xref: /dflybsd-src/contrib/mpfr/src/atan.c (revision 2786097444a0124b5d33763854de247e230c6629)
14a238c70SJohn Marino /* mpfr_atan -- arc-tangent of a floating-point number
24a238c70SJohn Marino 
3*ab6d115fSJohn Marino Copyright 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013 Free Software Foundation, Inc.
4*ab6d115fSJohn Marino Contributed by the AriC and Caramel projects, INRIA.
54a238c70SJohn Marino 
64a238c70SJohn Marino This file is part of the GNU MPFR Library.
74a238c70SJohn Marino 
84a238c70SJohn Marino The GNU MPFR Library is free software; you can redistribute it and/or modify
94a238c70SJohn Marino it under the terms of the GNU Lesser General Public License as published by
104a238c70SJohn Marino the Free Software Foundation; either version 3 of the License, or (at your
114a238c70SJohn Marino option) any later version.
124a238c70SJohn Marino 
134a238c70SJohn Marino The GNU MPFR Library is distributed in the hope that it will be useful, but
144a238c70SJohn Marino WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
154a238c70SJohn Marino or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
164a238c70SJohn Marino License for more details.
174a238c70SJohn Marino 
184a238c70SJohn Marino You should have received a copy of the GNU Lesser General Public License
194a238c70SJohn Marino along with the GNU MPFR Library; see the file COPYING.LESSER.  If not, see
204a238c70SJohn Marino http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
214a238c70SJohn Marino 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
224a238c70SJohn Marino 
234a238c70SJohn Marino #define MPFR_NEED_LONGLONG_H
244a238c70SJohn Marino #include "mpfr-impl.h"
254a238c70SJohn Marino 
264a238c70SJohn Marino /* If x = p/2^r, put in y an approximation of atan(x)/x using 2^m terms
274a238c70SJohn Marino    for the series expansion, with an error of at most 1 ulp.
284a238c70SJohn Marino    Assumes |x| < 1.
294a238c70SJohn Marino 
304a238c70SJohn Marino    If X=x^2, we want 1 - X/3 + X^2/5 - ... + (-1)^k*X^k/(2k+1) + ...
314a238c70SJohn Marino 
324a238c70SJohn Marino    Assume p is non-zero.
334a238c70SJohn Marino 
344a238c70SJohn Marino    When we sum terms up to x^k/(2k+1), the denominator Q[0] is
354a238c70SJohn Marino    3*5*7*...*(2k+1) ~ (2k/e)^k.
364a238c70SJohn Marino */
374a238c70SJohn Marino static void
mpfr_atan_aux(mpfr_ptr y,mpz_ptr p,long r,int m,mpz_t * tab)384a238c70SJohn Marino mpfr_atan_aux (mpfr_ptr y, mpz_ptr p, long r, int m, mpz_t *tab)
394a238c70SJohn Marino {
404a238c70SJohn Marino   mpz_t *S, *Q, *ptoj;
414a238c70SJohn Marino   unsigned long n, i, k, j, l;
424a238c70SJohn Marino   mpfr_exp_t diff, expo;
434a238c70SJohn Marino   int im, done;
444a238c70SJohn Marino   mpfr_prec_t mult, *accu, *log2_nb_terms;
454a238c70SJohn Marino   mpfr_prec_t precy = MPFR_PREC(y);
464a238c70SJohn Marino 
474a238c70SJohn Marino   MPFR_ASSERTD(mpz_cmp_ui (p, 0) != 0);
484a238c70SJohn Marino 
494a238c70SJohn Marino   accu = (mpfr_prec_t*) (*__gmp_allocate_func) ((2 * m + 2) * sizeof (mpfr_prec_t));
504a238c70SJohn Marino   log2_nb_terms = accu + m + 1;
514a238c70SJohn Marino 
524a238c70SJohn Marino   /* Set Tables */
534a238c70SJohn Marino   S    = tab;           /* S */
544a238c70SJohn Marino   ptoj = S + 1*(m+1);   /* p^2^j Precomputed table */
