xref: /dflybsd-src/contrib/libpcap/gencode.c (revision 97fecd825dd1a70c628493b90a9b1b1724f151df)
1 /*#define CHASE_CHAIN*/
2 /*
3  * Copyright (c) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
4  *	The Regents of the University of California.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that: (1) source code distributions
8  * retain the above copyright notice and this paragraph in its entirety, (2)
9  * distributions including binary code include the above copyright notice and
10  * this paragraph in its entirety in the documentation or other materials
11  * provided with the distribution, and (3) all advertising materials mentioning
12  * features or use of this software display the following acknowledgement:
13  * ``This product includes software developed by the University of California,
14  * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
15  * the University nor the names of its contributors may be used to endorse
16  * or promote products derived from this software without specific prior
17  * written permission.
18  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
19  * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
20  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
21  */
22 #ifndef lint
23 static const char rcsid[] _U_ =
24     "@(#) $Header: /tcpdump/master/libpcap/gencode.c,v 1.221.2.53 2007/09/12 19:17:24 guy Exp $ (LBL)";
25 #endif
26 
27 #ifdef HAVE_CONFIG_H
28 #include "config.h"
29 #endif
30 
31 #ifdef WIN32
32 #include <pcap-stdinc.h>
33 #else /* WIN32 */
34 #include <sys/types.h>
35 #include <sys/socket.h>
36 #endif /* WIN32 */
37 
38 /*
39  * XXX - why was this included even on UNIX?
40  */
41 #ifdef __MINGW32__
42 #include "IP6_misc.h"
43 #endif
44 
45 #ifndef WIN32
46 
47 #ifdef __NetBSD__
48 #include <sys/param.h>
49 #endif
50 
51 #include <netinet/in.h>
52 
53 #endif /* WIN32 */
54 
55 #include <stdlib.h>
56 #include <string.h>
57 #include <memory.h>
58 #include <setjmp.h>
59 #include <stdarg.h>
60 
61 #ifdef MSDOS
62 #include "pcap-dos.h"
63 #endif
64 
65 #include "pcap-int.h"
66 
67 #include "ethertype.h"
68 #include "nlpid.h"
69 #include "llc.h"
70 #include "gencode.h"
71 #include "atmuni31.h"
72 #include "sunatmpos.h"
73 #include "ppp.h"
74 #include "sll.h"
75 #include "arcnet.h"
76 #ifdef HAVE_NET_PFVAR_H
77 #include <sys/socket.h>
78 #include <net/if.h>
79 #include <net/if_var.h>
80 #include <net/pf/pfvar.h>
81 #include <net/pf/if_pflog.h>
82 #endif
83 #ifndef offsetof
84 #define offsetof(s, e) ((size_t)&((s *)0)->e)
85 #endif
86 #ifdef INET6
87 #ifndef WIN32
88 #include <netdb.h>	/* for "struct addrinfo" */
89 #endif /* WIN32 */
90 #endif /*INET6*/
91 #include <pcap-namedb.h>
92 
93 #include <netproto/802_11/ieee80211.h>
94 #include <netproto/802_11/ieee80211_radiotap.h>
95 
96 #define ETHERMTU	1500
97 
98 #ifndef IPPROTO_SCTP
99 #define IPPROTO_SCTP 132
100 #endif
101 
102 #ifdef HAVE_OS_PROTO_H
103 #include "os-proto.h"
104 #endif
105 
106 #define JMP(c) ((c)|BPF_JMP|BPF_K)
107 
108 /* Locals */
109 static jmp_buf top_ctx;
110 static pcap_t *bpf_pcap;
111 
112 #ifdef WIN32
113 /* Hack for updating VLAN, MPLS, and PPPoE offsets. */
114 static u_int	orig_linktype = (u_int)-1, orig_nl = (u_int)-1, label_stack_depth = (u_int)-1;
115 #else
116 static u_int	orig_linktype = -1U, orig_nl = -1U, label_stack_depth = -1U;
117 #endif
118 
119 /* XXX */
120 #ifdef PCAP_FDDIPAD
121 static int	pcap_fddipad;
122 #endif
123 
124 /* VARARGS */
125 void
126 bpf_error(const char *fmt, ...)
127 {
128 	va_list ap;
129 
130 	va_start(ap, fmt);
131 	if (bpf_pcap != NULL)
132 		(void)vsnprintf(pcap_geterr(bpf_pcap), PCAP_ERRBUF_SIZE,
133 		    fmt, ap);
134 	va_end(ap);
135 	longjmp(top_ctx, 1);
136 	/* NOTREACHED */
137 }
138 
139 static void init_linktype(pcap_t *);
140 
141 static int alloc_reg(void);
142 static void free_reg(int);
143 
144 static struct block *root;
145 
146 /*
147  * Value passed to gen_load_a() to indicate what the offset argument
148  * is relative to.
149  */
150 enum e_offrel {
151 	OR_PACKET,	/* relative to the beginning of the packet */
152 	OR_LINK,	/* relative to the link-layer header */
153 	OR_NET,		/* relative to the network-layer header */
154 	OR_NET_NOSNAP,	/* relative to the network-layer header, with no SNAP header at the link layer */
155 	OR_TRAN_IPV4,	/* relative to the transport-layer header, with IPv4 network layer */
156 	OR_TRAN_IPV6	/* relative to the transport-layer header, with IPv6 network layer */
157 };
158 
159 /*
160  * We divy out chunks of memory rather than call malloc each time so
161  * we don't have to worry about leaking memory.  It's probably
162  * not a big deal if all this memory was wasted but if this ever
163  * goes into a library that would probably not be a good idea.
164  *
165  * XXX - this *is* in a library....
166  */
167 #define NCHUNKS 16
168 #define CHUNK0SIZE 1024
169 struct chunk {
170 	u_int n_left;
171 	void *m;
172 };
173 
174 static struct chunk chunks[NCHUNKS];
175 static int cur_chunk;
176 
177 static void *newchunk(u_int);
178 static void freechunks(void);
179 static inline struct block *new_block(int);
180 static inline struct slist *new_stmt(int);
181 static struct block *gen_retblk(int);
182 static inline void syntax(void);
183 
184 static void backpatch(struct block *, struct block *);
185 static void merge(struct block *, struct block *);
186 static struct block *gen_cmp(enum e_offrel, u_int, u_int, bpf_int32);
187 static struct block *gen_cmp_gt(enum e_offrel, u_int, u_int, bpf_int32);
188 static struct block *gen_cmp_ge(enum e_offrel, u_int, u_int, bpf_int32);
189 static struct block *gen_cmp_lt(enum e_offrel, u_int, u_int, bpf_int32);
190 static struct block *gen_cmp_le(enum e_offrel, u_int, u_int, bpf_int32);
191 static struct block *gen_mcmp(enum e_offrel, u_int, u_int, bpf_int32,
192     bpf_u_int32);
193 static struct block *gen_bcmp(enum e_offrel, u_int, u_int, const u_char *);
194 static struct block *gen_ncmp(enum e_offrel, bpf_u_int32, bpf_u_int32,
195     bpf_u_int32, bpf_u_int32, int, bpf_int32);
196 static struct slist *gen_load_llrel(u_int, u_int);
197 static struct slist *gen_load_a(enum e_offrel, u_int, u_int);
198 static struct slist *gen_loadx_iphdrlen(void);
199 static struct block *gen_uncond(int);
200 static inline struct block *gen_true(void);
201 static inline struct block *gen_false(void);
202 static struct block *gen_ether_linktype(int);
203 static struct block *gen_linux_sll_linktype(int);
204 static void insert_radiotap_load_llprefixlen(struct block *);
205 static void insert_ppi_load_llprefixlen(struct block *);
206 static void insert_load_llprefixlen(struct block *);
207 static struct slist *gen_llprefixlen(void);
208 static struct block *gen_linktype(int);
209 static struct block *gen_snap(bpf_u_int32, bpf_u_int32, u_int);
210 static struct block *gen_llc_linktype(int);
211 static struct block *gen_hostop(bpf_u_int32, bpf_u_int32, int, int, u_int, u_int);
212 #ifdef INET6
213 static struct block *gen_hostop6(struct in6_addr *, struct in6_addr *, int, int, u_int, u_int);
214 #endif
215 static struct block *gen_ahostop(const u_char *, int);
216 static struct block *gen_ehostop(const u_char *, int);
217 static struct block *gen_fhostop(const u_char *, int);
218 static struct block *gen_thostop(const u_char *, int);
219 static struct block *gen_wlanhostop(const u_char *, int);
220 static struct block *gen_ipfchostop(const u_char *, int);
221 static struct block *gen_dnhostop(bpf_u_int32, int);
222 static struct block *gen_mpls_linktype(int);
223 static struct block *gen_host(bpf_u_int32, bpf_u_int32, int, int, int);
224 #ifdef INET6
225 static struct block *gen_host6(struct in6_addr *, struct in6_addr *, int, int, int);
226 #endif
227 #ifndef INET6
228 static struct block *gen_gateway(const u_char *, bpf_u_int32 **, int, int);
229 #endif
230 static struct block *gen_ipfrag(void);
231 static struct block *gen_portatom(int, bpf_int32);
232 static struct block *gen_portrangeatom(int, bpf_int32, bpf_int32);
233 #ifdef INET6
234 static struct block *gen_portatom6(int, bpf_int32);
235 static struct block *gen_portrangeatom6(int, bpf_int32, bpf_int32);
236 #endif
237 struct block *gen_portop(int, int, int);
238 static struct block *gen_port(int, int, int);
239 struct block *gen_portrangeop(int, int, int, int);
240 static struct block *gen_portrange(int, int, int, int);
241 #ifdef INET6
242 struct block *gen_portop6(int, int, int);
243 static struct block *gen_port6(int, int, int);
244 struct block *gen_portrangeop6(int, int, int, int);
245 static struct block *gen_portrange6(int, int, int, int);
246 #endif
247 static int lookup_proto(const char *, int);
248 static struct block *gen_protochain(int, int, int);
249 static struct block *gen_proto(int, int, int);
250 static struct slist *xfer_to_x(struct arth *);
251 static struct slist *xfer_to_a(struct arth *);
252 static struct block *gen_mac_multicast(int);
253 static struct block *gen_len(int, int);
254 
255 static struct block *gen_ppi_dlt_check(void);
256 static struct block *gen_msg_abbrev(int type);
257 
258 static void *
259 newchunk(n)
260 	u_int n;
261 {
262 	struct chunk *cp;
263 	int k;
264 	size_t size;
265 
266 #ifndef __NetBSD__
267 	/* XXX Round up to nearest long. */
268 	n = (n + sizeof(long) - 1) & ~(sizeof(long) - 1);
269 #else
270 	/* XXX Round up to structure boundary. */
271 	n = ALIGN(n);
272 #endif
273 
274 	cp = &chunks[cur_chunk];
275 	if (n > cp->n_left) {
276 		++cp, k = ++cur_chunk;
277 		if (k >= NCHUNKS)
278 			bpf_error("out of memory");
279 		size = CHUNK0SIZE << k;
280 		cp->m = (void *)malloc(size);
281 		if (cp->m == NULL)
282 			bpf_error("out of memory");
283 		memset((char *)cp->m, 0, size);
284 		cp->n_left = size;
285 		if (n > size)
286 			bpf_error("out of memory");
287 	}
288 	cp->n_left -= n;
289 	return (void *)((char *)cp->m + cp->n_left);
290 }
291 
292 static void
293 freechunks()
294 {
295 	int i;
296 
297 	cur_chunk = 0;
298 	for (i = 0; i < NCHUNKS; ++i)
299 		if (chunks[i].m != NULL) {
300 			free(chunks[i].m);
301 			chunks[i].m = NULL;
302 		}
303 }
304 
305 /*
306  * A strdup whose allocations are freed after code generation is over.
307  */
308 char *
309 sdup(s)
310 	register const char *s;
311 {
312 	int n = strlen(s) + 1;
313 	char *cp = newchunk(n);
314 
315 	strlcpy(cp, s, n);
316 	return (cp);
317 }
318 
319 static inline struct block *
320 new_block(code)
321 	int code;
322 {
323 	struct block *p;
324 
325 	p = (struct block *)newchunk(sizeof(*p));
326 	p->s.code = code;
327 	p->head = p;
328 
329 	return p;
330 }
331 
332 static inline struct slist *
333 new_stmt(code)
334 	int code;
335 {
336 	struct slist *p;
337 
338 	p = (struct slist *)newchunk(sizeof(*p));
339 	p->s.code = code;
340 
341 	return p;
342 }
343 
344 static struct block *
345 gen_retblk(v)
346 	int v;
347 {
348 	struct block *b = new_block(BPF_RET|BPF_K);
349 
350 	b->s.k = v;
351 	return b;
352 }
353 
354 static inline void
355 syntax()
356 {
357 	bpf_error("syntax error in filter expression");
358 }
359 
360 static bpf_u_int32 netmask;
361 static int snaplen;
362 int no_optimize;
363 
364 int
365 pcap_compile(pcap_t *p, struct bpf_program *program,
366 	     const char *buf, int optimize, bpf_u_int32 mask)
367 {
368 	extern int n_errors;
369 	const char * volatile xbuf = buf;
370 	int len;
371 
372 	no_optimize = 0;
373 	n_errors = 0;
374 	root = NULL;
375 	bpf_pcap = p;
376 	if (setjmp(top_ctx)) {
377 		lex_cleanup();
378 		freechunks();
379 		return (-1);
380 	}
381 
382 	netmask = mask;
383 
384 	snaplen = pcap_snapshot(p);
385 	if (snaplen == 0) {
386 		snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
387 			 "snaplen of 0 rejects all packets");
388 		return -1;
389 	}
390 
391 	lex_init(xbuf ? xbuf : "");
392 	init_linktype(p);
393 	(void)pcap_parse();
394 
395 	if (n_errors)
396 		syntax();
397 
398 	if (root == NULL)
399 		root = gen_retblk(snaplen);
400 
401 	if (optimize && !no_optimize) {
402 		bpf_optimize(&root);
403 		if (root == NULL ||
404 		    (root->s.code == (BPF_RET|BPF_K) && root->s.k == 0))
405 			bpf_error("expression rejects all packets");
406 	}
407 	program->bf_insns = icode_to_fcode(root, &len);
408 	program->bf_len = len;
409 
410 	lex_cleanup();
411 	freechunks();
412 	return (0);
413 }
414 
415 /*
416  * entry point for using the compiler with no pcap open
417  * pass in all the stuff that is needed explicitly instead.
418  */
419 int
420 pcap_compile_nopcap(int snaplen_arg, int linktype_arg,
421 		    struct bpf_program *program,
422 	     const char *buf, int optimize, bpf_u_int32 mask)
423 {
424 	pcap_t *p;
425 	int ret;
426 
427 	p = pcap_open_dead(linktype_arg, snaplen_arg);
428 	if (p == NULL)
429 		return (-1);
430 	ret = pcap_compile(p, program, buf, optimize, mask);
431 	pcap_close(p);
432 	return (ret);
433 }
434 
435 /*
436  * Clean up a "struct bpf_program" by freeing all the memory allocated
437  * in it.
438  */
439 void
440 pcap_freecode(struct bpf_program *program)
441 {
442 	program->bf_len = 0;
443 	if (program->bf_insns != NULL) {
444 		free((char *)program->bf_insns);
445 		program->bf_insns = NULL;
446 	}
447 }
448 
449 /*
450  * Backpatch the blocks in 'list' to 'target'.  The 'sense' field indicates
451  * which of the jt and jf fields has been resolved and which is a pointer
452  * back to another unresolved block (or nil).  At least one of the fields
453  * in each block is already resolved.
454  */
455 static void
456 backpatch(list, target)
457 	struct block *list, *target;
458 {
459 	struct block *next;
460 
461 	while (list) {
462 		if (!list->sense) {
463 			next = JT(list);
464 			JT(list) = target;
465 		} else {
466 			next = JF(list);
467 			JF(list) = target;
468 		}
469 		list = next;
470 	}
471 }
472 
473 /*
474  * Merge the lists in b0 and b1, using the 'sense' field to indicate
475  * which of jt and jf is the link.
476  */
477 static void
478 merge(b0, b1)
479 	struct block *b0, *b1;
480 {
481 	register struct block **p = &b0;
482 
483 	/* Find end of list. */
484 	while (*p)
485 		p = !((*p)->sense) ? &JT(*p) : &JF(*p);
486 
487 	/* Concatenate the lists. */
488 	*p = b1;
489 }
490 
491 
492 void
493 finish_parse(p)
494 	struct block *p;
495 {
496 	struct block *ppi_dlt_check;
497 
498 	ppi_dlt_check = gen_ppi_dlt_check();
499 
500 	if (ppi_dlt_check != NULL)
501 	{
502 		gen_and(ppi_dlt_check, p);
503 	}
504 
505 	backpatch(p, gen_retblk(snaplen));
506 	p->sense = !p->sense;
507 	backpatch(p, gen_retblk(0));
508 	root = p->head;
509 
510 	/*
511 	 * Insert before the statements of the first (root) block any
512 	 * statements needed to load the lengths of any variable-length
513 	 * headers into registers.
514 	 *
515 	 * XXX - a fancier strategy would be to insert those before the
516 	 * statements of all blocks that use those lengths and that
517 	 * have no predecessors that use them, so that we only compute
518 	 * the lengths if we need them.  There might be even better
519 	 * approaches than that.  However, as we're currently only
520 	 * handling variable-length radiotap headers, and as all
521 	 * filtering expressions other than raw link[M:N] tests
522 	 * require the length of that header, doing more for that
523 	 * header length isn't really worth the effort.
