xref: /dflybsd-src/contrib/mpfr/src/cot.c (revision 2786097444a0124b5d33763854de247e230c6629)
14a238c70SJohn Marino /* mpfr_cot - cotangent function.
24a238c70SJohn Marino 
3*ab6d115fSJohn Marino Copyright 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013 Free Software Foundation, Inc.
4*ab6d115fSJohn Marino Contributed by the AriC and Caramel projects, INRIA.
54a238c70SJohn Marino 
64a238c70SJohn Marino This file is part of the GNU MPFR Library.
74a238c70SJohn Marino 
84a238c70SJohn Marino The GNU MPFR Library is free software; you can redistribute it and/or modify
94a238c70SJohn Marino it under the terms of the GNU Lesser General Public License as published by
104a238c70SJohn Marino the Free Software Foundation; either version 3 of the License, or (at your
114a238c70SJohn Marino option) any later version.
124a238c70SJohn Marino 
134a238c70SJohn Marino The GNU MPFR Library is distributed in the hope that it will be useful, but
144a238c70SJohn Marino WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
154a238c70SJohn Marino or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
164a238c70SJohn Marino License for more details.
174a238c70SJohn Marino 
184a238c70SJohn Marino You should have received a copy of the GNU Lesser General Public License
194a238c70SJohn Marino along with the GNU MPFR Library; see the file COPYING.LESSER.  If not, see
204a238c70SJohn Marino http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
214a238c70SJohn Marino 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
224a238c70SJohn Marino 
234a238c70SJohn Marino /* the cotangent is defined by cot(x) = 1/tan(x) = cos(x)/sin(x).
244a238c70SJohn Marino    cot (NaN) = NaN.
254a238c70SJohn Marino    cot (+Inf) = csc (-Inf) = NaN.
264a238c70SJohn Marino    cot (+0) = +Inf.
274a238c70SJohn Marino    cot (-0) = -Inf.
284a238c70SJohn Marino */
294a238c70SJohn Marino 
304a238c70SJohn Marino #define FUNCTION mpfr_cot
314a238c70SJohn Marino #define INVERSE  mpfr_tan
324a238c70SJohn Marino #define ACTION_NAN(y) do { MPFR_SET_NAN(y); MPFR_RET_NAN; } while (1)
334a238c70SJohn Marino #define ACTION_INF(y) do { MPFR_SET_NAN(y); MPFR_RET_NAN; } while (1)
344a238c70SJohn Marino #define ACTION_ZERO(y,x) do { MPFR_SET_SAME_SIGN(y,x); MPFR_SET_INF(y); \
354a238c70SJohn Marino                               mpfr_set_divby0 (); MPFR_RET(0); } while (1)
364a238c70SJohn Marino 
374a238c70SJohn Marino /* (This analysis is adapted from that for mpfr_coth.)
384a238c70SJohn Marino    Near x=0, cot(x) = 1/x - x/3 + ..., more precisely we have
394a238c70SJohn Marino    |cot(x) - 1/x| <= 0.36 for |x| <= 1. The error term has
404a238c70SJohn Marino    the opposite sign as 1/x, thus |cot(x)| <= |1/x|. Then:
414a238c70SJohn Marino    (i) either x is a power of two, then 1/x is exactly representable, and
424a238c70SJohn Marino        as long as 1/2*ulp(1/x) > 0.36, we can conclude;
434a238c70SJohn Marino    (ii) otherwise assume x has <= n bits, and y has <= n+1 bits, then
444a238c70SJohn Marino    |y - 1/x| >= 2^(-2n) ufp(y), where ufp means unit in first place.
454a238c70SJohn Marino    Since |cot(x) - 1/x| <= 0.36, if 2^(-2n) ufp(y) >= 0.72, then
464a238c70SJohn Marino    |y - cot(x)| >= 2^(-2n-1) ufp(y), and rounding 1/x gives the correct
474a238c70SJohn Marino    result. If x < 2^E, then y > 2^(-E), thus ufp(y) > 2^(-E-1).
484a238c70SJohn Marino    A sufficient condition is thus EXP(x) + 1 <= -2 MAX(PREC(x),PREC(Y)).