554a238c70SJohn Marino   Q    = S + 2*(m+1);   /* Product of Odd integer  table  */
564a238c70SJohn Marino 
574a238c70SJohn Marino   /* From p to p^2, and r to 2r */
584a238c70SJohn Marino   mpz_mul (p, p, p);
594a238c70SJohn Marino   MPFR_ASSERTD (2 * r > r);
604a238c70SJohn Marino   r = 2 * r;
614a238c70SJohn Marino 
624a238c70SJohn Marino   /* Normalize p */
634a238c70SJohn Marino   n = mpz_scan1 (p, 0);
644a238c70SJohn Marino   mpz_tdiv_q_2exp (p, p, n); /* exact */
654a238c70SJohn Marino   MPFR_ASSERTD (r > n);
664a238c70SJohn Marino   r -= n;
674a238c70SJohn Marino   /* since |p/2^r| < 1, and p is a non-zero integer, necessarily r > 0 */
684a238c70SJohn Marino 
694a238c70SJohn Marino   MPFR_ASSERTD (mpz_sgn (p) > 0);
704a238c70SJohn Marino   MPFR_ASSERTD (m > 0);
714a238c70SJohn Marino 
724a238c70SJohn Marino   /* check if p=1 (special case) */
734a238c70SJohn Marino   l = 0;
744a238c70SJohn Marino   /*
754a238c70SJohn Marino     We compute by binary splitting, with X = x^2 = p/2^r:
764a238c70SJohn Marino     P(a,b) = p if a+1=b, P(a,c)*P(c,b) otherwise
774a238c70SJohn Marino     Q(a,b) = (2a+1)*2^r if a+1=b [except Q(0,1)=1], Q(a,c)*Q(c,b) otherwise
784a238c70SJohn Marino     S(a,b) = p*(2a+1) if a+1=b, Q(c,b)*S(a,c)+Q(a,c)*P(a,c)*S(c,b) otherwise
794a238c70SJohn Marino     Then atan(x)/x ~ S(0,i)/Q(0,i) for i so that (p/2^r)^i/i is small enough.
804a238c70SJohn Marino     The factor 2^(r*(b-a)) in Q(a,b) is implicit, thus we have to take it
814a238c70SJohn Marino     into account when we compute with Q.
824a238c70SJohn Marino   */
834a238c70SJohn Marino   accu[0] = 0; /* accu[k] = Mult[0] + ... + Mult[k], where Mult[j] is the
844a238c70SJohn Marino                   number of bits of the corresponding term S[j]/Q[j] */
854a238c70SJohn Marino   if (mpz_cmp_ui (p, 1) != 0)
864a238c70SJohn Marino     {
874a238c70SJohn Marino       /* p <> 1: precompute ptoj table */
884a238c70SJohn Marino       mpz_set (ptoj[0], p);
894a238c70SJohn Marino       for (im = 1 ; im <= m ; im ++)
904a238c70SJohn Marino         mpz_mul (ptoj[im], ptoj[im - 1], ptoj[im - 1]);
914a238c70SJohn Marino       /* main loop */
924a238c70SJohn Marino       n = 1UL << m;
934a238c70SJohn Marino       /* the ith term being X^i/(2i+1) with X=p/2^r, we can stop when
944a238c70SJohn Marino          p^i/2^(r*i) < 2^(-precy), i.e. r*i > precy + log2(p^i) */
954a238c70SJohn Marino       for (i = k = done = 0; (i < n) && (done == 0); i += 2, k ++)
964a238c70SJohn Marino         {
974a238c70SJohn Marino           /* initialize both S[k],Q[k] and S[k+1],Q[k+1] */
984a238c70SJohn Marino           mpz_set_ui (Q[k+1], 2 * i + 3); /* Q(i+1,i+2) */
994a238c70SJohn Marino           mpz_mul_ui (S[k+1], p, 2 * i + 1); /* S(i+1,i+2) */
1004a238c70SJohn Marino           mpz_mul_2exp (S[k], Q[k+1], r);
1014a238c70SJohn Marino           mpz_sub (S[k], S[k], S[k+1]); /* S(i,i+2) */
1024a238c70SJohn Marino           mpz_mul_ui (Q[k], Q[k+1], 2 * i + 1); /* Q(i,i+2) */
1034a238c70SJohn Marino           log2_nb_terms[k] = 1; /* S[k]/Q[k] corresponds to 2 terms */
1044a238c70SJohn Marino           for (j = (i + 2) >> 1, l = 1; (j & 1) == 0; l ++, j >>= 1, k --)
1054a238c70SJohn Marino             {