524 	 */
525 
526 	insert_load_llprefixlen(root);
527 }
528 
529 void
530 gen_and(b0, b1)
531 	struct block *b0, *b1;
532 {
533 	backpatch(b0, b1->head);
534 	b0->sense = !b0->sense;
535 	b1->sense = !b1->sense;
536 	merge(b1, b0);
537 	b1->sense = !b1->sense;
538 	b1->head = b0->head;
539 }
540 
541 void
542 gen_or(b0, b1)
543 	struct block *b0, *b1;
544 {
545 	b0->sense = !b0->sense;
546 	backpatch(b0, b1->head);
547 	b0->sense = !b0->sense;
548 	merge(b1, b0);
549 	b1->head = b0->head;
550 }
551 
552 void
553 gen_not(b)
554 	struct block *b;
555 {
556 	b->sense = !b->sense;
557 }
558 
559 static struct block *
560 gen_cmp(offrel, offset, size, v)
561 	enum e_offrel offrel;
562 	u_int offset, size;
563 	bpf_int32 v;
564 {
565 	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JEQ, 0, v);
566 }
567 
568 static struct block *
569 gen_cmp_gt(offrel, offset, size, v)
570 	enum e_offrel offrel;
571 	u_int offset, size;
572 	bpf_int32 v;
573 {
574 	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGT, 0, v);
575 }
576 
577 static struct block *
578 gen_cmp_ge(offrel, offset, size, v)
579 	enum e_offrel offrel;
580 	u_int offset, size;
581 	bpf_int32 v;
582 {
583 	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGE, 0, v);
584 }
585 
586 static struct block *
587 gen_cmp_lt(offrel, offset, size, v)
588 	enum e_offrel offrel;
589 	u_int offset, size;
590 	bpf_int32 v;
591 {
592 	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGE, 1, v);
593 }
594 
595 static struct block *
596 gen_cmp_le(offrel, offset, size, v)
597 	enum e_offrel offrel;
598 	u_int offset, size;
599 	bpf_int32 v;
600 {
601 	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGT, 1, v);
602 }
603 
604 static struct block *
605 gen_mcmp(offrel, offset, size, v, mask)
606 	enum e_offrel offrel;
607 	u_int offset, size;
608 	bpf_int32 v;
609 	bpf_u_int32 mask;
610 {
611 	return gen_ncmp(offrel, offset, size, mask, BPF_JEQ, 0, v);
612 }
613 
614 static struct block *
615 gen_bcmp(offrel, offset, size, v)
616 	enum e_offrel offrel;
617 	register u_int offset, size;
618 	register const u_char *v;
619 {
620 	register struct block *b, *tmp;
621 
622 	b = NULL;
623 	while (size >= 4) {
624 		register const u_char *p = &v[size - 4];
625 		bpf_int32 w = ((bpf_int32)p[0] << 24) |
626 		    ((bpf_int32)p[1] << 16) | ((bpf_int32)p[2] << 8) | p[3];
627 
628 		tmp = gen_cmp(offrel, offset + size - 4, BPF_W, w);
629 		if (b != NULL)
630 			gen_and(b, tmp);
631 		b = tmp;
632 		size -= 4;
633 	}
634 	while (size >= 2) {
635 		register const u_char *p = &v[size - 2];
636 		bpf_int32 w = ((bpf_int32)p[0] << 8) | p[1];
637 
638 		tmp = gen_cmp(offrel, offset + size - 2, BPF_H, w);
639 		if (b != NULL)
640 			gen_and(b, tmp);
641 		b = tmp;
642 		size -= 2;
643 	}
644 	if (size > 0) {
645 		tmp = gen_cmp(offrel, offset, BPF_B, (bpf_int32)v[0]);
646 		if (b != NULL)
647 			gen_and(b, tmp);
648 		b = tmp;
649 	}
650 	return b;
651 }
652 
653 /*
654  * AND the field of size "size" at offset "offset" relative to the header
655  * specified by "offrel" with "mask", and compare it with the value "v"
656  * with the test specified by "jtype"; if "reverse" is true, the test
657  * should test the opposite of "jtype".
658  */
659 static struct block *
660 gen_ncmp(offrel, offset, size, mask, jtype, reverse, v)
661 	enum e_offrel offrel;
662 	bpf_int32 v;
663 	bpf_u_int32 offset, size, mask, jtype;
664 	int reverse;
665 {
666 	struct slist *s, *s2;
667 	struct block *b;
668 
669 	s = gen_load_a(offrel, offset, size);
670 
671 	if (mask != 0xffffffff) {
672 		s2 = new_stmt(BPF_ALU|BPF_AND|BPF_K);
673 		s2->s.k = mask;
674 		sappend(s, s2);
675 	}
676 
677 	b = new_block(JMP(jtype));
678 	b->stmts = s;
679 	b->s.k = v;
680 	if (reverse && (jtype == BPF_JGT || jtype == BPF_JGE))
681 		gen_not(b);
682 	return b;
683 }
684 
685 /*
686  * Various code constructs need to know the layout of the data link
687  * layer.  These variables give the necessary offsets from the beginning
688  * of the packet data.
689  *
690  * If the link layer has variable_length headers, the offsets are offsets
691  * from the end of the link-link-layer header, and "reg_ll_size" is
692  * the register number for a register containing the length of the
693  * link-layer header.  Otherwise, "reg_ll_size" is -1.
694  */
695 static int reg_ll_size;
696 
697 /*
698  * This is the offset of the beginning of the link-layer header from
699  * the beginning of the raw packet data.
700  *
701  * It's usually 0, except for 802.11 with a fixed-length radio header.
702  * (For 802.11 with a variable-length radio header, we have to generate
703  * code to compute that offset; off_ll is 0 in that case.)
704  */
705 static u_int off_ll;
706 
707 /*
708  * This is the offset of the beginning of the MAC-layer header.
709  * It's usually 0, except for ATM LANE, where it's the offset, relative
710  * to the beginning of the raw packet data, of the Ethernet header.
711  */
712 static u_int off_mac;
713 
714 /*
715  * "off_linktype" is the offset to information in the link-layer header
716  * giving the packet type.  This offset is relative to the beginning
717  * of the link-layer header (i.e., it doesn't include off_ll).
718  *
719  * For Ethernet, it's the offset of the Ethernet type field.
720  *
721  * For link-layer types that always use 802.2 headers, it's the
722  * offset of the LLC header.
723  *
724  * For PPP, it's the offset of the PPP type field.
725  *
726  * For Cisco HDLC, it's the offset of the CHDLC type field.
727  *
728  * For BSD loopback, it's the offset of the AF_ value.
729  *
730  * For Linux cooked sockets, it's the offset of the type field.
731  *
732  * It's set to -1 for no encapsulation, in which case, IP is assumed.
733  */
734 static u_int off_linktype;
735 
736 /*
737  * TRUE if the link layer includes an ATM pseudo-header.
738  */
739 static int is_atm = 0;
740 
741 /*
742  * TRUE if "lane" appeared in the filter; it causes us to generate
743  * code that assumes LANE rather than LLC-encapsulated traffic in SunATM.
744  */
745 static int is_lane = 0;
746 
747 /*
748  * These are offsets for the ATM pseudo-header.
749  */
750 static u_int off_vpi;
751 static u_int off_vci;
752 static u_int off_proto;
753 
754 /*
755  * These are offsets for the MTP2 fields.
756  */
757 static u_int off_li;
758 
759 /*
760  * These are offsets for the MTP3 fields.
761  */
762 static u_int off_sio;
763 static u_int off_opc;
764 static u_int off_dpc;
765 static u_int off_sls;
766 
767 /*
768  * This is the offset of the first byte after the ATM pseudo_header,
769  * or -1 if there is no ATM pseudo-header.
770  */
771 static u_int off_payload;
772 
773 /*
774  * These are offsets to the beginning of the network-layer header.
775  * They are relative to the beginning of the link-layer header (i.e.,
776  * they don't include off_ll).
777  *
778  * If the link layer never uses 802.2 LLC:
779  *
780  *	"off_nl" and "off_nl_nosnap" are the same.
781  *
782  * If the link layer always uses 802.2 LLC:
783  *
784  *	"off_nl" is the offset if there's a SNAP header following
785  *	the 802.2 header;
786  *
787  *	"off_nl_nosnap" is the offset if there's no SNAP header.
788  *
789  * If the link layer is Ethernet:
790  *
791  *	"off_nl" is the offset if the packet is an Ethernet II packet
792  *	(we assume no 802.3+802.2+SNAP);
793  *
794  *	"off_nl_nosnap" is the offset if the packet is an 802.3 packet
795  *	with an 802.2 header following it.
796  */
797 static u_int off_nl;
798 static u_int off_nl_nosnap;
799 
800 static int linktype;
801 
802 static void
803 init_linktype(p)
804 	pcap_t *p;
805 {
806 	linktype = pcap_datalink(p);
807 #ifdef PCAP_FDDIPAD
808 	pcap_fddipad = p->fddipad;
809 #endif
810 
811 	/*
812 	 * Assume it's not raw ATM with a pseudo-header, for now.
813 	 */
814 	off_mac = 0;
815 	is_atm = 0;
816 	is_lane = 0;
817 	off_vpi = -1;
818 	off_vci = -1;
819 	off_proto = -1;
820 	off_payload = -1;
821 
822 	/*
823 	 * And assume we're not doing SS7.
824 	 */
825 	off_li = -1;
826 	off_sio = -1;
827 	off_opc = -1;
828 	off_dpc = -1;
829 	off_sls = -1;
830 
831 	/*
832 	 * Also assume it's not 802.11 with a fixed-length radio header.
833 	 */
834 	off_ll = 0;
835 
836 	orig_linktype = -1;
837 	orig_nl = -1;
838         label_stack_depth = 0;
839 
840 	reg_ll_size = -1;
841 
842 	switch (linktype) {
843 
844 	case DLT_ARCNET:
845 		off_linktype = 2;
846 		off_nl = 6;		/* XXX in reality, variable! */
847 		off_nl_nosnap = 6;	/* no 802.2 LLC */
848 		return;
849 
850 	case DLT_ARCNET_LINUX:
851 		off_linktype = 4;
852 		off_nl = 8;		/* XXX in reality, variable! */
853 		off_nl_nosnap = 8;	/* no 802.2 LLC */
854 		return;
855 
856 	case DLT_EN10MB:
857 		off_linktype = 12;
858 		off_nl = 14;		/* Ethernet II */
859 		off_nl_nosnap = 17;	/* 802.3+802.2 */
860 		return;
861 
862 	case DLT_SLIP:
863 		/*
864 		 * SLIP doesn't have a link level type.  The 16 byte
865 		 * header is hacked into our SLIP driver.
866 		 */
867 		off_linktype = -1;
868 		off_nl = 16;
869 		off_nl_nosnap = 16;	/* no 802.2 LLC */
870 		return;
871 
872 	case DLT_SLIP_BSDOS:
873 		/* XXX this may be the same as the DLT_PPP_BSDOS case */
874 		off_linktype = -1;
875 		/* XXX end */
876 		off_nl = 24;
877 		off_nl_nosnap = 24;	/* no 802.2 LLC */
878 		return;
879 
880 	case DLT_NULL:
881 	case DLT_LOOP:
882 		off_linktype = 0;
883 		off_nl = 4;
884 		off_nl_nosnap = 4;	/* no 802.2 LLC */
885 		return;
886 
887 	case DLT_ENC:
888 		off_linktype = 0;
889 		off_nl = 12;
890 		off_nl_nosnap = 12;	/* no 802.2 LLC */
891 		return;
892 
893 	case DLT_PPP:
894 	case DLT_PPP_PPPD:
895 	case DLT_C_HDLC:		/* BSD/OS Cisco HDLC */
896 	case DLT_PPP_SERIAL:		/* NetBSD sync/async serial PPP */
897 		off_linktype = 2;
898 		off_nl = 4;
899 		off_nl_nosnap = 4;	/* no 802.2 LLC */
900 		return;
901 
902 	case DLT_PPP_ETHER:
903 		/*
904 		 * This does no include the Ethernet header, and
905 		 * only covers session state.
906 		 */
907 		off_linktype = 6;
908 		off_nl = 8;
909 		off_nl_nosnap = 8;	/* no 802.2 LLC */
910 		return;
911 
912 	case DLT_PPP_BSDOS:
913 		off_linktype = 5;
914 		off_nl = 24;
915 		off_nl_nosnap = 24;	/* no 802.2 LLC */
916 		return;
917 
918 	case DLT_FDDI:
919 		/*
920 		 * FDDI doesn't really have a link-level type field.
921 		 * We set "off_linktype" to the offset of the LLC header.
922 		 *
923 		 * To check for Ethernet types, we assume that SSAP = SNAP
924 		 * is being used and pick out the encapsulated Ethernet type.
925 		 * XXX - should we generate code to check for SNAP?
926 		 */
927 		off_linktype = 13;
928 #ifdef PCAP_FDDIPAD
929 		off_linktype += pcap_fddipad;
930 #endif
931 		off_nl = 21;		/* FDDI+802.2+SNAP */
932 		off_nl_nosnap = 16;	/* FDDI+802.2 */
933 #ifdef PCAP_FDDIPAD
934 		off_nl += pcap_fddipad;
935 		off_nl_nosnap += pcap_fddipad;
936 #endif
937 		return;
938 
939 	case DLT_IEEE802:
940 		/*
941 		 * Token Ring doesn't really have a link-level type field.
942 		 * We set "off_linktype" to the offset of the LLC header.
943 		 *
944 		 * To check for Ethernet types, we assume that SSAP = SNAP
945 		 * is being used and pick out the encapsulated Ethernet type.
946 		 * XXX - should we generate code to check for SNAP?
947 		 *
948 		 * XXX - the header is actually variable-length.
949 		 * Some various Linux patched versions gave 38
950 		 * as "off_linktype" and 40 as "off_nl"; however,
951 		 * if a token ring packet has *no* routing
952 		 * information, i.e. is not source-routed, the correct
953 		 * values are 20 and 22, as they are in the vanilla code.
954 		 *
955 		 * A packet is source-routed iff the uppermost bit
956 		 * of the first byte of the source address, at an
957 		 * offset of 8, has the uppermost bit set.  If the
958 		 * packet is source-routed, the total number of bytes
959 		 * of routing information is 2 plus bits 0x1F00 of
960 		 * the 16-bit value at an offset of 14 (shifted right
961 		 * 8 - figure out which byte that is).
962 		 */
963 		off_linktype = 14;
964 		off_nl = 22;		/* Token Ring+802.2+SNAP */
965 		off_nl_nosnap = 17;	/* Token Ring+802.2 */
966 		return;
967 
968 	case DLT_IEEE802_11:
969 		/*
970 		 * 802.11 doesn't really have a link-level type field.
971 		 * We set "off_linktype" to the offset of the LLC header.
972 		 *
973 		 * To check for Ethernet types, we assume that SSAP = SNAP
974 		 * is being used and pick out the encapsulated Ethernet type.
975 		 * XXX - should we generate code to check for SNAP?
976 		 *
977 		 * XXX - the header is actually variable-length.  We
978 		 * assume a 24-byte link-layer header, as appears in
979 		 * data frames in networks with no bridges.  If the
980 		 * fromds and tods 802.11 header bits are both set,
981 		 * it's actually supposed to be 30 bytes.
982 		 */
983 		off_linktype = 24;
984 		off_nl = 32;		/* 802.11+802.2+SNAP */
985 		off_nl_nosnap = 27;	/* 802.11+802.2 */
986 		return;
987 
988 	case DLT_PRISM_HEADER:
989 		/*
990 		 * Same as 802.11, but with an additional header before
991 		 * the 802.11 header, containing a bunch of additional
992 		 * information including radio-level information.
993 		 *
994 		 * The header is 144 bytes long.
995 		 *
996 		 * XXX - same variable-length header problem; at least
997 		 * the Prism header is fixed-length.
998 		 */
999 		off_ll = 144;
1000 		off_linktype = 24;
1001 		off_nl = 32;	/* Prism+802.11+802.2+SNAP */
1002 		off_nl_nosnap = 27;	/* Prism+802.11+802.2 */
1003 		return;
1004 
1005 	case DLT_IEEE802_11_RADIO_AVS:
1006 		/*
1007 		 * Same as 802.11, but with an additional header before
1008 		 * the 802.11 header, containing a bunch of additional
1009 		 * information including radio-level information.
1010 		 *
1011 		 * The header is 64 bytes long, at least in its
1012 		 * current incarnation.
1013 		 *
1014 		 * XXX - same variable-length header problem, only
1015 		 * more so; this header is also variable-length,
1016 		 * with the length being the 32-bit big-endian
1017 		 * number at an offset of 4 from the beginning
1018 		 * of the radio header.  We should handle that the
1019 		 * same way we handle the length at the beginning
1020 		 * of the radiotap header.
1021 		 *
1022 		 * XXX - in Linux, do any drivers that supply an AVS
1023 		 * header supply a link-layer type other than
1024 		 * ARPHRD_IEEE80211_PRISM?  If so, we should map that
1025 		 * to DLT_IEEE802_11_RADIO_AVS; if not, or if there are
1026 		 * any drivers that supply an AVS header but supply
1027 		 * an ARPHRD value of ARPHRD_IEEE80211_PRISM, we'll
1028 		 * have to check the header in the generated code to
1029 		 * determine whether it's Prism or AVS.
1030 		 */
1031 		off_ll = 64;
1032 		off_linktype = 24;
1033 		off_nl = 32;		/* Radio+802.11+802.2+SNAP */
1034 		off_nl_nosnap = 27;	/* Radio+802.11+802.2 */
1035 		return;
1036 
1037 
1038 		/*
1039 		 * At the moment we treat PPI as normal Radiotap encoded
1040 		 * packets. The difference is in the function that generates
1041 		 * the code at the beginning to compute the header length.
1042 		 * Since this code generator of PPI supports bare 802.11
1043 		 * encapsulation only (i.e. the encapsulated DLT should be
1044 		 * DLT_IEEE802_11) we generate code to check for this too.
1045 		 */
1046 	case DLT_PPI:
1047 	case DLT_IEEE802_11_RADIO:
1048 		/*
1049 		 * Same as 802.11, but with an additional header before
1050 		 * the 802.11 header, containing a bunch of additional
1051 		 * information including radio-level information.
1052 		 *
1053 		 * The radiotap header is variable length, and we
1054 		 * generate code to compute its length and store it
1055 		 * in a register.  These offsets are relative to the
1056 		 * beginning of the 802.11 header.
1057 		 */
1058 		off_linktype = 24;
1059 		off_nl = 32;		/* 802.11+802.2+SNAP */
1060 		off_nl_nosnap = 27;	/* 802.11+802.2 */
1061 		return;
1062 
1063 	case DLT_ATM_RFC1483:
1064 	case DLT_ATM_CLIP:	/* Linux ATM defines this */
1065 		/*
1066 		 * assume routed, non-ISO PDUs
1067 		 * (i.e., LLC = 0xAA-AA-03, OUT = 0x00-00-00)
1068 		 *
1069 		 * XXX - what about ISO PDUs, e.g. CLNP, ISIS, ESIS,
1070 		 * or PPP with the PPP NLPID (e.g., PPPoA)?  The
1071 		 * latter would presumably be treated the way PPPoE
1072 		 * should be, so you can do "pppoe and udp port 2049"
1073 		 * or "pppoa and tcp port 80" and have it check for
1074 		 * PPPo{A,E} and a PPP protocol of IP and....
1075 		 */
1076 		off_linktype = 0;
1077 		off_nl = 8;		/* 802.2+SNAP */
1078 		off_nl_nosnap = 3;	/* 802.2 */
1079 		return;
1080 
1081 	case DLT_SUNATM:
1082 		/*
1083 		 * Full Frontal ATM; you get AALn PDUs with an ATM
1084 		 * pseudo-header.
1085 		 */
1086 		is_atm = 1;
1087 		off_vpi = SUNATM_VPI_POS;
1088 		off_vci = SUNATM_VCI_POS;
1089 		off_proto = PROTO_POS;
1090 		off_mac = -1;	/* LLC-encapsulated, so no MAC-layer header */
1091 		off_payload = SUNATM_PKT_BEGIN_POS;
1092 		off_linktype = off_payload;
1093 		off_nl = off_payload+8;		/* 802.2+SNAP */
1094 		off_nl_nosnap = off_payload+3;	/* 802.2 */
1095 		return;
1096 
1097 	case DLT_RAW:
1098 		off_linktype = -1;
1099 		off_nl = 0;
1100 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1101 		return;
1102 
1103 	case DLT_LINUX_SLL:	/* fake header for Linux cooked socket */
1104 		off_linktype = 14;
1105 		off_nl = 16;
1106 		off_nl_nosnap = 16;	/* no 802.2 LLC */
1107 		return;
1108 
1109 	case DLT_LTALK:
1110 		/*
1111 		 * LocalTalk does have a 1-byte type field in the LLAP header,
1112 		 * but really it just indicates whether there is a "short" or
1113 		 * "long" DDP packet following.
