xref: /dflybsd-src/contrib/mpfr/src/acosh.c (revision 2786097444a0124b5d33763854de247e230c6629)
14a238c70SJohn Marino /* mpfr_acosh -- inverse hyperbolic cosine
24a238c70SJohn Marino 
3*ab6d115fSJohn Marino Copyright 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013 Free Software Foundation, Inc.
4*ab6d115fSJohn Marino Contributed by the AriC and Caramel projects, INRIA.
54a238c70SJohn Marino 
64a238c70SJohn Marino This file is part of the GNU MPFR Library.
74a238c70SJohn Marino 
84a238c70SJohn Marino The GNU MPFR Library is free software; you can redistribute it and/or modify
94a238c70SJohn Marino it under the terms of the GNU Lesser General Public License as published by
104a238c70SJohn Marino the Free Software Foundation; either version 3 of the License, or (at your
114a238c70SJohn Marino option) any later version.
124a238c70SJohn Marino 
134a238c70SJohn Marino The GNU MPFR Library is distributed in the hope that it will be useful, but
144a238c70SJohn Marino WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
154a238c70SJohn Marino or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
164a238c70SJohn Marino License for more details.
174a238c70SJohn Marino 
184a238c70SJohn Marino You should have received a copy of the GNU Lesser General Public License
194a238c70SJohn Marino along with the GNU MPFR Library; see the file COPYING.LESSER.  If not, see
204a238c70SJohn Marino http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
214a238c70SJohn Marino 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
224a238c70SJohn Marino 
234a238c70SJohn Marino #define MPFR_NEED_LONGLONG_H
244a238c70SJohn Marino #include "mpfr-impl.h"
254a238c70SJohn Marino 
264a238c70SJohn Marino /* The computation of acosh is done by   *
274a238c70SJohn Marino  *  acosh= ln(x + sqrt(x^2-1))           */
284a238c70SJohn Marino 
294a238c70SJohn Marino int
mpfr_acosh(mpfr_ptr y,mpfr_srcptr x,mpfr_rnd_t rnd_mode)304a238c70SJohn Marino mpfr_acosh (mpfr_ptr y, mpfr_srcptr x , mpfr_rnd_t rnd_mode)
314a238c70SJohn Marino {
324a238c70SJohn Marino   MPFR_SAVE_EXPO_DECL (expo);
334a238c70SJohn Marino   int inexact;
344a238c70SJohn Marino   int comp;
354a238c70SJohn Marino 
364a238c70SJohn Marino   MPFR_LOG_FUNC (
374a238c70SJohn Marino     ("x[%Pu]=%.*Rg rnd=%d", mpfr_get_prec (x), mpfr_log_prec, x, rnd_mode),
384a238c70SJohn Marino     ("y[%Pu]=%.*Rg inexact=%d", mpfr_get_prec (y), mpfr_log_prec, y,
394a238c70SJohn Marino      inexact));
404a238c70SJohn Marino 
414a238c70SJohn Marino   /* Deal with special cases */
424a238c70SJohn Marino   if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x)))
434a238c70SJohn Marino     {
444a238c70SJohn Marino       /* Nan, or zero or -Inf */
454a238c70SJohn Marino       if (MPFR_IS_INF (x) && MPFR_IS_POS (x))
464a238c70SJohn Marino         {
474a238c70SJohn Marino           MPFR_SET_INF (y);
484a238c70SJohn Marino           MPFR_SET_POS (y);
494a238c70SJohn Marino           MPFR_RET (0);
504a238c70SJohn Marino         }