1064a238c70SJohn Marino               /* invariant: S[k-1]/Q[k-1] and S[k]/Q[k] correspond
1074a238c70SJohn Marino                  to 2^l terms each. We combine them into S[k-1]/Q[k-1] */
1084a238c70SJohn Marino               MPFR_ASSERTD (k > 0);
1094a238c70SJohn Marino               mpz_mul (S[k], S[k], Q[k-1]);
1104a238c70SJohn Marino               mpz_mul (S[k], S[k], ptoj[l]);
1114a238c70SJohn Marino               mpz_mul (S[k-1], S[k-1], Q[k]);
1124a238c70SJohn Marino               mpz_mul_2exp (S[k-1], S[k-1], r << l);
1134a238c70SJohn Marino               mpz_add (S[k-1], S[k-1], S[k]);
1144a238c70SJohn Marino               mpz_mul (Q[k-1], Q[k-1], Q[k]);
1154a238c70SJohn Marino               log2_nb_terms[k-1] = l + 1;
1164a238c70SJohn Marino               /* now S[k-1]/Q[k-1] corresponds to 2^(l+1) terms */
1174a238c70SJohn Marino               MPFR_MPZ_SIZEINBASE2(mult, ptoj[l+1]);
1184a238c70SJohn Marino               /* FIXME: precompute bits(ptoj[l+1]) outside the loop? */
1194a238c70SJohn Marino               mult = (r << (l + 1)) - mult - 1;
1204a238c70SJohn Marino               accu[k-1] = (k == 1) ? mult : accu[k-2] + mult;
1214a238c70SJohn Marino               if (accu[k-1] > precy)
1224a238c70SJohn Marino                 done = 1;
1234a238c70SJohn Marino             }
1244a238c70SJohn Marino         }
1254a238c70SJohn Marino     }
1264a238c70SJohn Marino   else /* special case p=1: the ith term being X^i/(2i+1) with X=1/2^r,
1274a238c70SJohn Marino           we can stop when r*i > precy i.e. i > precy/r */
1284a238c70SJohn Marino     {
1294a238c70SJohn Marino       n = 1UL << m;
1304a238c70SJohn Marino       for (i = k = 0; (i < n) && (i <= precy / r); i += 2, k ++)
1314a238c70SJohn Marino         {
1324a238c70SJohn Marino           mpz_set_ui (Q[k + 1], 2 * i + 3);
1334a238c70SJohn Marino           mpz_mul_2exp (S[k], Q[k+1], r);
1344a238c70SJohn Marino           mpz_sub_ui (S[k], S[k], 1 + 2 * i);
1354a238c70SJohn Marino           mpz_mul_ui (Q[k], Q[k + 1], 1 + 2 * i);
1364a238c70SJohn Marino           log2_nb_terms[k] = 1; /* S[k]/Q[k] corresponds to 2 terms */
1374a238c70SJohn Marino           for (j = (i + 2) >> 1, l = 1; (j & 1) == 0; l++, j >>= 1, k --)
1384a238c70SJohn Marino             {
1394a238c70SJohn Marino               MPFR_ASSERTD (k > 0);
1404a238c70SJohn Marino               mpz_mul (S[k], S[k], Q[k-1]);
1414a238c70SJohn Marino               mpz_mul (S[k-1], S[k-1], Q[k]);
1424a238c70SJohn Marino               mpz_mul_2exp (S[k-1], S[k-1], r << l);
1434a238c70SJohn Marino               mpz_add (S[k-1], S[k-1], S[k]);
1444a238c70SJohn Marino               mpz_mul (Q[k-1], Q[k-1], Q[k]);
1454a238c70SJohn Marino               log2_nb_terms[k-1] = l + 1;
1464a238c70SJohn Marino             }
1474a238c70SJohn Marino         }
1484a238c70SJohn Marino     }
1494a238c70SJohn Marino 
1504a238c70SJohn Marino   /* we need to combine S[0]/Q[0]...S[k-1]/Q[k-1] */
1514a238c70SJohn Marino   l = 0; /* number of terms accumulated in S[k]/Q[k] */
1524a238c70SJohn Marino   while (k > 1)
1534a238c70SJohn Marino     {
1544a238c70SJohn Marino       k --;
1554a238c70SJohn Marino       /* combine S[k-1]/Q[k-1] and S[k]/Q[k] */
1564a238c70SJohn Marino       j = log2_nb_terms[k-1];