1114 		 */
1115 		off_linktype = -1;
1116 		off_nl = 0;
1117 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1118 		return;
1119 
1120 	case DLT_IP_OVER_FC:
1121 		/*
1122 		 * RFC 2625 IP-over-Fibre-Channel doesn't really have a
1123 		 * link-level type field.  We set "off_linktype" to the
1124 		 * offset of the LLC header.
1125 		 *
1126 		 * To check for Ethernet types, we assume that SSAP = SNAP
1127 		 * is being used and pick out the encapsulated Ethernet type.
1128 		 * XXX - should we generate code to check for SNAP? RFC
1129 		 * 2625 says SNAP should be used.
1130 		 */
1131 		off_linktype = 16;
1132 		off_nl = 24;		/* IPFC+802.2+SNAP */
1133 		off_nl_nosnap = 19;	/* IPFC+802.2 */
1134 		return;
1135 
1136 	case DLT_FRELAY:
1137 		/*
1138 		 * XXX - we should set this to handle SNAP-encapsulated
1139 		 * frames (NLPID of 0x80).
1140 		 */
1141 		off_linktype = -1;
1142 		off_nl = 0;
1143 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1144 		return;
1145 
1146                 /*
1147                  * the only BPF-interesting FRF.16 frames are non-control frames;
1148                  * Frame Relay has a variable length link-layer
1149                  * so lets start with offset 4 for now and increments later on (FIXME);
1150                  */
1151 	case DLT_MFR:
1152 		off_linktype = -1;
1153 		off_nl = 4;
1154 		off_nl_nosnap = 0;	/* XXX - for now -> no 802.2 LLC */
1155 		return;
1156 
1157 	case DLT_APPLE_IP_OVER_IEEE1394:
1158 		off_linktype = 16;
1159 		off_nl = 18;
1160 		off_nl_nosnap = 18;	/* no 802.2 LLC */
1161 		return;
1162 
1163 	case DLT_LINUX_IRDA:
1164 		/*
1165 		 * Currently, only raw "link[N:M]" filtering is supported.
1166 		 */
1167 		off_linktype = -1;
1168 		off_nl = -1;
1169 		off_nl_nosnap = -1;
1170 		return;
1171 
1172 	case DLT_DOCSIS:
1173 		/*
1174 		 * Currently, only raw "link[N:M]" filtering is supported.
1175 		 */
1176 		off_linktype = -1;
1177 		off_nl = -1;
1178 		off_nl_nosnap = -1;
1179 		return;
1180 
1181 	case DLT_SYMANTEC_FIREWALL:
1182 		off_linktype = 6;
1183 		off_nl = 44;		/* Ethernet II */
1184 		off_nl_nosnap = 44;	/* XXX - what does it do with 802.3 packets? */
1185 		return;
1186 
1187 #ifdef HAVE_NET_PFVAR_H
1188 	case DLT_PFLOG:
1189 		off_linktype = 0;
1190 		off_nl = PFLOG_HDRLEN;
1191 		off_nl_nosnap = PFLOG_HDRLEN;	/* no 802.2 LLC */
1192 		return;
1193 #endif
1194 
1195         case DLT_JUNIPER_MFR:
1196         case DLT_JUNIPER_MLFR:
1197         case DLT_JUNIPER_MLPPP:
1198         case DLT_JUNIPER_PPP:
1199         case DLT_JUNIPER_CHDLC:
1200         case DLT_JUNIPER_FRELAY:
1201                 off_linktype = 4;
1202 		off_nl = 4;
1203 		off_nl_nosnap = -1;	/* no 802.2 LLC */
1204                 return;
1205 
1206 	case DLT_JUNIPER_ATM1:
1207 		off_linktype = 4; /* in reality variable between 4-8 */
1208 		off_nl = 4;
1209 		off_nl_nosnap = 14;
1210 		return;
1211 
1212 	case DLT_JUNIPER_ATM2:
1213 		off_linktype = 8; /* in reality variable between 8-12 */
1214 		off_nl = 8;
1215 		off_nl_nosnap = 18;
1216 		return;
1217 
1218 		/* frames captured on a Juniper PPPoE service PIC
1219 		 * contain raw ethernet frames */
1220 	case DLT_JUNIPER_PPPOE:
1221         case DLT_JUNIPER_ETHER:
1222 		off_linktype = 16;
1223 		off_nl = 18;		/* Ethernet II */
1224 		off_nl_nosnap = 21;	/* 802.3+802.2 */
1225 		return;
1226 
1227 	case DLT_JUNIPER_PPPOE_ATM:
1228 		off_linktype = 4;
1229 		off_nl = 6;
1230 		off_nl_nosnap = -1;	 /* no 802.2 LLC */
1231 		return;
1232 
1233 	case DLT_JUNIPER_GGSN:
1234 		off_linktype = 6;
1235 		off_nl = 12;
1236 		off_nl_nosnap = -1;	 /* no 802.2 LLC */
1237 		return;
1238 
1239 	case DLT_JUNIPER_ES:
1240 		off_linktype = 6;
1241 		off_nl = -1;		/* not really a network layer but raw IP adresses */
1242 		off_nl_nosnap = -1;	/* no 802.2 LLC */
1243 		return;
1244 
1245 	case DLT_JUNIPER_MONITOR:
1246 		off_linktype = 12;
1247 		off_nl = 12;		/* raw IP/IP6 header */
1248 		off_nl_nosnap = -1;	/* no 802.2 LLC */
1249 		return;
1250 
1251 	case DLT_JUNIPER_SERVICES:
1252 		off_linktype = 12;
1253 		off_nl = -1;		/* L3 proto location dep. on cookie type */
1254 		off_nl_nosnap = -1;	/* no 802.2 LLC */
1255 		return;
1256 
1257 	case DLT_JUNIPER_VP:
1258 		off_linktype = 18;
1259 		off_nl = -1;
1260 		off_nl_nosnap = -1;
1261 		return;
1262 
1263 	case DLT_MTP2:
1264 		off_li = 2;
1265 		off_sio = 3;
1266 		off_opc = 4;
1267 		off_dpc = 4;
1268 		off_sls = 7;
1269 		off_linktype = -1;
1270 		off_nl = -1;
1271 		off_nl_nosnap = -1;
1272 		return;
1273 
1274 	case DLT_MTP2_WITH_PHDR:
1275 		off_li = 6;
1276 		off_sio = 7;
1277 		off_opc = 8;
1278 		off_dpc = 8;
1279 		off_sls = 11;
1280 		off_linktype = -1;
1281 		off_nl = -1;
1282 		off_nl_nosnap = -1;
1283 		return;
1284 
1285 #ifdef DLT_PFSYNC
1286 	case DLT_PFSYNC:
1287 		off_linktype = -1;
1288 		off_nl = 4;
1289 		off_nl_nosnap = 4;
1290 		return;
1291 #endif
1292 
1293 	case DLT_LINUX_LAPD:
1294 		/*
1295 		 * Currently, only raw "link[N:M]" filtering is supported.
1296 		 */
1297 		off_linktype = -1;
1298 		off_nl = -1;
1299 		off_nl_nosnap = -1;
1300 		return;
1301 
1302 	case DLT_USB:
1303 		/*
1304 		 * Currently, only raw "link[N:M]" filtering is supported.
1305 		 */
1306 		off_linktype = -1;
1307 		off_nl = -1;
1308 		off_nl_nosnap = -1;
1309 		return;
1310 
1311 	case DLT_BLUETOOTH_HCI_H4:
1312 		/*
1313 		 * Currently, only raw "link[N:M]" filtering is supported.
1314 		 */
1315 		off_linktype = -1;
1316 		off_nl = -1;
1317 		off_nl_nosnap = -1;
1318 		return;
1319 	}
1320 	bpf_error("unknown data link type %d", linktype);
1321 	/* NOTREACHED */
1322 }
1323 
1324 /*
1325  * Load a value relative to the beginning of the link-layer header.
1326  * The link-layer header doesn't necessarily begin at the beginning
1327  * of the packet data; there might be a variable-length prefix containing
1328  * radio information.
1329  */
1330 static struct slist *
1331 gen_load_llrel(offset, size)
1332 	u_int offset, size;
1333 {
1334 	struct slist *s, *s2;
1335 
1336 	s = gen_llprefixlen();
1337 
1338 	/*
1339 	 * If "s" is non-null, it has code to arrange that the X register
1340 	 * contains the length of the prefix preceding the link-layer
1341 	 * header.
1342 	 *
1343 	 * Otherwise, the length of the prefix preceding the link-layer
1344 	 * header is "off_ll".
1345 	 */
1346 	if (s != NULL) {
1347 		/*
1348 		 * There's a variable-length prefix preceding the
1349 		 * link-layer header.  "s" points to a list of statements
1350 		 * that put the length of that prefix into the X register.
1351 		 * do an indirect load, to use the X register as an offset.
1352 		 */
1353 		s2 = new_stmt(BPF_LD|BPF_IND|size);
1354 		s2->s.k = offset;
1355 		sappend(s, s2);
1356 	} else {
1357 		/*
1358 		 * There is no variable-length header preceding the
1359 		 * link-layer header; add in off_ll, which, if there's
1360 		 * a fixed-length header preceding the link-layer header,
1361 		 * is the length of that header.
1362 		 */
1363 		s = new_stmt(BPF_LD|BPF_ABS|size);
1364 		s->s.k = offset + off_ll;
1365 	}
1366 	return s;
1367 }
1368 
1369 
1370 /*
1371  * Load a value relative to the beginning of the specified header.
1372  */
1373 static struct slist *
1374 gen_load_a(offrel, offset, size)
1375 	enum e_offrel offrel;
1376 	u_int offset, size;
1377 {
1378 	struct slist *s, *s2;
1379 
1380 	switch (offrel) {
1381 
1382 	case OR_PACKET:
1383                 s = new_stmt(BPF_LD|BPF_ABS|size);
1384                 s->s.k = offset;
1385 		break;
1386 
1387 	case OR_LINK:
1388 		s = gen_load_llrel(offset, size);
1389 		break;
1390 
1391 	case OR_NET:
1392 		s = gen_load_llrel(off_nl + offset, size);
1393 		break;
1394 
1395 	case OR_NET_NOSNAP:
1396 		s = gen_load_llrel(off_nl_nosnap + offset, size);
1397 		break;
1398 
1399 	case OR_TRAN_IPV4:
1400 		/*
1401 		 * Load the X register with the length of the IPv4 header
1402 		 * (plus the offset of the link-layer header, if it's
1403 		 * preceded by a variable-length header such as a radio
1404 		 * header), in bytes.
1405 		 */
1406 		s = gen_loadx_iphdrlen();
1407 
1408 		/*
1409 		 * Load the item at {offset of the link-layer header} +
1410 		 * {offset, relative to the start of the link-layer
1411 		 * header, of the IPv4 header} + {length of the IPv4 header} +
1412 		 * {specified offset}.
1413 		 *
1414 		 * (If the link-layer is variable-length, it's included
1415 		 * in the value in the X register, and off_ll is 0.)
1416 		 */
1417 		s2 = new_stmt(BPF_LD|BPF_IND|size);
1418 		s2->s.k = off_ll + off_nl + offset;
1419 		sappend(s, s2);
1420 		break;
1421 
1422 	case OR_TRAN_IPV6:
1423 		s = gen_load_llrel(off_nl + 40 + offset, size);
1424 		break;
1425 
1426 	default:
1427 		abort();
1428 		return NULL;
1429 	}
1430 	return s;
1431 }
1432 
1433 /*
1434  * Generate code to load into the X register the sum of the length of
1435  * the IPv4 header and any variable-length header preceding the link-layer
1436  * header.
1437  */
1438 static struct slist *
1439 gen_loadx_iphdrlen()
1440 {
1441 	struct slist *s, *s2;
1442 
1443 	s = gen_llprefixlen();
1444 	if (s != NULL) {
1445 		/*
1446 		 * There's a variable-length prefix preceding the
1447 		 * link-layer header.  "s" points to a list of statements
1448 		 * that put the length of that prefix into the X register.
1449 		 * The 4*([k]&0xf) addressing mode can't be used, as we
1450 		 * don't have a constant offset, so we have to load the
1451 		 * value in question into the A register and add to it
1452 		 * the value from the X register.
1453 		 */
1454 		s2 = new_stmt(BPF_LD|BPF_IND|BPF_B);
1455 		s2->s.k = off_nl;
1456 		sappend(s, s2);
1457 		s2 = new_stmt(BPF_ALU|BPF_AND|BPF_K);
1458 		s2->s.k = 0xf;
1459 		sappend(s, s2);
1460 		s2 = new_stmt(BPF_ALU|BPF_LSH|BPF_K);
1461 		s2->s.k = 2;
1462 		sappend(s, s2);
1463 
1464 		/*
1465 		 * The A register now contains the length of the
1466 		 * IP header.  We need to add to it the length
1467 		 * of the prefix preceding the link-layer
1468 		 * header, which is still in the X register, and
1469 		 * move the result into the X register.
1470 		 */
1471 		sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
1472 		sappend(s, new_stmt(BPF_MISC|BPF_TAX));
1473 	} else {
1474 		/*
1475 		 * There is no variable-length header preceding the
1476 		 * link-layer header; add in off_ll, which, if there's
1477 		 * a fixed-length header preceding the link-layer header,
1478 		 * is the length of that header.
1479 		 */
1480 		s = new_stmt(BPF_LDX|BPF_MSH|BPF_B);
1481 		s->s.k = off_ll + off_nl;
1482 	}
1483 	return s;
1484 }
1485 
1486 static struct block *
1487 gen_uncond(rsense)
1488 	int rsense;
1489 {
1490 	struct block *b;
1491 	struct slist *s;
1492 
1493 	s = new_stmt(BPF_LD|BPF_IMM);
1494 	s->s.k = !rsense;
1495 	b = new_block(JMP(BPF_JEQ));
1496 	b->stmts = s;
1497 
1498 	return b;
1499 }
1500 
1501 static inline struct block *
1502 gen_true()
1503 {
1504 	return gen_uncond(1);
1505 }
1506 
1507 static inline struct block *
1508 gen_false()
1509 {
1510 	return gen_uncond(0);
1511 }
1512 
1513 /*
1514  * Byte-swap a 32-bit number.
1515  * ("htonl()" or "ntohl()" won't work - we want to byte-swap even on
1516  * big-endian platforms.)
1517  */
1518 #define	SWAPLONG(y) \
1519 ((((y)&0xff)<<24) | (((y)&0xff00)<<8) | (((y)&0xff0000)>>8) | (((y)>>24)&0xff))
1520 
1521 /*
1522  * Generate code to match a particular packet type.
1523  *
1524  * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
1525  * value, if <= ETHERMTU.  We use that to determine whether to
1526  * match the type/length field or to check the type/length field for
1527  * a value <= ETHERMTU to see whether it's a type field and then do
1528  * the appropriate test.
1529  */
1530 static struct block *
1531 gen_ether_linktype(proto)
1532 	register int proto;
1533 {
1534 	struct block *b0, *b1;
1535 
1536 	switch (proto) {
1537 
1538 	case LLCSAP_ISONS:
1539 	case LLCSAP_IP:
1540 	case LLCSAP_NETBEUI:
1541 		/*
1542 		 * OSI protocols and NetBEUI always use 802.2 encapsulation,
1543 		 * so we check the DSAP and SSAP.
1544 		 *
1545 		 * LLCSAP_IP checks for IP-over-802.2, rather
1546 		 * than IP-over-Ethernet or IP-over-SNAP.
1547 		 *
1548 		 * XXX - should we check both the DSAP and the
1549 		 * SSAP, like this, or should we check just the
1550 		 * DSAP, as we do for other types <= ETHERMTU
1551 		 * (i.e., other SAP values)?
1552 		 */
1553 		b0 = gen_cmp_gt(OR_LINK, off_linktype, BPF_H, ETHERMTU);
1554 		gen_not(b0);
1555 		b1 = gen_cmp(OR_LINK, off_linktype + 2, BPF_H, (bpf_int32)
1556 			     ((proto << 8) | proto));
1557 		gen_and(b0, b1);
1558 		return b1;
1559 
1560 	case LLCSAP_IPX:
1561 		/*
1562 		 * Check for;
1563 		 *
1564 		 *	Ethernet_II frames, which are Ethernet
1565 		 *	frames with a frame type of ETHERTYPE_IPX;
1566 		 *
1567 		 *	Ethernet_802.3 frames, which are 802.3
1568 		 *	frames (i.e., the type/length field is
1569 		 *	a length field, <= ETHERMTU, rather than
1570 		 *	a type field) with the first two bytes
1571 		 *	after the Ethernet/802.3 header being
1572 		 *	0xFFFF;
1573 		 *
1574 		 *	Ethernet_802.2 frames, which are 802.3
1575 		 *	frames with an 802.2 LLC header and
1576 		 *	with the IPX LSAP as the DSAP in the LLC
1577 		 *	header;
1578 		 *
1579 		 *	Ethernet_SNAP frames, which are 802.3
1580 		 *	frames with an LLC header and a SNAP
1581 		 *	header and with an OUI of 0x000000
1582 		 *	(encapsulated Ethernet) and a protocol
1583 		 *	ID of ETHERTYPE_IPX in the SNAP header.
1584 		 *
1585 		 * XXX - should we generate the same code both
1586 		 * for tests for LLCSAP_IPX and for ETHERTYPE_IPX?
1587 		 */
1588 
1589 		/*
1590 		 * This generates code to check both for the
1591 		 * IPX LSAP (Ethernet_802.2) and for Ethernet_802.3.
1592 		 */
1593 		b0 = gen_cmp(OR_LINK, off_linktype + 2, BPF_B,
1594 		    (bpf_int32)LLCSAP_IPX);
1595 		b1 = gen_cmp(OR_LINK, off_linktype + 2, BPF_H,
1596 		    (bpf_int32)0xFFFF);
1597 		gen_or(b0, b1);
1598 
1599 		/*
1600 		 * Now we add code to check for SNAP frames with
1601 		 * ETHERTYPE_IPX, i.e. Ethernet_SNAP.
1602 		 */
1603 		b0 = gen_snap(0x000000, ETHERTYPE_IPX, 14);
1604 		gen_or(b0, b1);
1605 
1606 		/*
1607 		 * Now we generate code to check for 802.3
1608 		 * frames in general.
1609 		 */
1610 		b0 = gen_cmp_gt(OR_LINK, off_linktype, BPF_H, ETHERMTU);
1611 		gen_not(b0);
1612 
1613 		/*
1614 		 * Now add the check for 802.3 frames before the
1615 		 * check for Ethernet_802.2 and Ethernet_802.3,
1616 		 * as those checks should only be done on 802.3
1617 		 * frames, not on Ethernet frames.
1618 		 */
1619 		gen_and(b0, b1);
1620 
1621 		/*
1622 		 * Now add the check for Ethernet_II frames, and
1623 		 * do that before checking for the other frame
1624 		 * types.
1625 		 */
1626 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H,
1627 		    (bpf_int32)ETHERTYPE_IPX);
1628 		gen_or(b0, b1);
1629 		return b1;
1630 
1631 	case ETHERTYPE_ATALK:
1632 	case ETHERTYPE_AARP:
1633 		/*
1634 		 * EtherTalk (AppleTalk protocols on Ethernet link
1635 		 * layer) may use 802.2 encapsulation.
1636 		 */
1637 
1638 		/*
1639 		 * Check for 802.2 encapsulation (EtherTalk phase 2?);
1640 		 * we check for an Ethernet type field less than
1641 		 * 1500, which means it's an 802.3 length field.
