xref: /dflybsd-src/contrib/mpfr/src/coth.c (revision 2786097444a0124b5d33763854de247e230c6629)
14a238c70SJohn Marino /* mpfr_coth - Hyperbolic cotangent function.
24a238c70SJohn Marino 
3*ab6d115fSJohn Marino Copyright 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013 Free Software Foundation, Inc.
4*ab6d115fSJohn Marino Contributed by the AriC and Caramel projects, INRIA.
54a238c70SJohn Marino 
64a238c70SJohn Marino This file is part of the GNU MPFR Library.
74a238c70SJohn Marino 
84a238c70SJohn Marino The GNU MPFR Library is free software; you can redistribute it and/or modify
94a238c70SJohn Marino it under the terms of the GNU Lesser General Public License as published by
104a238c70SJohn Marino the Free Software Foundation; either version 3 of the License, or (at your
114a238c70SJohn Marino option) any later version.
124a238c70SJohn Marino 
134a238c70SJohn Marino The GNU MPFR Library is distributed in the hope that it will be useful, but
144a238c70SJohn Marino WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
154a238c70SJohn Marino or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
164a238c70SJohn Marino License for more details.
174a238c70SJohn Marino 
184a238c70SJohn Marino You should have received a copy of the GNU Lesser General Public License
194a238c70SJohn Marino along with the GNU MPFR Library; see the file COPYING.LESSER.  If not, see
204a238c70SJohn Marino http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
214a238c70SJohn Marino 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
224a238c70SJohn Marino 
234a238c70SJohn Marino /* the hyperbolic cotangent is defined by coth(x) = 1/tanh(x)
244a238c70SJohn Marino    coth (NaN) = NaN.
254a238c70SJohn Marino    coth (+Inf) = 1
264a238c70SJohn Marino    coth (-Inf) = -1
274a238c70SJohn Marino    coth (+0) = +Inf.
284a238c70SJohn Marino    coth (-0) = -Inf.
294a238c70SJohn Marino */
304a238c70SJohn Marino 
314a238c70SJohn Marino #define FUNCTION mpfr_coth
324a238c70SJohn Marino #define INVERSE  mpfr_tanh
334a238c70SJohn Marino #define ACTION_NAN(y) do { MPFR_SET_NAN(y); MPFR_RET_NAN; } while (1)
344a238c70SJohn Marino #define ACTION_INF(y) return mpfr_set_si (y, MPFR_IS_POS(x) ? 1 : -1, rnd_mode)
354a238c70SJohn Marino #define ACTION_ZERO(y,x) do { MPFR_SET_SAME_SIGN(y,x); MPFR_SET_INF(y); \
364a238c70SJohn Marino                               mpfr_set_divby0 (); MPFR_RET(0); } while (1)
374a238c70SJohn Marino 
384a238c70SJohn Marino /* We know |coth(x)| > 1, thus if the approximation z is such that
394a238c70SJohn Marino    1 <= z <= 1 + 2^(-p) where p is the target precision, then the
404a238c70SJohn Marino    result is either 1 or nextabove(1) = 1 + 2^(1-p). */
414a238c70SJohn Marino #define ACTION_SPECIAL                                                  \
424a238c70SJohn Marino   if (MPFR_GET_EXP(z) == 1) /* 1 <= |z| < 2 */                          \
434a238c70SJohn Marino     {                                                                   \
444a238c70SJohn Marino       /* the following is exact by Sterbenz theorem */                  \
454a238c70SJohn Marino       mpfr_sub_si (z, z, MPFR_SIGN(z) > 0 ? 1 : -1, MPFR_RNDN);         \
464a238c70SJohn Marino       if (MPFR_IS_ZERO(z) || MPFR_GET_EXP(z) <= - (mpfr_exp_t) precy)   \
474a238c70SJohn Marino         {                                                               \
484a238c70SJohn Marino           mpfr_add_si (z, z, MPFR_SIGN(z) > 0 ? 1 : -1, MPFR_RNDN);     \
494a238c70SJohn Marino           break;                                                        \
504a238c70SJohn Marino         }                                                               \
514a238c70SJohn Marino     }
524a238c70SJohn Marino 
534a238c70SJohn Marino /* The analysis is adapted from that for mpfr_csc:
544a238c70SJohn Marino    near x=0, coth(x) = 1/x + x/3 + ..., more precisely we have
554a238c70SJohn Marino    |coth(x) - 1/x| <= 0.32 for |x| <= 1. Like for csc, the error term has
564a238c70SJohn Marino    the same sign as 1/x, thus |coth(x)| >= |1/x|. Then:
574a238c70SJohn Marino    (i) either x is a power of two, then 1/x is exactly representable, and
584a238c70SJohn Marino        as long as 1/2*ulp(1/x) > 0.32, we can conclude;
594a238c70SJohn Marino    (ii) otherwise assume x has <= n bits, and y has <= n+1 bits, then
604a238c70SJohn Marino    |y - 1/x| >= 2^(-2n) ufp(y), where ufp means unit in first place.