1574a238c70SJohn Marino       mpz_mul (S[k], S[k], Q[k-1]);
1584a238c70SJohn Marino       if (mpz_cmp_ui (p, 1) != 0)
1594a238c70SJohn Marino         mpz_mul (S[k], S[k], ptoj[j]);
1604a238c70SJohn Marino       mpz_mul (S[k-1], S[k-1], Q[k]);
1614a238c70SJohn Marino       l += 1 << log2_nb_terms[k];
1624a238c70SJohn Marino       mpz_mul_2exp (S[k-1], S[k-1], r * l);
1634a238c70SJohn Marino       mpz_add (S[k-1], S[k-1], S[k]);
1644a238c70SJohn Marino       mpz_mul (Q[k-1], Q[k-1], Q[k]);
1654a238c70SJohn Marino     }
1664a238c70SJohn Marino   (*__gmp_free_func) (accu, (2 * m + 2) * sizeof (mpfr_prec_t));
1674a238c70SJohn Marino 
1684a238c70SJohn Marino   MPFR_MPZ_SIZEINBASE2 (diff, S[0]);
1694a238c70SJohn Marino   diff -= 2 * precy;
1704a238c70SJohn Marino   expo = diff;
1714a238c70SJohn Marino   if (diff >= 0)
1724a238c70SJohn Marino     mpz_tdiv_q_2exp (S[0], S[0], diff);
1734a238c70SJohn Marino   else
1744a238c70SJohn Marino     mpz_mul_2exp (S[0], S[0], -diff);
1754a238c70SJohn Marino 
1764a238c70SJohn Marino   MPFR_MPZ_SIZEINBASE2 (diff, Q[0]);
1774a238c70SJohn Marino   diff -= precy;
1784a238c70SJohn Marino   expo -= diff;
1794a238c70SJohn Marino   if (diff >= 0)
1804a238c70SJohn Marino     mpz_tdiv_q_2exp (Q[0], Q[0], diff);
1814a238c70SJohn Marino   else
1824a238c70SJohn Marino     mpz_mul_2exp (Q[0], Q[0], -diff);
1834a238c70SJohn Marino 
1844a238c70SJohn Marino   mpz_tdiv_q (S[0], S[0], Q[0]);
1854a238c70SJohn Marino   mpfr_set_z (y, S[0], MPFR_RNDD);
1864a238c70SJohn Marino   MPFR_SET_EXP (y, MPFR_EXP(y) + expo - r * (i - 1));
1874a238c70SJohn Marino }
1884a238c70SJohn Marino 
1894a238c70SJohn Marino int
mpfr_atan(mpfr_ptr atan,mpfr_srcptr x,mpfr_rnd_t rnd_mode)1904a238c70SJohn Marino mpfr_atan (mpfr_ptr atan, mpfr_srcptr x, mpfr_rnd_t rnd_mode)
1914a238c70SJohn Marino {
1924a238c70SJohn Marino   mpfr_t xp, arctgt, sk, tmp, tmp2;
1934a238c70SJohn Marino   mpz_t  ukz;
1944a238c70SJohn Marino   mpz_t *tabz;
1954a238c70SJohn Marino   mpfr_exp_t exptol;
1964a238c70SJohn Marino   mpfr_prec_t prec, realprec, est_lost, lost;
1974a238c70SJohn Marino   unsigned long twopoweri, log2p, red;
1984a238c70SJohn Marino   int comparaison, inexact;
1994a238c70SJohn Marino   int i, n0, oldn0;
2004a238c70SJohn Marino   MPFR_GROUP_DECL (group);
2014a238c70SJohn Marino   MPFR_SAVE_EXPO_DECL (expo);
2024a238c70SJohn Marino   MPFR_ZIV_DECL (loop);
2034a238c70SJohn Marino 
2044a238c70SJohn Marino   MPFR_LOG_FUNC
2054a238c70SJohn Marino     (("x[%Pu]=%.*Rg rnd=%d", mpfr_get_prec (x), mpfr_log_prec, x, rnd_mode),
2064a238c70SJohn Marino      ("atan[%Pu]=%.*Rg inexact=%d",
2074a238c70SJohn Marino       mpfr_get_prec (atan), mpfr_log_prec, atan, inexact));
2084a238c70SJohn Marino 
2094a238c70SJohn Marino   /* Singular cases */
2104a238c70SJohn Marino   if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x)))
2114a238c70SJohn Marino     {
2124a238c70SJohn Marino       if (MPFR_IS_NAN (x))
2134a238c70SJohn Marino         {
2144a238c70SJohn Marino           MPFR_SET_NAN (atan);
2154a238c70SJohn Marino           MPFR_RET_NAN;
2164a238c70SJohn Marino         }
2174a238c70SJohn Marino       else if (MPFR_IS_INF (x))
2184a238c70SJohn Marino         {
2194a238c70SJohn Marino           MPFR_SAVE_EXPO_MARK (expo);
