1 /* 2 * Copyright (c) 1993, 1994, 1995, 1996, 1998 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that: (1) source code distributions 7 * retain the above copyright notice and this paragraph in its entirety, (2) 8 * distributions including binary code include the above copyright notice and 9 * this paragraph in its entirety in the documentation or other materials 10 * provided with the distribution, and (3) all advertising materials mentioning 11 * features or use of this software display the following acknowledgement: 12 * ``This product includes software developed by the University of California, 13 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of 14 * the University nor the names of its contributors may be used to endorse 15 * or promote products derived from this software without specific prior 16 * written permission. 17 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED 18 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF 19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. 20 */ 21 #ifndef lint 22 static const char rcsid[] _U_ = 23 "@(#) $Header: /tcpdump/master/libpcap/pcap-bpf.c,v 1.116 2008-09-16 18:42:29 guy Exp $ (LBL)"; 24 #endif 25 26 #ifdef HAVE_CONFIG_H 27 #include "config.h" 28 #endif 29 30 #include <sys/param.h> /* optionally get BSD define */ 31 #ifdef HAVE_ZEROCOPY_BPF 32 #include <sys/mman.h> 33 #endif 34 #include <sys/socket.h> 35 #include <time.h> 36 /* 37 * <net/bpf.h> defines ioctls, but doesn't include <sys/ioccom.h>. 38 * 39 * We include <sys/ioctl.h> as it might be necessary to declare ioctl(); 40 * at least on *BSD and Mac OS X, it also defines various SIOC ioctls - 41 * we could include <sys/sockio.h>, but if we're already including 42 * <sys/ioctl.h>, which includes <sys/sockio.h> on those platforms, 43 * there's not much point in doing so. 44 * 45 * If we have <sys/ioccom.h>, we include it as well, to handle systems 46 * such as Solaris which don't arrange to include <sys/ioccom.h> if you 47 * include <sys/ioctl.h> 48 */ 49 #include <sys/ioctl.h> 50 #ifdef HAVE_SYS_IOCCOM_H 51 #include <sys/ioccom.h> 52 #endif 53 #include <sys/utsname.h> 54 55 #ifdef HAVE_ZEROCOPY_BPF 56 #include <machine/atomic.h> 57 #endif 58 59 #include <net/if.h> 60 61 #ifdef _AIX 62 63 /* 64 * Make "pcap.h" not include "pcap/bpf.h"; we are going to include the 65 * native OS version, as we need "struct bpf_config" from it. 66 */ 67 #define PCAP_DONT_INCLUDE_PCAP_BPF_H 68 69 #include <sys/types.h> 70 71 /* 72 * Prevent bpf.h from redefining the DLT_ values to their 73 * IFT_ values, as we're going to return the standard libpcap 74 * values, not IBM's non-standard IFT_ values. 75 */ 76 #undef _AIX 77 #include <net/bpf.h> 78 #define _AIX 79 80 #include <net/if_types.h> /* for IFT_ values */ 81 #include <sys/sysconfig.h> 82 #include <sys/device.h> 83 #include <sys/cfgodm.h> 84 #include <cf.h> 85 86 #ifdef __64BIT__ 87 #define domakedev makedev64 88 #define getmajor major64 89 #define bpf_hdr bpf_hdr32 90 #else /* __64BIT__ */ 91 #define domakedev makedev 92 #define getmajor major 93 #endif /* __64BIT__ */ 94 95 #define BPF_NAME "bpf" 96 #define BPF_MINORS 4 97 #define DRIVER_PATH "/usr/lib/drivers" 98 #define BPF_NODE "/dev/bpf" 99 static int bpfloadedflag = 0; 100 static int odmlockid = 0; 101 102 static int bpf_load(char *errbuf); 103 104 #else /* _AIX */ 105 106 #include <net/bpf.h> 107 108 #endif /* _AIX */ 109 110 #include <ctype.h> 111 #include <fcntl.h> 112 #include <errno.h> 113 #include <netdb.h> 114 #include <stdio.h> 115 #include <stdlib.h> 116 #include <string.h> 117 #include <unistd.h> 118 119 #ifdef HAVE_NET_IF_MEDIA_H 120 # include <net/if_media.h> 121 #endif 122 123 #include "pcap-int.h" 124 125 #ifdef HAVE_DAG_API 126 #include "pcap-dag.h" 127 #endif /* HAVE_DAG_API */ 128 129 #ifdef HAVE_SNF_API 130 #include "pcap-snf.h" 131 #endif /* HAVE_SNF_API */ 132 133 #ifdef HAVE_OS_PROTO_H 134 #include "os-proto.h" 135 #endif 136 137 #ifdef BIOCGDLTLIST 138 # if (defined(HAVE_NET_IF_MEDIA_H) && defined(IFM_IEEE80211)) && !defined(__APPLE__) 139 #define HAVE_BSD_IEEE80211 140 # endif 141 142 # if defined(__APPLE__) || defined(HAVE_BSD_IEEE80211) 143 static int find_802_11(struct bpf_dltlist *); 144 145 # ifdef HAVE_BSD_IEEE80211 146 static int monitor_mode(pcap_t *, int); 147 # endif 148 149 # if defined(__APPLE__) 150 static void remove_en(pcap_t *); 151 static void remove_802_11(pcap_t *); 152 # endif 153 154 # endif /* defined(__APPLE__) || defined(HAVE_BSD_IEEE80211) */ 155 156 #endif /* BIOCGDLTLIST */ 157 158 /* 159 * We include the OS's <net/bpf.h>, not our "pcap/bpf.h", so we probably 160 * don't get DLT_DOCSIS defined. 161 */ 162 #ifndef DLT_DOCSIS 163 #define DLT_DOCSIS 143 164 #endif 165 166 /* 167 * On OS X, we don't even get any of the 802.11-plus-radio-header DLT_'s 168 * defined, even though some of them are used by various Airport drivers. 169 */ 170 #ifndef DLT_PRISM_HEADER 171 #define DLT_PRISM_HEADER 119 172 #endif 173 #ifndef DLT_AIRONET_HEADER 174 #define DLT_AIRONET_HEADER 120 175 #endif 176 #ifndef DLT_IEEE802_11_RADIO 177 #define DLT_IEEE802_11_RADIO 127 178 #endif 179 #ifndef DLT_IEEE802_11_RADIO_AVS 180 #define DLT_IEEE802_11_RADIO_AVS 163 181 #endif 182 183 static int pcap_can_set_rfmon_bpf(pcap_t *p); 184 static int pcap_activate_bpf(pcap_t *p); 185 static int pcap_setfilter_bpf(pcap_t *p, struct bpf_program *fp); 186 static int pcap_setdirection_bpf(pcap_t *, pcap_direction_t); 187 static int pcap_set_datalink_bpf(pcap_t *p, int dlt); 188 189 /* 190 * For zerocopy bpf, the setnonblock/getnonblock routines need to modify 191 * p->md.timeout so we don't call select(2) if the pcap handle is in non- 192 * blocking mode. We preserve the timeout supplied by pcap_open functions 193 * to make sure it does not get clobbered if the pcap handle moves between 194 * blocking and non-blocking mode. 195 */ 196 static int 197 pcap_getnonblock_bpf(pcap_t *p, char *errbuf) 198 { 199 #ifdef HAVE_ZEROCOPY_BPF 200 if (p->md.zerocopy) { 201 /* 202 * Use a negative value for the timeout to represent that the 203 * pcap handle is in non-blocking mode. 204 */ 205 return (p->md.timeout < 0); 206 } 207 #endif 208 return (pcap_getnonblock_fd(p, errbuf)); 209 } 210 211 static int 212 pcap_setnonblock_bpf(pcap_t *p, int nonblock, char *errbuf) 213 { 214 #ifdef HAVE_ZEROCOPY_BPF 215 if (p->md.zerocopy) { 216 /* 217 * Map each value to the corresponding 2's complement, to 218 * preserve the timeout value provided with pcap_set_timeout. 219 * (from pcap-linux.c). 220 */ 221 if (nonblock) { 222 if (p->md.timeout >= 0) { 223 /* 224 * Timeout is non-negative, so we're not 225 * currently in non-blocking mode; set it 226 * to the 2's complement, to make it 227 * negative, as an indication that we're 228 * in non-blocking mode. 229 */ 230 p->md.timeout = p->md.timeout * -1 - 1; 231 } 232 } else { 233 if (p->md.timeout < 0) { 234 /* 235 * Timeout is negative, so we're currently 236 * in blocking mode; reverse the previous 237 * operation, to make the timeout non-negative 238 * again. 239 */ 240 p->md.timeout = (p->md.timeout + 1) * -1; 241 } 242 } 243 return (0); 244 } 245 #endif 246 return (pcap_setnonblock_fd(p, nonblock, errbuf)); 247 } 248 249 #ifdef HAVE_ZEROCOPY_BPF 250 /* 251 * Zero-copy BPF buffer routines to check for and acknowledge BPF data in 252 * shared memory buffers. 253 * 254 * pcap_next_zbuf_shm(): Check for a newly available shared memory buffer, 255 * and set up p->buffer and cc to reflect one if available. Notice that if 256 * there was no prior buffer, we select zbuf1 as this will be the first 257 * buffer filled for a fresh BPF session. 258 */ 259 static int 260 pcap_next_zbuf_shm(pcap_t *p, int *cc) 261 { 262 struct bpf_zbuf_header *bzh; 263 264 if (p->md.zbuffer == p->md.zbuf2 || p->md.zbuffer == NULL) { 265 bzh = (struct bpf_zbuf_header *)p->md.zbuf1; 266 if (bzh->bzh_user_gen != 267 atomic_load_acq_int(&bzh->bzh_kernel_gen)) { 268 p->md.bzh = bzh; 269 p->md.zbuffer = (u_char *)p->md.zbuf1; 270 p->buffer = p->md.zbuffer + sizeof(*bzh); 271 *cc = bzh->bzh_kernel_len; 272 return (1); 273 } 274 } else if (p->md.zbuffer == p->md.zbuf1) { 275 bzh = (struct bpf_zbuf_header *)p->md.zbuf2; 276 if (bzh->bzh_user_gen != 277 atomic_load_acq_int(&bzh->bzh_kernel_gen)) { 278 p->md.bzh = bzh; 279 p->md.zbuffer = (u_char *)p->md.zbuf2; 280 p->buffer = p->md.zbuffer + sizeof(*bzh); 281 *cc = bzh->bzh_kernel_len; 282 return (1); 283 } 284 } 285 *cc = 0; 286 return (0); 287 } 288 289 /* 290 * pcap_next_zbuf() -- Similar to pcap_next_zbuf_shm(), except wait using 291 * select() for data or a timeout, and possibly force rotation of the buffer 292 * in the event we time out or are in immediate mode. Invoke the shared 293 * memory check before doing system calls in order to avoid doing avoidable 294 * work. 295 */ 296 static int 297 pcap_next_zbuf(pcap_t *p, int *cc) 298 { 299 struct bpf_zbuf bz; 300 struct timeval tv; 301 struct timespec cur; 302 fd_set r_set; 303 int data, r; 304 int expire, tmout; 305 306 #define TSTOMILLI(ts) (((ts)->tv_sec * 1000) + ((ts)->tv_nsec / 1000000)) 307 /* 308 * Start out by seeing whether anything is waiting by checking the 309 * next shared memory buffer for data. 310 */ 311 data = pcap_next_zbuf_shm(p, cc); 312 if (data) 313 return (data); 314 /* 315 * If a previous sleep was interrupted due to signal delivery, make 316 * sure that the timeout gets adjusted accordingly. This requires 317 * that we analyze when the timeout should be been expired, and 318 * subtract the current time from that. If after this operation, 319 * our timeout is less then or equal to zero, handle it like a 320 * regular timeout. 