1642 		 */
1643 		b0 = gen_cmp_gt(OR_LINK, off_linktype, BPF_H, ETHERMTU);
1644 		gen_not(b0);
1645 
1646 		/*
1647 		 * 802.2-encapsulated ETHERTYPE_ATALK packets are
1648 		 * SNAP packets with an organization code of
1649 		 * 0x080007 (Apple, for Appletalk) and a protocol
1650 		 * type of ETHERTYPE_ATALK (Appletalk).
1651 		 *
1652 		 * 802.2-encapsulated ETHERTYPE_AARP packets are
1653 		 * SNAP packets with an organization code of
1654 		 * 0x000000 (encapsulated Ethernet) and a protocol
1655 		 * type of ETHERTYPE_AARP (Appletalk ARP).
1656 		 */
1657 		if (proto == ETHERTYPE_ATALK)
1658 			b1 = gen_snap(0x080007, ETHERTYPE_ATALK, 14);
1659 		else	/* proto == ETHERTYPE_AARP */
1660 			b1 = gen_snap(0x000000, ETHERTYPE_AARP, 14);
1661 		gen_and(b0, b1);
1662 
1663 		/*
1664 		 * Check for Ethernet encapsulation (Ethertalk
1665 		 * phase 1?); we just check for the Ethernet
1666 		 * protocol type.
1667 		 */
1668 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, (bpf_int32)proto);
1669 
1670 		gen_or(b0, b1);
1671 		return b1;
1672 
1673 	default:
1674 		if (proto <= ETHERMTU) {
1675 			/*
1676 			 * This is an LLC SAP value, so the frames
1677 			 * that match would be 802.2 frames.
1678 			 * Check that the frame is an 802.2 frame
1679 			 * (i.e., that the length/type field is
1680 			 * a length field, <= ETHERMTU) and
1681 			 * then check the DSAP.
1682 			 */
1683 			b0 = gen_cmp_gt(OR_LINK, off_linktype, BPF_H, ETHERMTU);
1684 			gen_not(b0);
1685 			b1 = gen_cmp(OR_LINK, off_linktype + 2, BPF_B,
1686 			    (bpf_int32)proto);
1687 			gen_and(b0, b1);
1688 			return b1;
1689 		} else {
1690 			/*
1691 			 * This is an Ethernet type, so compare
1692 			 * the length/type field with it (if
1693 			 * the frame is an 802.2 frame, the length
1694 			 * field will be <= ETHERMTU, and, as
1695 			 * "proto" is > ETHERMTU, this test
1696 			 * will fail and the frame won't match,
1697 			 * which is what we want).
1698 			 */
1699 			return gen_cmp(OR_LINK, off_linktype, BPF_H,
1700 			    (bpf_int32)proto);
1701 		}
1702 	}
1703 }
1704 
1705 /*
1706  * Generate code to match a particular packet type.
1707  *
1708  * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
1709  * value, if <= ETHERMTU.  We use that to determine whether to
1710  * match the type field or to check the type field for the special
1711  * LINUX_SLL_P_802_2 value and then do the appropriate test.
1712  */
1713 static struct block *
1714 gen_linux_sll_linktype(proto)
1715 	register int proto;
1716 {
1717 	struct block *b0, *b1;
1718 
1719 	switch (proto) {
1720 
1721 	case LLCSAP_ISONS:
1722 	case LLCSAP_IP:
1723 	case LLCSAP_NETBEUI:
1724 		/*
1725 		 * OSI protocols and NetBEUI always use 802.2 encapsulation,
1726 		 * so we check the DSAP and SSAP.
1727 		 *
1728 		 * LLCSAP_IP checks for IP-over-802.2, rather
1729 		 * than IP-over-Ethernet or IP-over-SNAP.
1730 		 *
1731 		 * XXX - should we check both the DSAP and the
1732 		 * SSAP, like this, or should we check just the
1733 		 * DSAP, as we do for other types <= ETHERMTU
1734 		 * (i.e., other SAP values)?
1735 		 */
1736 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, LINUX_SLL_P_802_2);
1737 		b1 = gen_cmp(OR_LINK, off_linktype + 2, BPF_H, (bpf_int32)
1738 			     ((proto << 8) | proto));
1739 		gen_and(b0, b1);
1740 		return b1;
1741 
1742 	case LLCSAP_IPX:
1743 		/*
1744 		 *	Ethernet_II frames, which are Ethernet
1745 		 *	frames with a frame type of ETHERTYPE_IPX;
1746 		 *
1747 		 *	Ethernet_802.3 frames, which have a frame
1748 		 *	type of LINUX_SLL_P_802_3;
1749 		 *
1750 		 *	Ethernet_802.2 frames, which are 802.3
1751 		 *	frames with an 802.2 LLC header (i.e, have
1752 		 *	a frame type of LINUX_SLL_P_802_2) and
1753 		 *	with the IPX LSAP as the DSAP in the LLC
1754 		 *	header;
1755 		 *
1756 		 *	Ethernet_SNAP frames, which are 802.3
1757 		 *	frames with an LLC header and a SNAP
1758 		 *	header and with an OUI of 0x000000
1759 		 *	(encapsulated Ethernet) and a protocol
1760 		 *	ID of ETHERTYPE_IPX in the SNAP header.
1761 		 *
1762 		 * First, do the checks on LINUX_SLL_P_802_2
1763 		 * frames; generate the check for either
1764 		 * Ethernet_802.2 or Ethernet_SNAP frames, and
1765 		 * then put a check for LINUX_SLL_P_802_2 frames
1766 		 * before it.
1767 		 */
1768 		b0 = gen_cmp(OR_LINK, off_linktype + 2, BPF_B,
1769 		    (bpf_int32)LLCSAP_IPX);
1770 		b1 = gen_snap(0x000000, ETHERTYPE_IPX,
1771 		    off_linktype + 2);
1772 		gen_or(b0, b1);
1773 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, LINUX_SLL_P_802_2);
1774 		gen_and(b0, b1);
1775 
1776 		/*
1777 		 * Now check for 802.3 frames and OR that with
1778 		 * the previous test.
1779 		 */
1780 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, LINUX_SLL_P_802_3);
1781 		gen_or(b0, b1);
1782 
1783 		/*
1784 		 * Now add the check for Ethernet_II frames, and
1785 		 * do that before checking for the other frame
1786 		 * types.
1787 		 */
1788 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H,
1789 		    (bpf_int32)ETHERTYPE_IPX);
1790 		gen_or(b0, b1);
1791 		return b1;
1792 
1793 	case ETHERTYPE_ATALK:
1794 	case ETHERTYPE_AARP:
1795 		/*
1796 		 * EtherTalk (AppleTalk protocols on Ethernet link
1797 		 * layer) may use 802.2 encapsulation.
1798 		 */
1799 
1800 		/*
1801 		 * Check for 802.2 encapsulation (EtherTalk phase 2?);
1802 		 * we check for the 802.2 protocol type in the
1803 		 * "Ethernet type" field.
1804 		 */
1805 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, LINUX_SLL_P_802_2);
1806 
1807 		/*
1808 		 * 802.2-encapsulated ETHERTYPE_ATALK packets are
1809 		 * SNAP packets with an organization code of
1810 		 * 0x080007 (Apple, for Appletalk) and a protocol
1811 		 * type of ETHERTYPE_ATALK (Appletalk).
1812 		 *
1813 		 * 802.2-encapsulated ETHERTYPE_AARP packets are
1814 		 * SNAP packets with an organization code of
1815 		 * 0x000000 (encapsulated Ethernet) and a protocol
1816 		 * type of ETHERTYPE_AARP (Appletalk ARP).
1817 		 */
1818 		if (proto == ETHERTYPE_ATALK)
1819 			b1 = gen_snap(0x080007, ETHERTYPE_ATALK,
1820 			    off_linktype + 2);
1821 		else	/* proto == ETHERTYPE_AARP */
1822 			b1 = gen_snap(0x000000, ETHERTYPE_AARP,
1823 			    off_linktype + 2);
1824 		gen_and(b0, b1);
1825 
1826 		/*
1827 		 * Check for Ethernet encapsulation (Ethertalk
1828 		 * phase 1?); we just check for the Ethernet
1829 		 * protocol type.
1830 		 */
1831 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, (bpf_int32)proto);
1832 
1833 		gen_or(b0, b1);
1834 		return b1;
1835 
1836 	default:
1837 		if (proto <= ETHERMTU) {
1838 			/*
1839 			 * This is an LLC SAP value, so the frames
1840 			 * that match would be 802.2 frames.
1841 			 * Check for the 802.2 protocol type
1842 			 * in the "Ethernet type" field, and
1843 			 * then check the DSAP.
1844 			 */
1845 			b0 = gen_cmp(OR_LINK, off_linktype, BPF_H,
1846 			    LINUX_SLL_P_802_2);
1847 			b1 = gen_cmp(OR_LINK, off_linktype + 2, BPF_B,
1848 			     (bpf_int32)proto);
1849 			gen_and(b0, b1);
1850 			return b1;
1851 		} else {
1852 			/*
1853 			 * This is an Ethernet type, so compare
1854 			 * the length/type field with it (if
1855 			 * the frame is an 802.2 frame, the length
1856 			 * field will be <= ETHERMTU, and, as
1857 			 * "proto" is > ETHERMTU, this test
1858 			 * will fail and the frame won't match,
1859 			 * which is what we want).
1860 			 */
1861 			return gen_cmp(OR_LINK, off_linktype, BPF_H,
1862 			    (bpf_int32)proto);
1863 		}
1864 	}
1865 }
1866 
1867 static void
1868 insert_radiotap_load_llprefixlen(b)
1869 	struct block *b;
1870 {
1871 	struct slist *s1, *s2;
1872 
1873 	/*
1874 	 * Prepend to the statements in this block code to load the
1875 	 * length of the radiotap header into the register assigned
1876 	 * to hold that length, if one has been assigned.
1877 	 */
1878 	if (reg_ll_size != -1) {
1879 		/*
1880 		 * The 2 bytes at offsets of 2 and 3 from the beginning
1881 		 * of the radiotap header are the length of the radiotap
1882 		 * header; unfortunately, it's little-endian, so we have
1883 		 * to load it a byte at a time and construct the value.
1884 		 */
1885 
1886 		/*
1887 		 * Load the high-order byte, at an offset of 3, shift it
1888 		 * left a byte, and put the result in the X register.
1889 		 */
1890 		s1 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
1891 		s1->s.k = 3;
1892 		s2 = new_stmt(BPF_ALU|BPF_LSH|BPF_K);
1893 		sappend(s1, s2);
1894 		s2->s.k = 8;
1895 		s2 = new_stmt(BPF_MISC|BPF_TAX);
1896 		sappend(s1, s2);
1897 
1898 		/*
1899 		 * Load the next byte, at an offset of 2, and OR the
1900 		 * value from the X register into it.
1901 		 */
1902 		s2 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
1903 		sappend(s1, s2);
1904 		s2->s.k = 2;
1905 		s2 = new_stmt(BPF_ALU|BPF_OR|BPF_X);
1906 		sappend(s1, s2);
1907 
1908 		/*
1909 		 * Now allocate a register to hold that value and store
1910 		 * it.
1911 		 */
1912 		s2 = new_stmt(BPF_ST);
1913 		s2->s.k = reg_ll_size;
1914 		sappend(s1, s2);
1915 
1916 		/*
1917 		 * Now move it into the X register.
1918 		 */
1919 		s2 = new_stmt(BPF_MISC|BPF_TAX);
1920 		sappend(s1, s2);
1921 
1922 		/*
1923 		 * Now append all the existing statements in this
1924 		 * block to these statements.
1925 		 */
1926 		sappend(s1, b->stmts);
1927 		b->stmts = s1;
1928 	}
1929 }
1930 
1931 /*
1932  * At the moment we treat PPI as normal Radiotap encoded
1933  * packets. The difference is in the function that generates
1934  * the code at the beginning to compute the header length.
1935  * Since this code generator of PPI supports bare 802.11
1936  * encapsulation only (i.e. the encapsulated DLT should be
1937  * DLT_IEEE802_11) we generate code to check for this too.
1938  */
1939 static void
1940 insert_ppi_load_llprefixlen(b)
1941 	struct block *b;
1942 {
1943 	struct slist *s1, *s2;
1944 
1945 	/*
1946 	 * Prepend to the statements in this block code to load the
1947 	 * length of the radiotap header into the register assigned
1948 	 * to hold that length, if one has been assigned.
1949 	 */
1950 	if (reg_ll_size != -1) {
1951 	    /*
1952 		 * The 2 bytes at offsets of 2 and 3 from the beginning
1953 		 * of the radiotap header are the length of the radiotap
1954 		 * header; unfortunately, it's little-endian, so we have
1955 		 * to load it a byte at a time and construct the value.
1956 		 */
1957 
1958 		/*
1959 		 * Load the high-order byte, at an offset of 3, shift it
1960 		 * left a byte, and put the result in the X register.
1961 		 */
1962 		s1 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
1963 		s1->s.k = 3;
1964 		s2 = new_stmt(BPF_ALU|BPF_LSH|BPF_K);
1965 		sappend(s1, s2);
1966 		s2->s.k = 8;
1967 		s2 = new_stmt(BPF_MISC|BPF_TAX);
1968 		sappend(s1, s2);
1969 
1970 		/*
1971 		 * Load the next byte, at an offset of 2, and OR the
1972 		 * value from the X register into it.
1973 		 */
1974 		s2 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
1975 		sappend(s1, s2);
1976 		s2->s.k = 2;
1977 		s2 = new_stmt(BPF_ALU|BPF_OR|BPF_X);
1978 		sappend(s1, s2);
1979 
1980 		/*
1981 		 * Now allocate a register to hold that value and store
1982 		 * it.
1983 		 */
1984 		s2 = new_stmt(BPF_ST);
1985 		s2->s.k = reg_ll_size;
1986 		sappend(s1, s2);
1987 
1988 		/*
1989 		 * Now move it into the X register.
1990 		 */
1991 		s2 = new_stmt(BPF_MISC|BPF_TAX);
1992 		sappend(s1, s2);
1993 
1994 		/*
1995 		 * Now append all the existing statements in this
1996 		 * block to these statements.
1997 		 */
1998 		sappend(s1, b->stmts);
1999 		b->stmts = s1;
2000 
2001 	}
2002 }
2003 
2004 static struct block *
2005 gen_ppi_dlt_check(void)
2006 {
2007 	struct slist *s_load_dlt;
2008 	struct block *b;
2009 
2010 	if (linktype == DLT_PPI)
2011 	{
2012 		/* Create the statements that check for the DLT
2013 		 */
2014 		s_load_dlt = new_stmt(BPF_LD|BPF_W|BPF_ABS);
2015 		s_load_dlt->s.k = 4;
2016 
2017 		b = new_block(JMP(BPF_JEQ));
2018 
2019 		b->stmts = s_load_dlt;
2020 		b->s.k = SWAPLONG(DLT_IEEE802_11);
2021 	}
2022 	else
2023 	{
2024 		b = NULL;
2025 	}
2026 
2027 	return b;
2028 }
2029 
2030 static void
2031 insert_load_llprefixlen(b)
2032 	struct block *b;
2033 {
2034 	switch (linktype) {
2035 
2036 	/*
2037 	 * At the moment we treat PPI as normal Radiotap encoded
2038 	 * packets. The difference is in the function that generates
2039 	 * the code at the beginning to compute the header length.
2040 	 * Since this code generator of PPI supports bare 802.11
2041 	 * encapsulation only (i.e. the encapsulated DLT should be
2042 	 * DLT_IEEE802_11) we generate code to check for this too.
2043 	 */
2044 	case DLT_PPI:
2045 		insert_ppi_load_llprefixlen(b);
2046 		break;
2047 
2048 	case DLT_IEEE802_11_RADIO:
2049 		insert_radiotap_load_llprefixlen(b);
2050 		break;
2051 	}
2052 }
2053 
2054 
2055 static struct slist *
2056 gen_radiotap_llprefixlen(void)
2057 {
2058 	struct slist *s;
2059 
2060 	if (reg_ll_size == -1) {
2061 		/*
2062 		 * We haven't yet assigned a register for the length
2063 		 * of the radiotap header; allocate one.
2064 		 */
2065 		reg_ll_size = alloc_reg();
2066 	}
2067 
2068 	/*
2069 	 * Load the register containing the radiotap length
2070 	 * into the X register.
2071 	 */
2072 	s = new_stmt(BPF_LDX|BPF_MEM);
2073 	s->s.k = reg_ll_size;
2074 	return s;
2075 }
2076 
2077 /*
2078  * At the moment we treat PPI as normal Radiotap encoded
2079  * packets. The difference is in the function that generates
2080  * the code at the beginning to compute the header length.
2081  * Since this code generator of PPI supports bare 802.11
2082  * encapsulation only (i.e. the encapsulated DLT should be
2083  * DLT_IEEE802_11) we generate code to check for this too.
2084  */
2085 static struct slist *
2086 gen_ppi_llprefixlen(void)
2087 {
2088 	struct slist *s;
2089 
2090 	if (reg_ll_size == -1) {
2091 		/*
2092 		 * We haven't yet assigned a register for the length
2093 		 * of the radiotap header; allocate one.
2094 		 */
2095 		reg_ll_size = alloc_reg();
2096 	}
2097 
2098 	/*
2099 	 * Load the register containing the radiotap length
2100 	 * into the X register.
2101 	 */
2102 	s = new_stmt(BPF_LDX|BPF_MEM);
2103 	s->s.k = reg_ll_size;
2104 	return s;
2105 }
2106 
2107 
2108 
2109 /*
2110  * Generate code to compute the link-layer header length, if necessary,
2111  * putting it into the X register, and to return either a pointer to a
2112  * "struct slist" for the list of statements in that code, or NULL if
2113  * no code is necessary.
2114  */
2115 static struct slist *
2116 gen_llprefixlen(void)
2117 {
2118 	switch (linktype) {
2119 
2120 	case DLT_PPI:
2121 		return gen_ppi_llprefixlen();
2122 
2123 
2124 	case DLT_IEEE802_11_RADIO:
2125 		return gen_radiotap_llprefixlen();
2126 
2127 	default:
2128 		return NULL;
2129 	}
2130 }
2131 
2132 /*
2133  * Generate code to match a particular packet type by matching the
2134  * link-layer type field or fields in the 802.2 LLC header.
2135  *
2136  * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
2137  * value, if <= ETHERMTU.