2204a238c70SJohn Marino           if (MPFR_IS_POS (x))  /* arctan(+inf) = Pi/2 */
2214a238c70SJohn Marino             inexact = mpfr_const_pi (atan, rnd_mode);
2224a238c70SJohn Marino           else /* arctan(-inf) = -Pi/2 */
2234a238c70SJohn Marino             {
2244a238c70SJohn Marino               inexact = -mpfr_const_pi (atan,
2254a238c70SJohn Marino                                         MPFR_INVERT_RND (rnd_mode));
2264a238c70SJohn Marino               MPFR_CHANGE_SIGN (atan);
2274a238c70SJohn Marino             }
2284a238c70SJohn Marino           mpfr_div_2ui (atan, atan, 1, rnd_mode);  /* exact (no exceptions) */
2294a238c70SJohn Marino           MPFR_SAVE_EXPO_FREE (expo);
2304a238c70SJohn Marino           return mpfr_check_range (atan, inexact, rnd_mode);
2314a238c70SJohn Marino         }
2324a238c70SJohn Marino       else /* x is necessarily 0 */
2334a238c70SJohn Marino         {
2344a238c70SJohn Marino           MPFR_ASSERTD (MPFR_IS_ZERO (x));
2354a238c70SJohn Marino           MPFR_SET_ZERO (atan);
2364a238c70SJohn Marino           MPFR_SET_SAME_SIGN (atan, x);
2374a238c70SJohn Marino           MPFR_RET (0);
2384a238c70SJohn Marino         }
2394a238c70SJohn Marino     }
2404a238c70SJohn Marino 
2414a238c70SJohn Marino   /* atan(x) = x - x^3/3 + x^5/5...
2424a238c70SJohn Marino      so the error is < 2^(3*EXP(x)-1)
2434a238c70SJohn Marino      so `EXP(x)-(3*EXP(x)-1)` = -2*EXP(x)+1 */
2444a238c70SJohn Marino   MPFR_FAST_COMPUTE_IF_SMALL_INPUT (atan, x, -2 * MPFR_GET_EXP (x), 1, 0,
2454a238c70SJohn Marino                                     rnd_mode, {});
2464a238c70SJohn Marino 
2474a238c70SJohn Marino   /* Set x_p=|x| */
2484a238c70SJohn Marino   MPFR_TMP_INIT_ABS (xp, x);
2494a238c70SJohn Marino 
2504a238c70SJohn Marino   MPFR_SAVE_EXPO_MARK (expo);
2514a238c70SJohn Marino 
2524a238c70SJohn Marino   /* Other simple case arctan(-+1)=-+pi/4 */
2534a238c70SJohn Marino   comparaison = mpfr_cmp_ui (xp, 1);
2544a238c70SJohn Marino   if (MPFR_UNLIKELY (comparaison == 0))
2554a238c70SJohn Marino     {
2564a238c70SJohn Marino       int neg = MPFR_IS_NEG (x);
2574a238c70SJohn Marino       inexact = mpfr_const_pi (atan, MPFR_IS_POS (x) ? rnd_mode
2584a238c70SJohn Marino                                : MPFR_INVERT_RND (rnd_mode));
2594a238c70SJohn Marino       if (neg)
2604a238c70SJohn Marino         {
2614a238c70SJohn Marino           inexact = -inexact;
2624a238c70SJohn Marino           MPFR_CHANGE_SIGN (atan);
2634a238c70SJohn Marino         }
2644a238c70SJohn Marino       mpfr_div_2ui (atan, atan, 2, rnd_mode);  /* exact (no exceptions) */
2654a238c70SJohn Marino       MPFR_SAVE_EXPO_FREE (expo);
2664a238c70SJohn Marino       return mpfr_check_range (atan, inexact, rnd_mode);
2674a238c70SJohn Marino     }
2684a238c70SJohn Marino 
2694a238c70SJohn Marino   realprec = MPFR_PREC (atan) + MPFR_INT_CEIL_LOG2 (MPFR_PREC (atan)) + 4;
2704a238c70SJohn Marino   prec = realprec + GMP_NUMB_BITS;
2714a238c70SJohn Marino 
2724a238c70SJohn Marino   /* Initialisation */
2734a238c70SJohn Marino   mpz_init (ukz);
2744a238c70SJohn Marino   MPFR_GROUP_INIT_4 (group, prec, sk, tmp, tmp2, arctgt);
2754a238c70SJohn Marino   oldn0 = 0;
2764a238c70SJohn Marino   tabz = (mpz_t *) 0;
2774a238c70SJohn Marino 
2784a238c70SJohn Marino   MPFR_ZIV_INIT (loop, prec);