614a238c70SJohn Marino    Since |coth(x) - 1/x| <= 0.32, if 2^(-2n) ufp(y) >= 0.64, then
624a238c70SJohn Marino    |y - coth(x)| >= 2^(-2n-1) ufp(y), and rounding 1/x gives the correct
634a238c70SJohn Marino    result. If x < 2^E, then y > 2^(-E), thus ufp(y) > 2^(-E-1).
644a238c70SJohn Marino    A sufficient condition is thus EXP(x) + 1 <= -2 MAX(PREC(x),PREC(Y)). */
654a238c70SJohn Marino #define ACTION_TINY(y,x,r) \
664a238c70SJohn Marino   if (MPFR_EXP(x) + 1 <= -2 * (mpfr_exp_t) MAX(MPFR_PREC(x), MPFR_PREC(y))) \
674a238c70SJohn Marino     {                                                                   \
684a238c70SJohn Marino       int signx = MPFR_SIGN(x);                                         \
694a238c70SJohn Marino       inexact = mpfr_ui_div (y, 1, x, r);                               \
704a238c70SJohn Marino       if (inexact == 0) /* x is a power of two */                       \
714a238c70SJohn Marino         { /* result always 1/x, except when rounding away from zero */  \
724a238c70SJohn Marino           if (rnd_mode == MPFR_RNDA)                                    \
734a238c70SJohn Marino             rnd_mode = (signx > 0) ? MPFR_RNDU : MPFR_RNDD;             \
744a238c70SJohn Marino           if (rnd_mode == MPFR_RNDU)                                    \
754a238c70SJohn Marino             {                                                           \
764a238c70SJohn Marino               if (signx > 0)                                            \
774a238c70SJohn Marino                 mpfr_nextabove (y); /* 2^k + epsilon */                 \
784a238c70SJohn Marino               inexact = 1;                                              \
794a238c70SJohn Marino             }                                                           \
804a238c70SJohn Marino           else if (rnd_mode == MPFR_RNDD)                               \
814a238c70SJohn Marino             {                                                           \
824a238c70SJohn Marino               if (signx < 0)                                            \
834a238c70SJohn Marino                 mpfr_nextbelow (y); /* -2^k - epsilon */                \
844a238c70SJohn Marino               inexact = -1;                                             \
854a238c70SJohn Marino             }                                                           \
864a238c70SJohn Marino           else /* round to zero, or nearest */                          \
874a238c70SJohn Marino             inexact = -signx;                                           \
884a238c70SJohn Marino         }                                                               \
894a238c70SJohn Marino       MPFR_SAVE_EXPO_UPDATE_FLAGS (expo, __gmpfr_flags);                \
904a238c70SJohn Marino       goto end;                                                         \
914a238c70SJohn Marino     }
924a238c70SJohn Marino 
934a238c70SJohn Marino #include "gen_inverse.h"
94