321 */ 322 tmout = p->md.timeout; 323 if (tmout) 324 (void) clock_gettime(CLOCK_MONOTONIC, &cur); 325 if (p->md.interrupted && p->md.timeout) { 326 expire = TSTOMILLI(&p->md.firstsel) + p->md.timeout; 327 tmout = expire - TSTOMILLI(&cur); 328 #undef TSTOMILLI 329 if (tmout <= 0) { 330 p->md.interrupted = 0; 331 data = pcap_next_zbuf_shm(p, cc); 332 if (data) 333 return (data); 334 if (ioctl(p->fd, BIOCROTZBUF, &bz) < 0) { 335 (void) snprintf(p->errbuf, PCAP_ERRBUF_SIZE, 336 "BIOCROTZBUF: %s", strerror(errno)); 337 return (PCAP_ERROR); 338 } 339 return (pcap_next_zbuf_shm(p, cc)); 340 } 341 } 342 /* 343 * No data in the buffer, so must use select() to wait for data or 344 * the next timeout. Note that we only call select if the handle 345 * is in blocking mode. 346 */ 347 if (p->md.timeout >= 0) { 348 FD_ZERO(&r_set); 349 FD_SET(p->fd, &r_set); 350 if (tmout != 0) { 351 tv.tv_sec = tmout / 1000; 352 tv.tv_usec = (tmout * 1000) % 1000000; 353 } 354 r = select(p->fd + 1, &r_set, NULL, NULL, 355 p->md.timeout != 0 ? &tv : NULL); 356 if (r < 0 && errno == EINTR) { 357 if (!p->md.interrupted && p->md.timeout) { 358 p->md.interrupted = 1; 359 p->md.firstsel = cur; 360 } 361 return (0); 362 } else if (r < 0) { 363 (void) snprintf(p->errbuf, PCAP_ERRBUF_SIZE, 364 "select: %s", strerror(errno)); 365 return (PCAP_ERROR); 366 } 367 } 368 p->md.interrupted = 0; 369 /* 370 * Check again for data, which may exist now that we've either been 371 * woken up as a result of data or timed out. Try the "there's data" 372 * case first since it doesn't require a system call. 373 */ 374 data = pcap_next_zbuf_shm(p, cc); 375 if (data) 376 return (data); 377 /* 378 * Try forcing a buffer rotation to dislodge timed out or immediate 379 * data. 380 */ 381 if (ioctl(p->fd, BIOCROTZBUF, &bz) < 0) { 382 (void) snprintf(p->errbuf, PCAP_ERRBUF_SIZE, 383 "BIOCROTZBUF: %s", strerror(errno)); 384 return (PCAP_ERROR); 385 } 386 return (pcap_next_zbuf_shm(p, cc)); 387 } 388 389 /* 390 * Notify kernel that we are done with the buffer. We don't reset zbuffer so 391 * that we know which buffer to use next time around. 392 */ 393 static int 394 pcap_ack_zbuf(pcap_t *p) 395 { 396 397 atomic_store_rel_int(&p->md.bzh->bzh_user_gen, 398 p->md.bzh->bzh_kernel_gen); 399 p->md.bzh = NULL; 400 p->buffer = NULL; 401 return (0); 402 } 403 #endif /* HAVE_ZEROCOPY_BPF */ 404 405 pcap_t * 406 pcap_create(const char *device, char *ebuf) 407 { 408 pcap_t *p; 409 410 #ifdef HAVE_DAG_API 411 if (strstr(device, "dag")) 412 return (dag_create(device, ebuf)); 413 #endif /* HAVE_DAG_API */ 414 #ifdef HAVE_SNF_API 415 if (strstr(device, "snf")) 416 return (snf_create(device, ebuf)); 417 #endif /* HAVE_SNF_API */ 418 419 p = pcap_create_common(device, ebuf); 420 if (p == NULL) 421 return (NULL); 422 423 p->activate_op = pcap_activate_bpf; 424 p->can_set_rfmon_op = pcap_can_set_rfmon_bpf; 425 return (p); 426 } 427 428 /* 429 * On success, returns a file descriptor for a BPF device. 430 * On failure, returns a PCAP_ERROR_ value, and sets p->errbuf. 431 */ 432 static int 433 bpf_open(pcap_t *p) 434 { 435 int fd; 436 #ifdef HAVE_CLONING_BPF 437 static const char device[] = "/dev/bpf"; 438 #else 439 int n = 0; 440 char device[sizeof "/dev/bpf0000000000"]; 441 #endif 442 443 #ifdef _AIX 444 /* 445 * Load the bpf driver, if it isn't already loaded, 446 * and create the BPF device entries, if they don't 447 * already exist. 448 */ 449 if (bpf_load(p->errbuf) == PCAP_ERROR) 450 return (PCAP_ERROR); 451 #endif 452 453 #ifdef HAVE_CLONING_BPF 454 if ((fd = open(device, O_RDWR)) == -1 && 455 (errno != EACCES || (fd = open(device, O_RDONLY)) == -1)) { 456 if (errno == EACCES) 457 fd = PCAP_ERROR_PERM_DENIED; 458 else 459 fd = PCAP_ERROR; 460 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, 461 "(cannot open device) %s: %s", device, pcap_strerror(errno)); 462 } 463 #else 464 /* 465 * Go through all the minors and find one that isn't in use. 466 */ 467 do { 468 (void)snprintf(device, sizeof(device), "/dev/bpf%d", n++); 469 /* 470 * Initially try a read/write open (to allow the inject 471 * method to work). If that fails due to permission 472 * issues, fall back to read-only. This allows a 473 * non-root user to be granted specific access to pcap 474 * capabilities via file permissions. 475 * 476 * XXX - we should have an API that has a flag that 477 * controls whether to open read-only or read-write, 478 * so that denial of permission to send (or inability 479 * to send, if sending packets isn't supported on 480 * the device in question) can be indicated at open 481 * time. 482 */ 483 fd = open(device, O_RDWR); 484 if (fd == -1 && errno == EACCES) 485 fd = open(device, O_RDONLY); 486 } while (fd < 0 && errno == EBUSY); 487 488 /* 489 * XXX better message for all minors used 490 */ 491 if (fd < 0) { 492 switch (errno) { 493 494 case ENOENT: 495 fd = PCAP_ERROR; 496 if (n == 1) { 497 /* 498 * /dev/bpf0 doesn't exist, which 499 * means we probably have no BPF 500 * devices. 501 */ 502 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, 503 "(there are no BPF devices)"); 504 } else { 505 /* 506 * We got EBUSY on at least one 507 * BPF device, so we have BPF 508 * devices, but all the ones 509 * that exist are busy. 510 */ 511 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, 512 "(all BPF devices are busy)"); 513 } 514 break; 515 516 case EACCES: 517 /* 518 * Got EACCES on the last device we tried, 519 * and EBUSY on all devices before that, 520 * if any. 521 */ 522 fd = PCAP_ERROR_PERM_DENIED; 523 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, 524 "(cannot open BPF device) %s: %s", device, 525 pcap_strerror(errno)); 526 break; 527 528 default: 529 /* 530 * Some other problem. 531 */ 532 fd = PCAP_ERROR; 533 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, 534 "(cannot open BPF device) %s: %s", device, 535 pcap_strerror(errno)); 536 break; 537 } 538 } 539 #endif 540 541 return (fd); 542 } 543 544 #ifdef BIOCGDLTLIST 545 static int 546 get_dlt_list(int fd, int v, struct bpf_dltlist *bdlp, char *ebuf) 547 { 548 memset(bdlp, 0, sizeof(*bdlp)); 549 if (ioctl(fd, BIOCGDLTLIST, (caddr_t)bdlp) == 0) { 550 u_int i; 551 int is_ethernet; 552 553 bdlp->bfl_list = (u_int *) malloc(sizeof(u_int) * (bdlp->bfl_len + 1)); 554 if (bdlp->bfl_list == NULL) { 555 (void)snprintf(ebuf, PCAP_ERRBUF_SIZE, "malloc: %s", 556 pcap_strerror(errno)); 557 return (PCAP_ERROR); 558 } 559 560 if (ioctl(fd, BIOCGDLTLIST, (caddr_t)bdlp) < 0) { 561 (void)snprintf(ebuf, PCAP_ERRBUF_SIZE, 562 "BIOCGDLTLIST: %s", pcap_strerror(errno)); 563 free(bdlp->bfl_list); 564 return (PCAP_ERROR); 565 } 566 567 /* 568 * OK, for real Ethernet devices, add DLT_DOCSIS to the 569 * list, so that an application can let you choose it, 570 * in case you're capturing DOCSIS traffic that a Cisco 571 * Cable Modem Termination System is putting out onto 572 * an Ethernet (it doesn't put an Ethernet header onto 573 * the wire, it puts raw DOCSIS frames out on the wire 574 * inside the low-level Ethernet framing). 575 * 576 * A "real Ethernet device" is defined here as a device 577 * that has a link-layer type of DLT_EN10MB and that has 578 * no alternate link-layer types; that's done to exclude 579 * 802.11 interfaces (which might or might not be the 580 * right thing to do, but I suspect it is - Ethernet <-> 581 * 802.11 bridges would probably badly mishandle frames 582 * that don't have Ethernet headers). 583 * 584 * On Solaris with BPF, Ethernet devices also offer 585 * DLT_IPNET, so we, if DLT_IPNET is defined, we don't 586 * treat it as an indication that the device isn't an 587 * Ethernet. 588 */ 589 if (v == DLT_EN10MB) { 590 is_ethernet = 1; 591 for (i = 0; i < bdlp->bfl_len; i++) { 592 if (bdlp->bfl_list[i] != DLT_EN10MB 593 #ifdef DLT_IPNET 594 && bdlp->bfl_list[i] != DLT_IPNET 595 #endif 596 ) { 597 is_ethernet = 0; 598 break; 599 } 600 } 601 if (is_ethernet) { 602 /* 603 * We reserved one more slot at the end of 604 * the list. 605 */ 606 bdlp->bfl_list[bdlp->bfl_len] = DLT_DOCSIS; 607 bdlp->bfl_len++; 608 } 609 } 610 } else { 611 /* 612 * EINVAL just means "we don't support this ioctl on 613 * this device"; don't treat it as an error. 614 */ 615 if (errno != EINVAL) { 616 (void)snprintf(ebuf, PCAP_ERRBUF_SIZE, 617 "BIOCGDLTLIST: %s", pcap_strerror(errno)); 618 return (PCAP_ERROR); 619 } 620 } 621 return (0); 622 } 623 #endif 624 625 static int 626 pcap_can_set_rfmon_bpf(pcap_t *p) 627 { 628 #if defined(__APPLE__) 629 struct utsname osinfo; 630 struct ifreq ifr; 631 int fd; 632 #ifdef BIOCGDLTLIST 633 struct bpf_dltlist bdl; 634 #endif 635 636 /* 637 * The joys of monitor mode on OS X. 638 * 639 * Prior to 10.4, it's not supported at all. 640 * 641 * In 10.4, if adapter enN supports monitor mode, there's a 642 * wltN adapter corresponding to it; you open it, instead of 643 * enN, to get monitor mode. You get whatever link-layer 644 * headers it supplies. 645 * 646 * In 10.5, and, we assume, later releases, if adapter enN 647 * supports monitor mode, it offers, among its selectable 648 * DLT_ values, values that let you get the 802.11 header; 649 * selecting one of those values puts the adapter into monitor 650 * mode (i.e., you can't get 802.11 headers except in monitor 651 * mode, and you can't get Ethernet headers in monitor mode). 652 */ 653 if (uname(&osinfo) == -1) { 654 /* 655 * Can't get the OS version; just say "no". 