xref: /dflybsd-src/contrib/mpfr/src/csc.c (revision 2786097444a0124b5d33763854de247e230c6629)
14a238c70SJohn Marino /* mpfr_csc - cosecant function.
24a238c70SJohn Marino 
3*ab6d115fSJohn Marino Copyright 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013 Free Software Foundation, Inc.
4*ab6d115fSJohn Marino Contributed by the AriC and Caramel projects, INRIA.
54a238c70SJohn Marino 
64a238c70SJohn Marino This file is part of the GNU MPFR Library.
74a238c70SJohn Marino 
84a238c70SJohn Marino The GNU MPFR Library is free software; you can redistribute it and/or modify
94a238c70SJohn Marino it under the terms of the GNU Lesser General Public License as published by
104a238c70SJohn Marino the Free Software Foundation; either version 3 of the License, or (at your
114a238c70SJohn Marino option) any later version.
124a238c70SJohn Marino 
134a238c70SJohn Marino The GNU MPFR Library is distributed in the hope that it will be useful, but
144a238c70SJohn Marino WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
154a238c70SJohn Marino or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
164a238c70SJohn Marino License for more details.
174a238c70SJohn Marino 
184a238c70SJohn Marino You should have received a copy of the GNU Lesser General Public License
194a238c70SJohn Marino along with the GNU MPFR Library; see the file COPYING.LESSER.  If not, see
204a238c70SJohn Marino http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
214a238c70SJohn Marino 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
224a238c70SJohn Marino 
234a238c70SJohn Marino /* the cosecant is defined by csc(x) = 1/sin(x).
244a238c70SJohn Marino    csc (NaN) = NaN.
254a238c70SJohn Marino    csc (+Inf) = csc (-Inf) = NaN.
264a238c70SJohn Marino    csc (+0) = +Inf.
274a238c70SJohn Marino    csc (-0) = -Inf.
284a238c70SJohn Marino */
294a238c70SJohn Marino 
304a238c70SJohn Marino #define FUNCTION mpfr_csc
314a238c70SJohn Marino #define INVERSE  mpfr_sin
324a238c70SJohn Marino #define ACTION_NAN(y) do { MPFR_SET_NAN(y); MPFR_RET_NAN; } while (1)
334a238c70SJohn Marino #define ACTION_INF(y) do { MPFR_SET_NAN(y); MPFR_RET_NAN; } while (1)
344a238c70SJohn Marino #define ACTION_ZERO(y,x) do { MPFR_SET_SAME_SIGN(y,x); MPFR_SET_INF(y); \
354a238c70SJohn Marino                               mpfr_set_divby0 (); MPFR_RET(0); } while (1)
364a238c70SJohn Marino /* near x=0, we have csc(x) = 1/x + x/6 + ..., more precisely we have
374a238c70SJohn Marino    |csc(x) - 1/x| <= 0.2 for |x| <= 1. The analysis is similar to that for
384a238c70SJohn Marino    gamma(x) near x=0 (see gamma.c), except here the error term has the same
394a238c70SJohn Marino    sign as 1/x, thus |csc(x)| >= |1/x|. Then:
404a238c70SJohn Marino    (i) either x is a power of two, then 1/x is exactly representable, and
414a238c70SJohn Marino        as long as 1/2*ulp(1/x) > 0.2, we can conclude;
424a238c70SJohn Marino    (ii) otherwise assume x has <= n bits, and y has <= n+1 bits, then
434a238c70SJohn Marino    |y - 1/x| >= 2^(-2n) ufp(y), where ufp means unit in first place.
444a238c70SJohn Marino    Since |csc(x) - 1/x| <= 0.2, if 2^(-2n) ufp(y) >= 0.4, then
454a238c70SJohn Marino    |y - csc(x)| >= 2^(-2n-1) ufp(y), and rounding 1/x gives the correct result.
464a238c70SJohn Marino    If x < 2^E, then y > 2^(-E), thus ufp(y) > 2^(-E-1).
474a238c70SJohn Marino    A sufficient condition is thus EXP(x) <= -2 MAX(PREC(x),PREC(Y)). */
484a238c70SJohn Marino #define ACTION_TINY(y,x,r) \
494a238c70SJohn Marino   if (MPFR_EXP(x) <= -2 * (mpfr_exp_t) MAX(MPFR_PREC(x), MPFR_PREC(y))) \
504a238c70SJohn Marino     {                                                                   \
514a238c70SJohn Marino       int signx = MPFR_SIGN(x);                                         \
524a238c70SJohn Marino       inexact = mpfr_ui_div (y, 1, x, r);                               \
534a238c70SJohn Marino       if (inexact == 0) /* x is a power of two */                       \
544a238c70SJohn Marino         { /* result always 1/x, except when rounding away from zero */  \
554a238c70SJohn Marino           if (rnd_mode == MPFR_RNDA)                                    \
564a238c70SJohn Marino             rnd_mode = (signx > 0) ? MPFR_RNDU : MPFR_RNDD;             \
574a238c70SJohn Marino           if (rnd_mode == MPFR_RNDU)                                    \
584a238c70SJohn Marino             {                                                           \
594a238c70SJohn Marino               if (signx > 0)                                            \
604a238c70SJohn Marino                 mpfr_nextabove (y); /* 2^k + epsilon */                 \
614a238c70SJohn Marino               inexact = 1;                                              \
624a238c70SJohn Marino             }                                                           \
634a238c70SJohn Marino           else if (rnd_mode == MPFR_RNDD)                               \
644a238c70SJohn Marino             {                                                           \
654a238c70SJohn Marino               if (signx < 0)                                            \
664a238c70SJohn Marino                 mpfr_nextbelow (y); /* -2^k - epsilon */                \
674a238c70SJohn Marino               inexact = -1;                                             \
684a238c70SJohn Marino             }                                                           \
694a238c70SJohn Marino           else /* round to zero, or nearest */                          \
704a238c70SJohn Marino             inexact = -signx;                                           \
714a238c70SJohn Marino         }                                                               \
724a238c70SJohn Marino       MPFR_SAVE_EXPO_UPDATE_FLAGS (expo, __gmpfr_flags);                \
734a238c70SJohn Marino       goto end;                                                         \
744a238c70SJohn Marino     }
754a238c70SJohn Marino 
764a238c70SJohn Marino #include "gen_inverse.h"
77