14a238c70SJohn Marino /* mpfr_log10 -- logarithm in base 10.
24a238c70SJohn Marino
3*ab6d115fSJohn Marino Copyright 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013 Free Software Foundation, Inc.
4*ab6d115fSJohn Marino Contributed by the AriC and Caramel projects, INRIA.
54a238c70SJohn Marino
64a238c70SJohn Marino This file is part of the GNU MPFR Library.
74a238c70SJohn Marino
84a238c70SJohn Marino The GNU MPFR Library is free software; you can redistribute it and/or modify
94a238c70SJohn Marino it under the terms of the GNU Lesser General Public License as published by
104a238c70SJohn Marino the Free Software Foundation; either version 3 of the License, or (at your
114a238c70SJohn Marino option) any later version.
124a238c70SJohn Marino
134a238c70SJohn Marino The GNU MPFR Library is distributed in the hope that it will be useful, but
144a238c70SJohn Marino WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
154a238c70SJohn Marino or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
164a238c70SJohn Marino License for more details.
174a238c70SJohn Marino
184a238c70SJohn Marino You should have received a copy of the GNU Lesser General Public License
194a238c70SJohn Marino along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see
204a238c70SJohn Marino http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
214a238c70SJohn Marino 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
224a238c70SJohn Marino
234a238c70SJohn Marino #define MPFR_NEED_LONGLONG_H
244a238c70SJohn Marino #include "mpfr-impl.h"
254a238c70SJohn Marino
264a238c70SJohn Marino /* The computation of r=log10(a)
274a238c70SJohn Marino
284a238c70SJohn Marino r=log10(a)=log(a)/log(10)
294a238c70SJohn Marino */
304a238c70SJohn Marino
314a238c70SJohn Marino int
mpfr_log10(mpfr_ptr r,mpfr_srcptr a,mpfr_rnd_t rnd_mode)324a238c70SJohn Marino mpfr_log10 (mpfr_ptr r, mpfr_srcptr a, mpfr_rnd_t rnd_mode)
334a238c70SJohn Marino {
344a238c70SJohn Marino int inexact;
354a238c70SJohn Marino MPFR_SAVE_EXPO_DECL (expo);
364a238c70SJohn Marino
374a238c70SJohn Marino MPFR_LOG_FUNC
384a238c70SJohn Marino (("a[%Pu]=%.*Rg rnd=%d", mpfr_get_prec (a), mpfr_log_prec, a, rnd_mode),
394a238c70SJohn Marino ("r[%Pu]=%.*Rg inexact=%d",
404a238c70SJohn Marino mpfr_get_prec (r), mpfr_log_prec, r, inexact));
414a238c70SJohn Marino
424a238c70SJohn Marino /* If a is NaN, the result is NaN */
434a238c70SJohn Marino if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (a)))
444a238c70SJohn Marino {
454a238c70SJohn Marino if (MPFR_IS_NAN (a))
464a238c70SJohn Marino {
474a238c70SJohn Marino MPFR_SET_NAN (r);
484a238c70SJohn Marino MPFR_RET_NAN;
494a238c70SJohn Marino }
504a238c70SJohn Marino /* check for infinity before zero */
514a238c70SJohn Marino else if (MPFR_IS_INF (a))
524a238c70SJohn Marino {
534a238c70SJohn Marino if (MPFR_IS_NEG (a))
544a238c70SJohn Marino /* log10(-Inf) = NaN */
554a238c70SJohn Marino {
564a238c70SJohn Marino MPFR_SET_NAN (r);
574a238c70SJohn Marino MPFR_RET_NAN;
584a238c70SJohn Marino }
594a238c70SJohn Marino else /* log10(+Inf) = +Inf */
604a238c70SJohn Marino {
614a238c70SJohn Marino MPFR_SET_INF (r);
624a238c70SJohn Marino MPFR_SET_POS (r);
634a238c70SJohn Marino MPFR_RET (0); /* exact */
644a238c70SJohn Marino }
654a238c70SJohn Marino }
664a238c70SJohn Marino else /* a = 0 */
674a238c70SJohn Marino {
684a238c70SJohn Marino MPFR_ASSERTD (MPFR_IS_ZERO (a));
694a238c70SJohn Marino MPFR_SET_INF (r);
704a238c70SJohn Marino MPFR_SET_NEG (r);
714a238c70SJohn Marino mpfr_set_divby0 ();
724a238c70SJohn Marino MPFR_RET (0); /* log10(0) is an exact -infinity */
734a238c70SJohn Marino }