514a238c70SJohn Marino       else /* Nan, or zero or -Inf */
524a238c70SJohn Marino         {
534a238c70SJohn Marino           MPFR_SET_NAN (y);
544a238c70SJohn Marino           MPFR_RET_NAN;
554a238c70SJohn Marino         }
564a238c70SJohn Marino     }
574a238c70SJohn Marino   comp = mpfr_cmp_ui (x, 1);
584a238c70SJohn Marino   if (MPFR_UNLIKELY (comp < 0))
594a238c70SJohn Marino     {
604a238c70SJohn Marino       MPFR_SET_NAN (y);
614a238c70SJohn Marino       MPFR_RET_NAN;
624a238c70SJohn Marino     }
634a238c70SJohn Marino   else if (MPFR_UNLIKELY (comp == 0))
644a238c70SJohn Marino     {
654a238c70SJohn Marino       MPFR_SET_ZERO (y); /* acosh(1) = 0 */
664a238c70SJohn Marino       MPFR_SET_POS (y);
674a238c70SJohn Marino       MPFR_RET (0);
684a238c70SJohn Marino     }
694a238c70SJohn Marino   MPFR_SAVE_EXPO_MARK (expo);
704a238c70SJohn Marino 
714a238c70SJohn Marino   /* General case */
724a238c70SJohn Marino   {
734a238c70SJohn Marino     /* Declaration of the intermediary variables */
744a238c70SJohn Marino     mpfr_t t;
754a238c70SJohn Marino     /* Declaration of the size variables */
764a238c70SJohn Marino     mpfr_prec_t Ny = MPFR_PREC(y);   /* Precision of output variable */
774a238c70SJohn Marino     mpfr_prec_t Nt;                  /* Precision of the intermediary variable */
784a238c70SJohn Marino     mpfr_exp_t  err, exp_te, d;      /* Precision of error */
794a238c70SJohn Marino     MPFR_ZIV_DECL (loop);
804a238c70SJohn Marino 
814a238c70SJohn Marino     /* compute the precision of intermediary variable */
824a238c70SJohn Marino     /* the optimal number of bits : see algorithms.tex */
834a238c70SJohn Marino     Nt = Ny + 4 + MPFR_INT_CEIL_LOG2 (Ny);
844a238c70SJohn Marino 
854a238c70SJohn Marino     /* initialization of intermediary variables */
864a238c70SJohn Marino     mpfr_init2 (t, Nt);
874a238c70SJohn Marino 
884a238c70SJohn Marino     /* First computation of acosh */
894a238c70SJohn Marino     MPFR_ZIV_INIT (loop, Nt);
904a238c70SJohn Marino     for (;;)
914a238c70SJohn Marino       {
924a238c70SJohn Marino         MPFR_BLOCK_DECL (flags);
934a238c70SJohn Marino 
944a238c70SJohn Marino         /* compute acosh */
954a238c70SJohn Marino         MPFR_BLOCK (flags, mpfr_mul (t, x, x, MPFR_RNDD));  /* x^2 */
964a238c70SJohn Marino         if (MPFR_OVERFLOW (flags))
974a238c70SJohn Marino           {
984a238c70SJohn Marino             mpfr_t ln2;
994a238c70SJohn Marino             mpfr_prec_t pln2;
1004a238c70SJohn Marino 
1014a238c70SJohn Marino             /* As x is very large and the precision is not too large, we
1024a238c70SJohn Marino                assume that we obtain the same result by evaluating ln(2x).
1034a238c70SJohn Marino                We need to compute ln(x) + ln(2) as 2x can overflow. TODO:
1044a238c70SJohn Marino                write a proof and add an MPFR_ASSERTN. */
1054a238c70SJohn Marino             mpfr_log (t, x, MPFR_RNDN);  /* err(log) < 1/2 ulp(t) */
1064a238c70SJohn Marino             pln2 = Nt - MPFR_PREC_MIN < MPFR_GET_EXP (t) ?