2794a238c70SJohn Marino   for (;;)
2804a238c70SJohn Marino     {
2814a238c70SJohn Marino       /* First, if |x| < 1, we need to have more prec to be able to round (sup)
2824a238c70SJohn Marino          n0 = ceil(log(prec_requested + 2 + 1+ln(2.4)/ln(2))/log(2)) */
2834a238c70SJohn Marino       mpfr_prec_t sup;
2844a238c70SJohn Marino       sup = MPFR_GET_EXP (xp) < 0 ? 2 - MPFR_GET_EXP (xp) : 1; /* sup >= 1 */
2854a238c70SJohn Marino 
2864a238c70SJohn Marino       n0 = MPFR_INT_CEIL_LOG2 ((realprec + sup) + 3);
2874a238c70SJohn Marino       /* since realprec >= 4, n0 >= ceil(log2(8)) >= 3, thus 3*n0 > 2 */
2884a238c70SJohn Marino       prec = (realprec + sup) + 1 + MPFR_INT_CEIL_LOG2 (3*n0-2);
2894a238c70SJohn Marino 
2904a238c70SJohn Marino       /* the number of lost bits due to argument reduction is
2914a238c70SJohn Marino          9 - 2 * EXP(sk), which we estimate by 9 + 2*ceil(log2(p))
2924a238c70SJohn Marino          since we manage that sk < 1/p */
2934a238c70SJohn Marino       if (MPFR_PREC (atan) > 100)
2944a238c70SJohn Marino         {
2954a238c70SJohn Marino           log2p = MPFR_INT_CEIL_LOG2(prec) / 2 - 3;
2964a238c70SJohn Marino           est_lost = 9 + 2 * log2p;
2974a238c70SJohn Marino           prec += est_lost;
2984a238c70SJohn Marino         }
2994a238c70SJohn Marino       else
3004a238c70SJohn Marino         log2p = est_lost = 0; /* don't reduce the argument */
3014a238c70SJohn Marino 
3024a238c70SJohn Marino       /* Initialisation */
3034a238c70SJohn Marino       MPFR_GROUP_REPREC_4 (group, prec, sk, tmp, tmp2, arctgt);
3044a238c70SJohn Marino       if (MPFR_LIKELY (oldn0 == 0))
3054a238c70SJohn Marino         {
3064a238c70SJohn Marino           oldn0 = 3 * (n0 + 1);
3074a238c70SJohn Marino           tabz = (mpz_t *) (*__gmp_allocate_func) (oldn0 * sizeof (mpz_t));
3084a238c70SJohn Marino           for (i = 0; i < oldn0; i++)
3094a238c70SJohn Marino             mpz_init (tabz[i]);
3104a238c70SJohn Marino         }
3114a238c70SJohn Marino       else if (MPFR_UNLIKELY (oldn0 < 3 * (n0 + 1)))
3124a238c70SJohn Marino         {
3134a238c70SJohn Marino           tabz = (mpz_t *) (*__gmp_reallocate_func)
3144a238c70SJohn Marino             (tabz, oldn0 * sizeof (mpz_t), 3 * (n0 + 1)*sizeof (mpz_t));
3154a238c70SJohn Marino           for (i = oldn0; i < 3 * (n0 + 1); i++)
3164a238c70SJohn Marino             mpz_init (tabz[i]);
3174a238c70SJohn Marino           oldn0 = 3 * (n0 + 1);
3184a238c70SJohn Marino         }
3194a238c70SJohn Marino 
3204a238c70SJohn Marino       /* The mpfr_ui_div below mustn't underflow. This is guaranteed by
3214a238c70SJohn Marino          MPFR_SAVE_EXPO_MARK, but let's check that for maintainability. */
3224a238c70SJohn Marino       MPFR_ASSERTD (__gmpfr_emax <= 1 - __gmpfr_emin);
3234a238c70SJohn Marino 
3244a238c70SJohn Marino       if (comparaison > 0) /* use atan(xp) = Pi/2 - atan(1/xp) */
3254a238c70SJohn Marino         mpfr_ui_div (sk, 1, xp, MPFR_RNDN);
3264a238c70SJohn Marino       else
3274a238c70SJohn Marino         mpfr_set (sk, xp, MPFR_RNDN);
3284a238c70SJohn Marino 
3294a238c70SJohn Marino       /* now 0 < sk <= 1 */
3304a238c70SJohn Marino 
3314a238c70SJohn Marino       /* Argument reduction: atan(x) = 2 atan((sqrt(1+x^2)-1)/x).