2138  */
2139 static struct block *
2140 gen_linktype(proto)
2141 	register int proto;
2142 {
2143 	struct block *b0, *b1, *b2;
2144 
2145 	/* are we checking MPLS-encapsulated packets? */
2146 	if (label_stack_depth > 0) {
2147 		switch (proto) {
2148 		case ETHERTYPE_IP:
2149 		case PPP_IP:
2150 		/* FIXME add other L3 proto IDs */
2151 			return gen_mpls_linktype(Q_IP);
2152 
2153 		case ETHERTYPE_IPV6:
2154 		case PPP_IPV6:
2155 		/* FIXME add other L3 proto IDs */
2156 			return gen_mpls_linktype(Q_IPV6);
2157 
2158 		default:
2159 			bpf_error("unsupported protocol over mpls");
2160 			/* NOTREACHED */
2161 		}
2162 	}
2163 
2164 	switch (linktype) {
2165 
2166 	case DLT_EN10MB:
2167 		return gen_ether_linktype(proto);
2168 		/*NOTREACHED*/
2169 		break;
2170 
2171 	case DLT_C_HDLC:
2172 		switch (proto) {
2173 
2174 		case LLCSAP_ISONS:
2175 			proto = (proto << 8 | LLCSAP_ISONS);
2176 			/* fall through */
2177 
2178 		default:
2179 			return gen_cmp(OR_LINK, off_linktype, BPF_H,
2180 			    (bpf_int32)proto);
2181 			/*NOTREACHED*/
2182 			break;
2183 		}
2184 		break;
2185 
2186 	case DLT_PPI:
2187 	case DLT_FDDI:
2188 	case DLT_IEEE802:
2189 	case DLT_IEEE802_11:
2190 	case DLT_IEEE802_11_RADIO_AVS:
2191 	case DLT_IEEE802_11_RADIO:
2192 	case DLT_PRISM_HEADER:
2193 	case DLT_ATM_RFC1483:
2194 	case DLT_ATM_CLIP:
2195 	case DLT_IP_OVER_FC:
2196 		return gen_llc_linktype(proto);
2197 		/*NOTREACHED*/
2198 		break;
2199 
2200 	case DLT_SUNATM:
2201 		/*
2202 		 * If "is_lane" is set, check for a LANE-encapsulated
2203 		 * version of this protocol, otherwise check for an
2204 		 * LLC-encapsulated version of this protocol.
2205 		 *
2206 		 * We assume LANE means Ethernet, not Token Ring.
2207 		 */
2208 		if (is_lane) {
2209 			/*
2210 			 * Check that the packet doesn't begin with an
2211 			 * LE Control marker.  (We've already generated
2212 			 * a test for LANE.)
2213 			 */
2214 			b0 = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS, BPF_H,
2215 			    0xFF00);
2216 			gen_not(b0);
2217 
2218 			/*
2219 			 * Now generate an Ethernet test.
2220 			 */
2221 			b1 = gen_ether_linktype(proto);
2222 			gen_and(b0, b1);
2223 			return b1;
2224 		} else {
2225 			/*
2226 			 * Check for LLC encapsulation and then check the
2227 			 * protocol.
2228 			 */
2229 			b0 = gen_atmfield_code(A_PROTOTYPE, PT_LLC, BPF_JEQ, 0);
2230 			b1 = gen_llc_linktype(proto);
2231 			gen_and(b0, b1);
2232 			return b1;
2233 		}
2234 		/*NOTREACHED*/
2235 		break;
2236 
2237 	case DLT_LINUX_SLL:
2238 		return gen_linux_sll_linktype(proto);
2239 		/*NOTREACHED*/
2240 		break;
2241 
2242 	case DLT_SLIP:
2243 	case DLT_SLIP_BSDOS:
2244 	case DLT_RAW:
2245 		/*
2246 		 * These types don't provide any type field; packets
2247 		 * are always IPv4 or IPv6.
2248 		 *
2249 		 * XXX - for IPv4, check for a version number of 4, and,
2250 		 * for IPv6, check for a version number of 6?
2251 		 */
2252 		switch (proto) {
2253 
2254 		case ETHERTYPE_IP:
2255 			/* Check for a version number of 4. */
2256 			return gen_mcmp(OR_LINK, 0, BPF_B, 0x40, 0xF0);
2257 #ifdef INET6
2258 		case ETHERTYPE_IPV6:
2259 			/* Check for a version number of 6. */
2260 			return gen_mcmp(OR_LINK, 0, BPF_B, 0x60, 0xF0);
2261 #endif
2262 
2263 		default:
2264 			return gen_false();		/* always false */
2265 		}
2266 		/*NOTREACHED*/
2267 		break;
2268 
2269 	case DLT_PPP:
2270 	case DLT_PPP_PPPD:
2271 	case DLT_PPP_SERIAL:
2272 	case DLT_PPP_ETHER:
2273 		/*
2274 		 * We use Ethernet protocol types inside libpcap;
2275 		 * map them to the corresponding PPP protocol types.
2276 		 */
2277 		switch (proto) {
2278 
2279 		case ETHERTYPE_IP:
2280 			proto = PPP_IP;
2281 			break;
2282 
2283 #ifdef INET6
2284 		case ETHERTYPE_IPV6:
2285 			proto = PPP_IPV6;
2286 			break;
2287 #endif
2288 
2289 		case ETHERTYPE_DN:
2290 			proto = PPP_DECNET;
2291 			break;
2292 
2293 		case ETHERTYPE_ATALK:
2294 			proto = PPP_APPLE;
2295 			break;
2296 
2297 		case ETHERTYPE_NS:
2298 			proto = PPP_NS;
2299 			break;
2300 
2301 		case LLCSAP_ISONS:
2302 			proto = PPP_OSI;
2303 			break;
2304 
2305 		case LLCSAP_8021D:
2306 			/*
2307 			 * I'm assuming the "Bridging PDU"s that go
2308 			 * over PPP are Spanning Tree Protocol
2309 			 * Bridging PDUs.
2310 			 */
2311 			proto = PPP_BRPDU;
2312 			break;
2313 
2314 		case LLCSAP_IPX:
2315 			proto = PPP_IPX;
2316 			break;
2317 		}
2318 		break;
2319 
2320 	case DLT_PPP_BSDOS:
2321 		/*
2322 		 * We use Ethernet protocol types inside libpcap;
2323 		 * map them to the corresponding PPP protocol types.
2324 		 */
2325 		switch (proto) {
2326 
2327 		case ETHERTYPE_IP:
2328 			b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, PPP_IP);
2329 			b1 = gen_cmp(OR_LINK, off_linktype, BPF_H, PPP_VJC);
2330 			gen_or(b0, b1);
2331 			b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, PPP_VJNC);
2332 			gen_or(b1, b0);
2333 			return b0;
2334 
2335 #ifdef INET6
2336 		case ETHERTYPE_IPV6:
2337 			proto = PPP_IPV6;
2338 			/* more to go? */
2339 			break;
2340 #endif
2341 
2342 		case ETHERTYPE_DN:
2343 			proto = PPP_DECNET;
2344 			break;
2345 
2346 		case ETHERTYPE_ATALK:
2347 			proto = PPP_APPLE;
2348 			break;
2349 
2350 		case ETHERTYPE_NS:
2351 			proto = PPP_NS;
2352 			break;
2353 
2354 		case LLCSAP_ISONS:
2355 			proto = PPP_OSI;
2356 			break;
2357 
2358 		case LLCSAP_8021D:
2359 			/*
2360 			 * I'm assuming the "Bridging PDU"s that go
2361 			 * over PPP are Spanning Tree Protocol
2362 			 * Bridging PDUs.
2363 			 */
2364 			proto = PPP_BRPDU;
2365 			break;
2366 
2367 		case LLCSAP_IPX:
2368 			proto = PPP_IPX;
2369 			break;
2370 		}
2371 		break;
2372 
2373 	case DLT_NULL:
2374 	case DLT_LOOP:
2375 	case DLT_ENC:
2376 		/*
2377 		 * For DLT_NULL, the link-layer header is a 32-bit
2378 		 * word containing an AF_ value in *host* byte order,
2379 		 * and for DLT_ENC, the link-layer header begins
2380 		 * with a 32-bit work containing an AF_ value in
2381 		 * host byte order.
2382 		 *
2383 		 * In addition, if we're reading a saved capture file,
2384 		 * the host byte order in the capture may not be the
2385 		 * same as the host byte order on this machine.
2386 		 *
2387 		 * For DLT_LOOP, the link-layer header is a 32-bit
2388 		 * word containing an AF_ value in *network* byte order.
2389 		 *
2390 		 * XXX - AF_ values may, unfortunately, be platform-
2391 		 * dependent; for example, FreeBSD's AF_INET6 is 24
2392 		 * whilst NetBSD's and OpenBSD's is 26.
2393 		 *
2394 		 * This means that, when reading a capture file, just
2395 		 * checking for our AF_INET6 value won't work if the
2396 		 * capture file came from another OS.
2397 		 */
2398 		switch (proto) {
2399 
2400 		case ETHERTYPE_IP:
2401 			proto = AF_INET;
2402 			break;
2403 
2404 #ifdef INET6
2405 		case ETHERTYPE_IPV6:
2406 			proto = AF_INET6;
2407 			break;
2408 #endif
2409 
2410 		default:
2411 			/*
2412 			 * Not a type on which we support filtering.
2413 			 * XXX - support those that have AF_ values
2414 			 * #defined on this platform, at least?
2415 			 */
2416 			return gen_false();
2417 		}
2418 
2419 		if (linktype == DLT_NULL || linktype == DLT_ENC) {
2420 			/*
2421 			 * The AF_ value is in host byte order, but
2422 			 * the BPF interpreter will convert it to
2423 			 * network byte order.
2424 			 *
2425 			 * If this is a save file, and it's from a
2426 			 * machine with the opposite byte order to
2427 			 * ours, we byte-swap the AF_ value.
2428 			 *
2429 			 * Then we run it through "htonl()", and
2430 			 * generate code to compare against the result.
2431 			 */
2432 			if (bpf_pcap->sf.rfile != NULL &&
2433 			    bpf_pcap->sf.swapped)
2434 				proto = SWAPLONG(proto);
2435 			proto = htonl(proto);
2436 		}
2437 		return (gen_cmp(OR_LINK, 0, BPF_W, (bpf_int32)proto));
2438 
2439 #ifdef HAVE_NET_PFVAR_H
2440 	case DLT_PFLOG:
2441 		/*
2442 		 * af field is host byte order in contrast to the rest of
2443 		 * the packet.
2444 		 */
2445 		if (proto == ETHERTYPE_IP)
2446 			return (gen_cmp(OR_LINK, offsetof(struct pfloghdr, af),
2447 			    BPF_B, (bpf_int32)AF_INET));
2448 #ifdef INET6
2449 		else if (proto == ETHERTYPE_IPV6)
2450 			return (gen_cmp(OR_LINK, offsetof(struct pfloghdr, af),
2451 			    BPF_B, (bpf_int32)AF_INET6));
2452 #endif /* INET6 */
2453 		else
2454 			return gen_false();
2455 		/*NOTREACHED*/
2456 		break;
2457 #endif /* HAVE_NET_PFVAR_H */
2458 
2459 	case DLT_ARCNET:
2460 	case DLT_ARCNET_LINUX:
2461 		/*
2462 		 * XXX should we check for first fragment if the protocol
2463 		 * uses PHDS?
2464 		 */
2465 		switch (proto) {
2466 
2467 		default:
2468 			return gen_false();
2469 
2470 #ifdef INET6
2471 		case ETHERTYPE_IPV6:
2472 			return (gen_cmp(OR_LINK, off_linktype, BPF_B,
2473 				(bpf_int32)ARCTYPE_INET6));
2474 #endif /* INET6 */
2475 
2476 		case ETHERTYPE_IP:
2477 			b0 = gen_cmp(OR_LINK, off_linktype, BPF_B,
2478 				     (bpf_int32)ARCTYPE_IP);
2479 			b1 = gen_cmp(OR_LINK, off_linktype, BPF_B,
2480 				     (bpf_int32)ARCTYPE_IP_OLD);
2481 			gen_or(b0, b1);
2482 			return (b1);
2483 
2484 		case ETHERTYPE_ARP:
2485 			b0 = gen_cmp(OR_LINK, off_linktype, BPF_B,
2486 				     (bpf_int32)ARCTYPE_ARP);
2487 			b1 = gen_cmp(OR_LINK, off_linktype, BPF_B,
2488 				     (bpf_int32)ARCTYPE_ARP_OLD);
2489 			gen_or(b0, b1);
2490 			return (b1);
2491 
2492 		case ETHERTYPE_REVARP:
2493 			return (gen_cmp(OR_LINK, off_linktype, BPF_B,
2494 					(bpf_int32)ARCTYPE_REVARP));
2495 
2496 		case ETHERTYPE_ATALK:
2497 			return (gen_cmp(OR_LINK, off_linktype, BPF_B,
2498 					(bpf_int32)ARCTYPE_ATALK));
2499 		}
2500 		/*NOTREACHED*/
2501 		break;
2502 
2503 	case DLT_LTALK:
2504 		switch (proto) {
2505 		case ETHERTYPE_ATALK:
2506 			return gen_true();
2507 		default:
2508 			return gen_false();
2509 		}
2510 		/*NOTREACHED*/
2511 		break;
2512 
2513 	case DLT_FRELAY:
2514 		/*
2515 		 * XXX - assumes a 2-byte Frame Relay header with
2516 		 * DLCI and flags.  What if the address is longer?
2517 		 */
2518 		switch (proto) {
2519 
2520 		case ETHERTYPE_IP:
2521 			/*
2522 			 * Check for the special NLPID for IP.
2523 			 */
2524 			return gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | 0xcc);
2525 
2526 #ifdef INET6
2527 		case ETHERTYPE_IPV6:
2528 			/*
2529 			 * Check for the special NLPID for IPv6.
2530 			 */
2531 			return gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | 0x8e);
2532 #endif
2533 
2534 		case LLCSAP_ISONS:
2535 			/*
2536 			 * Check for several OSI protocols.
2537 			 *
2538 			 * Frame Relay packets typically have an OSI
2539 			 * NLPID at the beginning; we check for each
2540 			 * of them.
2541 			 *
2542 			 * What we check for is the NLPID and a frame
2543 			 * control field of UI, i.e. 0x03 followed
2544 			 * by the NLPID.
2545 			 */
2546 			b0 = gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | ISO8473_CLNP);
2547 			b1 = gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | ISO9542_ESIS);
2548 			b2 = gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | ISO10589_ISIS);
2549 			gen_or(b1, b2);
2550 			gen_or(b0, b2);
2551 			return b2;
2552 
2553 		default:
2554 			return gen_false();
2555 		}
2556 		/*NOTREACHED*/
2557 		break;
2558 
2559         case DLT_JUNIPER_MFR:
2560         case DLT_JUNIPER_MLFR:
2561         case DLT_JUNIPER_MLPPP:
2562 	case DLT_JUNIPER_ATM1:
2563 	case DLT_JUNIPER_ATM2:
2564 	case DLT_JUNIPER_PPPOE:
2565 	case DLT_JUNIPER_PPPOE_ATM:
2566         case DLT_JUNIPER_GGSN:
2567         case DLT_JUNIPER_ES:
2568         case DLT_JUNIPER_MONITOR:
2569         case DLT_JUNIPER_SERVICES:
2570         case DLT_JUNIPER_ETHER:
2571         case DLT_JUNIPER_PPP:
2572         case DLT_JUNIPER_FRELAY:
2573         case DLT_JUNIPER_CHDLC:
2574         case DLT_JUNIPER_VP:
2575 		/* just lets verify the magic number for now -
2576 		 * on ATM we may have up to 6 different encapsulations on the wire
2577 		 * and need a lot of heuristics to figure out that the payload
2578 		 * might be;
2579 		 *
2580 		 * FIXME encapsulation specific BPF_ filters
2581 		 */
2582 		return gen_mcmp(OR_LINK, 0, BPF_W, 0x4d474300, 0xffffff00); /* compare the magic number */
2583 
2584 	case DLT_LINUX_IRDA:
2585 		bpf_error("IrDA link-layer type filtering not implemented");
2586 
2587 	case DLT_DOCSIS:
2588 		bpf_error("DOCSIS link-layer type filtering not implemented");
2589 
2590 	case DLT_LINUX_LAPD:
2591 		bpf_error("LAPD link-layer type filtering not implemented");
2592 	}
2593 
2594 	/*
2595 	 * All the types that have no encapsulation should either be
2596 	 * handled as DLT_SLIP, DLT_SLIP_BSDOS, and DLT_RAW are, if
2597 	 * all packets are IP packets, or should be handled in some
2598 	 * special case, if none of them are (if some are and some
2599 	 * aren't, the lack of encapsulation is a problem, as we'd
2600 	 * have to find some other way of determining the packet type).
2601 	 *
2602 	 * Therefore, if "off_linktype" is -1, there's an error.
2603 	 */
2604 	if (off_linktype == (u_int)-1)
2605 		abort();
2606 
2607 	/*
2608 	 * Any type not handled above should always have an Ethernet
2609 	 * type at an offset of "off_linktype".  (PPP is partially
2610 	 * handled above - the protocol type is mapped from the
2611 	 * Ethernet and LLC types we use internally to the corresponding
2612 	 * PPP type - but the PPP type is always specified by a value
2613 	 * at "off_linktype", so we don't have to do the code generation
2614 	 * above.)
2615 	 */
2616 	return gen_cmp(OR_LINK, off_linktype, BPF_H, (bpf_int32)proto);
2617 }
2618 
2619 /*
2620  * Check for an LLC SNAP packet with a given organization code and
2621  * protocol type; we check the entire contents of the 802.2 LLC and
2622  * snap headers, checking for DSAP and SSAP of SNAP and a control
2623  * field of 0x03 in the LLC header, and for the specified organization
2624  * code and protocol type in the SNAP header.
2625  */
2626 static struct block *
2627 gen_snap(orgcode, ptype, offset)
2628 	bpf_u_int32 orgcode;
2629 	bpf_u_int32 ptype;
2630 	u_int offset;
2631 {
2632 	u_char snapblock[8];
2633 
2634 	snapblock[0] = LLCSAP_SNAP;	/* DSAP = SNAP */
2635 	snapblock[1] = LLCSAP_SNAP;	/* SSAP = SNAP */
2636 	snapblock[2] = 0x03;		/* control = UI */
2637 	snapblock[3] = (orgcode >> 16);	/* upper 8 bits of organization code */
2638 	snapblock[4] = (orgcode >> 8);	/* middle 8 bits of organization code */
2639 	snapblock[5] = (orgcode >> 0);	/* lower 8 bits of organization code */
2640 	snapblock[6] = (ptype >> 8);	/* upper 8 bits of protocol type */
2641 	snapblock[7] = (ptype >> 0);	/* lower 8 bits of protocol type */
2642 	return gen_bcmp(OR_LINK, offset, 8, snapblock);
2643 }
2644 
2645 /*
2646  * Generate code to match a particular packet type, for link-layer types
2647  * using 802.2 LLC headers.
2648  *
2649  * This is *NOT* used for Ethernet; "gen_ether_linktype()" is used
2650  * for that - it handles the D/I/X Ethernet vs. 802.3+802.2 issues.
2651  *
2652  * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
2653  * value, if <= ETHERMTU.  We use that to determine whether to
2654  * match the DSAP or both DSAP and LSAP or to check the OUI and
2655  * protocol ID in a SNAP header.
2656  */
2657 static struct block *
2658 gen_llc_linktype(proto)
2659 	int proto;
2660 {
2661 	/*
2662 	 * XXX - handle token-ring variable-length header.
2663 	 */
2664 	switch (proto) {
2665 
2666 	case LLCSAP_IP:
2667 	case LLCSAP_ISONS:
2668 	case LLCSAP_NETBEUI:
2669 		/*
2670 		 * XXX - should we check both the DSAP and the
2671 		 * SSAP, like this, or should we check just the
2672 		 * DSAP, as we do for other types <= ETHERMTU
2673 		 * (i.e., other SAP values)?
