14a238c70SJohn Marino /* __gmpfr_isqrt && __gmpfr_cuberoot -- Integer square root and cube root
24a238c70SJohn Marino
3*ab6d115fSJohn Marino Copyright 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013 Free Software Foundation, Inc.
4*ab6d115fSJohn Marino Contributed by the AriC and Caramel projects, INRIA.
54a238c70SJohn Marino
64a238c70SJohn Marino This file is part of the GNU MPFR Library.
74a238c70SJohn Marino
84a238c70SJohn Marino The GNU MPFR Library is free software; you can redistribute it and/or modify
94a238c70SJohn Marino it under the terms of the GNU Lesser General Public License as published by
104a238c70SJohn Marino the Free Software Foundation; either version 3 of the License, or (at your
114a238c70SJohn Marino option) any later version.
124a238c70SJohn Marino
134a238c70SJohn Marino The GNU MPFR Library is distributed in the hope that it will be useful, but
144a238c70SJohn Marino WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
154a238c70SJohn Marino or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
164a238c70SJohn Marino License for more details.
174a238c70SJohn Marino
184a238c70SJohn Marino You should have received a copy of the GNU Lesser General Public License
194a238c70SJohn Marino along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see
204a238c70SJohn Marino http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
214a238c70SJohn Marino 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
224a238c70SJohn Marino
234a238c70SJohn Marino #include "mpfr-impl.h"
244a238c70SJohn Marino
254a238c70SJohn Marino /* returns floor(sqrt(n)) */
264a238c70SJohn Marino unsigned long
__gmpfr_isqrt(unsigned long n)274a238c70SJohn Marino __gmpfr_isqrt (unsigned long n)
284a238c70SJohn Marino {
294a238c70SJohn Marino unsigned long i, s;
304a238c70SJohn Marino
314a238c70SJohn Marino /* First find an approximation to floor(sqrt(n)) of the form 2^k. */
324a238c70SJohn Marino i = n;
334a238c70SJohn Marino s = 1;
344a238c70SJohn Marino while (i >= 2)
354a238c70SJohn Marino {
364a238c70SJohn Marino i >>= 2;
374a238c70SJohn Marino s <<= 1;
384a238c70SJohn Marino }
394a238c70SJohn Marino
404a238c70SJohn Marino do
414a238c70SJohn Marino {
424a238c70SJohn Marino s = (s + n / s) / 2;
434a238c70SJohn Marino }
444a238c70SJohn Marino while (!(s*s <= n && (s*s > s*(s+2) || n <= s*(s+2))));
454a238c70SJohn Marino /* Short explanation: As mathematically s*(s+2) < 2*ULONG_MAX,
464a238c70SJohn Marino the condition s*s > s*(s+2) is evaluated as true when s*(s+2)
474a238c70SJohn Marino "overflows" but not s*s. This implies that mathematically, one
484a238c70SJohn Marino has s*s <= n <= s*(s+2). If s*s "overflows", this means that n
494a238c70SJohn Marino is "large" and the inequality n <= s*(s+2) cannot be satisfied. */
504a238c70SJohn Marino return s;
514a238c70SJohn Marino }
524a238c70SJohn Marino
534a238c70SJohn Marino /* returns floor(n^(1/3)) */
544a238c70SJohn Marino unsigned long
__gmpfr_cuberoot(unsigned long n)554a238c70SJohn Marino __gmpfr_cuberoot (unsigned long n)
564a238c70SJohn Marino {
574a238c70SJohn Marino unsigned long i, s;
584a238c70SJohn Marino
594a238c70SJohn Marino /* First find an approximation to floor(cbrt(n)) of the form 2^k. */
604a238c70SJohn Marino i = n;
614a238c70SJohn Marino s = 1;
624a238c70SJohn Marino while (i >= 4)
634a238c70SJohn Marino {
644a238c70SJohn Marino i >>= 3;
654a238c70SJohn Marino s <<= 1;
664a238c70SJohn Marino }
674a238c70SJohn Marino
684a238c70SJohn Marino /* Improve the approximation (this is necessary if n is large, so that
694a238c70SJohn Marino mathematically (s+1)*(s+1)*(s+1) isn't much larger than ULONG_MAX). */
704a238c70SJohn Marino if (n >= 256)
714a238c70SJohn Marino {
724a238c70SJohn Marino s = (2 * s + n / (s * s)) / 3;
734a238c70SJohn Marino s = (2 * s + n / (s * s)) / 3;
744a238c70SJohn Marino s = (2 * s + n / (s * s)) / 3;
754a238c70SJohn Marino }
764a238c70SJohn Marino
774a238c70SJohn Marino do
784a238c70SJohn Marino {
794a238c70SJohn Marino s = (2 * s + n / (s * s)) / 3;
804a238c70SJohn Marino }
814a238c70SJohn Marino while (!(s*s*s <= n && (s*s*s > (s+1)*(s+1)*(s+1) ||
824a238c70SJohn Marino n < (s+1)*(s+1)*(s+1))));
834a238c70SJohn Marino return s;
844a238c70SJohn Marino }
85