14a238c70SJohn Marino /* mpfr_hypot -- Euclidean distance
24a238c70SJohn Marino
3*ab6d115fSJohn Marino Copyright 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013 Free Software Foundation, Inc.
4*ab6d115fSJohn Marino Contributed by the AriC and Caramel projects, INRIA.
54a238c70SJohn Marino
64a238c70SJohn Marino This file is part of the GNU MPFR Library.
74a238c70SJohn Marino
84a238c70SJohn Marino The GNU MPFR Library is free software; you can redistribute it and/or modify
94a238c70SJohn Marino it under the terms of the GNU Lesser General Public License as published by
104a238c70SJohn Marino the Free Software Foundation; either version 3 of the License, or (at your
114a238c70SJohn Marino option) any later version.
124a238c70SJohn Marino
134a238c70SJohn Marino The GNU MPFR Library is distributed in the hope that it will be useful, but
144a238c70SJohn Marino WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
154a238c70SJohn Marino or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
164a238c70SJohn Marino License for more details.
174a238c70SJohn Marino
184a238c70SJohn Marino You should have received a copy of the GNU Lesser General Public License
194a238c70SJohn Marino along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see
204a238c70SJohn Marino http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
214a238c70SJohn Marino 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
224a238c70SJohn Marino
234a238c70SJohn Marino #define MPFR_NEED_LONGLONG_H
244a238c70SJohn Marino #include "mpfr-impl.h"
254a238c70SJohn Marino
264a238c70SJohn Marino /* The computation of hypot of x and y is done by *
274a238c70SJohn Marino * hypot(x,y)= sqrt(x^2+y^2) = z */
284a238c70SJohn Marino
294a238c70SJohn Marino int
mpfr_hypot(mpfr_ptr z,mpfr_srcptr x,mpfr_srcptr y,mpfr_rnd_t rnd_mode)304a238c70SJohn Marino mpfr_hypot (mpfr_ptr z, mpfr_srcptr x, mpfr_srcptr y, mpfr_rnd_t rnd_mode)
314a238c70SJohn Marino {
324a238c70SJohn Marino int inexact, exact;
334a238c70SJohn Marino mpfr_t t, te, ti; /* auxiliary variables */
344a238c70SJohn Marino mpfr_prec_t N, Nz; /* size variables */
354a238c70SJohn Marino mpfr_prec_t Nt; /* precision of the intermediary variable */
364a238c70SJohn Marino mpfr_prec_t threshold;
374a238c70SJohn Marino mpfr_exp_t Ex, sh;
384a238c70SJohn Marino mpfr_uexp_t diff_exp;
394a238c70SJohn Marino
404a238c70SJohn Marino MPFR_SAVE_EXPO_DECL (expo);
414a238c70SJohn Marino MPFR_ZIV_DECL (loop);
424a238c70SJohn Marino MPFR_BLOCK_DECL (flags);
434a238c70SJohn Marino
444a238c70SJohn Marino MPFR_LOG_FUNC
454a238c70SJohn Marino (("x[%Pu]=%.*Rg y[%Pu]=%.*Rg rnd=%d",
464a238c70SJohn Marino mpfr_get_prec (x), mpfr_log_prec, x,
474a238c70SJohn Marino mpfr_get_prec (y), mpfr_log_prec, y, rnd_mode),
484a238c70SJohn Marino ("z[%Pu]=%.*Rg inexact=%d",
494a238c70SJohn Marino mpfr_get_prec (z), mpfr_log_prec, z, inexact));
504a238c70SJohn Marino
514a238c70SJohn Marino /* particular cases */
524a238c70SJohn Marino if (MPFR_ARE_SINGULAR (x, y))
534a238c70SJohn Marino {
544a238c70SJohn Marino if (MPFR_IS_INF (x) || MPFR_IS_INF (y))
554a238c70SJohn Marino {
564a238c70SJohn Marino /* Return +inf, even when the other number is NaN. */