2674 		 */
2675 		return gen_cmp(OR_LINK, off_linktype, BPF_H, (bpf_u_int32)
2676 			     ((proto << 8) | proto));
2677 
2678 	case LLCSAP_IPX:
2679 		/*
2680 		 * XXX - are there ever SNAP frames for IPX on
2681 		 * non-Ethernet 802.x networks?
2682 		 */
2683 		return gen_cmp(OR_LINK, off_linktype, BPF_B,
2684 		    (bpf_int32)LLCSAP_IPX);
2685 
2686 	case ETHERTYPE_ATALK:
2687 		/*
2688 		 * 802.2-encapsulated ETHERTYPE_ATALK packets are
2689 		 * SNAP packets with an organization code of
2690 		 * 0x080007 (Apple, for Appletalk) and a protocol
2691 		 * type of ETHERTYPE_ATALK (Appletalk).
2692 		 *
2693 		 * XXX - check for an organization code of
2694 		 * encapsulated Ethernet as well?
2695 		 */
2696 		return gen_snap(0x080007, ETHERTYPE_ATALK, off_linktype);
2697 
2698 	default:
2699 		/*
2700 		 * XXX - we don't have to check for IPX 802.3
2701 		 * here, but should we check for the IPX Ethertype?
2702 		 */
2703 		if (proto <= ETHERMTU) {
2704 			/*
2705 			 * This is an LLC SAP value, so check
2706 			 * the DSAP.
2707 			 */
2708 			return gen_cmp(OR_LINK, off_linktype, BPF_B,
2709 			    (bpf_int32)proto);
2710 		} else {
2711 			/*
2712 			 * This is an Ethernet type; we assume that it's
2713 			 * unlikely that it'll appear in the right place
2714 			 * at random, and therefore check only the
2715 			 * location that would hold the Ethernet type
2716 			 * in a SNAP frame with an organization code of
2717 			 * 0x000000 (encapsulated Ethernet).
2718 			 *
2719 			 * XXX - if we were to check for the SNAP DSAP and
2720 			 * LSAP, as per XXX, and were also to check for an
2721 			 * organization code of 0x000000 (encapsulated
2722 			 * Ethernet), we'd do
2723 			 *
2724 			 *	return gen_snap(0x000000, proto,
2725 			 *	    off_linktype);
2726 			 *
2727 			 * here; for now, we don't, as per the above.
2728 			 * I don't know whether it's worth the extra CPU
2729 			 * time to do the right check or not.
2730 			 */
2731 			return gen_cmp(OR_LINK, off_linktype+6, BPF_H,
2732 			    (bpf_int32)proto);
2733 		}
2734 	}
2735 }
2736 
2737 static struct block *
2738 gen_hostop(addr, mask, dir, proto, src_off, dst_off)
2739 	bpf_u_int32 addr;
2740 	bpf_u_int32 mask;
2741 	int dir, proto;
2742 	u_int src_off, dst_off;
2743 {
2744 	struct block *b0, *b1;
2745 	u_int offset;
2746 
2747 	switch (dir) {
2748 
2749 	case Q_SRC:
2750 		offset = src_off;
2751 		break;
2752 
2753 	case Q_DST:
2754 		offset = dst_off;
2755 		break;
2756 
2757 	case Q_AND:
2758 		b0 = gen_hostop(addr, mask, Q_SRC, proto, src_off, dst_off);
2759 		b1 = gen_hostop(addr, mask, Q_DST, proto, src_off, dst_off);
2760 		gen_and(b0, b1);
2761 		return b1;
2762 
2763 	case Q_OR:
2764 	case Q_DEFAULT:
2765 		b0 = gen_hostop(addr, mask, Q_SRC, proto, src_off, dst_off);
2766 		b1 = gen_hostop(addr, mask, Q_DST, proto, src_off, dst_off);
2767 		gen_or(b0, b1);
2768 		return b1;
2769 
2770 	default:
2771 		abort();
2772 	}
2773 	b0 = gen_linktype(proto);
2774 	b1 = gen_mcmp(OR_NET, offset, BPF_W, (bpf_int32)addr, mask);
2775 	gen_and(b0, b1);
2776 	return b1;
2777 }
2778 
2779 #ifdef INET6
2780 static struct block *
2781 gen_hostop6(addr, mask, dir, proto, src_off, dst_off)
2782 	struct in6_addr *addr;
2783 	struct in6_addr *mask;
2784 	int dir, proto;
2785 	u_int src_off, dst_off;
2786 {
2787 	struct block *b0, *b1;
2788 	u_int offset;
2789 	u_int32_t *a, *m;
2790 
2791 	switch (dir) {
2792 
2793 	case Q_SRC:
2794 		offset = src_off;
2795 		break;
2796 
2797 	case Q_DST:
2798 		offset = dst_off;
2799 		break;
2800 
2801 	case Q_AND:
2802 		b0 = gen_hostop6(addr, mask, Q_SRC, proto, src_off, dst_off);
2803 		b1 = gen_hostop6(addr, mask, Q_DST, proto, src_off, dst_off);
2804 		gen_and(b0, b1);
2805 		return b1;
2806 
2807 	case Q_OR:
2808 	case Q_DEFAULT:
2809 		b0 = gen_hostop6(addr, mask, Q_SRC, proto, src_off, dst_off);
2810 		b1 = gen_hostop6(addr, mask, Q_DST, proto, src_off, dst_off);
2811 		gen_or(b0, b1);
2812 		return b1;
2813 
2814 	default:
2815 		abort();
2816 	}
2817 	/* this order is important */
2818 	a = (u_int32_t *)addr;
2819 	m = (u_int32_t *)mask;
2820 	b1 = gen_mcmp(OR_NET, offset + 12, BPF_W, ntohl(a[3]), ntohl(m[3]));
2821 	b0 = gen_mcmp(OR_NET, offset + 8, BPF_W, ntohl(a[2]), ntohl(m[2]));
2822 	gen_and(b0, b1);
2823 	b0 = gen_mcmp(OR_NET, offset + 4, BPF_W, ntohl(a[1]), ntohl(m[1]));
2824 	gen_and(b0, b1);
2825 	b0 = gen_mcmp(OR_NET, offset + 0, BPF_W, ntohl(a[0]), ntohl(m[0]));
2826 	gen_and(b0, b1);
2827 	b0 = gen_linktype(proto);
2828 	gen_and(b0, b1);
2829 	return b1;
2830 }
2831 #endif /*INET6*/
2832 
2833 static struct block *
2834 gen_ehostop(eaddr, dir)
2835 	register const u_char *eaddr;
2836 	register int dir;
2837 {
2838 	register struct block *b0, *b1;
2839 
2840 	switch (dir) {
2841 	case Q_SRC:
2842 		return gen_bcmp(OR_LINK, off_mac + 6, 6, eaddr);
2843 
2844 	case Q_DST:
2845 		return gen_bcmp(OR_LINK, off_mac + 0, 6, eaddr);
2846 
2847 	case Q_AND:
2848 		b0 = gen_ehostop(eaddr, Q_SRC);
2849 		b1 = gen_ehostop(eaddr, Q_DST);
2850 		gen_and(b0, b1);
2851 		return b1;
2852 
2853 	case Q_DEFAULT:
2854 	case Q_OR:
2855 		b0 = gen_ehostop(eaddr, Q_SRC);
2856 		b1 = gen_ehostop(eaddr, Q_DST);
2857 		gen_or(b0, b1);
2858 		return b1;
2859 	}
2860 	abort();
2861 	/* NOTREACHED */
2862 }
2863 
2864 /*
2865  * Like gen_ehostop, but for DLT_FDDI
2866  */
2867 static struct block *
2868 gen_fhostop(eaddr, dir)
2869 	register const u_char *eaddr;
2870 	register int dir;
2871 {
2872 	struct block *b0, *b1;
2873 
2874 	switch (dir) {
2875 	case Q_SRC:
2876 #ifdef PCAP_FDDIPAD
2877 		return gen_bcmp(OR_LINK, 6 + 1 + pcap_fddipad, 6, eaddr);
2878 #else
2879 		return gen_bcmp(OR_LINK, 6 + 1, 6, eaddr);
2880 #endif
2881 
2882 	case Q_DST:
2883 #ifdef PCAP_FDDIPAD
2884 		return gen_bcmp(OR_LINK, 0 + 1 + pcap_fddipad, 6, eaddr);
2885 #else
2886 		return gen_bcmp(OR_LINK, 0 + 1, 6, eaddr);
2887 #endif
2888 
2889 	case Q_AND:
2890 		b0 = gen_fhostop(eaddr, Q_SRC);
2891 		b1 = gen_fhostop(eaddr, Q_DST);
2892 		gen_and(b0, b1);
2893 		return b1;
2894 
2895 	case Q_DEFAULT:
2896 	case Q_OR:
2897 		b0 = gen_fhostop(eaddr, Q_SRC);
2898 		b1 = gen_fhostop(eaddr, Q_DST);
2899 		gen_or(b0, b1);
2900 		return b1;
2901 	}
2902 	abort();
2903 	/* NOTREACHED */
2904 }
2905 
2906 /*
2907  * Like gen_ehostop, but for DLT_IEEE802 (Token Ring)
2908  */
2909 static struct block *
2910 gen_thostop(eaddr, dir)
2911 	register const u_char *eaddr;
2912 	register int dir;
2913 {
2914 	register struct block *b0, *b1;
2915 
2916 	switch (dir) {
2917 	case Q_SRC:
2918 		return gen_bcmp(OR_LINK, 8, 6, eaddr);
2919 
2920 	case Q_DST:
2921 		return gen_bcmp(OR_LINK, 2, 6, eaddr);
2922 
2923 	case Q_AND:
2924 		b0 = gen_thostop(eaddr, Q_SRC);
2925 		b1 = gen_thostop(eaddr, Q_DST);
2926 		gen_and(b0, b1);
2927 		return b1;
2928 
2929 	case Q_DEFAULT:
2930 	case Q_OR:
2931 		b0 = gen_thostop(eaddr, Q_SRC);
2932 		b1 = gen_thostop(eaddr, Q_DST);
2933 		gen_or(b0, b1);
2934 		return b1;
2935 	}
2936 	abort();
2937 	/* NOTREACHED */
2938 }
2939 
2940 /*
2941  * Like gen_ehostop, but for DLT_IEEE802_11 (802.11 wireless LAN)
2942  */
2943 static struct block *
2944 gen_wlanhostop(eaddr, dir)
2945 	register const u_char *eaddr;
2946 	register int dir;
2947 {
2948 	register struct block *b0, *b1, *b2;
2949 	register struct slist *s;
2950 
2951 	switch (dir) {
2952 	case Q_SRC:
2953 		/*
2954 		 * Oh, yuk.
2955 		 *
2956 		 *	For control frames, there is no SA.
2957 		 *
2958 		 *	For management frames, SA is at an
2959 		 *	offset of 10 from the beginning of
2960 		 *	the packet.
2961 		 *
2962 		 *	For data frames, SA is at an offset
2963 		 *	of 10 from the beginning of the packet
2964 		 *	if From DS is clear, at an offset of
2965 		 *	16 from the beginning of the packet
2966 		 *	if From DS is set and To DS is clear,
2967 		 *	and an offset of 24 from the beginning
2968 		 *	of the packet if From DS is set and To DS
2969 		 *	is set.
2970 		 */
2971 
2972 		/*
2973 		 * Generate the tests to be done for data frames
2974 		 * with From DS set.
2975 		 *
2976 		 * First, check for To DS set, i.e. check "link[1] & 0x01".
2977 		 */
2978 		s = gen_load_a(OR_LINK, 1, BPF_B);
2979 		b1 = new_block(JMP(BPF_JSET));
2980 		b1->s.k = 0x01;	/* To DS */
2981 		b1->stmts = s;
2982 
2983 		/*
2984 		 * If To DS is set, the SA is at 24.
2985 		 */
2986 		b0 = gen_bcmp(OR_LINK, 24, 6, eaddr);
2987 		gen_and(b1, b0);
2988 
2989 		/*
2990 		 * Now, check for To DS not set, i.e. check
2991 		 * "!(link[1] & 0x01)".
2992 		 */
2993 		s = gen_load_a(OR_LINK, 1, BPF_B);
2994 		b2 = new_block(JMP(BPF_JSET));
2995 		b2->s.k = 0x01;	/* To DS */
2996 		b2->stmts = s;
2997 		gen_not(b2);
2998 
2999 		/*
3000 		 * If To DS is not set, the SA is at 16.
3001 		 */
3002 		b1 = gen_bcmp(OR_LINK, 16, 6, eaddr);
3003 		gen_and(b2, b1);
3004 
3005 		/*
3006 		 * Now OR together the last two checks.  That gives
3007 		 * the complete set of checks for data frames with
3008 		 * From DS set.
3009 		 */
3010 		gen_or(b1, b0);
3011 
3012 		/*
3013 		 * Now check for From DS being set, and AND that with
3014 		 * the ORed-together checks.
3015 		 */
3016 		s = gen_load_a(OR_LINK, 1, BPF_B);
3017 		b1 = new_block(JMP(BPF_JSET));
3018 		b1->s.k = 0x02;	/* From DS */
3019 		b1->stmts = s;
3020 		gen_and(b1, b0);
3021 
3022 		/*
3023 		 * Now check for data frames with From DS not set.
3024 		 */
3025 		s = gen_load_a(OR_LINK, 1, BPF_B);
3026 		b2 = new_block(JMP(BPF_JSET));
3027 		b2->s.k = 0x02;	/* From DS */
3028 		b2->stmts = s;
3029 		gen_not(b2);
3030 
3031 		/*
3032 		 * If From DS isn't set, the SA is at 10.
3033 		 */
3034 		b1 = gen_bcmp(OR_LINK, 10, 6, eaddr);
3035 		gen_and(b2, b1);
3036 
3037 		/*
3038 		 * Now OR together the checks for data frames with
3039 		 * From DS not set and for data frames with From DS
3040 		 * set; that gives the checks done for data frames.
3041 		 */
3042 		gen_or(b1, b0);
3043 
3044 		/*
3045 		 * Now check for a data frame.
3046 		 * I.e, check "link[0] & 0x08".
3047 		 */
3048 		gen_load_a(OR_LINK, 0, BPF_B);
3049 		b1 = new_block(JMP(BPF_JSET));
3050 		b1->s.k = 0x08;
3051 		b1->stmts = s;
3052 
3053 		/*
3054 		 * AND that with the checks done for data frames.
3055 		 */
3056 		gen_and(b1, b0);
3057 
3058 		/*
3059 		 * If the high-order bit of the type value is 0, this
3060 		 * is a management frame.
3061 		 * I.e, check "!(link[0] & 0x08)".
3062 		 */
3063 		s = gen_load_a(OR_LINK, 0, BPF_B);
3064 		b2 = new_block(JMP(BPF_JSET));
3065 		b2->s.k = 0x08;
3066 		b2->stmts = s;
3067 		gen_not(b2);
3068 
3069 		/*
3070 		 * For management frames, the SA is at 10.
3071 		 */
3072 		b1 = gen_bcmp(OR_LINK, 10, 6, eaddr);
3073 		gen_and(b2, b1);
3074 
3075 		/*
3076 		 * OR that with the checks done for data frames.
3077 		 * That gives the checks done for management and
3078 		 * data frames.
3079 		 */
3080 		gen_or(b1, b0);
3081 
3082 		/*
3083 		 * If the low-order bit of the type value is 1,
3084 		 * this is either a control frame or a frame
3085 		 * with a reserved type, and thus not a
3086 		 * frame with an SA.
3087 		 *
3088 		 * I.e., check "!(link[0] & 0x04)".
3089 		 */
3090 		s = gen_load_a(OR_LINK, 0, BPF_B);
3091 		b1 = new_block(JMP(BPF_JSET));
3092 		b1->s.k = 0x04;
3093 		b1->stmts = s;
3094 		gen_not(b1);
3095 
3096 		/*
3097 		 * AND that with the checks for data and management
3098 		 * frames.
3099 		 */
3100 		gen_and(b1, b0);
3101 		return b0;
3102 
3103 	case Q_DST:
3104 		/*
3105 		 * Oh, yuk.
3106 		 *
3107 		 *	For control frames, there is no DA.
3108 		 *
3109 		 *	For management frames, DA is at an
3110 		 *	offset of 4 from the beginning of
3111 		 *	the packet.
3112 		 *
3113 		 *	For data frames, DA is at an offset
3114 		 *	of 4 from the beginning of the packet
3115 		 *	if To DS is clear and at an offset of
3116 		 *	16 from the beginning of the packet
3117 		 *	if To DS is set.
3118 		 */
3119 
3120 		/*
3121 		 * Generate the tests to be done for data frames.
3122 		 *
3123 		 * First, check for To DS set, i.e. "link[1] & 0x01".
3124 		 */
3125 		s = gen_load_a(OR_LINK, 1, BPF_B);
3126 		b1 = new_block(JMP(BPF_JSET));
3127 		b1->s.k = 0x01;	/* To DS */
3128 		b1->stmts = s;
3129 
3130 		/*
3131 		 * If To DS is set, the DA is at 16.
3132 		 */
3133 		b0 = gen_bcmp(OR_LINK, 16, 6, eaddr);
3134 		gen_and(b1, b0);
3135 
3136 		/*
3137 		 * Now, check for To DS not set, i.e. check
3138 		 * "!(link[1] & 0x01)".
3139 		 */
3140 		s = gen_load_a(OR_LINK, 1, BPF_B);
3141 		b2 = new_block(JMP(BPF_JSET));
3142 		b2->s.k = 0x01;	/* To DS */
3143 		b2->stmts = s;
3144 		gen_not(b2);
3145 
3146 		/*
3147 		 * If To DS is not set, the DA is at 4.
3148 		 */
3149 		b1 = gen_bcmp(OR_LINK, 4, 6, eaddr);
3150 		gen_and(b2, b1);
3151 
3152 		/*
3153 		 * Now OR together the last two checks.  That gives
3154 		 * the complete set of checks for data frames.
3155 		 */
3156 		gen_or(b1, b0);
3157 
3158 		/*
3159 		 * Now check for a data frame.
3160 		 * I.e, check "link[0] & 0x08".
3161 		 */
3162 		s = gen_load_a(OR_LINK, 0, BPF_B);
3163 		b1 = new_block(JMP(BPF_JSET));
3164 		b1->s.k = 0x08;
3165 		b1->stmts = s;
3166 
3167 		/*
3168 		 * AND that with the checks done for data frames.
3169 		 */
3170 		gen_and(b1, b0);
3171 
3172 		/*
3173 		 * If the high-order bit of the type value is 0, this
3174 		 * is a management frame.
3175 		 * I.e, check "!(link[0] & 0x08)".
3176 		 */
3177 		s = gen_load_a(OR_LINK, 0, BPF_B);
3178 		b2 = new_block(JMP(BPF_JSET));
3179 		b2->s.k = 0x08;
3180 		b2->stmts = s;
3181 		gen_not(b2);
3182 
3183 		/*
3184 		 * For management frames, the DA is at 4.
3185 		 */
3186 		b1 = gen_bcmp(OR_LINK, 4, 6, eaddr);
3187 		gen_and(b2, b1);
3188 
3189 		/*
3190 		 * OR that with the checks done for data frames.
3191 		 * That gives the checks done for management and
3192 		 * data frames.
3193 		 */
3194 		gen_or(b1, b0);
3195 
3196 		/*
3197 		 * If the low-order bit of the type value is 1,
3198 		 * this is either a control frame or a frame
3199 		 * with a reserved type, and thus not a
3200 		 * frame with an SA.