1074a238c70SJohn Marino               MPFR_PREC_MIN : Nt - MPFR_GET_EXP (t);
1084a238c70SJohn Marino             mpfr_init2 (ln2, pln2);
1094a238c70SJohn Marino             mpfr_const_log2 (ln2, MPFR_RNDN);  /* err(ln2) < 1/2 ulp(t) */
1104a238c70SJohn Marino             mpfr_add (t, t, ln2, MPFR_RNDN);  /* err <= 3/2 ulp(t) */
1114a238c70SJohn Marino             mpfr_clear (ln2);
1124a238c70SJohn Marino             err = 1;
1134a238c70SJohn Marino           }
1144a238c70SJohn Marino         else
1154a238c70SJohn Marino           {
1164a238c70SJohn Marino             exp_te = MPFR_GET_EXP (t);
1174a238c70SJohn Marino             mpfr_sub_ui (t, t, 1, MPFR_RNDD);   /* x^2-1 */
1184a238c70SJohn Marino             if (MPFR_UNLIKELY (MPFR_IS_ZERO (t)))
1194a238c70SJohn Marino               {
1204a238c70SJohn Marino                 /* This means that x is very close to 1: x = 1 + t with
1214a238c70SJohn Marino                    t < 2^(-Nt). We have: acosh(x) = sqrt(2t) (1 - eps(t))
1224a238c70SJohn Marino                    with 0 < eps(t) < t / 12. */
1234a238c70SJohn Marino                 mpfr_sub_ui (t, x, 1, MPFR_RNDD);   /* t = x - 1 */
1244a238c70SJohn Marino                 mpfr_mul_2ui (t, t, 1, MPFR_RNDN);  /* 2t */
1254a238c70SJohn Marino                 mpfr_sqrt (t, t, MPFR_RNDN);        /* sqrt(2t) */
1264a238c70SJohn Marino                 err = 1;
1274a238c70SJohn Marino               }
1284a238c70SJohn Marino             else
1294a238c70SJohn Marino               {
1304a238c70SJohn Marino                 d = exp_te - MPFR_GET_EXP (t);
1314a238c70SJohn Marino                 mpfr_sqrt (t, t, MPFR_RNDN);        /* sqrt(x^2-1) */
1324a238c70SJohn Marino                 mpfr_add (t, t, x, MPFR_RNDN);      /* sqrt(x^2-1)+x */
1334a238c70SJohn Marino                 mpfr_log (t, t, MPFR_RNDN);         /* ln(sqrt(x^2-1)+x) */
1344a238c70SJohn Marino 
1354a238c70SJohn Marino                 /* error estimate -- see algorithms.tex */
1364a238c70SJohn Marino                 err = 3 + MAX (1, d) - MPFR_GET_EXP (t);
1374a238c70SJohn Marino                 /* error is bounded by 1/2 + 2^err <= 2^(max(0,1+err)) */
1384a238c70SJohn Marino                 err = MAX (0, 1 + err);
1394a238c70SJohn Marino               }
1404a238c70SJohn Marino           }
1414a238c70SJohn Marino 
1424a238c70SJohn Marino         if (MPFR_LIKELY (MPFR_CAN_ROUND (t, Nt - err, Ny, rnd_mode)))
1434a238c70SJohn Marino           break;
1444a238c70SJohn Marino 
1454a238c70SJohn Marino         /* reactualisation of the precision */
1464a238c70SJohn Marino         MPFR_ZIV_NEXT (loop, Nt);
1474a238c70SJohn Marino         mpfr_set_prec (t, Nt);
1484a238c70SJohn Marino       }
1494a238c70SJohn Marino     MPFR_ZIV_FREE (loop);
1504a238c70SJohn Marino 
1514a238c70SJohn Marino     inexact = mpfr_set (y, t, rnd_mode);
1524a238c70SJohn Marino 
1534a238c70SJohn Marino     mpfr_clear (t);
1544a238c70SJohn Marino   }
1554a238c70SJohn Marino 
1564a238c70SJohn Marino   MPFR_SAVE_EXPO_FREE (expo);
1574a238c70SJohn Marino   return mpfr_check_range (y, inexact, rnd_mode);
1584a238c70SJohn Marino }
159