574a238c70SJohn Marino MPFR_SET_INF (z);
584a238c70SJohn Marino MPFR_SET_POS (z);
594a238c70SJohn Marino MPFR_RET (0);
604a238c70SJohn Marino }
614a238c70SJohn Marino else if (MPFR_IS_NAN (x) || MPFR_IS_NAN (y))
624a238c70SJohn Marino {
634a238c70SJohn Marino MPFR_SET_NAN (z);
644a238c70SJohn Marino MPFR_RET_NAN;
654a238c70SJohn Marino }
664a238c70SJohn Marino else if (MPFR_IS_ZERO (x))
674a238c70SJohn Marino return mpfr_abs (z, y, rnd_mode);
684a238c70SJohn Marino else /* y is necessarily 0 */
694a238c70SJohn Marino return mpfr_abs (z, x, rnd_mode);
704a238c70SJohn Marino }
714a238c70SJohn Marino
724a238c70SJohn Marino if (mpfr_cmpabs (x, y) < 0)
734a238c70SJohn Marino {
744a238c70SJohn Marino mpfr_srcptr u;
754a238c70SJohn Marino u = x;
764a238c70SJohn Marino x = y;
774a238c70SJohn Marino y = u;
784a238c70SJohn Marino }
794a238c70SJohn Marino
804a238c70SJohn Marino /* now |x| >= |y| */
814a238c70SJohn Marino
824a238c70SJohn Marino Ex = MPFR_GET_EXP (x);
834a238c70SJohn Marino diff_exp = (mpfr_uexp_t) Ex - MPFR_GET_EXP (y);
844a238c70SJohn Marino
854a238c70SJohn Marino N = MPFR_PREC (x); /* Precision of input variable */
864a238c70SJohn Marino Nz = MPFR_PREC (z); /* Precision of output variable */
874a238c70SJohn Marino threshold = (MAX (N, Nz) + (rnd_mode == MPFR_RNDN ? 1 : 0)) << 1;
884a238c70SJohn Marino if (rnd_mode == MPFR_RNDA)
894a238c70SJohn Marino rnd_mode = MPFR_RNDU; /* since the result is positive, RNDA = RNDU */
904a238c70SJohn Marino
914a238c70SJohn Marino /* Is |x| a suitable approximation to the precision Nz ?
924a238c70SJohn Marino (see algorithms.tex for explanations) */
934a238c70SJohn Marino if (diff_exp > threshold)
944a238c70SJohn Marino /* result is |x| or |x|+ulp(|x|,Nz) */
954a238c70SJohn Marino {
964a238c70SJohn Marino if (MPFR_UNLIKELY (rnd_mode == MPFR_RNDU))
974a238c70SJohn Marino {
984a238c70SJohn Marino /* If z > abs(x), then it was already rounded up; otherwise
994a238c70SJohn Marino z = abs(x), and we need to add one ulp due to y. */
1004a238c70SJohn Marino if (mpfr_abs (z, x, rnd_mode) == 0)
1014a238c70SJohn Marino mpfr_nexttoinf (z);
1024a238c70SJohn Marino MPFR_RET (1);
1034a238c70SJohn Marino }
1044a238c70SJohn Marino else /* MPFR_RNDZ, MPFR_RNDD, MPFR_RNDN */
1054a238c70SJohn Marino {
1064a238c70SJohn Marino if (MPFR_LIKELY (Nz >= N))
1074a238c70SJohn Marino {
1084a238c70SJohn Marino mpfr_abs (z, x, rnd_mode); /* exact */
1094a238c70SJohn Marino MPFR_RET (-1);
1104a238c70SJohn Marino }
1114a238c70SJohn Marino else
1124a238c70SJohn Marino {
1134a238c70SJohn Marino MPFR_SET_EXP (z, Ex);
1144a238c70SJohn Marino MPFR_SET_SIGN (z, 1);
1154a238c70SJohn Marino MPFR_RNDRAW_GEN (inexact, z, MPFR_MANT (x), N, rnd_mode, 1,
1164a238c70SJohn Marino goto addoneulp,
1174a238c70SJohn Marino if (MPFR_UNLIKELY (++ MPFR_EXP (z) >
1184a238c70SJohn Marino __gmpfr_emax))
1194a238c70SJohn Marino return mpfr_overflow (z, rnd_mode, 1);
1204a238c70SJohn Marino );
1214a238c70SJohn Marino
1224a238c70SJohn Marino if (MPFR_UNLIKELY (inexact == 0))
1234a238c70SJohn Marino inexact = -1;
1244a238c70SJohn Marino MPFR_RET (inexact);
1254a238c70SJohn Marino }
1264a238c70SJohn Marino }
1274a238c70SJohn Marino }
