 
141*05a0b428SJohn Marino     /* x is now in primary range */
142*05a0b428SJohn Marino 	t  = x*x;
143*05a0b428SJohn Marino 	c  = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
144*05a0b428SJohn Marino 	if(k==0) 	return one-((x*c)/(c-2.0)-x);
145*05a0b428SJohn Marino 	else 		y = one-((lo-(x*c)/(2.0-c))-hi);
146*05a0b428SJohn Marino 	if(k >= -1021) {
147*05a0b428SJohn Marino 	    u_int32_t hy;
148*05a0b428SJohn Marino 	    GET_HIGH_WORD(hy,y);
149*05a0b428SJohn Marino 	    SET_HIGH_WORD(y,hy+(k<<20));	/* add k to y's exponent */
150*05a0b428SJohn Marino 	    return y;
151*05a0b428SJohn Marino 	} else {
152*05a0b428SJohn Marino 	    u_int32_t hy;
153*05a0b428SJohn Marino 	    GET_HIGH_WORD(hy,y);
154*05a0b428SJohn Marino 	    SET_HIGH_WORD(y,hy+((k+1000)<<20));	/* add k to y's exponent */
155*05a0b428SJohn Marino 	    return y*twom1000;
156*05a0b428SJohn Marino 	}
157*05a0b428SJohn Marino }
158*05a0b428SJohn Marino 
159*05a0b428SJohn Marino #if	LDBL_MANT_DIG == DBL_MANT_DIG
160*05a0b428SJohn Marino __strong_alias(expl, exp);
161*05a0b428SJohn Marino #endif	/* LDBL_MANT_DIG == DBL_MANT_DIG */
162