656 */ 657 return (0); 658 } 659 /* 660 * We assume osinfo.sysname is "Darwin", because 661 * __APPLE__ is defined. We just check the version. 662 */ 663 if (osinfo.release[0] < '8' && osinfo.release[1] == '.') { 664 /* 665 * 10.3 (Darwin 7.x) or earlier. 666 * Monitor mode not supported. 667 */ 668 return (0); 669 } 670 if (osinfo.release[0] == '8' && osinfo.release[1] == '.') { 671 /* 672 * 10.4 (Darwin 8.x). s/en/wlt/, and check 673 * whether the device exists. 674 */ 675 if (strncmp(p->opt.source, "en", 2) != 0) { 676 /* 677 * Not an enN device; no monitor mode. 678 */ 679 return (0); 680 } 681 fd = socket(AF_INET, SOCK_DGRAM, 0); 682 if (fd == -1) { 683 (void)snprintf(p->errbuf, PCAP_ERRBUF_SIZE, 684 "socket: %s", pcap_strerror(errno)); 685 return (PCAP_ERROR); 686 } 687 strlcpy(ifr.ifr_name, "wlt", sizeof(ifr.ifr_name)); 688 strlcat(ifr.ifr_name, p->opt.source + 2, sizeof(ifr.ifr_name)); 689 if (ioctl(fd, SIOCGIFFLAGS, (char *)&ifr) < 0) { 690 /* 691 * No such device? 692 */ 693 close(fd); 694 return (0); 695 } 696 close(fd); 697 return (1); 698 } 699 700 #ifdef BIOCGDLTLIST 701 /* 702 * Everything else is 10.5 or later; for those, 703 * we just open the enN device, and check whether 704 * we have any 802.11 devices. 705 * 706 * First, open a BPF device. 707 */ 708 fd = bpf_open(p); 709 if (fd < 0) 710 return (fd); /* fd is the appropriate error code */ 711 712 /* 713 * Now bind to the device. 714 */ 715 (void)strncpy(ifr.ifr_name, p->opt.source, sizeof(ifr.ifr_name)); 716 if (ioctl(fd, BIOCSETIF, (caddr_t)&ifr) < 0) { 717 switch (errno) { 718 719 case ENXIO: 720 /* 721 * There's no such device. 722 */ 723 close(fd); 724 return (PCAP_ERROR_NO_SUCH_DEVICE); 725 726 case ENETDOWN: 727 /* 728 * Return a "network down" indication, so that 729 * the application can report that rather than 730 * saying we had a mysterious failure and 731 * suggest that they report a problem to the 732 * libpcap developers. 733 */ 734 close(fd); 735 return (PCAP_ERROR_IFACE_NOT_UP); 736 737 default: 738 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, 739 "BIOCSETIF: %s: %s", 740 p->opt.source, pcap_strerror(errno)); 741 close(fd); 742 return (PCAP_ERROR); 743 } 744 } 745 746 /* 747 * We know the default link type -- now determine all the DLTs 748 * this interface supports. If this fails with EINVAL, it's 749 * not fatal; we just don't get to use the feature later. 750 * (We don't care about DLT_DOCSIS, so we pass DLT_NULL 751 * as the default DLT for this adapter.) 752 */ 753 if (get_dlt_list(fd, DLT_NULL, &bdl, p->errbuf) == PCAP_ERROR) { 754 close(fd); 755 return (PCAP_ERROR); 756 } 757 if (find_802_11(&bdl) != -1) { 758 /* 759 * We have an 802.11 DLT, so we can set monitor mode. 760 */ 761 free(bdl.bfl_list); 762 close(fd); 763 return (1); 764 } 765 free(bdl.bfl_list); 766 #endif /* BIOCGDLTLIST */ 767 return (0); 768 #elif defined(HAVE_BSD_IEEE80211) 769 int ret; 770 771 ret = monitor_mode(p, 0); 772 if (ret == PCAP_ERROR_RFMON_NOTSUP) 773 return (0); /* not an error, just a "can't do" */ 774 if (ret == 0) 775 return (1); /* success */ 776 return (ret); 777 #else 778 return (0); 779 #endif 780 } 781 782 static int 783 pcap_stats_bpf(pcap_t *p, struct pcap_stat *ps) 784 { 785 struct bpf_stat s; 786 787 /* 788 * "ps_recv" counts packets handed to the filter, not packets 789 * that passed the filter. This includes packets later dropped 790 * because we ran out of buffer space. 791 * 792 * "ps_drop" counts packets dropped inside the BPF device 793 * because we ran out of buffer space. It doesn't count 794 * packets dropped by the interface driver. It counts 795 * only packets that passed the filter. 796 * 797 * Both statistics include packets not yet read from the kernel 798 * by libpcap, and thus not yet seen by the application. 799 */ 800 if (ioctl(p->fd, BIOCGSTATS, (caddr_t)&s) < 0) { 801 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "BIOCGSTATS: %s", 802 pcap_strerror(errno)); 803 return (PCAP_ERROR); 804 } 805 806 ps->ps_recv = s.bs_recv; 807 ps->ps_drop = s.bs_drop; 808 ps->ps_ifdrop = 0; 809 return (0); 810 } 811 812 static int 813 pcap_read_bpf(pcap_t *p, int cnt, pcap_handler callback, u_char *user) 814 { 815 int cc; 816 int n = 0; 817 register u_char *bp, *ep; 818 u_char *datap; 819 #ifdef PCAP_FDDIPAD 820 register int pad; 821 #endif 822 #ifdef HAVE_ZEROCOPY_BPF 823 int i; 824 #endif 825 826 again: 827 /* 828 * Has "pcap_breakloop()" been called? 829 */ 830 if (p->break_loop) { 831 /* 832 * Yes - clear the flag that indicates that it 833 * has, and return PCAP_ERROR_BREAK to indicate 834 * that we were told to break out of the loop. 835 */ 836 p->break_loop = 0; 837 return (PCAP_ERROR_BREAK); 838 } 839 cc = p->cc; 840 if (p->cc == 0) { 841 /* 842 * When reading without zero-copy from a file descriptor, we 843 * use a single buffer and return a length of data in the 844 * buffer. With zero-copy, we update the p->buffer pointer 845 * to point at whatever underlying buffer contains the next 846 * data and update cc to reflect the data found in the 847 * buffer. 848 */ 849 #ifdef HAVE_ZEROCOPY_BPF 850 if (p->md.zerocopy) { 851 if (p->buffer != NULL) 852 pcap_ack_zbuf(p); 853 i = pcap_next_zbuf(p, &cc); 854 if (i == 0) 855 goto again; 856 if (i < 0) 857 return (PCAP_ERROR); 858 } else 859 #endif 860 { 861 cc = read(p->fd, (char *)p->buffer, p->bufsize); 862 } 863 if (cc < 0) { 864 /* Don't choke when we get ptraced */ 865 switch (errno) { 866 867 case EINTR: 868 goto again; 869 870 #ifdef _AIX 871 case EFAULT: 872 /* 873 * Sigh. More AIX wonderfulness. 874 * 875 * For some unknown reason the uiomove() 876 * operation in the bpf kernel extension 877 * used to copy the buffer into user 878 * space sometimes returns EFAULT. I have 879 * no idea why this is the case given that 880 * a kernel debugger shows the user buffer 881 * is correct. This problem appears to 882 * be mostly mitigated by the memset of 883 * the buffer before it is first used. 884 * Very strange.... Shaun Clowes 885 * 886 * In any case this means that we shouldn't 887 * treat EFAULT as a fatal error; as we 888 * don't have an API for returning 889 * a "some packets were dropped since 890 * the last packet you saw" indication, 891 * we just ignore EFAULT and keep reading. 892 */ 893 goto again; 894 #endif 895 896 case EWOULDBLOCK: 897 return (0); 898 899 case ENXIO: 900 /* 901 * The device on which we're capturing 902 * went away. 903 * 904 * XXX - we should really return 905 * PCAP_ERROR_IFACE_NOT_UP, but 906 * pcap_dispatch() etc. aren't 907 * defined to retur that. 908 */ 909 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, 910 "The interface went down"); 911 return (PCAP_ERROR); 912 913 #if defined(sun) && !defined(BSD) && !defined(__svr4__) && !defined(__SVR4) 914 /* 915 * Due to a SunOS bug, after 2^31 bytes, the kernel 916 * file offset overflows and read fails with EINVAL. 917 * The lseek() to 0 will fix things. 918 */ 919 case EINVAL: 920 if (lseek(p->fd, 0L, SEEK_CUR) + 921 p->bufsize < 0) { 922 (void)lseek(p->fd, 0L, SEEK_SET); 923 goto again; 924 } 925 /* fall through */ 926 #endif 927 } 928 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "read: %s", 929 pcap_strerror(errno)); 930 return (PCAP_ERROR); 931 } 932 bp = p->buffer; 933 } else 934 bp = p->bp; 935 936 /* 937 * Loop through each packet. 938 */ 939 #define bhp ((struct bpf_hdr *)bp) 940 ep = bp + cc; 941 #ifdef PCAP_FDDIPAD 942 pad = p->fddipad; 943 #endif 944 while (bp < ep) { 945 register int caplen, hdrlen; 946 947 /* 948 * Has "pcap_breakloop()" been called? 949 * If so, return immediately - if we haven't read any 950 * packets, clear the flag and return PCAP_ERROR_BREAK 951 * to indicate that we were told to break out of the loop, 952 * otherwise leave the flag set, so that the *next* call 953 * will break out of the loop without having read any 954 * packets, and return the number of packets we've 955 * processed so far. 956 */ 957 if (p->break_loop) { 958 p->bp = bp; 959 p->cc = ep - bp; 960 /* 961 * ep is set based on the return value of read(), 962 * but read() from a BPF device doesn't necessarily 963 * return a value that's a multiple of the alignment 964 * value for BPF_WORDALIGN(). However, whenever we 965 * increment bp, we round up the increment value by 966 * a value rounded up by BPF_WORDALIGN(), so we 967 * could increment bp past ep after processing the 968 * last packet in the buffer. 969 * 970 * We treat ep < bp as an indication that this 971 * happened, and just set p->cc to 0. 972 */ 973 if (p->cc < 0) 974 p->cc = 0; 975 if (n == 0) { 976 p->break_loop = 0; 977 return (PCAP_ERROR_BREAK); 978 } else 979 return (n); 980 } 981 982 caplen = bhp->bh_caplen; 983 hdrlen = bhp->bh_hdrlen; 984 datap = bp + hdrlen; 985 /* 986 * Short-circuit evaluation: if using BPF filter 987 * in kernel, no need to do it now - we already know 988 * the packet passed the filter. 989 * 990 #ifdef PCAP_FDDIPAD 991 * Note: the filter code was generated assuming 992 * that p->fddipad was the amount of padding 993 * before the header, as that's what's required 994 * in the kernel, so we run the filter before 995 * skipping that padding. 996 #endif 997 */ 998 if (p->md.use_bpf || 999 bpf_filter(p->fcode.bf_insns, datap, bhp->bh_datalen, caplen)) { 1000 struct pcap_pkthdr pkthdr; 1001 1002 pkthdr.ts.tv_sec = bhp->bh_tstamp.tv_sec; 1003 #ifdef _AIX 1004 /* 1005 * AIX's BPF returns seconds/nanoseconds time 1006 * stamps, not seconds/microseconds time stamps. 