494a238c70SJohn Marino    The division can be inexact in case of underflow or overflow; but
504a238c70SJohn Marino    an underflow is not possible as emin = - emax. The overflow is a
514a238c70SJohn Marino    real overflow possibly except when |x| = 2^emin. */
524a238c70SJohn Marino #define ACTION_TINY(y,x,r) \
534a238c70SJohn Marino   if (MPFR_EXP(x) + 1 <= -2 * (mpfr_exp_t) MAX(MPFR_PREC(x), MPFR_PREC(y))) \
544a238c70SJohn Marino     {                                                                   \
554a238c70SJohn Marino       int two2emin;                                                     \
564a238c70SJohn Marino       int signx = MPFR_SIGN(x);                                         \
574a238c70SJohn Marino       MPFR_ASSERTN (MPFR_EMIN_MIN + MPFR_EMAX_MAX == 0);                \
584a238c70SJohn Marino       if ((two2emin = mpfr_get_exp (x) == __gmpfr_emin + 1 &&           \
594a238c70SJohn Marino            mpfr_powerof2_raw (x)))                                      \
604a238c70SJohn Marino         {                                                               \
614a238c70SJohn Marino           /* Case |x| = 2^emin. 1/x is not representable; so, compute   \
624a238c70SJohn Marino              1/(2x) instead (exact), and correct the result later. */   \
634a238c70SJohn Marino           mpfr_set_si_2exp (y, signx, __gmpfr_emax, MPFR_RNDN);         \
644a238c70SJohn Marino           inexact = 0;                                                  \
654a238c70SJohn Marino         }                                                               \
664a238c70SJohn Marino       else                                                              \
674a238c70SJohn Marino         inexact = mpfr_ui_div (y, 1, x, r);                             \
684a238c70SJohn Marino       if (inexact == 0) /* x is a power of two */                       \
694a238c70SJohn Marino         { /* result always 1/x, except when rounding to zero */         \
704a238c70SJohn Marino           if (rnd_mode == MPFR_RNDA)                                    \
714a238c70SJohn Marino             rnd_mode = (signx > 0) ? MPFR_RNDU : MPFR_RNDD;             \
724a238c70SJohn Marino           if (rnd_mode == MPFR_RNDU || (rnd_mode == MPFR_RNDZ && signx < 0)) \
734a238c70SJohn Marino             {                                                           \
744a238c70SJohn Marino               if (signx < 0)                                            \
754a238c70SJohn Marino                 mpfr_nextabove (y); /* -2^k + epsilon */                \
764a238c70SJohn Marino               inexact = 1;                                              \
774a238c70SJohn Marino             }                                                           \
784a238c70SJohn Marino           else if (rnd_mode == MPFR_RNDD || rnd_mode == MPFR_RNDZ)      \
794a238c70SJohn Marino             {                                                           \
804a238c70SJohn Marino               if (signx > 0)                                            \
814a238c70SJohn Marino                 mpfr_nextbelow (y); /* 2^k - epsilon */                 \
824a238c70SJohn Marino               inexact = -1;                                             \
834a238c70SJohn Marino             }                                                           \
844a238c70SJohn Marino           else /* round to nearest */                                   \
854a238c70SJohn Marino             inexact = signx;                                            \
864a238c70SJohn Marino           if (two2emin)                                                 \
874a238c70SJohn Marino             mpfr_mul_2ui (y, y, 1, r);  /* overflow in MPFR_RNDN */      \
884a238c70SJohn Marino         }                                                               \
894a238c70SJohn Marino       /* Underflow is not possible with emin = - emax, but we cannot */ \
904a238c70SJohn Marino       /* add an assert as the underflow flag could have already been */ \
914a238c70SJohn Marino       /* set before the call to mpfr_cot.                            */ \
924a238c70SJohn Marino       MPFR_SAVE_EXPO_UPDATE_FLAGS (expo, __gmpfr_flags);                \
934a238c70SJohn Marino       goto end;                                                         \
944a238c70SJohn Marino     }
954a238c70SJohn Marino 
964a238c70SJohn Marino #include "gen_inverse.h"
97