3324a238c70SJohn Marino          We want |sk| < k/sqrt(p) where p is the target precision. */
3334a238c70SJohn Marino       lost = 0;
3344a238c70SJohn Marino       for (red = 0; MPFR_GET_EXP(sk) > - (mpfr_exp_t) log2p; red ++)
3354a238c70SJohn Marino         {
3364a238c70SJohn Marino           lost = 9 - 2 * MPFR_EXP(sk);
3374a238c70SJohn Marino           mpfr_mul (tmp, sk, sk, MPFR_RNDN);
3384a238c70SJohn Marino           mpfr_add_ui (tmp, tmp, 1, MPFR_RNDN);
3394a238c70SJohn Marino           mpfr_sqrt (tmp, tmp, MPFR_RNDN);
3404a238c70SJohn Marino           mpfr_sub_ui (tmp, tmp, 1, MPFR_RNDN);
3414a238c70SJohn Marino           if (red == 0 && comparaison > 0)
3424a238c70SJohn Marino             /* use xp = 1/sk */
3434a238c70SJohn Marino             mpfr_mul (sk, tmp, xp, MPFR_RNDN);
3444a238c70SJohn Marino           else
3454a238c70SJohn Marino             mpfr_div (sk, tmp, sk, MPFR_RNDN);
3464a238c70SJohn Marino         }
3474a238c70SJohn Marino 
3484a238c70SJohn Marino       /* we started from x0 = 1/|x| if |x| > 1, and |x| otherwise, thus
3494a238c70SJohn Marino          we had x0 = min(|x|, 1/|x|) <= 1, and applied 'red' times the
3504a238c70SJohn Marino          argument reduction x -> (sqrt(1+x^2)-1)/x, which keeps 0 < x < 1,
3514a238c70SJohn Marino          thus 0 < sk <= 1, and sk=1 can occur only if red=0 */
3524a238c70SJohn Marino 
3534a238c70SJohn Marino       /* If sk=1, then if |x| < 1, we have 1 - 2^(-prec-1) <= |x| < 1,
3544a238c70SJohn Marino          or if |x| > 1, we have 1 - 2^(-prec-1) <= 1/|x| < 1, thus in all
3554a238c70SJohn Marino          cases ||x| - 1| <= 2^(-prec), from which it follows
3564a238c70SJohn Marino          |atan|x| - Pi/4| <= 2^(-prec), given the Taylor expansion
3574a238c70SJohn Marino          atan(1+x) = Pi/4 + x/2 - x^2/4 + ...
3584a238c70SJohn Marino          Since Pi/4 = 0.785..., the error is at most one ulp.
3594a238c70SJohn Marino       */
3604a238c70SJohn Marino       if (MPFR_UNLIKELY(mpfr_cmp_ui (sk, 1) == 0))
3614a238c70SJohn Marino         {
3624a238c70SJohn Marino           mpfr_const_pi (arctgt, MPFR_RNDN); /* 1/2 ulp extra error */
3634a238c70SJohn Marino           mpfr_div_2ui (arctgt, arctgt, 2, MPFR_RNDN); /* exact */
3644a238c70SJohn Marino           realprec = prec - 2;
3654a238c70SJohn Marino           goto can_round;
3664a238c70SJohn Marino         }
3674a238c70SJohn Marino 
3684a238c70SJohn Marino       /* Assignation  */
3694a238c70SJohn Marino       MPFR_SET_ZERO (arctgt);
3704a238c70SJohn Marino       twopoweri = 1 << 0;
3714a238c70SJohn Marino       MPFR_ASSERTD (n0 >= 4);
3724a238c70SJohn Marino       for (i = 0 ; i < n0; i++)
3734a238c70SJohn Marino         {
3744a238c70SJohn Marino           if (MPFR_UNLIKELY (MPFR_IS_ZERO (sk)))
3754a238c70SJohn Marino             break;
3764a238c70SJohn Marino           /* Calculation of trunc(tmp) --> mpz */
3774a238c70SJohn Marino           mpfr_mul_2ui (tmp, sk, twopoweri, MPFR_RNDN);
3784a238c70SJohn Marino           mpfr_trunc (tmp, tmp);
3794a238c70SJohn Marino           if (!MPFR_IS_ZERO (tmp))
3804a238c70SJohn Marino             {
3814a238c70SJohn Marino               /* tmp = ukz*2^exptol */
3824a238c70SJohn Marino               exptol = mpfr_get_z_2exp (ukz, tmp);
3834a238c70SJohn Marino               /* since the s_k are decreasing (see algorithms.tex),