1007 */ 1008 pkthdr.ts.tv_usec = bhp->bh_tstamp.tv_usec/1000; 1009 #else 1010 pkthdr.ts.tv_usec = bhp->bh_tstamp.tv_usec; 1011 #endif 1012 #ifdef PCAP_FDDIPAD 1013 if (caplen > pad) 1014 pkthdr.caplen = caplen - pad; 1015 else 1016 pkthdr.caplen = 0; 1017 if (bhp->bh_datalen > pad) 1018 pkthdr.len = bhp->bh_datalen - pad; 1019 else 1020 pkthdr.len = 0; 1021 datap += pad; 1022 #else 1023 pkthdr.caplen = caplen; 1024 pkthdr.len = bhp->bh_datalen; 1025 #endif 1026 (*callback)(user, &pkthdr, datap); 1027 bp += BPF_WORDALIGN(caplen + hdrlen); 1028 if (++n >= cnt && cnt > 0) { 1029 p->bp = bp; 1030 p->cc = ep - bp; 1031 /* 1032 * See comment above about p->cc < 0. 1033 */ 1034 if (p->cc < 0) 1035 p->cc = 0; 1036 return (n); 1037 } 1038 } else { 1039 /* 1040 * Skip this packet. 1041 */ 1042 bp += BPF_WORDALIGN(caplen + hdrlen); 1043 } 1044 } 1045 #undef bhp 1046 p->cc = 0; 1047 return (n); 1048 } 1049 1050 static int 1051 pcap_inject_bpf(pcap_t *p, const void *buf, size_t size) 1052 { 1053 int ret; 1054 1055 ret = write(p->fd, buf, size); 1056 #ifdef __APPLE__ 1057 if (ret == -1 && errno == EAFNOSUPPORT) { 1058 /* 1059 * In Mac OS X, there's a bug wherein setting the 1060 * BIOCSHDRCMPLT flag causes writes to fail; see, 1061 * for example: 1062 * 1063 * http://cerberus.sourcefire.com/~jeff/archives/patches/macosx/BIOCSHDRCMPLT-10.3.3.patch 1064 * 1065 * So, if, on OS X, we get EAFNOSUPPORT from the write, we 1066 * assume it's due to that bug, and turn off that flag 1067 * and try again. If we succeed, it either means that 1068 * somebody applied the fix from that URL, or other patches 1069 * for that bug from 1070 * 1071 * http://cerberus.sourcefire.com/~jeff/archives/patches/macosx/ 1072 * 1073 * and are running a Darwin kernel with those fixes, or 1074 * that Apple fixed the problem in some OS X release. 1075 */ 1076 u_int spoof_eth_src = 0; 1077 1078 if (ioctl(p->fd, BIOCSHDRCMPLT, &spoof_eth_src) == -1) { 1079 (void)snprintf(p->errbuf, PCAP_ERRBUF_SIZE, 1080 "send: can't turn off BIOCSHDRCMPLT: %s", 1081 pcap_strerror(errno)); 1082 return (PCAP_ERROR); 1083 } 1084 1085 /* 1086 * Now try the write again. 1087 */ 1088 ret = write(p->fd, buf, size); 1089 } 1090 #endif /* __APPLE__ */ 1091 if (ret == -1) { 1092 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "send: %s", 1093 pcap_strerror(errno)); 1094 return (PCAP_ERROR); 1095 } 1096 return (ret); 1097 } 1098 1099 #ifdef _AIX 1100 static int 1101 bpf_odminit(char *errbuf) 1102 { 1103 char *errstr; 1104 1105 if (odm_initialize() == -1) { 1106 if (odm_err_msg(odmerrno, &errstr) == -1) 1107 errstr = "Unknown error"; 1108 snprintf(errbuf, PCAP_ERRBUF_SIZE, 1109 "bpf_load: odm_initialize failed: %s", 1110 errstr); 1111 return (PCAP_ERROR); 1112 } 1113 1114 if ((odmlockid = odm_lock("/etc/objrepos/config_lock", ODM_WAIT)) == -1) { 1115 if (odm_err_msg(odmerrno, &errstr) == -1) 1116 errstr = "Unknown error"; 1117 snprintf(errbuf, PCAP_ERRBUF_SIZE, 1118 "bpf_load: odm_lock of /etc/objrepos/config_lock failed: %s", 1119 errstr); 1120 (void)odm_terminate(); 1121 return (PCAP_ERROR); 1122 } 1123 1124 return (0); 1125 } 1126 1127 static int 1128 bpf_odmcleanup(char *errbuf) 1129 { 1130 char *errstr; 1131 1132 if (odm_unlock(odmlockid) == -1) { 1133 if (errbuf != NULL) { 1134 if (odm_err_msg(odmerrno, &errstr) == -1) 1135 errstr = "Unknown error"; 1136 snprintf(errbuf, PCAP_ERRBUF_SIZE, 1137 "bpf_load: odm_unlock failed: %s", 1138 errstr); 1139 } 1140 return (PCAP_ERROR); 1141 } 1142 1143 if (odm_terminate() == -1) { 1144 if (errbuf != NULL) { 1145 if (odm_err_msg(odmerrno, &errstr) == -1) 1146 errstr = "Unknown error"; 1147 snprintf(errbuf, PCAP_ERRBUF_SIZE, 1148 "bpf_load: odm_terminate failed: %s", 1149 errstr); 1150 } 1151 return (PCAP_ERROR); 1152 } 1153 1154 return (0); 1155 } 1156 1157 static int 1158 bpf_load(char *errbuf) 1159 { 1160 long major; 1161 int *minors; 1162 int numminors, i, rc; 1163 char buf[1024]; 1164 struct stat sbuf; 1165 struct bpf_config cfg_bpf; 1166 struct cfg_load cfg_ld; 1167 struct cfg_kmod cfg_km; 1168 1169 /* 1170 * This is very very close to what happens in the real implementation 1171 * but I've fixed some (unlikely) bug situations. 1172 */ 1173 if (bpfloadedflag) 1174 return (0); 1175 1176 if (bpf_odminit(errbuf) == PCAP_ERROR) 1177 return (PCAP_ERROR); 1178 1179 major = genmajor(BPF_NAME); 1180 if (major == -1) { 1181 snprintf(errbuf, PCAP_ERRBUF_SIZE, 1182 "bpf_load: genmajor failed: %s", pcap_strerror(errno)); 1183 (void)bpf_odmcleanup(NULL); 1184 return (PCAP_ERROR); 1185 } 1186 1187 minors = getminor(major, &numminors, BPF_NAME); 1188 if (!minors) { 1189 minors = genminor("bpf", major, 0, BPF_MINORS, 1, 1); 1190 if (!minors) { 1191 snprintf(errbuf, PCAP_ERRBUF_SIZE, 1192 "bpf_load: genminor failed: %s", 1193 pcap_strerror(errno)); 1194 (void)bpf_odmcleanup(NULL); 1195 return (PCAP_ERROR); 1196 } 1197 } 1198 1199 if (bpf_odmcleanup(errbuf) == PCAP_ERROR) 1200 return (PCAP_ERROR); 1201 1202 rc = stat(BPF_NODE "0", &sbuf); 1203 if (rc == -1 && errno != ENOENT) { 1204 snprintf(errbuf, PCAP_ERRBUF_SIZE, 1205 "bpf_load: can't stat %s: %s", 1206 BPF_NODE "0", pcap_strerror(errno)); 1207 return (PCAP_ERROR); 1208 } 1209 1210 if (rc == -1 || getmajor(sbuf.st_rdev) != major) { 1211 for (i = 0; i < BPF_MINORS; i++) { 1212 sprintf(buf, "%s%d", BPF_NODE, i); 1213 unlink(buf); 1214 if (mknod(buf, S_IRUSR | S_IFCHR, domakedev(major, i)) == -1) { 1215 snprintf(errbuf, PCAP_ERRBUF_SIZE, 1216 "bpf_load: can't mknod %s: %s", 1217 buf, pcap_strerror(errno)); 1218 return (PCAP_ERROR); 1219 } 1220 } 1221 } 1222 1223 /* Check if the driver is loaded */ 1224 memset(&cfg_ld, 0x0, sizeof(cfg_ld)); 1225 cfg_ld.path = buf; 1226 sprintf(cfg_ld.path, "%s/%s", DRIVER_PATH, BPF_NAME); 1227 if ((sysconfig(SYS_QUERYLOAD, (void *)&cfg_ld, sizeof(cfg_ld)) == -1) || 1228 (cfg_ld.kmid == 0)) { 1229 /* Driver isn't loaded, load it now */ 1230 if (sysconfig(SYS_SINGLELOAD, (void *)&cfg_ld, sizeof(cfg_ld)) == -1) { 1231 snprintf(errbuf, PCAP_ERRBUF_SIZE, 1232 "bpf_load: could not load driver: %s", 1233 strerror(errno)); 1234 return (PCAP_ERROR); 1235 } 1236 } 1237 1238 /* Configure the driver */ 1239 cfg_km.cmd = CFG_INIT; 1240 cfg_km.kmid = cfg_ld.kmid; 1241 cfg_km.mdilen = sizeof(cfg_bpf); 1242 cfg_km.mdiptr = (void *)&cfg_bpf; 1243 for (i = 0; i < BPF_MINORS; i++) { 1244 cfg_bpf.devno = domakedev(major, i); 1245 if (sysconfig(SYS_CFGKMOD, (void *)&cfg_km, sizeof(cfg_km)) == -1) { 1246 snprintf(errbuf, PCAP_ERRBUF_SIZE, 1247 "bpf_load: could not configure driver: %s", 1248 strerror(errno)); 1249 return (PCAP_ERROR); 1250 } 1251 } 1252 1253 bpfloadedflag = 1; 1254 1255 return (0); 1256 } 1257 #endif 1258 1259 /* 1260 * Turn off rfmon mode if necessary. 1261 */ 1262 static void 1263 pcap_cleanup_bpf(pcap_t *p) 1264 { 1265 #ifdef HAVE_BSD_IEEE80211 1266 int sock; 1267 struct ifmediareq req; 1268 struct ifreq ifr; 1269 #endif 1270 1271 if (p->md.must_do_on_close != 0) { 1272 /* 1273 * There's something we have to do when closing this 1274 * pcap_t. 1275 */ 1276 #ifdef HAVE_BSD_IEEE80211 1277 if (p->md.must_do_on_close & MUST_CLEAR_RFMON) { 1278 /* 1279 * We put the interface into rfmon mode; 1280 * take it out of rfmon mode. 1281 * 1282 * XXX - if somebody else wants it in rfmon 1283 * mode, this code cannot know that, so it'll take 1284 * it out of rfmon mode. 1285 */ 1286 sock = socket(AF_INET, SOCK_DGRAM, 0); 1287 if (sock == -1) { 1288 fprintf(stderr, 1289 "Can't restore interface flags (socket() failed: %s).\n" 1290 "Please adjust manually.\n", 1291 strerror(errno)); 1292 } else { 1293 memset(&req, 0, sizeof(req)); 1294 strncpy(req.ifm_name, p->md.device, 1295 sizeof(req.ifm_name)); 1296 if (ioctl(sock, SIOCGIFMEDIA, &req) < 0) { 1297 fprintf(stderr, 1298 "Can't restore interface flags (SIOCGIFMEDIA failed: %s).\n" 1299 "Please adjust manually.\n", 1300 strerror(errno)); 1301 } else { 1302 if (req.ifm_current & IFM_IEEE80211_MONITOR) { 1303 /* 1304 * Rfmon mode is currently on; 1305 * turn it off. 1306 */ 1307 memset(&ifr, 0, sizeof(ifr)); 1308 (void)strncpy(ifr.ifr_name, 1309 p->md.device, 1310 sizeof(ifr.ifr_name)); 1311 ifr.ifr_media = 1312 req.ifm_current & ~IFM_IEEE80211_MONITOR; 1313 if (ioctl(sock, SIOCSIFMEDIA, 1314 &ifr) == -1) { 1315 fprintf(stderr, 1316 "Can't restore interface flags (SIOCSIFMEDIA failed: %s).\n" 1317 "Please adjust manually.\n", 1318 strerror(errno)); 1319 } 1320 } 1321 } 1322 close(sock); 1323 } 1324 } 1325 #endif /* HAVE_BSD_IEEE80211 */ 1326 1327 /* 1328 * Take this pcap out of the list of pcaps for which we 1329 * have to take the interface out of some mode. 1330 */ 1331 pcap_remove_from_pcaps_to_close(p); 1332 p->md.must_do_on_close = 0; 1333 } 1334 1335 #ifdef HAVE_ZEROCOPY_BPF 1336 if (p->md.zerocopy) { 1337 /* 1338 * Delete the mappings. Note that p->buffer gets 1339 * initialized to one of the mmapped regions in 1340 * this case, so do not try and free it directly; 1341 * null it out so that pcap_cleanup_live_common() 1342 * doesn't try to free it. 1343 */ 1344 if (p->md.zbuf1 != MAP_FAILED && p->md.zbuf1 != NULL) 1345 (void) munmap(p->md.zbuf1, p->md.zbufsize); 1346 if (p->md.zbuf2 != MAP_FAILED && p->md.zbuf2 != NULL) 1347 (void) munmap(p->md.zbuf2, p->md.zbufsize); 1348 p->buffer = NULL; 1349 } 1350 #endif 1351 if (p->md.device != NULL) { 1352 free(p->md.device); 1353 p->md.device = NULL; 1354 } 1355 pcap_cleanup_live_common(p); 1356 } 1357 1358 static int 1359 check_setif_failure(pcap_t *p, int error) 1360 { 1361 #ifdef __APPLE__ 1362 int fd; 1363 struct ifreq ifr; 1364 int err; 1365 #endif 1366 1367 if (error == ENXIO) { 1368 /* 1369 * No such device exists. 