3201 		 *
3202 		 * I.e., check "!(link[0] & 0x04)".
3203 		 */
3204 		s = gen_load_a(OR_LINK, 0, BPF_B);
3205 		b1 = new_block(JMP(BPF_JSET));
3206 		b1->s.k = 0x04;
3207 		b1->stmts = s;
3208 		gen_not(b1);
3209 
3210 		/*
3211 		 * AND that with the checks for data and management
3212 		 * frames.
3213 		 */
3214 		gen_and(b1, b0);
3215 		return b0;
3216 
3217 	case Q_AND:
3218 		b0 = gen_wlanhostop(eaddr, Q_SRC);
3219 		b1 = gen_wlanhostop(eaddr, Q_DST);
3220 		gen_and(b0, b1);
3221 		return b1;
3222 
3223 	case Q_DEFAULT:
3224 	case Q_OR:
3225 		b0 = gen_wlanhostop(eaddr, Q_SRC);
3226 		b1 = gen_wlanhostop(eaddr, Q_DST);
3227 		gen_or(b0, b1);
3228 		return b1;
3229 	}
3230 	abort();
3231 	/* NOTREACHED */
3232 }
3233 
3234 /*
3235  * Like gen_ehostop, but for RFC 2625 IP-over-Fibre-Channel.
3236  * (We assume that the addresses are IEEE 48-bit MAC addresses,
3237  * as the RFC states.)
3238  */
3239 static struct block *
3240 gen_ipfchostop(eaddr, dir)
3241 	register const u_char *eaddr;
3242 	register int dir;
3243 {
3244 	register struct block *b0, *b1;
3245 
3246 	switch (dir) {
3247 	case Q_SRC:
3248 		return gen_bcmp(OR_LINK, 10, 6, eaddr);
3249 
3250 	case Q_DST:
3251 		return gen_bcmp(OR_LINK, 2, 6, eaddr);
3252 
3253 	case Q_AND:
3254 		b0 = gen_ipfchostop(eaddr, Q_SRC);
3255 		b1 = gen_ipfchostop(eaddr, Q_DST);
3256 		gen_and(b0, b1);
3257 		return b1;
3258 
3259 	case Q_DEFAULT:
3260 	case Q_OR:
3261 		b0 = gen_ipfchostop(eaddr, Q_SRC);
3262 		b1 = gen_ipfchostop(eaddr, Q_DST);
3263 		gen_or(b0, b1);
3264 		return b1;
3265 	}
3266 	abort();
3267 	/* NOTREACHED */
3268 }
3269 
3270 /*
3271  * This is quite tricky because there may be pad bytes in front of the
3272  * DECNET header, and then there are two possible data packet formats that
3273  * carry both src and dst addresses, plus 5 packet types in a format that
3274  * carries only the src node, plus 2 types that use a different format and
3275  * also carry just the src node.
3276  *
3277  * Yuck.
3278  *
3279  * Instead of doing those all right, we just look for data packets with
3280  * 0 or 1 bytes of padding.  If you want to look at other packets, that
3281  * will require a lot more hacking.
3282  *
3283  * To add support for filtering on DECNET "areas" (network numbers)
3284  * one would want to add a "mask" argument to this routine.  That would
3285  * make the filter even more inefficient, although one could be clever
3286  * and not generate masking instructions if the mask is 0xFFFF.
3287  */
3288 static struct block *
3289 gen_dnhostop(addr, dir)
3290 	bpf_u_int32 addr;
3291 	int dir;
3292 {
3293 	struct block *b0, *b1, *b2, *tmp;
3294 	u_int offset_lh;	/* offset if long header is received */
3295 	u_int offset_sh;	/* offset if short header is received */
3296 
3297 	switch (dir) {
3298 
3299 	case Q_DST:
3300 		offset_sh = 1;	/* follows flags */
3301 		offset_lh = 7;	/* flgs,darea,dsubarea,HIORD */
3302 		break;
3303 
3304 	case Q_SRC:
3305 		offset_sh = 3;	/* follows flags, dstnode */
3306 		offset_lh = 15;	/* flgs,darea,dsubarea,did,sarea,ssub,HIORD */
3307 		break;
3308 
3309 	case Q_AND:
3310 		/* Inefficient because we do our Calvinball dance twice */
3311 		b0 = gen_dnhostop(addr, Q_SRC);
3312 		b1 = gen_dnhostop(addr, Q_DST);
3313 		gen_and(b0, b1);
3314 		return b1;
3315 
3316 	case Q_OR:
3317 	case Q_DEFAULT:
3318 		/* Inefficient because we do our Calvinball dance twice */
3319 		b0 = gen_dnhostop(addr, Q_SRC);
3320 		b1 = gen_dnhostop(addr, Q_DST);
3321 		gen_or(b0, b1);
3322 		return b1;
3323 
3324 	case Q_ISO:
3325 		bpf_error("ISO host filtering not implemented");
3326 
3327 	default:
3328 		abort();
3329 	}
3330 	b0 = gen_linktype(ETHERTYPE_DN);
3331 	/* Check for pad = 1, long header case */
3332 	tmp = gen_mcmp(OR_NET, 2, BPF_H,
3333 	    (bpf_int32)ntohs(0x0681), (bpf_int32)ntohs(0x07FF));
3334 	b1 = gen_cmp(OR_NET, 2 + 1 + offset_lh,
3335 	    BPF_H, (bpf_int32)ntohs((u_short)addr));
3336 	gen_and(tmp, b1);
3337 	/* Check for pad = 0, long header case */
3338 	tmp = gen_mcmp(OR_NET, 2, BPF_B, (bpf_int32)0x06, (bpf_int32)0x7);
3339 	b2 = gen_cmp(OR_NET, 2 + offset_lh, BPF_H, (bpf_int32)ntohs((u_short)addr));
3340 	gen_and(tmp, b2);
3341 	gen_or(b2, b1);
3342 	/* Check for pad = 1, short header case */
3343 	tmp = gen_mcmp(OR_NET, 2, BPF_H,
3344 	    (bpf_int32)ntohs(0x0281), (bpf_int32)ntohs(0x07FF));
3345 	b2 = gen_cmp(OR_NET, 2 + 1 + offset_sh, BPF_H, (bpf_int32)ntohs((u_short)addr));
3346 	gen_and(tmp, b2);
3347 	gen_or(b2, b1);
3348 	/* Check for pad = 0, short header case */
3349 	tmp = gen_mcmp(OR_NET, 2, BPF_B, (bpf_int32)0x02, (bpf_int32)0x7);
3350 	b2 = gen_cmp(OR_NET, 2 + offset_sh, BPF_H, (bpf_int32)ntohs((u_short)addr));
3351 	gen_and(tmp, b2);
3352 	gen_or(b2, b1);
3353 
3354 	/* Combine with test for linktype */
3355 	gen_and(b0, b1);
3356 	return b1;
3357 }
3358 
3359 /*
3360  * Generate a check for IPv4 or IPv6 for MPLS-encapsulated packets;
3361  * test the bottom-of-stack bit, and then check the version number
3362  * field in the IP header.
3363  */
3364 static struct block *
3365 gen_mpls_linktype(proto)
3366 	int proto;
3367 {
3368 	struct block *b0, *b1;
3369 
3370         switch (proto) {
3371 
3372         case Q_IP:
3373                 /* match the bottom-of-stack bit */
3374                 b0 = gen_mcmp(OR_NET, -2, BPF_B, 0x01, 0x01);
3375                 /* match the IPv4 version number */
3376                 b1 = gen_mcmp(OR_NET, 0, BPF_B, 0x40, 0xf0);
3377                 gen_and(b0, b1);
3378                 return b1;
3379 
3380        case Q_IPV6:
3381                 /* match the bottom-of-stack bit */
3382                 b0 = gen_mcmp(OR_NET, -2, BPF_B, 0x01, 0x01);
3383                 /* match the IPv4 version number */
3384                 b1 = gen_mcmp(OR_NET, 0, BPF_B, 0x60, 0xf0);
3385                 gen_and(b0, b1);
3386                 return b1;
3387 
3388        default:
3389                 abort();
3390         }
3391 }
3392 
3393 static struct block *
3394 gen_host(addr, mask, proto, dir, type)
3395 	bpf_u_int32 addr;
3396 	bpf_u_int32 mask;
3397 	int proto;
3398 	int dir;
3399 	int type;
3400 {
3401 	struct block *b0, *b1;
3402 	const char *typestr;
3403 
3404 	if (type == Q_NET)
3405 		typestr = "net";
3406 	else
3407 		typestr = "host";
3408 
3409 	switch (proto) {
3410 
3411 	case Q_DEFAULT:
3412 		b0 = gen_host(addr, mask, Q_IP, dir, type);
3413 		/*
3414 		 * Only check for non-IPv4 addresses if we're not
3415 		 * checking MPLS-encapsulated packets.
3416 		 */
3417 		if (label_stack_depth == 0) {
3418 			b1 = gen_host(addr, mask, Q_ARP, dir, type);
3419 			gen_or(b0, b1);
3420 			b0 = gen_host(addr, mask, Q_RARP, dir, type);
3421 			gen_or(b1, b0);
3422 		}
3423 		return b0;
3424 
3425 	case Q_IP:
3426 		return gen_hostop(addr, mask, dir, ETHERTYPE_IP, 12, 16);
3427 
3428 	case Q_RARP:
3429 		return gen_hostop(addr, mask, dir, ETHERTYPE_REVARP, 14, 24);
3430 
3431 	case Q_ARP:
3432 		return gen_hostop(addr, mask, dir, ETHERTYPE_ARP, 14, 24);
3433 
3434 	case Q_TCP:
3435 		bpf_error("'tcp' modifier applied to %s", typestr);
3436 
3437 	case Q_SCTP:
3438 		bpf_error("'sctp' modifier applied to %s", typestr);
3439 
3440 	case Q_UDP:
3441 		bpf_error("'udp' modifier applied to %s", typestr);
3442 
3443 	case Q_ICMP:
3444 		bpf_error("'icmp' modifier applied to %s", typestr);
3445 
3446 	case Q_IGMP:
3447 		bpf_error("'igmp' modifier applied to %s", typestr);
3448 
3449 	case Q_IGRP:
3450 		bpf_error("'igrp' modifier applied to %s", typestr);
3451 
3452 	case Q_PIM:
3453 		bpf_error("'pim' modifier applied to %s", typestr);
3454 
3455 	case Q_VRRP:
3456 		bpf_error("'vrrp' modifier applied to %s", typestr);
3457 
3458 	case Q_ATALK:
3459 		bpf_error("ATALK host filtering not implemented");
3460 
3461 	case Q_AARP:
3462 		bpf_error("AARP host filtering not implemented");
3463 
3464 	case Q_DECNET:
3465 		return gen_dnhostop(addr, dir);
3466 
3467 	case Q_SCA:
3468 		bpf_error("SCA host filtering not implemented");
3469 
3470 	case Q_LAT:
3471 		bpf_error("LAT host filtering not implemented");
3472 
3473 	case Q_MOPDL:
3474 		bpf_error("MOPDL host filtering not implemented");
3475 
3476 	case Q_MOPRC:
3477 		bpf_error("MOPRC host filtering not implemented");
3478 
3479 #ifdef INET6
3480 	case Q_IPV6:
3481 		bpf_error("'ip6' modifier applied to ip host");
3482 
3483 	case Q_ICMPV6:
3484 		bpf_error("'icmp6' modifier applied to %s", typestr);
3485 #endif /* INET6 */
3486 
3487 	case Q_AH:
3488 		bpf_error("'ah' modifier applied to %s", typestr);
3489 
3490 	case Q_ESP:
3491 		bpf_error("'esp' modifier applied to %s", typestr);
3492 
3493 	case Q_ISO:
3494 		bpf_error("ISO host filtering not implemented");
3495 
3496 	case Q_ESIS:
3497 		bpf_error("'esis' modifier applied to %s", typestr);
3498 
3499 	case Q_ISIS:
3500 		bpf_error("'isis' modifier applied to %s", typestr);
3501 
3502 	case Q_CLNP:
3503 		bpf_error("'clnp' modifier applied to %s", typestr);
3504 
3505 	case Q_STP:
3506 		bpf_error("'stp' modifier applied to %s", typestr);
3507 
3508 	case Q_IPX:
3509 		bpf_error("IPX host filtering not implemented");
3510 
3511 	case Q_NETBEUI:
3512 		bpf_error("'netbeui' modifier applied to %s", typestr);
3513 
3514 	case Q_RADIO:
3515 		bpf_error("'radio' modifier applied to %s", typestr);
3516 
3517 	default:
3518 		abort();
3519 	}
3520 	/* NOTREACHED */
3521 }
3522 
3523 #ifdef INET6
3524 static struct block *
3525 gen_host6(addr, mask, proto, dir, type)
3526 	struct in6_addr *addr;
3527 	struct in6_addr *mask;
3528 	int proto;
3529 	int dir;
3530 	int type;
3531 {
3532 	const char *typestr;
3533 
3534 	if (type == Q_NET)
3535 		typestr = "net";
3536 	else
3537 		typestr = "host";
3538 
3539 	switch (proto) {
3540 
3541 	case Q_DEFAULT:
3542 		return gen_host6(addr, mask, Q_IPV6, dir, type);
3543 
3544 	case Q_IP:
3545 		bpf_error("'ip' modifier applied to ip6 %s", typestr);
3546 
3547 	case Q_RARP:
3548 		bpf_error("'rarp' modifier applied to ip6 %s", typestr);
3549 
3550 	case Q_ARP:
3551 		bpf_error("'arp' modifier applied to ip6 %s", typestr);
3552 
3553 	case Q_SCTP:
3554 		bpf_error("'sctp' modifier applied to %s", typestr);
3555 
3556 	case Q_TCP:
3557 		bpf_error("'tcp' modifier applied to %s", typestr);
3558 
3559 	case Q_UDP:
3560 		bpf_error("'udp' modifier applied to %s", typestr);
3561 
3562 	case Q_ICMP:
3563 		bpf_error("'icmp' modifier applied to %s", typestr);
3564 
3565 	case Q_IGMP:
3566 		bpf_error("'igmp' modifier applied to %s", typestr);
3567 
3568 	case Q_IGRP:
3569 		bpf_error("'igrp' modifier applied to %s", typestr);
3570 
3571 	case Q_PIM:
3572 		bpf_error("'pim' modifier applied to %s", typestr);
3573 
3574 	case Q_VRRP:
3575 		bpf_error("'vrrp' modifier applied to %s", typestr);
3576 
3577 	case Q_ATALK:
3578 		bpf_error("ATALK host filtering not implemented");
3579 
3580 	case Q_AARP:
3581 		bpf_error("AARP host filtering not implemented");
3582 
3583 	case Q_DECNET:
3584 		bpf_error("'decnet' modifier applied to ip6 %s", typestr);
3585 
3586 	case Q_SCA:
3587 		bpf_error("SCA host filtering not implemented");
3588 
3589 	case Q_LAT:
3590 		bpf_error("LAT host filtering not implemented");
3591 
3592 	case Q_MOPDL:
3593 		bpf_error("MOPDL host filtering not implemented");
3594 
3595 	case Q_MOPRC:
3596 		bpf_error("MOPRC host filtering not implemented");
3597 
3598 	case Q_IPV6:
3599 		return gen_hostop6(addr, mask, dir, ETHERTYPE_IPV6, 8, 24);
3600 
3601 	case Q_ICMPV6:
3602 		bpf_error("'icmp6' modifier applied to %s", typestr);
3603 
3604 	case Q_AH:
3605 		bpf_error("'ah' modifier applied to %s", typestr);
3606 
3607 	case Q_ESP:
3608 		bpf_error("'esp' modifier applied to %s", typestr);
3609 
3610 	case Q_ISO:
3611 		bpf_error("ISO host filtering not implemented");
3612 
3613 	case Q_ESIS:
3614 		bpf_error("'esis' modifier applied to %s", typestr);
3615 
3616 	case Q_ISIS:
3617 		bpf_error("'isis' modifier applied to %s", typestr);
3618 
3619 	case Q_CLNP:
3620 		bpf_error("'clnp' modifier applied to %s", typestr);
3621 
3622 	case Q_STP:
3623 		bpf_error("'stp' modifier applied to %s", typestr);
3624 
3625 	case Q_IPX:
3626 		bpf_error("IPX host filtering not implemented");
3627 
3628 	case Q_NETBEUI:
3629 		bpf_error("'netbeui' modifier applied to %s", typestr);
3630 
3631 	case Q_RADIO:
3632 		bpf_error("'radio' modifier applied to %s", typestr);
3633 
3634 	default:
3635 		abort();
3636 	}
3637 	/* NOTREACHED */
3638 }
3639 #endif /*INET6*/
3640 
3641 #ifndef INET6
3642 static struct block *
3643 gen_gateway(eaddr, alist, proto, dir)
3644 	const u_char *eaddr;
3645 	bpf_u_int32 **alist;
3646 	int proto;
3647 	int dir;
3648 {
3649 	struct block *b0, *b1, *tmp;
3650 
3651 	if (dir != 0)
3652 		bpf_error("direction applied to 'gateway'");
3653 
3654 	switch (proto) {
3655 	case Q_DEFAULT:
3656 	case Q_IP:
3657 	case Q_ARP:
3658 	case Q_RARP:
3659                 switch (linktype) {
3660                 case DLT_EN10MB:
3661                     b0 = gen_ehostop(eaddr, Q_OR);
3662                     break;
3663                 case DLT_FDDI:
3664                     b0 = gen_fhostop(eaddr, Q_OR);
3665                     break;
3666 		case DLT_IEEE802:
3667                     b0 = gen_thostop(eaddr, Q_OR);
3668                     break;
3669 		case DLT_IEEE802_11:
3670 		case DLT_IEEE802_11_RADIO_AVS:
3671 		case DLT_PPI:
3672 		case DLT_IEEE802_11_RADIO:
3673 		case DLT_PRISM_HEADER:
3674                     b0 = gen_wlanhostop(eaddr, Q_OR);
3675                     break;
3676                 case DLT_SUNATM:
3677                     if (is_lane) {
3678 			/*
3679 			 * Check that the packet doesn't begin with an
3680 			 * LE Control marker.  (We've already generated
3681 			 * a test for LANE.)
3682 			 */
3683 			b1 = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS, BPF_H,
3684 			    0xFF00);
3685 			gen_not(b1);
3686 
3687 			/*
3688 			 * Now check the MAC address.
