14a238c70SJohn Marino /* mpfr_coth - Hyperbolic cotangent function. 24a238c70SJohn Marino 3*ab6d115fSJohn Marino Copyright 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013 Free Software Foundation, Inc. 4*ab6d115fSJohn Marino Contributed by the AriC and Caramel projects, INRIA. 54a238c70SJohn Marino 64a238c70SJohn Marino This file is part of the GNU MPFR Library. 74a238c70SJohn Marino 84a238c70SJohn Marino The GNU MPFR Library is free software; you can redistribute it and/or modify 94a238c70SJohn Marino it under the terms of the GNU Lesser General Public License as published by 104a238c70SJohn Marino the Free Software Foundation; either version 3 of the License, or (at your 114a238c70SJohn Marino option) any later version. 124a238c70SJohn Marino 134a238c70SJohn Marino The GNU MPFR Library is distributed in the hope that it will be useful, but 144a238c70SJohn Marino WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 154a238c70SJohn Marino or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public 164a238c70SJohn Marino License for more details. 174a238c70SJohn Marino 184a238c70SJohn Marino You should have received a copy of the GNU Lesser General Public License 194a238c70SJohn Marino along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see 204a238c70SJohn Marino http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc., 214a238c70SJohn Marino 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */ 224a238c70SJohn Marino 234a238c70SJohn Marino /* the hyperbolic cotangent is defined by coth(x) = 1/tanh(x) 244a238c70SJohn Marino coth (NaN) = NaN. 254a238c70SJohn Marino coth (+Inf) = 1 264a238c70SJohn Marino coth (-Inf) = -1 274a238c70SJohn Marino coth (+0) = +Inf. 284a238c70SJohn Marino coth (-0) = -Inf. 294a238c70SJohn Marino */ 304a238c70SJohn Marino 314a238c70SJohn Marino #define FUNCTION mpfr_coth 324a238c70SJohn Marino #define INVERSE mpfr_tanh 334a238c70SJohn Marino #define ACTION_NAN(y) do { MPFR_SET_NAN(y); MPFR_RET_NAN; } while (1) 344a238c70SJohn Marino #define ACTION_INF(y) return mpfr_set_si (y, MPFR_IS_POS(x) ? 1 : -1, rnd_mode) 354a238c70SJohn Marino #define ACTION_ZERO(y,x) do { MPFR_SET_SAME_SIGN(y,x); MPFR_SET_INF(y); \ 364a238c70SJohn Marino mpfr_set_divby0 (); MPFR_RET(0); } while (1) 374a238c70SJohn Marino 384a238c70SJohn Marino /* We know |coth(x)| > 1, thus if the approximation z is such that 394a238c70SJohn Marino 1 <= z <= 1 + 2^(-p) where p is the target precision, then the 404a238c70SJohn Marino result is either 1 or nextabove(1) = 1 + 2^(1-p). */ 414a238c70SJohn Marino #define ACTION_SPECIAL \ 424a238c70SJohn Marino if (MPFR_GET_EXP(z) == 1) /* 1 <= |z| < 2 */ \ 434a238c70SJohn Marino { \ 444a238c70SJohn Marino /* the following is exact by Sterbenz theorem */ \ 454a238c70SJohn Marino mpfr_sub_si (z, z, MPFR_SIGN(z) > 0 ? 1 : -1, MPFR_RNDN); \ 464a238c70SJohn Marino if (MPFR_IS_ZERO(z) || MPFR_GET_EXP(z) <= - (mpfr_exp_t) precy) \ 474a238c70SJohn Marino { \ 484a238c70SJohn Marino mpfr_add_si (z, z, MPFR_SIGN(z) > 0 ? 1 : -1, MPFR_RNDN); \ 494a238c70SJohn Marino break; \ 504a238c70SJohn Marino } \ 514a238c70SJohn Marino } 524a238c70SJohn Marino 534a238c70SJohn Marino /* The analysis is adapted from that for mpfr_csc: 544a238c70SJohn Marino near x=0, coth(x) = 1/x + x/3 + ..., more precisely we have 554a238c70SJohn Marino |coth(x) - 1/x| <= 0.32 for |x| <= 1. Like for csc, the error term has 564a238c70SJohn Marino the same sign as 1/x, thus |coth(x)| >= |1/x|. Then: 574a238c70SJohn Marino (i) either x is a power of two, then 1/x is exactly representable, and 584a238c70SJohn Marino as long as 1/2*ulp(1/x) > 0.32, we can conclude; 594a238c70SJohn Marino (ii) otherwise assume x has <= n bits, and y has <= n+1 bits, then 604a238c70SJohn Marino |y - 1/x| >= 2^(-2n) ufp(y), where ufp means unit in first place. 614a238c70SJohn Marino Since |coth(x) - 1/x| <= 0.32, if 2^(-2n) ufp(y) >= 0.64, then 624a238c70SJohn Marino |y - coth(x)| >= 2^(-2n-1) ufp(y), and rounding 1/x gives the correct 634a238c70SJohn Marino result. If x < 2^E, then y > 2^(-E), thus ufp(y) > 2^(-E-1). 644a238c70SJohn Marino A sufficient condition is thus EXP(x) + 1 <= -2 MAX(PREC(x),PREC(Y)). */ 654a238c70SJohn Marino #define ACTION_TINY(y,x,r) \ 664a238c70SJohn Marino if (MPFR_EXP(x) + 1 <= -2 * (mpfr_exp_t) MAX(MPFR_PREC(x), MPFR_PREC(y))) \ 674a238c70SJohn Marino { \ 684a238c70SJohn Marino int signx = MPFR_SIGN(x); \ 694a238c70SJohn Marino inexact = mpfr_ui_div (y, 1, x, r); \ 704a238c70SJohn Marino if (inexact == 0) /* x is a power of two */ \ 714a238c70SJohn Marino { /* result always 1/x, except when rounding away from zero */ \ 724a238c70SJohn Marino if (rnd_mode == MPFR_RNDA) \ 734a238c70SJohn Marino rnd_mode = (signx > 0) ? MPFR_RNDU : MPFR_RNDD; \ 744a238c70SJohn Marino if (rnd_mode == MPFR_RNDU) \ 754a238c70SJohn Marino { \ 764a238c70SJohn Marino if (signx > 0) \ 774a238c70SJohn Marino mpfr_nextabove (y); /* 2^k + epsilon */ \ 784a238c70SJohn Marino inexact = 1; \ 794a238c70SJohn Marino } \ 804a238c70SJohn Marino else if (rnd_mode == MPFR_RNDD) \ 814a238c70SJohn Marino { \ 824a238c70SJohn Marino if (signx < 0) \ 834a238c70SJohn Marino mpfr_nextbelow (y); /* -2^k - epsilon */ \ 844a238c70SJohn Marino inexact = -1; \ 854a238c70SJohn Marino } \ 864a238c70SJohn Marino else /* round to zero, or nearest */ \ 874a238c70SJohn Marino inexact = -signx; \ 884a238c70SJohn Marino } \ 894a238c70SJohn Marino MPFR_SAVE_EXPO_UPDATE_FLAGS (expo, __gmpfr_flags); \ 904a238c70SJohn Marino goto end; \ 914a238c70SJohn Marino } 924a238c70SJohn Marino 934a238c70SJohn Marino #include "gen_inverse.h" 94