1370 */ 1371 #ifdef __APPLE__ 1372 if (p->opt.rfmon && strncmp(p->opt.source, "wlt", 3) == 0) { 1373 /* 1374 * Monitor mode was requested, and we're trying 1375 * to open a "wltN" device. Assume that this 1376 * is 10.4 and that we were asked to open an 1377 * "enN" device; if that device exists, return 1378 * "monitor mode not supported on the device". 1379 */ 1380 fd = socket(AF_INET, SOCK_DGRAM, 0); 1381 if (fd != -1) { 1382 strlcpy(ifr.ifr_name, "en", 1383 sizeof(ifr.ifr_name)); 1384 strlcat(ifr.ifr_name, p->opt.source + 3, 1385 sizeof(ifr.ifr_name)); 1386 if (ioctl(fd, SIOCGIFFLAGS, (char *)&ifr) < 0) { 1387 /* 1388 * We assume this failed because 1389 * the underlying device doesn't 1390 * exist. 1391 */ 1392 err = PCAP_ERROR_NO_SUCH_DEVICE; 1393 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, 1394 "SIOCGIFFLAGS on %s failed: %s", 1395 ifr.ifr_name, pcap_strerror(errno)); 1396 } else { 1397 /* 1398 * The underlying "enN" device 1399 * exists, but there's no 1400 * corresponding "wltN" device; 1401 * that means that the "enN" 1402 * device doesn't support 1403 * monitor mode, probably because 1404 * it's an Ethernet device rather 1405 * than a wireless device. 1406 */ 1407 err = PCAP_ERROR_RFMON_NOTSUP; 1408 } 1409 close(fd); 1410 } else { 1411 /* 1412 * We can't find out whether there's 1413 * an underlying "enN" device, so 1414 * just report "no such device". 1415 */ 1416 err = PCAP_ERROR_NO_SUCH_DEVICE; 1417 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, 1418 "socket() failed: %s", 1419 pcap_strerror(errno)); 1420 } 1421 return (err); 1422 } 1423 #endif 1424 /* 1425 * No such device. 1426 */ 1427 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "BIOCSETIF failed: %s", 1428 pcap_strerror(errno)); 1429 return (PCAP_ERROR_NO_SUCH_DEVICE); 1430 } else if (errno == ENETDOWN) { 1431 /* 1432 * Return a "network down" indication, so that 1433 * the application can report that rather than 1434 * saying we had a mysterious failure and 1435 * suggest that they report a problem to the 1436 * libpcap developers. 1437 */ 1438 return (PCAP_ERROR_IFACE_NOT_UP); 1439 } else { 1440 /* 1441 * Some other error; fill in the error string, and 1442 * return PCAP_ERROR. 1443 */ 1444 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "BIOCSETIF: %s: %s", 1445 p->opt.source, pcap_strerror(errno)); 1446 return (PCAP_ERROR); 1447 } 1448 } 1449 1450 /* 1451 * Default capture buffer size. 1452 * 32K isn't very much for modern machines with fast networks; we 1453 * pick .5M, as that's the maximum on at least some systems with BPF. 1454 */ 1455 #define DEFAULT_BUFSIZE 524288 1456 1457 static int 1458 pcap_activate_bpf(pcap_t *p) 1459 { 1460 int status = 0; 1461 int fd; 1462 #ifdef LIFNAMSIZ 1463 struct lifreq ifr; 1464 char *ifrname = ifr.lifr_name; 1465 const size_t ifnamsiz = sizeof(ifr.lifr_name); 1466 #else 1467 struct ifreq ifr; 1468 char *ifrname = ifr.ifr_name; 1469 const size_t ifnamsiz = sizeof(ifr.ifr_name); 1470 #endif 1471 struct bpf_version bv; 1472 #ifdef __APPLE__ 1473 int sockfd; 1474 char *wltdev = NULL; 1475 #endif 1476 #ifdef BIOCGDLTLIST 1477 struct bpf_dltlist bdl; 1478 #if defined(__APPLE__) || defined(HAVE_BSD_IEEE80211) 1479 int new_dlt; 1480 #endif 1481 #endif /* BIOCGDLTLIST */ 1482 #if defined(BIOCGHDRCMPLT) && defined(BIOCSHDRCMPLT) 1483 u_int spoof_eth_src = 1; 1484 #endif 1485 u_int v; 1486 struct bpf_insn total_insn; 1487 struct bpf_program total_prog; 1488 struct utsname osinfo; 1489 int have_osinfo = 0; 1490 #ifdef HAVE_ZEROCOPY_BPF 1491 struct bpf_zbuf bz; 1492 u_int bufmode, zbufmax; 1493 #endif 1494 1495 fd = bpf_open(p); 1496 if (fd < 0) { 1497 status = fd; 1498 goto bad; 1499 } 1500 1501 p->fd = fd; 1502 1503 if (ioctl(fd, BIOCVERSION, (caddr_t)&bv) < 0) { 1504 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "BIOCVERSION: %s", 1505 pcap_strerror(errno)); 1506 status = PCAP_ERROR; 1507 goto bad; 1508 } 1509 if (bv.bv_major != BPF_MAJOR_VERSION || 1510 bv.bv_minor < BPF_MINOR_VERSION) { 1511 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, 1512 "kernel bpf filter out of date"); 1513 status = PCAP_ERROR; 1514 goto bad; 1515 } 1516 1517 p->md.device = strdup(p->opt.source); 1518 if (p->md.device == NULL) { 1519 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "strdup: %s", 1520 pcap_strerror(errno)); 1521 status = PCAP_ERROR; 1522 goto bad; 1523 } 1524 1525 /* 1526 * Attempt to find out the version of the OS on which we're running. 1527 */ 1528 if (uname(&osinfo) == 0) 1529 have_osinfo = 1; 1530 1531 #ifdef __APPLE__ 1532 /* 1533 * See comment in pcap_can_set_rfmon_bpf() for an explanation 1534 * of why we check the version number. 1535 */ 1536 if (p->opt.rfmon) { 1537 if (have_osinfo) { 1538 /* 1539 * We assume osinfo.sysname is "Darwin", because 1540 * __APPLE__ is defined. We just check the version. 1541 */ 1542 if (osinfo.release[0] < '8' && 1543 osinfo.release[1] == '.') { 1544 /* 1545 * 10.3 (Darwin 7.x) or earlier. 1546 */ 1547 status = PCAP_ERROR_RFMON_NOTSUP; 1548 goto bad; 1549 } 1550 if (osinfo.release[0] == '8' && 1551 osinfo.release[1] == '.') { 1552 /* 1553 * 10.4 (Darwin 8.x). s/en/wlt/ 1554 */ 1555 if (strncmp(p->opt.source, "en", 2) != 0) { 1556 /* 1557 * Not an enN device; check 1558 * whether the device even exists. 1559 */ 1560 sockfd = socket(AF_INET, SOCK_DGRAM, 0); 1561 if (sockfd != -1) { 1562 strlcpy(ifrname, 1563 p->opt.source, ifnamsiz); 1564 if (ioctl(sockfd, SIOCGIFFLAGS, 1565 (char *)&ifr) < 0) { 1566 /* 1567 * We assume this 1568 * failed because 1569 * the underlying 1570 * device doesn't 1571 * exist. 1572 */ 1573 status = PCAP_ERROR_NO_SUCH_DEVICE; 1574 snprintf(p->errbuf, 1575 PCAP_ERRBUF_SIZE, 1576 "SIOCGIFFLAGS failed: %s", 1577 pcap_strerror(errno)); 1578 } else 1579 status = PCAP_ERROR_RFMON_NOTSUP; 1580 close(sockfd); 1581 } else { 1582 /* 1583 * We can't find out whether 1584 * the device exists, so just 1585 * report "no such device". 1586 */ 1587 status = PCAP_ERROR_NO_SUCH_DEVICE; 1588 snprintf(p->errbuf, 1589 PCAP_ERRBUF_SIZE, 1590 "socket() failed: %s", 1591 pcap_strerror(errno)); 1592 } 1593 goto bad; 1594 } 1595 wltdev = malloc(strlen(p->opt.source) + 2); 1596 if (wltdev == NULL) { 1597 (void)snprintf(p->errbuf, 1598 PCAP_ERRBUF_SIZE, "malloc: %s", 1599 pcap_strerror(errno)); 1600 status = PCAP_ERROR; 1601 goto bad; 1602 } 1603 strcpy(wltdev, "wlt"); 1604 strcat(wltdev, p->opt.source + 2); 1605 free(p->opt.source); 1606 p->opt.source = wltdev; 1607 } 1608 /* 1609 * Everything else is 10.5 or later; for those, 1610 * we just open the enN device, and set the DLT. 1611 */ 1612 } 1613 } 1614 #endif /* __APPLE__ */ 1615 #ifdef HAVE_ZEROCOPY_BPF 1616 /* 1617 * If the BPF extension to set buffer mode is present, try setting 1618 * the mode to zero-copy. If that fails, use regular buffering. If 1619 * it succeeds but other setup fails, return an error to the user. 1620 */ 1621 bufmode = BPF_BUFMODE_ZBUF; 1622 if (ioctl(fd, BIOCSETBUFMODE, (caddr_t)&bufmode) == 0) { 1623 /* 1624 * We have zerocopy BPF; use it. 1625 */ 1626 p->md.zerocopy = 1; 1627 1628 /* 1629 * How to pick a buffer size: first, query the maximum buffer 1630 * size supported by zero-copy. This also lets us quickly 1631 * determine whether the kernel generally supports zero-copy. 1632 * Then, if a buffer size was specified, use that, otherwise 1633 * query the default buffer size, which reflects kernel 1634 * policy for a desired default. Round to the nearest page 1635 * size. 1636 */ 1637 if (ioctl(fd, BIOCGETZMAX, (caddr_t)&zbufmax) < 0) { 1638 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "BIOCGETZMAX: %s", 1639 pcap_strerror(errno)); 1640 goto bad; 1641 } 1642 1643 if (p->opt.buffer_size != 0) { 1644 /* 1645 * A buffer size was explicitly specified; use it. 1646 */ 1647 v = p->opt.buffer_size; 1648 } else { 1649 if ((ioctl(fd, BIOCGBLEN, (caddr_t)&v) < 0) || 1650 v < DEFAULT_BUFSIZE) 1651 v = DEFAULT_BUFSIZE; 1652 } 1653 #ifndef roundup 1654 #define roundup(x, y) ((((x)+((y)-1))/(y))*(y)) /* to any y */ 1655 #endif 1656 p->md.zbufsize = roundup(v, getpagesize()); 1657 if (p->md.zbufsize > zbufmax) 1658 p->md.zbufsize = zbufmax; 1659 p->md.zbuf1 = mmap(NULL, p->md.zbufsize, PROT_READ | PROT_WRITE, 1660 MAP_ANON, -1, 0); 1661 p->md.zbuf2 = mmap(NULL, p->md.zbufsize, PROT_READ | PROT_WRITE, 1662 MAP_ANON, -1, 0); 1663 if (p->md.zbuf1 == MAP_FAILED || p->md.zbuf2 == MAP_FAILED) { 1664 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "mmap: %s", 1665 pcap_strerror(errno)); 1666 goto bad; 1667 } 1668 bzero(&bz, sizeof(bz)); 1669 bz.bz_bufa = p->md.zbuf1; 1670 bz.bz_bufb = p->md.zbuf2; 1671 bz.bz_buflen = p->md.zbufsize; 1672 if (ioctl(fd, BIOCSETZBUF, (caddr_t)&bz) < 0) { 1673 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "BIOCSETZBUF: %s", 1674 pcap_strerror(errno)); 1675 goto bad; 1676 } 1677 (void)strncpy(ifrname, p->opt.source, ifnamsiz); 1678 if (ioctl(fd, BIOCSETIF, (caddr_t)&ifr) < 0) { 1679 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "BIOCSETIF: %s: %s", 1680 p->opt.source, pcap_strerror(errno)); 1681 goto bad; 1682 } 1683 v = p->md.zbufsize - sizeof(struct bpf_zbuf_header); 1684 } else 1685 #endif 1686 { 1687 /* 1688 * We don't have zerocopy BPF. 1689 * Set the buffer size. 1690 */ 1691 if (p->opt.buffer_size != 0) { 1692 /* 1693 * A buffer size was explicitly specified; use it. 1694 */ 1695 if (ioctl(fd, BIOCSBLEN, 1696 (caddr_t)&p->opt.buffer_size) < 0) { 1697 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, 1698 "BIOCSBLEN: %s: %s", p->opt.source, 1699 pcap_strerror(errno)); 1700 status = PCAP_ERROR; 1701 goto bad; 1702 } 1703 1704 /* 1705 * Now bind to the device. 