1284a238c70SJohn Marino
1294a238c70SJohn Marino /* General case */
1304a238c70SJohn Marino
1314a238c70SJohn Marino N = MAX (MPFR_PREC (x), MPFR_PREC (y));
1324a238c70SJohn Marino
1334a238c70SJohn Marino /* working precision */
1344a238c70SJohn Marino Nt = Nz + MPFR_INT_CEIL_LOG2 (Nz) + 4;
1354a238c70SJohn Marino
1364a238c70SJohn Marino mpfr_init2 (t, Nt);
1374a238c70SJohn Marino mpfr_init2 (te, Nt);
1384a238c70SJohn Marino mpfr_init2 (ti, Nt);
1394a238c70SJohn Marino
1404a238c70SJohn Marino MPFR_SAVE_EXPO_MARK (expo);
1414a238c70SJohn Marino
1424a238c70SJohn Marino /* Scale x and y to avoid overflow/underflow in x^2 and overflow in y^2
1434a238c70SJohn Marino (as |x| >= |y|). The scaling of y can underflow only when the target
1444a238c70SJohn Marino precision is huge, otherwise the case would already have been handled
1454a238c70SJohn Marino by the diff_exp > threshold code. */
1464a238c70SJohn Marino sh = mpfr_get_emax () / 2 - Ex - 1;
1474a238c70SJohn Marino
1484a238c70SJohn Marino MPFR_ZIV_INIT (loop, Nt);
1494a238c70SJohn Marino for (;;)
1504a238c70SJohn Marino {
1514a238c70SJohn Marino mpfr_prec_t err;
1524a238c70SJohn Marino
1534a238c70SJohn Marino exact = mpfr_mul_2si (te, x, sh, MPFR_RNDZ);
1544a238c70SJohn Marino exact |= mpfr_mul_2si (ti, y, sh, MPFR_RNDZ);
1554a238c70SJohn Marino exact |= mpfr_sqr (te, te, MPFR_RNDZ);
1564a238c70SJohn Marino /* Use fma in order to avoid underflow when diff_exp<=MPFR_EMAX_MAX-2 */
1574a238c70SJohn Marino exact |= mpfr_fma (t, ti, ti, te, MPFR_RNDZ);
1584a238c70SJohn Marino exact |= mpfr_sqrt (t, t, MPFR_RNDZ);
1594a238c70SJohn Marino
1604a238c70SJohn Marino err = Nt < N ? 4 : 2;
1614a238c70SJohn Marino if (MPFR_LIKELY (exact == 0
1624a238c70SJohn Marino || MPFR_CAN_ROUND (t, Nt-err, Nz, rnd_mode)))
1634a238c70SJohn Marino break;
1644a238c70SJohn Marino
1654a238c70SJohn Marino MPFR_ZIV_NEXT (loop, Nt);
1664a238c70SJohn Marino mpfr_set_prec (t, Nt);
1674a238c70SJohn Marino mpfr_set_prec (te, Nt);
1684a238c70SJohn Marino mpfr_set_prec (ti, Nt);
1694a238c70SJohn Marino }
1704a238c70SJohn Marino MPFR_ZIV_FREE (loop);
1714a238c70SJohn Marino
1724a238c70SJohn Marino MPFR_BLOCK (flags, inexact = mpfr_div_2si (z, t, sh, rnd_mode));
1734a238c70SJohn Marino MPFR_ASSERTD (exact == 0 || inexact != 0);
1744a238c70SJohn Marino
1754a238c70SJohn Marino mpfr_clear (t);
1764a238c70SJohn Marino mpfr_clear (ti);
1774a238c70SJohn Marino mpfr_clear (te);
1784a238c70SJohn Marino
1794a238c70SJohn Marino /*
1804a238c70SJohn Marino exact inexact
1814a238c70SJohn Marino 0 0 result is exact, ternary flag is 0
1824a238c70SJohn Marino 0 non zero t is exact, ternary flag given by inexact
1834a238c70SJohn Marino 1 0 impossible (see above)
1844a238c70SJohn Marino 1 non zero ternary flag given by inexact
1854a238c70SJohn Marino */
1864a238c70SJohn Marino
1874a238c70SJohn Marino MPFR_SAVE_EXPO_FREE (expo);
1884a238c70SJohn Marino
1894a238c70SJohn Marino if (MPFR_OVERFLOW (flags))
1904a238c70SJohn Marino mpfr_set_overflow ();
1914a238c70SJohn Marino /* hypot(x,y) >= |x|, thus underflow is not possible. */
1924a238c70SJohn Marino
1934a238c70SJohn Marino return mpfr_check_range (z, inexact, rnd_mode);
1944a238c70SJohn Marino }
195