14a238c70SJohn Marino /* mpfr_tan -- tangent of a floating-point number
24a238c70SJohn Marino
3*ab6d115fSJohn Marino Copyright 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013 Free Software Foundation, Inc.
4*ab6d115fSJohn Marino Contributed by the AriC and Caramel projects, INRIA.
54a238c70SJohn Marino
64a238c70SJohn Marino This file is part of the GNU MPFR Library.
74a238c70SJohn Marino
84a238c70SJohn Marino The GNU MPFR Library is free software; you can redistribute it and/or modify
94a238c70SJohn Marino it under the terms of the GNU Lesser General Public License as published by
104a238c70SJohn Marino the Free Software Foundation; either version 3 of the License, or (at your
114a238c70SJohn Marino option) any later version.
124a238c70SJohn Marino
134a238c70SJohn Marino The GNU MPFR Library is distributed in the hope that it will be useful, but
144a238c70SJohn Marino WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
154a238c70SJohn Marino or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
164a238c70SJohn Marino License for more details.
174a238c70SJohn Marino
184a238c70SJohn Marino You should have received a copy of the GNU Lesser General Public License
194a238c70SJohn Marino along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see
204a238c70SJohn Marino http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
214a238c70SJohn Marino 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
224a238c70SJohn Marino
234a238c70SJohn Marino #define MPFR_NEED_LONGLONG_H
244a238c70SJohn Marino #include "mpfr-impl.h"
254a238c70SJohn Marino
264a238c70SJohn Marino /* computes tan(x) = sign(x)*sqrt(1/cos(x)^2-1) */
274a238c70SJohn Marino int
mpfr_tan(mpfr_ptr y,mpfr_srcptr x,mpfr_rnd_t rnd_mode)284a238c70SJohn Marino mpfr_tan (mpfr_ptr y, mpfr_srcptr x, mpfr_rnd_t rnd_mode)
294a238c70SJohn Marino {
304a238c70SJohn Marino mpfr_prec_t precy, m;
314a238c70SJohn Marino int inexact;
324a238c70SJohn Marino mpfr_t s, c;
334a238c70SJohn Marino MPFR_ZIV_DECL (loop);
344a238c70SJohn Marino MPFR_SAVE_EXPO_DECL (expo);
354a238c70SJohn Marino MPFR_GROUP_DECL (group);
364a238c70SJohn Marino
374a238c70SJohn Marino MPFR_LOG_FUNC
384a238c70SJohn Marino (("x[%Pu]=%.*Rg rnd=%d", mpfr_get_prec (x), mpfr_log_prec, x, rnd_mode),
394a238c70SJohn Marino ("y[%Pu]=%.*Rg inexact=%d",
404a238c70SJohn Marino mpfr_get_prec (y), mpfr_log_prec, y, inexact));
414a238c70SJohn Marino
424a238c70SJohn Marino if (MPFR_UNLIKELY(MPFR_IS_SINGULAR(x)))
434a238c70SJohn Marino {
444a238c70SJohn Marino if (MPFR_IS_NAN(x) || MPFR_IS_INF(x))
454a238c70SJohn Marino {
464a238c70SJohn Marino MPFR_SET_NAN(y);
474a238c70SJohn Marino MPFR_RET_NAN;
484a238c70SJohn Marino }
494a238c70SJohn Marino else /* x is zero */
504a238c70SJohn Marino {
514a238c70SJohn Marino MPFR_ASSERTD(MPFR_IS_ZERO(x));
524a238c70SJohn Marino MPFR_SET_ZERO(y);
534a238c70SJohn Marino MPFR_SET_SAME_SIGN(y, x);
544a238c70SJohn Marino MPFR_RET(0);
554a238c70SJohn Marino }
564a238c70SJohn Marino }
574a238c70SJohn Marino
584a238c70SJohn Marino /* tan(x) = x + x^3/3 + ... so the error is < 2^(3*EXP(x)-1) */
594a238c70SJohn Marino MPFR_FAST_COMPUTE_IF_SMALL_INPUT (y, x, -2 * MPFR_GET_EXP (x), 1, 1,
604a238c70SJohn Marino rnd_mode, {});
614a238c70SJohn Marino
624a238c70SJohn Marino MPFR_SAVE_EXPO_MARK (expo);
634a238c70SJohn Marino
644a238c70SJohn Marino /* Compute initial precision */
654a238c70SJohn Marino precy = MPFR_PREC (y);
664a238c70SJohn Marino m = precy + MPFR_INT_CEIL_LOG2 (precy) + 13;
674a238c70SJohn Marino MPFR_ASSERTD (m >= 2); /* needed for the error analysis in algorithms.tex */
684a238c70SJohn Marino
694a238c70SJohn Marino MPFR_GROUP_INIT_2 (group, m, s, c);
704a238c70SJohn Marino MPFR_ZIV_INIT (loop, m);
714a238c70SJohn Marino for (;;)
724a238c70SJohn Marino {
734a238c70SJohn Marino /* The only way to get an overflow is to get ~ Pi/2
744a238c70SJohn Marino But the result will be ~ 2^Prec(y). */
754a238c70SJohn Marino mpfr_sin_cos (s, c, x, MPFR_RNDN); /* err <= 1/2 ulp on s and c */
764a238c70SJohn Marino mpfr_div (c, s, c, MPFR_RNDN); /* err <= 4 ulps */
774a238c70SJohn Marino MPFR_ASSERTD (!MPFR_IS_SINGULAR (c));
784a238c70SJohn Marino if (MPFR_LIKELY (MPFR_CAN_ROUND (c, m - 2, precy, rnd_mode)))
794a238c70SJohn Marino break;
804a238c70SJohn Marino MPFR_ZIV_NEXT (loop, m);
814a238c70SJohn Marino MPFR_GROUP_REPREC_2 (group, m, s, c);
824a238c70SJohn Marino }
834a238c70SJohn Marino MPFR_ZIV_FREE (loop);
844a238c70SJohn Marino inexact = mpfr_set (y, c, rnd_mode);
854a238c70SJohn Marino MPFR_GROUP_CLEAR (group);
864a238c70SJohn Marino
874a238c70SJohn Marino MPFR_SAVE_EXPO_FREE (expo);
884a238c70SJohn Marino return mpfr_check_range (y, inexact, rnd_mode);
894a238c70SJohn Marino }
90