1706 */ 1707 (void)strncpy(ifrname, p->opt.source, ifnamsiz); 1708 #ifdef BIOCSETLIF 1709 if (ioctl(fd, BIOCSETLIF, (caddr_t)&ifr) < 0) 1710 #else 1711 if (ioctl(fd, BIOCSETIF, (caddr_t)&ifr) < 0) 1712 #endif 1713 { 1714 status = check_setif_failure(p, errno); 1715 goto bad; 1716 } 1717 } else { 1718 /* 1719 * No buffer size was explicitly specified. 1720 * 1721 * Try finding a good size for the buffer; 1722 * DEFAULT_BUFSIZE may be too big, so keep 1723 * cutting it in half until we find a size 1724 * that works, or run out of sizes to try. 1725 * If the default is larger, don't make it smaller. 1726 */ 1727 if ((ioctl(fd, BIOCGBLEN, (caddr_t)&v) < 0) || 1728 v < DEFAULT_BUFSIZE) 1729 v = DEFAULT_BUFSIZE; 1730 for ( ; v != 0; v >>= 1) { 1731 /* 1732 * Ignore the return value - this is because the 1733 * call fails on BPF systems that don't have 1734 * kernel malloc. And if the call fails, it's 1735 * no big deal, we just continue to use the 1736 * standard buffer size. 1737 */ 1738 (void) ioctl(fd, BIOCSBLEN, (caddr_t)&v); 1739 1740 (void)strncpy(ifrname, p->opt.source, ifnamsiz); 1741 #ifdef BIOCSETLIF 1742 if (ioctl(fd, BIOCSETLIF, (caddr_t)&ifr) >= 0) 1743 #else 1744 if (ioctl(fd, BIOCSETIF, (caddr_t)&ifr) >= 0) 1745 #endif 1746 break; /* that size worked; we're done */ 1747 1748 if (errno != ENOBUFS) { 1749 status = check_setif_failure(p, errno); 1750 goto bad; 1751 } 1752 } 1753 1754 if (v == 0) { 1755 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, 1756 "BIOCSBLEN: %s: No buffer size worked", 1757 p->opt.source); 1758 status = PCAP_ERROR; 1759 goto bad; 1760 } 1761 } 1762 } 1763 1764 /* Get the data link layer type. */ 1765 if (ioctl(fd, BIOCGDLT, (caddr_t)&v) < 0) { 1766 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "BIOCGDLT: %s", 1767 pcap_strerror(errno)); 1768 status = PCAP_ERROR; 1769 goto bad; 1770 } 1771 1772 #ifdef _AIX 1773 /* 1774 * AIX's BPF returns IFF_ types, not DLT_ types, in BIOCGDLT. 1775 */ 1776 switch (v) { 1777 1778 case IFT_ETHER: 1779 case IFT_ISO88023: 1780 v = DLT_EN10MB; 1781 break; 1782 1783 case IFT_FDDI: 1784 v = DLT_FDDI; 1785 break; 1786 1787 case IFT_ISO88025: 1788 v = DLT_IEEE802; 1789 break; 1790 1791 case IFT_LOOP: 1792 v = DLT_NULL; 1793 break; 1794 1795 default: 1796 /* 1797 * We don't know what to map this to yet. 1798 */ 1799 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "unknown interface type %u", 1800 v); 1801 status = PCAP_ERROR; 1802 goto bad; 1803 } 1804 #endif 1805 #if _BSDI_VERSION - 0 >= 199510 1806 /* The SLIP and PPP link layer header changed in BSD/OS 2.1 */ 1807 switch (v) { 1808 1809 case DLT_SLIP: 1810 v = DLT_SLIP_BSDOS; 1811 break; 1812 1813 case DLT_PPP: 1814 v = DLT_PPP_BSDOS; 1815 break; 1816 1817 case 11: /*DLT_FR*/ 1818 v = DLT_FRELAY; 1819 break; 1820 1821 case 12: /*DLT_C_HDLC*/ 1822 v = DLT_CHDLC; 1823 break; 1824 } 1825 #endif 1826 1827 #ifdef BIOCGDLTLIST 1828 /* 1829 * We know the default link type -- now determine all the DLTs 1830 * this interface supports. If this fails with EINVAL, it's 1831 * not fatal; we just don't get to use the feature later. 1832 */ 1833 if (get_dlt_list(fd, v, &bdl, p->errbuf) == -1) { 1834 status = PCAP_ERROR; 1835 goto bad; 1836 } 1837 p->dlt_count = bdl.bfl_len; 1838 p->dlt_list = bdl.bfl_list; 1839 1840 #ifdef __APPLE__ 1841 /* 1842 * Monitor mode fun, continued. 1843 * 1844 * For 10.5 and, we're assuming, later releases, as noted above, 1845 * 802.1 adapters that support monitor mode offer both DLT_EN10MB, 1846 * DLT_IEEE802_11, and possibly some 802.11-plus-radio-information 1847 * DLT_ value. Choosing one of the 802.11 DLT_ values will turn 1848 * monitor mode on. 1849 * 1850 * Therefore, if the user asked for monitor mode, we filter out 1851 * the DLT_EN10MB value, as you can't get that in monitor mode, 1852 * and, if the user didn't ask for monitor mode, we filter out 1853 * the 802.11 DLT_ values, because selecting those will turn 1854 * monitor mode on. Then, for monitor mode, if an 802.11-plus- 1855 * radio DLT_ value is offered, we try to select that, otherwise 1856 * we try to select DLT_IEEE802_11. 1857 */ 1858 if (have_osinfo) { 1859 if (isdigit((unsigned)osinfo.release[0]) && 1860 (osinfo.release[0] == '9' || 1861 isdigit((unsigned)osinfo.release[1]))) { 1862 /* 1863 * 10.5 (Darwin 9.x), or later. 1864 */ 1865 new_dlt = find_802_11(&bdl); 1866 if (new_dlt != -1) { 1867 /* 1868 * We have at least one 802.11 DLT_ value, 1869 * so this is an 802.11 interface. 1870 * new_dlt is the best of the 802.11 1871 * DLT_ values in the list. 1872 */ 1873 if (p->opt.rfmon) { 1874 /* 1875 * Our caller wants monitor mode. 1876 * Purge DLT_EN10MB from the list 1877 * of link-layer types, as selecting 1878 * it will keep monitor mode off. 1879 */ 1880 remove_en(p); 1881 1882 /* 1883 * If the new mode we want isn't 1884 * the default mode, attempt to 1885 * select the new mode. 1886 */ 1887 if (new_dlt != v) { 1888 if (ioctl(p->fd, BIOCSDLT, 1889 &new_dlt) != -1) { 1890 /* 1891 * We succeeded; 1892 * make this the 1893 * new DLT_ value. 1894 */ 1895 v = new_dlt; 1896 } 1897 } 1898 } else { 1899 /* 1900 * Our caller doesn't want 1901 * monitor mode. Unless this 1902 * is being done by pcap_open_live(), 1903 * purge the 802.11 link-layer types 1904 * from the list, as selecting 1905 * one of them will turn monitor 1906 * mode on. 1907 */ 1908 if (!p->oldstyle) 1909 remove_802_11(p); 1910 } 1911 } else { 1912 if (p->opt.rfmon) { 1913 /* 1914 * The caller requested monitor 1915 * mode, but we have no 802.11 1916 * link-layer types, so they 1917 * can't have it. 1918 */ 1919 status = PCAP_ERROR_RFMON_NOTSUP; 1920 goto bad; 1921 } 1922 } 1923 } 1924 } 1925 #elif defined(HAVE_BSD_IEEE80211) 1926 /* 1927 * *BSD with the new 802.11 ioctls. 1928 * Do we want monitor mode? 1929 */ 1930 if (p->opt.rfmon) { 1931 /* 1932 * Try to put the interface into monitor mode. 1933 */ 1934 status = monitor_mode(p, 1); 1935 if (status != 0) { 1936 /* 1937 * We failed. 1938 */ 1939 goto bad; 1940 } 1941 1942 /* 1943 * We're in monitor mode. 1944 * Try to find the best 802.11 DLT_ value and, if we 1945 * succeed, try to switch to that mode if we're not 1946 * already in that mode. 1947 */ 1948 new_dlt = find_802_11(&bdl); 1949 if (new_dlt != -1) { 1950 /* 1951 * We have at least one 802.11 DLT_ value. 1952 * new_dlt is the best of the 802.11 1953 * DLT_ values in the list. 1954 * 1955 * If the new mode we want isn't the default mode, 1956 * attempt to select the new mode. 1957 */ 1958 if (new_dlt != v) { 1959 if (ioctl(p->fd, BIOCSDLT, &new_dlt) != -1) { 1960 /* 1961 * We succeeded; make this the 1962 * new DLT_ value. 1963 */ 1964 v = new_dlt; 1965 } 1966 } 1967 } 1968 } 1969 #endif /* various platforms */ 1970 #endif /* BIOCGDLTLIST */ 1971 1972 /* 1973 * If this is an Ethernet device, and we don't have a DLT_ list, 1974 * give it a list with DLT_EN10MB and DLT_DOCSIS. (That'd give 1975 * 802.11 interfaces DLT_DOCSIS, which isn't the right thing to 1976 * do, but there's not much we can do about that without finding 1977 * some other way of determining whether it's an Ethernet or 802.11 1978 * device.) 1979 */ 1980 if (v == DLT_EN10MB && p->dlt_count == 0) { 1981 p->dlt_list = (u_int *) malloc(sizeof(u_int) * 2); 1982 /* 1983 * If that fails, just leave the list empty. 1984 */ 1985 if (p->dlt_list != NULL) { 1986 p->dlt_list[0] = DLT_EN10MB; 1987 p->dlt_list[1] = DLT_DOCSIS; 1988 p->dlt_count = 2; 1989 } 1990 } 1991 #ifdef PCAP_FDDIPAD 1992 if (v == DLT_FDDI) 1993 p->fddipad = PCAP_FDDIPAD; 1994 else 1995 p->fddipad = 0; 1996 #endif 1997 p->linktype = v; 1998 1999 #if defined(BIOCGHDRCMPLT) && defined(BIOCSHDRCMPLT) 2000 /* 2001 * Do a BIOCSHDRCMPLT, if defined, to turn that flag on, so 2002 * the link-layer source address isn't forcibly overwritten. 2003 * (Should we ignore errors? Should we do this only if 2004 * we're open for writing?) 2005 * 2006 * XXX - I seem to remember some packet-sending bug in some 2007 * BSDs - check CVS log for "bpf.c"? 2008 */ 2009 if (ioctl(fd, BIOCSHDRCMPLT, &spoof_eth_src) == -1) { 2010 (void)snprintf(p->errbuf, PCAP_ERRBUF_SIZE, 2011 "BIOCSHDRCMPLT: %s", pcap_strerror(errno)); 2012 status = PCAP_ERROR; 2013 goto bad; 2014 } 2015 #endif 2016 /* set timeout */ 2017 #ifdef HAVE_ZEROCOPY_BPF 2018 if (p->md.timeout != 0 && !p->md.zerocopy) { 2019 #else 2020 if (p->md.timeout) { 2021 #endif 2022 /* 2023 * XXX - is this seconds/nanoseconds in AIX? 2024 * (Treating it as such doesn't fix the timeout 2025 * problem described below.) 2026 * 2027 * XXX - Mac OS X 10.6 mishandles BIOCSRTIMEOUT in 2028 * 64-bit userland - it takes, as an argument, a 2029 * "struct BPF_TIMEVAL", which has 32-bit tv_sec 2030 * and tv_usec, rather than a "struct timeval". 2031 * 2032 * If this platform defines "struct BPF_TIMEVAL", 2033 * we check whether the structure size in BIOCSRTIMEOUT 2034 * is that of a "struct timeval" and, if not, we use 2035 * a "struct BPF_TIMEVAL" rather than a "struct timeval". 2036 * (That way, if the bug is fixed in a future release, 2037 * we will still do the right thing.) 