3844a238c70SJohn Marino                  and s_0 = min(|x|, 1/|x|) < 1, we have sk < 1,
3854a238c70SJohn Marino                  thus exptol < 0 */
3864a238c70SJohn Marino               MPFR_ASSERTD (exptol < 0);
3874a238c70SJohn Marino               mpz_tdiv_q_2exp (ukz, ukz, (unsigned long int) (-exptol));
3884a238c70SJohn Marino               /* since tmp is a non-zero integer, and tmp = ukzold*2^exptol,
3894a238c70SJohn Marino                  we now have ukz = tmp, thus ukz is non-zero */
3904a238c70SJohn Marino               /* Calculation of arctan(Ak) */
3914a238c70SJohn Marino               mpfr_set_z (tmp, ukz, MPFR_RNDN);
3924a238c70SJohn Marino               mpfr_div_2ui (tmp, tmp, twopoweri, MPFR_RNDN);
3934a238c70SJohn Marino               mpfr_atan_aux (tmp2, ukz, twopoweri, n0 - i, tabz);
3944a238c70SJohn Marino               mpfr_mul (tmp2, tmp2, tmp, MPFR_RNDN);
3954a238c70SJohn Marino               /* Addition */
3964a238c70SJohn Marino               mpfr_add (arctgt, arctgt, tmp2, MPFR_RNDN);
3974a238c70SJohn Marino               /* Next iteration */
3984a238c70SJohn Marino               mpfr_sub (tmp2, sk, tmp, MPFR_RNDN);
3994a238c70SJohn Marino               mpfr_mul (sk, sk, tmp, MPFR_RNDN);
4004a238c70SJohn Marino               mpfr_add_ui (sk, sk, 1, MPFR_RNDN);
4014a238c70SJohn Marino               mpfr_div (sk, tmp2, sk, MPFR_RNDN);
4024a238c70SJohn Marino             }
4034a238c70SJohn Marino           twopoweri <<= 1;
4044a238c70SJohn Marino         }
4054a238c70SJohn Marino       /* Add last step (Arctan(sk) ~= sk */
4064a238c70SJohn Marino       mpfr_add (arctgt, arctgt, sk, MPFR_RNDN);
4074a238c70SJohn Marino 
4084a238c70SJohn Marino       /* argument reduction */
4094a238c70SJohn Marino       mpfr_mul_2exp (arctgt, arctgt, red, MPFR_RNDN);
4104a238c70SJohn Marino 
4114a238c70SJohn Marino       if (comparaison > 0)
4124a238c70SJohn Marino         { /* atan(x) = Pi/2-atan(1/x) for x > 0 */
4134a238c70SJohn Marino           mpfr_const_pi (tmp, MPFR_RNDN);
4144a238c70SJohn Marino           mpfr_div_2ui (tmp, tmp, 1, MPFR_RNDN);
4154a238c70SJohn Marino           mpfr_sub (arctgt, tmp, arctgt, MPFR_RNDN);
4164a238c70SJohn Marino         }
4174a238c70SJohn Marino       MPFR_SET_POS (arctgt);
4184a238c70SJohn Marino 
4194a238c70SJohn Marino     can_round:
4204a238c70SJohn Marino       if (MPFR_LIKELY (MPFR_CAN_ROUND (arctgt, realprec + est_lost - lost,
4214a238c70SJohn Marino                                        MPFR_PREC (atan), rnd_mode)))
4224a238c70SJohn Marino         break;
4234a238c70SJohn Marino       MPFR_ZIV_NEXT (loop, realprec);
4244a238c70SJohn Marino     }
4254a238c70SJohn Marino   MPFR_ZIV_FREE (loop);
4264a238c70SJohn Marino 
4274a238c70SJohn Marino   inexact = mpfr_set4 (atan, arctgt, rnd_mode, MPFR_SIGN (x));
4284a238c70SJohn Marino 
4294a238c70SJohn Marino   for (i = 0 ; i < oldn0 ; i++)
4304a238c70SJohn Marino     mpz_clear (tabz[i]);
4314a238c70SJohn Marino   mpz_clear (ukz);
4324a238c70SJohn Marino   (*__gmp_free_func) (tabz, oldn0 * sizeof (mpz_t));
4334a238c70SJohn Marino   MPFR_GROUP_CLEAR (group);
4344a238c70SJohn Marino 
4354a238c70SJohn Marino   MPFR_SAVE_EXPO_FREE (expo);
4364a238c70SJohn Marino   return mpfr_check_range (atan, inexact, rnd_mode);
4374a238c70SJohn Marino }
438