744a238c70SJohn Marino }
754a238c70SJohn Marino
764a238c70SJohn Marino /* If a is negative, the result is NaN */
774a238c70SJohn Marino if (MPFR_UNLIKELY (MPFR_IS_NEG (a)))
784a238c70SJohn Marino {
794a238c70SJohn Marino MPFR_SET_NAN (r);
804a238c70SJohn Marino MPFR_RET_NAN;
814a238c70SJohn Marino }
824a238c70SJohn Marino
834a238c70SJohn Marino /* If a is 1, the result is 0 */
844a238c70SJohn Marino if (mpfr_cmp_ui (a, 1) == 0)
854a238c70SJohn Marino {
864a238c70SJohn Marino MPFR_SET_ZERO (r);
874a238c70SJohn Marino MPFR_SET_POS (r);
884a238c70SJohn Marino MPFR_RET (0); /* result is exact */
894a238c70SJohn Marino }
904a238c70SJohn Marino
914a238c70SJohn Marino MPFR_SAVE_EXPO_MARK (expo);
924a238c70SJohn Marino
934a238c70SJohn Marino /* General case */
944a238c70SJohn Marino {
954a238c70SJohn Marino /* Declaration of the intermediary variable */
964a238c70SJohn Marino mpfr_t t, tt;
974a238c70SJohn Marino MPFR_ZIV_DECL (loop);
984a238c70SJohn Marino /* Declaration of the size variable */
994a238c70SJohn Marino mpfr_prec_t Ny = MPFR_PREC(r); /* Precision of output variable */
1004a238c70SJohn Marino mpfr_prec_t Nt; /* Precision of the intermediary variable */
1014a238c70SJohn Marino mpfr_exp_t err; /* Precision of error */
1024a238c70SJohn Marino
1034a238c70SJohn Marino /* compute the precision of intermediary variable */
1044a238c70SJohn Marino /* the optimal number of bits : see algorithms.tex */
1054a238c70SJohn Marino Nt = Ny + 4 + MPFR_INT_CEIL_LOG2 (Ny);
1064a238c70SJohn Marino
1074a238c70SJohn Marino /* initialise of intermediary variables */
1084a238c70SJohn Marino mpfr_init2 (t, Nt);
1094a238c70SJohn Marino mpfr_init2 (tt, Nt);
1104a238c70SJohn Marino
1114a238c70SJohn Marino /* First computation of log10 */
1124a238c70SJohn Marino MPFR_ZIV_INIT (loop, Nt);
1134a238c70SJohn Marino for (;;)
1144a238c70SJohn Marino {
1154a238c70SJohn Marino /* compute log10 */
1164a238c70SJohn Marino mpfr_set_ui (t, 10, MPFR_RNDN); /* 10 */
1174a238c70SJohn Marino mpfr_log (t, t, MPFR_RNDD); /* log(10) */
1184a238c70SJohn Marino mpfr_log (tt, a, MPFR_RNDN); /* log(a) */
1194a238c70SJohn Marino mpfr_div (t, tt, t, MPFR_RNDN); /* log(a)/log(10) */
1204a238c70SJohn Marino
1214a238c70SJohn Marino /* estimation of the error */
1224a238c70SJohn Marino err = Nt - 4;
1234a238c70SJohn Marino if (MPFR_LIKELY (MPFR_CAN_ROUND (t, err, Ny, rnd_mode)))
1244a238c70SJohn Marino break;
1254a238c70SJohn Marino
1264a238c70SJohn Marino /* log10(10^n) is exact:
1274a238c70SJohn Marino FIXME: Can we have 10^n exactly representable as a mpfr_t
1284a238c70SJohn Marino but n can't fit an unsigned long? */
1294a238c70SJohn Marino if (MPFR_IS_POS (t)
1304a238c70SJohn Marino && mpfr_integer_p (t) && mpfr_fits_ulong_p (t, MPFR_RNDN)
1314a238c70SJohn Marino && !mpfr_ui_pow_ui (tt, 10, mpfr_get_ui (t, MPFR_RNDN), MPFR_RNDN)
1324a238c70SJohn Marino && mpfr_cmp (a, tt) == 0)
1334a238c70SJohn Marino break;
1344a238c70SJohn Marino
1354a238c70SJohn Marino /* actualisation of the precision */
1364a238c70SJohn Marino MPFR_ZIV_NEXT (loop, Nt);
1374a238c70SJohn Marino mpfr_set_prec (t, Nt);
1384a238c70SJohn Marino mpfr_set_prec (tt, Nt);
1394a238c70SJohn Marino }
1404a238c70SJohn Marino MPFR_ZIV_FREE (loop);
1414a238c70SJohn Marino
1424a238c70SJohn Marino inexact = mpfr_set (r, t, rnd_mode);
1434a238c70SJohn Marino
1444a238c70SJohn Marino mpfr_clear (t);
1454a238c70SJohn Marino mpfr_clear (tt);
1464a238c70SJohn Marino }
1474a238c70SJohn Marino
1484a238c70SJohn Marino MPFR_SAVE_EXPO_FREE (expo);
1494a238c70SJohn Marino return mpfr_check_range (r, inexact, rnd_mode);
1504a238c70SJohn Marino }
151