2038 */ 2039 struct timeval to; 2040 #ifdef HAVE_STRUCT_BPF_TIMEVAL 2041 struct BPF_TIMEVAL bpf_to; 2042 2043 if (IOCPARM_LEN(BIOCSRTIMEOUT) != sizeof(struct timeval)) { 2044 bpf_to.tv_sec = p->md.timeout / 1000; 2045 bpf_to.tv_usec = (p->md.timeout * 1000) % 1000000; 2046 if (ioctl(p->fd, BIOCSRTIMEOUT, (caddr_t)&bpf_to) < 0) { 2047 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, 2048 "BIOCSRTIMEOUT: %s", pcap_strerror(errno)); 2049 status = PCAP_ERROR; 2050 goto bad; 2051 } 2052 } else { 2053 #endif 2054 to.tv_sec = p->md.timeout / 1000; 2055 to.tv_usec = (p->md.timeout * 1000) % 1000000; 2056 if (ioctl(p->fd, BIOCSRTIMEOUT, (caddr_t)&to) < 0) { 2057 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, 2058 "BIOCSRTIMEOUT: %s", pcap_strerror(errno)); 2059 status = PCAP_ERROR; 2060 goto bad; 2061 } 2062 #ifdef HAVE_STRUCT_BPF_TIMEVAL 2063 } 2064 #endif 2065 } 2066 2067 #ifdef _AIX 2068 #ifdef BIOCIMMEDIATE 2069 /* 2070 * Darren Reed notes that 2071 * 2072 * On AIX (4.2 at least), if BIOCIMMEDIATE is not set, the 2073 * timeout appears to be ignored and it waits until the buffer 2074 * is filled before returning. The result of not having it 2075 * set is almost worse than useless if your BPF filter 2076 * is reducing things to only a few packets (i.e. one every 2077 * second or so). 2078 * 2079 * so we turn BIOCIMMEDIATE mode on if this is AIX. 2080 * 2081 * We don't turn it on for other platforms, as that means we 2082 * get woken up for every packet, which may not be what we want; 2083 * in the Winter 1993 USENIX paper on BPF, they say: 2084 * 2085 * Since a process might want to look at every packet on a 2086 * network and the time between packets can be only a few 2087 * microseconds, it is not possible to do a read system call 2088 * per packet and BPF must collect the data from several 2089 * packets and return it as a unit when the monitoring 2090 * application does a read. 2091 * 2092 * which I infer is the reason for the timeout - it means we 2093 * wait that amount of time, in the hopes that more packets 2094 * will arrive and we'll get them all with one read. 2095 * 2096 * Setting BIOCIMMEDIATE mode on FreeBSD (and probably other 2097 * BSDs) causes the timeout to be ignored. 2098 * 2099 * On the other hand, some platforms (e.g., Linux) don't support 2100 * timeouts, they just hand stuff to you as soon as it arrives; 2101 * if that doesn't cause a problem on those platforms, it may 2102 * be OK to have BIOCIMMEDIATE mode on BSD as well. 2103 * 2104 * (Note, though, that applications may depend on the read 2105 * completing, even if no packets have arrived, when the timeout 2106 * expires, e.g. GUI applications that have to check for input 2107 * while waiting for packets to arrive; a non-zero timeout 2108 * prevents "select()" from working right on FreeBSD and 2109 * possibly other BSDs, as the timer doesn't start until a 2110 * "read()" is done, so the timer isn't in effect if the 2111 * application is blocked on a "select()", and the "select()" 2112 * doesn't get woken up for a BPF device until the buffer 2113 * fills up.) 2114 */ 2115 v = 1; 2116 if (ioctl(p->fd, BIOCIMMEDIATE, &v) < 0) { 2117 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "BIOCIMMEDIATE: %s", 2118 pcap_strerror(errno)); 2119 status = PCAP_ERROR; 2120 goto bad; 2121 } 2122 #endif /* BIOCIMMEDIATE */ 2123 #endif /* _AIX */ 2124 2125 if (p->opt.promisc) { 2126 /* set promiscuous mode, just warn if it fails */ 2127 if (ioctl(p->fd, BIOCPROMISC, NULL) < 0) { 2128 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "BIOCPROMISC: %s", 2129 pcap_strerror(errno)); 2130 status = PCAP_WARNING_PROMISC_NOTSUP; 2131 } 2132 } 2133 2134 if (ioctl(fd, BIOCGBLEN, (caddr_t)&v) < 0) { 2135 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "BIOCGBLEN: %s", 2136 pcap_strerror(errno)); 2137 status = PCAP_ERROR; 2138 goto bad; 2139 } 2140 p->bufsize = v; 2141 #ifdef HAVE_ZEROCOPY_BPF 2142 if (!p->md.zerocopy) { 2143 #endif 2144 p->buffer = (u_char *)malloc(p->bufsize); 2145 if (p->buffer == NULL) { 2146 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "malloc: %s", 2147 pcap_strerror(errno)); 2148 status = PCAP_ERROR; 2149 goto bad; 2150 } 2151 #ifdef _AIX 2152 /* For some strange reason this seems to prevent the EFAULT 2153 * problems we have experienced from AIX BPF. */ 2154 memset(p->buffer, 0x0, p->bufsize); 2155 #endif 2156 #ifdef HAVE_ZEROCOPY_BPF 2157 } 2158 #endif 2159 2160 /* 2161 * If there's no filter program installed, there's 2162 * no indication to the kernel of what the snapshot 2163 * length should be, so no snapshotting is done. 2164 * 2165 * Therefore, when we open the device, we install 2166 * an "accept everything" filter with the specified 2167 * snapshot length. 2168 */ 2169 total_insn.code = (u_short)(BPF_RET | BPF_K); 2170 total_insn.jt = 0; 2171 total_insn.jf = 0; 2172 total_insn.k = p->snapshot; 2173 2174 total_prog.bf_len = 1; 2175 total_prog.bf_insns = &total_insn; 2176 if (ioctl(p->fd, BIOCSETF, (caddr_t)&total_prog) < 0) { 2177 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "BIOCSETF: %s", 2178 pcap_strerror(errno)); 2179 status = PCAP_ERROR; 2180 goto bad; 2181 } 2182 2183 /* 2184 * On most BPF platforms, either you can do a "select()" or 2185 * "poll()" on a BPF file descriptor and it works correctly, 2186 * or you can do it and it will return "readable" if the 2187 * hold buffer is full but not if the timeout expires *and* 2188 * a non-blocking read will, if the hold buffer is empty 2189 * but the store buffer isn't empty, rotate the buffers 2190 * and return what packets are available. 2191 * 2192 * In the latter case, the fact that a non-blocking read 2193 * will give you the available packets means you can work 2194 * around the failure of "select()" and "poll()" to wake up 2195 * and return "readable" when the timeout expires by using 2196 * the timeout as the "select()" or "poll()" timeout, putting 2197 * the BPF descriptor into non-blocking mode, and read from 2198 * it regardless of whether "select()" reports it as readable 2199 * or not. 2200 * 2201 * However, in FreeBSD 4.3 and 4.4, "select()" and "poll()" 2202 * won't wake up and return "readable" if the timer expires 2203 * and non-blocking reads return EWOULDBLOCK if the hold 2204 * buffer is empty, even if the store buffer is non-empty. 2205 * 2206 * This means the workaround in question won't work. 2207 * 2208 * Therefore, on FreeBSD 4.3 and 4.4, we set "p->selectable_fd" 2209 * to -1, which means "sorry, you can't use 'select()' or 'poll()' 2210 * here". On all other BPF platforms, we set it to the FD for 2211 * the BPF device; in NetBSD, OpenBSD, and Darwin, a non-blocking 2212 * read will, if the hold buffer is empty and the store buffer 2213 * isn't empty, rotate the buffers and return what packets are 2214 * there (and in sufficiently recent versions of OpenBSD 2215 * "select()" and "poll()" should work correctly). 2216 * 2217 * XXX - what about AIX? 2218 */ 2219 p->selectable_fd = p->fd; /* assume select() works until we know otherwise */ 2220 if (have_osinfo) { 2221 /* 2222 * We can check what OS this is. 2223 */ 2224 if (strcmp(osinfo.sysname, "FreeBSD") == 0) { 2225 if (strncmp(osinfo.release, "4.3-", 4) == 0 || 2226 strncmp(osinfo.release, "4.4-", 4) == 0) 2227 p->selectable_fd = -1; 2228 } 2229 } 2230 2231 p->read_op = pcap_read_bpf; 2232 p->inject_op = pcap_inject_bpf; 2233 p->setfilter_op = pcap_setfilter_bpf; 2234 p->setdirection_op = pcap_setdirection_bpf; 2235 p->set_datalink_op = pcap_set_datalink_bpf; 2236 p->getnonblock_op = pcap_getnonblock_bpf; 2237 p->setnonblock_op = pcap_setnonblock_bpf; 2238 p->stats_op = pcap_stats_bpf; 2239 p->cleanup_op = pcap_cleanup_bpf; 2240 2241 return (status); 2242 bad: 2243 pcap_cleanup_bpf(p); 2244 return (status); 2245 } 2246 2247 int 2248 pcap_platform_finddevs(pcap_if_t **alldevsp, char *errbuf) 2249 { 2250 #ifdef HAVE_DAG_API 2251 if (dag_platform_finddevs(alldevsp, errbuf) < 0) 2252 return (-1); 2253 #endif /* HAVE_DAG_API */ 2254 #ifdef HAVE_SNF_API 2255 if (snf_platform_finddevs(alldevsp, errbuf) < 0) 2256 return (-1); 2257 #endif /* HAVE_SNF_API */ 2258 2259 return (0); 2260 } 2261 2262 #ifdef HAVE_BSD_IEEE80211 2263 static int 2264 monitor_mode(pcap_t *p, int set) 2265 { 2266 int sock; 2267 struct ifmediareq req; 2268 int *media_list; 2269 int i; 2270 int can_do; 2271 struct ifreq ifr; 2272 2273 sock = socket(AF_INET, SOCK_DGRAM, 0); 2274 if (sock == -1) { 2275 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "can't open socket: %s", 2276 pcap_strerror(errno)); 2277 return (PCAP_ERROR); 2278 } 2279 2280 memset(&req, 0, sizeof req); 2281 strncpy(req.ifm_name, p->opt.source, sizeof req.ifm_name); 2282 2283 /* 2284 * Find out how many media types we have. 2285 */ 2286 if (ioctl(sock, SIOCGIFMEDIA, &req) < 0) { 2287 /* 2288 * Can't get the media types. 2289 */ 2290 switch (errno) { 2291 2292 case ENXIO: 2293 /* 2294 * There's no such device. 2295 */ 2296 close(sock); 2297 return (PCAP_ERROR_NO_SUCH_DEVICE); 2298 2299 case EINVAL: 2300 /* 2301 * Interface doesn't support SIOC{G,S}IFMEDIA. 2302 */ 2303 close(sock); 2304 return (PCAP_ERROR_RFMON_NOTSUP); 2305 2306 default: 2307 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, 2308 "SIOCGIFMEDIA 1: %s", pcap_strerror(errno)); 2309 close(sock); 2310 return (PCAP_ERROR); 2311 } 2312 } 2313 if (req.ifm_count == 0) { 2314 /* 2315 * No media types. 2316 */ 2317 close(sock); 2318 return (PCAP_ERROR_RFMON_NOTSUP); 2319 } 2320 2321 /* 2322 * Allocate a buffer to hold all the media types, and 2323 * get the media types. 2324 */ 2325 media_list = malloc(req.ifm_count * sizeof(int)); 2326 if (media_list == NULL) { 2327 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "malloc: %s", 2328 pcap_strerror(errno)); 2329 close(sock); 2330 return (PCAP_ERROR); 2331 } 2332 req.ifm_ulist = media_list; 2333 if (ioctl(sock, SIOCGIFMEDIA, &req) < 0) { 2334 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "SIOCGIFMEDIA: %s", 2335 pcap_strerror(errno)); 2336 free(media_list); 2337 close(sock); 2338 return (PCAP_ERROR); 2339 } 2340 2341 /* 2342 * Look for an 802.11 "automatic" media type. 2343 * We assume that all 802.11 adapters have that media type, 2344 * and that it will carry the monitor mode supported flag. 2345 */ 2346 can_do = 0; 2347 for (i = 0; i < req.ifm_count; i++) { 2348 if (IFM_TYPE(media_list[i]) == IFM_IEEE80211 2349 && IFM_SUBTYPE(media_list[i]) == IFM_AUTO) { 2350 /* OK, does it do monitor mode? */ 2351 if (media_list[i] & IFM_IEEE80211_MONITOR) { 2352 can_do = 1; 2353 break; 2354 } 2355 } 2356 } 2357 free(media_list); 2358 if (!can_do) { 2359 /* 2360 * This adapter doesn't support monitor mode. 2361 */ 2362 close(sock); 2363 return (PCAP_ERROR_RFMON_NOTSUP); 2364 } 2365 2366 if (set) { 2367 /* 2368 * Don't just check whether we can enable monitor mode, 2369 * do so, if it's not already enabled. 2370 */ 2371 if ((req.ifm_current & IFM_IEEE80211_MONITOR) == 0) { 2372 /* 2373 * Monitor mode isn't currently on, so turn it on, 2374 * and remember that we should turn it off when the 2375 * pcap_t is closed. 2376 */ 2377 2378 /* 2379 * If we haven't already done so, arrange to have 2380 * "pcap_close_all()" called when we exit. 2381 */ 2382 if (!pcap_do_addexit(p)) { 2383 /* 2384 * "atexit()" failed; don't put the interface 2385 * in monitor mode, just give up. 2386 */ 2387 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, 2388 "atexit failed"); 2389 close(sock); 2390 return (PCAP_ERROR); 2391 } 2392 memset(&ifr, 0, sizeof(ifr)); 2393 (void)strncpy(ifr.ifr_name, p->opt.source, 2394 sizeof(ifr.ifr_name)); 2395 ifr.ifr_media = req.ifm_current | IFM_IEEE80211_MONITOR; 2396 if (ioctl(sock, SIOCSIFMEDIA, &ifr) == -1) { 2397 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, 2398 "SIOCSIFMEDIA: %s", pcap_strerror(errno)); 2399 close(sock); 2400 return (PCAP_ERROR); 2401 } 2402 2403 p->md.must_do_on_close |= MUST_CLEAR_RFMON; 2404 2405 /* 2406 * Add this to the list of pcaps to close when we exit. 2407 */ 2408 pcap_add_to_pcaps_to_close(p); 2409 } 2410 } 2411 return (0); 2412 } 2413 #endif /* HAVE_BSD_IEEE80211 */ 2414 2415 #if defined(BIOCGDLTLIST) && (defined(__APPLE__) || defined(HAVE_BSD_IEEE80211)) 2416 /* 2417 * Check whether we have any 802.11 link-layer types; return the best 2418 * of the 802.11 link-layer types if we find one, and return -1 2419 * otherwise. 2420 * 2421 * DLT_IEEE802_11_RADIO, with the radiotap header, is considered the 2422 * best 802.11 link-layer type; any of the other 802.11-plus-radio 2423 * headers are second-best; 802.11 with no radio information is 2424 * the least good. 2425 */ 2426 static int 2427 find_802_11(struct bpf_dltlist *bdlp) 2428 { 2429 int new_dlt; 2430 int i; 2431 2432 /* 2433 * Scan the list of DLT_ values, looking for 802.11 values, 2434 * and, if we find any, choose the best of them. 2435 */ 2436 new_dlt = -1; 2437 for (i = 0; i < bdlp->bfl_len; i++) { 2438 switch (bdlp->bfl_list[i]) { 2439 2440 case DLT_IEEE802_11: 2441 /* 2442 * 802.11, but no radio. 2443 * 2444 * Offer this, and select it as the new mode 2445 * unless we've already found an 802.11 2446 * header with radio information. 2447 */ 2448 if (new_dlt == -1) 2449 new_dlt = bdlp->bfl_list[i]; 2450 break; 2451 2452 case DLT_PRISM_HEADER: 2453 case DLT_AIRONET_HEADER: 2454 case DLT_IEEE802_11_RADIO_AVS: 2455 /* 2456 * 802.11 with radio, but not radiotap. 2457 * 2458 * Offer this, and select it as the new mode 2459 * unless we've already found the radiotap DLT_. 2460 */ 2461 if (new_dlt != DLT_IEEE802_11_RADIO) 2462 new_dlt = bdlp->bfl_list[i]; 2463 break; 2464 2465 case DLT_IEEE802_11_RADIO: 2466 /* 2467 * 802.11 with radiotap. 2468 * 2469 * Offer this, and select it as the new mode. 2470 */ 2471 new_dlt = bdlp->bfl_list[i]; 2472 break; 2473 2474 default: 2475 /* 2476 * Not 802.11. 2477 */ 2478 break; 2479 } 2480 } 2481 2482 return (new_dlt); 2483 } 2484 #endif /* defined(BIOCGDLTLIST) && (defined(__APPLE__) || defined(HAVE_BSD_IEEE80211)) */ 2485 2486 #if defined(__APPLE__) && defined(BIOCGDLTLIST) 2487 /* 2488 * Remove DLT_EN10MB from the list of DLT_ values, as we're in monitor mode, 2489 * and DLT_EN10MB isn't supported in monitor mode. 2490 */ 2491 static void 2492 remove_en(pcap_t *p) 2493 { 2494 int i, j; 2495 2496 /* 2497 * Scan the list of DLT_ values and discard DLT_EN10MB. 2498 */ 2499 j = 0; 2500 for (i = 0; i < p->dlt_count; i++) { 2501 switch (p->dlt_list[i]) { 2502 2503 case DLT_EN10MB: 2504 /* 2505 * Don't offer this one. 2506 */ 2507 continue; 2508 2509 default: 2510 /* 2511 * Just copy this mode over. 2512 */ 2513 break; 2514 } 2515 2516 /* 2517 * Copy this DLT_ value to its new position. 2518 */ 2519 p->dlt_list[j] = p->dlt_list[i]; 2520 j++; 2521 } 2522 2523 /* 2524 * Set the DLT_ count to the number of entries we copied. 2525 */ 2526 p->dlt_count = j; 2527 } 2528 2529 /* 2530 * Remove 802.11 link-layer types from the list of DLT_ values, as 2531 * we're not in monitor mode, and those DLT_ values will switch us 2532 * to monitor mode. 2533 */ 2534 static void 2535 remove_802_11(pcap_t *p) 2536 { 2537 int i, j; 2538 2539 /* 2540 * Scan the list of DLT_ values and discard 802.11 values. 2541 */ 2542 j = 0; 2543 for (i = 0; i < p->dlt_count; i++) { 2544 switch (p->dlt_list[i]) { 2545 2546 case DLT_IEEE802_11: 2547 case DLT_PRISM_HEADER: 2548 case DLT_AIRONET_HEADER: 2549 case DLT_IEEE802_11_RADIO: 2550 case DLT_IEEE802_11_RADIO_AVS: 2551 /* 2552 * 802.11. Don't offer this one. 2553 */ 2554 continue; 2555 2556 default: 2557 /* 2558 * Just copy this mode over. 2559 */ 2560 break; 2561 } 2562 2563 /* 2564 * Copy this DLT_ value to its new position. 2565 */ 2566 p->dlt_list[j] = p->dlt_list[i]; 2567 j++; 2568 } 2569 2570 /* 2571 * Set the DLT_ count to the number of entries we copied. 2572 */ 2573 p->dlt_count = j; 2574 } 2575 #endif /* defined(__APPLE__) && defined(BIOCGDLTLIST) */ 2576 2577 static int 2578 pcap_setfilter_bpf(pcap_t *p, struct bpf_program *fp) 2579 { 2580 /* 2581 * Free any user-mode filter we might happen to have installed. 2582 */ 2583 pcap_freecode(&p->fcode); 2584 2585 /* 2586 * Try to install the kernel filter. 2587 */ 2588 if (ioctl(p->fd, BIOCSETF, (caddr_t)fp) == 0) { 2589 /* 2590 * It worked. 2591 */ 2592 p->md.use_bpf = 1; /* filtering in the kernel */ 2593 2594 /* 2595 * Discard any previously-received packets, as they might 2596 * have passed whatever filter was formerly in effect, but 2597 * might not pass this filter (BIOCSETF discards packets 2598 * buffered in the kernel, so you can lose packets in any 2599 * case). 2600 */ 2601 p->cc = 0; 2602 return (0); 2603 } 2604 2605 /* 2606 * We failed. 2607 * 2608 * If it failed with EINVAL, that's probably because the program 2609 * is invalid or too big. Validate it ourselves; if we like it 2610 * (we currently allow backward branches, to support protochain), 2611 * run it in userland. (There's no notion of "too big" for 2612 * userland.) 2613 * 2614 * Otherwise, just give up. 2615 * XXX - if the copy of the program into the kernel failed, 2616 * we will get EINVAL rather than, say, EFAULT on at least 2617 * some kernels. 2618 */ 2619 if (errno != EINVAL) { 2620 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "BIOCSETF: %s", 2621 pcap_strerror(errno)); 2622 return (-1); 2623 } 2624 2625 /* 2626 * install_bpf_program() validates the program. 2627 * 2628 * XXX - what if we already have a filter in the kernel? 2629 */ 2630 if (install_bpf_program(p, fp) < 0) 2631 return (-1); 2632 p->md.use_bpf = 0; /* filtering in userland */ 2633 return (0); 2634 } 2635 2636 /* 2637 * Set direction flag: Which packets do we accept on a forwarding 2638 * single device? IN, OUT or both? 2639 */ 2640 static int 2641 pcap_setdirection_bpf(pcap_t *p, pcap_direction_t d) 2642 { 2643 #if defined(BIOCSDIRECTION) 2644 u_int direction; 2645 2646 direction = (d == PCAP_D_IN) ? BPF_D_IN : 2647 ((d == PCAP_D_OUT) ? BPF_D_OUT : BPF_D_INOUT); 2648 if (ioctl(p->fd, BIOCSDIRECTION, &direction) == -1) { 2649 (void) snprintf(p->errbuf, sizeof(p->errbuf), 2650 "Cannot set direction to %s: %s", 2651 (d == PCAP_D_IN) ? "PCAP_D_IN" : 2652 ((d == PCAP_D_OUT) ? "PCAP_D_OUT" : "PCAP_D_INOUT"), 2653 strerror(errno)); 2654 return (-1); 2655 } 2656 return (0); 2657 #elif defined(BIOCSSEESENT) 2658 u_int seesent; 2659 2660 /* 2661 * We don't support PCAP_D_OUT. 2662 */ 2663 if (d == PCAP_D_OUT) { 2664 snprintf(p->errbuf, sizeof(p->errbuf), 2665 "Setting direction to PCAP_D_OUT is not supported on BPF"); 2666 return -1; 2667 } 2668 2669 seesent = (d == PCAP_D_INOUT); 2670 if (ioctl(p->fd, BIOCSSEESENT, &seesent) == -1) { 2671 (void) snprintf(p->errbuf, sizeof(p->errbuf), 2672 "Cannot set direction to %s: %s", 2673 (d == PCAP_D_INOUT) ? "PCAP_D_INOUT" : "PCAP_D_IN", 2674 strerror(errno)); 2675 return (-1); 2676 } 2677 return (0); 2678 #else 2679 (void) snprintf(p->errbuf, sizeof(p->errbuf), 2680 "This system doesn't support BIOCSSEESENT, so the direction can't be set"); 2681 return (-1); 2682 #endif 2683 } 2684 2685 static int 2686 pcap_set_datalink_bpf(pcap_t *p, int dlt) 2687 { 2688 #ifdef BIOCSDLT 2689 if (ioctl(p->fd, BIOCSDLT, &dlt) == -1) { 2690 (void) snprintf(p->errbuf, sizeof(p->errbuf), 2691 "Cannot set DLT %d: %s", dlt, strerror(errno)); 2692 return (-1); 2693 } 2694 #endif 2695 return (0); 2696 } 2697