3689 			 */
3690 			b0 = gen_ehostop(eaddr, Q_OR);
3691 			gen_and(b1, b0);
3692                     }
3693                     break;
3694 		case DLT_IP_OVER_FC:
3695                     b0 = gen_ipfchostop(eaddr, Q_OR);
3696                     break;
3697                 default:
3698                     bpf_error(
3699 			    "'gateway' supported only on ethernet/FDDI/token ring/802.11/Fibre Channel");
3700                 }
3701 		b1 = gen_host(**alist++, 0xffffffff, proto, Q_OR, Q_HOST);
3702 		while (*alist) {
3703 			tmp = gen_host(**alist++, 0xffffffff, proto, Q_OR,
3704 			    Q_HOST);
3705 			gen_or(b1, tmp);
3706 			b1 = tmp;
3707 		}
3708 		gen_not(b1);
3709 		gen_and(b0, b1);
3710 		return b1;
3711 	}
3712 	bpf_error("illegal modifier of 'gateway'");
3713 	/* NOTREACHED */
3714 }
3715 #endif
3716 
3717 struct block *
3718 gen_proto_abbrev(proto)
3719 	int proto;
3720 {
3721 	struct block *b0;
3722 	struct block *b1;
3723 
3724 	switch (proto) {
3725 
3726 	case Q_SCTP:
3727 		b1 = gen_proto(IPPROTO_SCTP, Q_IP, Q_DEFAULT);
3728 #ifdef INET6
3729 		b0 = gen_proto(IPPROTO_SCTP, Q_IPV6, Q_DEFAULT);
3730 		gen_or(b0, b1);
3731 #endif
3732 		break;
3733 
3734 	case Q_TCP:
3735 		b1 = gen_proto(IPPROTO_TCP, Q_IP, Q_DEFAULT);
3736 #ifdef INET6
3737 		b0 = gen_proto(IPPROTO_TCP, Q_IPV6, Q_DEFAULT);
3738 		gen_or(b0, b1);
3739 #endif
3740 		break;
3741 
3742 	case Q_UDP:
3743 		b1 = gen_proto(IPPROTO_UDP, Q_IP, Q_DEFAULT);
3744 #ifdef INET6
3745 		b0 = gen_proto(IPPROTO_UDP, Q_IPV6, Q_DEFAULT);
3746 		gen_or(b0, b1);
3747 #endif
3748 		break;
3749 
3750 	case Q_ICMP:
3751 		b1 = gen_proto(IPPROTO_ICMP, Q_IP, Q_DEFAULT);
3752 		break;
3753 
3754 #ifndef	IPPROTO_IGMP
3755 #define	IPPROTO_IGMP	2
3756 #endif
3757 
3758 	case Q_IGMP:
3759 		b1 = gen_proto(IPPROTO_IGMP, Q_IP, Q_DEFAULT);
3760 		break;
3761 
3762 #ifndef	IPPROTO_IGRP
3763 #define	IPPROTO_IGRP	9
3764 #endif
3765 	case Q_IGRP:
3766 		b1 = gen_proto(IPPROTO_IGRP, Q_IP, Q_DEFAULT);
3767 		break;
3768 
3769 #ifndef IPPROTO_PIM
3770 #define IPPROTO_PIM	103
3771 #endif
3772 
3773 	case Q_PIM:
3774 		b1 = gen_proto(IPPROTO_PIM, Q_IP, Q_DEFAULT);
3775 #ifdef INET6
3776 		b0 = gen_proto(IPPROTO_PIM, Q_IPV6, Q_DEFAULT);
3777 		gen_or(b0, b1);
3778 #endif
3779 		break;
3780 
3781 #ifndef IPPROTO_VRRP
3782 #define IPPROTO_VRRP	112
3783 #endif
3784 
3785 	case Q_VRRP:
3786 		b1 = gen_proto(IPPROTO_VRRP, Q_IP, Q_DEFAULT);
3787 		break;
3788 
3789 	case Q_IP:
3790 		b1 =  gen_linktype(ETHERTYPE_IP);
3791 		break;
3792 
3793 	case Q_ARP:
3794 		b1 =  gen_linktype(ETHERTYPE_ARP);
3795 		break;
3796 
3797 	case Q_RARP:
3798 		b1 =  gen_linktype(ETHERTYPE_REVARP);
3799 		break;
3800 
3801 	case Q_LINK:
3802 		bpf_error("link layer applied in wrong context");
3803 
3804 	case Q_ATALK:
3805 		b1 =  gen_linktype(ETHERTYPE_ATALK);
3806 		break;
3807 
3808 	case Q_AARP:
3809 		b1 =  gen_linktype(ETHERTYPE_AARP);
3810 		break;
3811 
3812 	case Q_DECNET:
3813 		b1 =  gen_linktype(ETHERTYPE_DN);
3814 		break;
3815 
3816 	case Q_SCA:
3817 		b1 =  gen_linktype(ETHERTYPE_SCA);
3818 		break;
3819 
3820 	case Q_LAT:
3821 		b1 =  gen_linktype(ETHERTYPE_LAT);
3822 		break;
3823 
3824 	case Q_MOPDL:
3825 		b1 =  gen_linktype(ETHERTYPE_MOPDL);
3826 		break;
3827 
3828 	case Q_MOPRC:
3829 		b1 =  gen_linktype(ETHERTYPE_MOPRC);
3830 		break;
3831 
3832 #ifdef INET6
3833 	case Q_IPV6:
3834 		b1 = gen_linktype(ETHERTYPE_IPV6);
3835 		break;
3836 
3837 #ifndef IPPROTO_ICMPV6
3838 #define IPPROTO_ICMPV6	58
3839 #endif
3840 	case Q_ICMPV6:
3841 		b1 = gen_proto(IPPROTO_ICMPV6, Q_IPV6, Q_DEFAULT);
3842 		break;
3843 #endif /* INET6 */
3844 
3845 #ifndef IPPROTO_AH
3846 #define IPPROTO_AH	51
3847 #endif
3848 	case Q_AH:
3849 		b1 = gen_proto(IPPROTO_AH, Q_IP, Q_DEFAULT);
3850 #ifdef INET6
3851 		b0 = gen_proto(IPPROTO_AH, Q_IPV6, Q_DEFAULT);
3852 		gen_or(b0, b1);
3853 #endif
3854 		break;
3855 
3856 #ifndef IPPROTO_ESP
3857 #define IPPROTO_ESP	50
3858 #endif
3859 	case Q_ESP:
3860 		b1 = gen_proto(IPPROTO_ESP, Q_IP, Q_DEFAULT);
3861 #ifdef INET6
3862 		b0 = gen_proto(IPPROTO_ESP, Q_IPV6, Q_DEFAULT);
3863 		gen_or(b0, b1);
3864 #endif
3865 		break;
3866 
3867 	case Q_ISO:
3868 		b1 = gen_linktype(LLCSAP_ISONS);
3869 		break;
3870 
3871 	case Q_ESIS:
3872 		b1 = gen_proto(ISO9542_ESIS, Q_ISO, Q_DEFAULT);
3873 		break;
3874 
3875 	case Q_ISIS:
3876 		b1 = gen_proto(ISO10589_ISIS, Q_ISO, Q_DEFAULT);
3877 		break;
3878 
3879 	case Q_ISIS_L1: /* all IS-IS Level1 PDU-Types */
3880 		b0 = gen_proto(ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT);
3881 		b1 = gen_proto(ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */
3882 		gen_or(b0, b1);
3883 		b0 = gen_proto(ISIS_L1_LSP, Q_ISIS, Q_DEFAULT);
3884 		gen_or(b0, b1);
3885 		b0 = gen_proto(ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
3886 		gen_or(b0, b1);
3887 		b0 = gen_proto(ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
3888 		gen_or(b0, b1);
3889 		break;
3890 
3891 	case Q_ISIS_L2: /* all IS-IS Level2 PDU-Types */
3892 		b0 = gen_proto(ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT);
3893 		b1 = gen_proto(ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */
3894 		gen_or(b0, b1);
3895 		b0 = gen_proto(ISIS_L2_LSP, Q_ISIS, Q_DEFAULT);
3896 		gen_or(b0, b1);
3897 		b0 = gen_proto(ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
3898 		gen_or(b0, b1);
3899 		b0 = gen_proto(ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
3900 		gen_or(b0, b1);
3901 		break;
3902 
3903 	case Q_ISIS_IIH: /* all IS-IS Hello PDU-Types */
3904 		b0 = gen_proto(ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT);
3905 		b1 = gen_proto(ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT);
3906 		gen_or(b0, b1);
3907 		b0 = gen_proto(ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT);
3908 		gen_or(b0, b1);
3909 		break;
3910 
3911 	case Q_ISIS_LSP:
3912 		b0 = gen_proto(ISIS_L1_LSP, Q_ISIS, Q_DEFAULT);
3913 		b1 = gen_proto(ISIS_L2_LSP, Q_ISIS, Q_DEFAULT);
3914 		gen_or(b0, b1);
3915 		break;
3916 
3917 	case Q_ISIS_SNP:
3918 		b0 = gen_proto(ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
3919 		b1 = gen_proto(ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
3920 		gen_or(b0, b1);
3921 		b0 = gen_proto(ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
3922 		gen_or(b0, b1);
3923 		b0 = gen_proto(ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
3924 		gen_or(b0, b1);
3925 		break;
3926 
3927 	case Q_ISIS_CSNP:
3928 		b0 = gen_proto(ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
3929 		b1 = gen_proto(ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
3930 		gen_or(b0, b1);
3931 		break;
3932 
3933 	case Q_ISIS_PSNP:
3934 		b0 = gen_proto(ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
3935 		b1 = gen_proto(ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
3936 		gen_or(b0, b1);
3937 		break;
3938 
3939 	case Q_CLNP:
3940 		b1 = gen_proto(ISO8473_CLNP, Q_ISO, Q_DEFAULT);
3941 		break;
3942 
3943 	case Q_STP:
3944 		b1 = gen_linktype(LLCSAP_8021D);
3945 		break;
3946 
3947 	case Q_IPX:
3948 		b1 = gen_linktype(LLCSAP_IPX);
3949 		break;
3950 
3951 	case Q_NETBEUI:
3952 		b1 = gen_linktype(LLCSAP_NETBEUI);
3953 		break;
3954 
3955 	case Q_RADIO:
3956 		bpf_error("'radio' is not a valid protocol type");
3957 
3958 	default:
3959 		abort();
3960 	}
3961 	return b1;
3962 }
3963 
3964 static struct block *
3965 gen_ipfrag()
3966 {
3967 	struct slist *s;
3968 	struct block *b;
3969 
3970 	/* not ip frag */
3971 	s = gen_load_a(OR_NET, 6, BPF_H);
3972 	b = new_block(JMP(BPF_JSET));
3973 	b->s.k = 0x1fff;
3974 	b->stmts = s;
3975 	gen_not(b);
3976 
3977 	return b;
3978 }
3979 
3980 /*
3981  * Generate a comparison to a port value in the transport-layer header
3982  * at the specified offset from the beginning of that header.
3983  *
3984  * XXX - this handles a variable-length prefix preceding the link-layer
3985  * header, such as the radiotap or AVS radio prefix, but doesn't handle
3986  * variable-length link-layer headers (such as Token Ring or 802.11
3987  * headers).
3988  */
3989 static struct block *
3990 gen_portatom(off, v)
3991 	int off;
3992 	bpf_int32 v;
3993 {
3994 	return gen_cmp(OR_TRAN_IPV4, off, BPF_H, v);
3995 }
3996 
3997 #ifdef INET6
3998 static struct block *
3999 gen_portatom6(off, v)
4000 	int off;
4001 	bpf_int32 v;
4002 {
4003 	return gen_cmp(OR_TRAN_IPV6, off, BPF_H, v);
4004 }
4005 #endif/*INET6*/
4006 
4007 struct block *
4008 gen_portop(port, proto, dir)
4009 	int port, proto, dir;
4010 {
4011 	struct block *b0, *b1, *tmp;
4012 
4013 	/* ip proto 'proto' */
4014 	tmp = gen_cmp(OR_NET, 9, BPF_B, (bpf_int32)proto);
4015 	b0 = gen_ipfrag();
4016 	gen_and(tmp, b0);
4017 
4018 	switch (dir) {
4019 	case Q_SRC:
4020 		b1 = gen_portatom(0, (bpf_int32)port);
4021 		break;
4022 
4023 	case Q_DST:
4024 		b1 = gen_portatom(2, (bpf_int32)port);
4025 		break;
4026 
4027 	case Q_OR:
4028 	case Q_DEFAULT:
4029 		tmp = gen_portatom(0, (bpf_int32)port);
4030 		b1 = gen_portatom(2, (bpf_int32)port);
4031 		gen_or(tmp, b1);
4032 		break;
4033 
4034 	case Q_AND:
4035 		tmp = gen_portatom(0, (bpf_int32)port);
4036 		b1 = gen_portatom(2, (bpf_int32)port);
4037 		gen_and(tmp, b1);
4038 		break;
4039 
4040 	default:
4041 		abort();
4042 	}
4043 	gen_and(b0, b1);
4044 
4045 	return b1;
4046 }
4047 
4048 static struct block *
4049 gen_port(port, ip_proto, dir)
4050 	int port;
4051 	int ip_proto;
4052 	int dir;
4053 {
4054 	struct block *b0, *b1, *tmp;
4055 
4056 	/*
4057 	 * ether proto ip
4058 	 *
4059 	 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
4060 	 * not LLC encapsulation with LLCSAP_IP.
4061 	 *
4062 	 * For IEEE 802 networks - which includes 802.5 token ring
4063 	 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
4064 	 * says that SNAP encapsulation is used, not LLC encapsulation
4065 	 * with LLCSAP_IP.
4066 	 *
4067 	 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
4068 	 * RFC 2225 say that SNAP encapsulation is used, not LLC
4069 	 * encapsulation with LLCSAP_IP.
4070 	 *
4071 	 * So we always check for ETHERTYPE_IP.
4072 	 */
4073 	b0 =  gen_linktype(ETHERTYPE_IP);
4074 
4075 	switch (ip_proto) {
4076 	case IPPROTO_UDP:
4077 	case IPPROTO_TCP:
4078 	case IPPROTO_SCTP:
4079 		b1 = gen_portop(port, ip_proto, dir);
4080 		break;
4081 
4082 	case PROTO_UNDEF:
4083 		tmp = gen_portop(port, IPPROTO_TCP, dir);
4084 		b1 = gen_portop(port, IPPROTO_UDP, dir);
4085 		gen_or(tmp, b1);
4086 		tmp = gen_portop(port, IPPROTO_SCTP, dir);
4087 		gen_or(tmp, b1);
4088 		break;
4089 
4090 	default:
4091 		abort();
4092 	}
4093 	gen_and(b0, b1);
4094 	return b1;
4095 }
4096 
4097 #ifdef INET6
4098 struct block *
4099 gen_portop6(port, proto, dir)
4100 	int port, proto, dir;
4101 {
4102 	struct block *b0, *b1, *tmp;
4103 
4104 	/* ip6 proto 'proto' */
4105 	b0 = gen_cmp(OR_NET, 6, BPF_B, (bpf_int32)proto);
4106 
4107 	switch (dir) {
4108 	case Q_SRC:
4109 		b1 = gen_portatom6(0, (bpf_int32)port);
4110 		break;
4111 
4112 	case Q_DST:
4113 		b1 = gen_portatom6(2, (bpf_int32)port);
4114 		break;
4115 
4116 	case Q_OR:
4117 	case Q_DEFAULT:
4118 		tmp = gen_portatom6(0, (bpf_int32)port);
4119 		b1 = gen_portatom6(2, (bpf_int32)port);
4120 		gen_or(tmp, b1);
4121 		break;
4122 
4123 	case Q_AND:
4124 		tmp = gen_portatom6(0, (bpf_int32)port);
4125 		b1 = gen_portatom6(2, (bpf_int32)port);
4126 		gen_and(tmp, b1);
4127 		break;
4128 
4129 	default:
4130 		abort();
4131 	}
4132 	gen_and(b0, b1);
4133 
4134 	return b1;
4135 }
4136 
4137 static struct block *
4138 gen_port6(port, ip_proto, dir)
4139 	int port;
4140 	int ip_proto;
4141 	int dir;
4142 {
4143 	struct block *b0, *b1, *tmp;
4144 
4145 	/* link proto ip6 */
4146 	b0 =  gen_linktype(ETHERTYPE_IPV6);
4147 
4148 	switch (ip_proto) {
4149 	case IPPROTO_UDP:
4150 	case IPPROTO_TCP:
4151 	case IPPROTO_SCTP:
4152 		b1 = gen_portop6(port, ip_proto, dir);
4153 		break;
4154 
4155 	case PROTO_UNDEF:
4156 		tmp = gen_portop6(port, IPPROTO_TCP, dir);
4157 		b1 = gen_portop6(port, IPPROTO_UDP, dir);
4158 		gen_or(tmp, b1);
4159 		tmp = gen_portop6(port, IPPROTO_SCTP, dir);
4160 		gen_or(tmp, b1);
4161 		break;
4162 
4163 	default:
4164 		abort();
4165 	}
4166 	gen_and(b0, b1);
4167 	return b1;
4168 }
4169 #endif /* INET6 */
4170 
4171 /* gen_portrange code */
4172 static struct block *
4173 gen_portrangeatom(off, v1, v2)
4174 	int off;
4175 	bpf_int32 v1, v2;
4176 {
4177 	struct block *b1, *b2;
4178 
4179 	if (v1 > v2) {
4180 		/*
4181 		 * Reverse the order of the ports, so v1 is the lower one.
4182 		 */
4183 		bpf_int32 vtemp;
4184 
4185 		vtemp = v1;
4186 		v1 = v2;
4187 		v2 = vtemp;
4188 	}
4189 
4190 	b1 = gen_cmp_ge(OR_TRAN_IPV4, off, BPF_H, v1);
4191 	b2 = gen_cmp_le(OR_TRAN_IPV4, off, BPF_H, v2);
4192 
4193 	gen_and(b1, b2);
4194 
4195 	return b2;
4196 }
4197 
4198 struct block *
4199 gen_portrangeop(port1, port2, proto, dir)
4200 	int port1, port2;
4201 	int proto;
4202 	int dir;
4203 {
4204 	struct block *b0, *b1, *tmp;
4205 
4206 	/* ip proto 'proto' */
4207 	tmp = gen_cmp(OR_NET, 9, BPF_B, (bpf_int32)proto);
4208 	b0 = gen_ipfrag();
4209 	gen_and(tmp, b0);
4210 
4211 	switch (dir) {
4212 	case Q_SRC:
4213 		b1 = gen_portrangeatom(0, (bpf_int32)port1, (bpf_int32)port2);
4214 		break;
4215 
4216 	case Q_DST:
4217 		b1 = gen_portrangeatom(2, (bpf_int32)port1, (bpf_int32)port2);
4218 		break;
4219 
4220 	case Q_OR:
4221 	case Q_DEFAULT:
4222 		tmp = gen_portrangeatom(0, (bpf_int32)port1, (bpf_int32)port2);
4223 		b1 = gen_portrangeatom(2, (bpf_int32)port1, (bpf_int32)port2);
4224 		gen_or(tmp, b1);
4225 		break;
4226 
4227 	case Q_AND:
4228 		tmp = gen_portrangeatom(0, (bpf_int32)port1, (bpf_int32)port2);
4229 		b1 = gen_portrangeatom(2, (bpf_int32)port1, (bpf_int32)port2);
4230 		gen_and(tmp, b1);
4231 		break;
4232 
4233 	default:
4234 		abort();
4235 	}
4236 	gen_and(b0, b1);
4237 
4238 	return b1;
4239 }
4240 
4241 static struct block *
4242 gen_portrange(port1, port2, ip_proto, dir)
4243 	int port1, port2;
4244 	int ip_proto;
4245 	int dir;
4246 {
4247 	struct block *b0, *b1, *tmp;
4248 
4249 	/* link proto ip */
4250 	b0 =  gen_linktype(ETHERTYPE_IP);
4251 
4252 	switch (ip_proto) {
4253 	case IPPROTO_UDP:
4254 	case IPPROTO_TCP:
4255 	case IPPROTO_SCTP:
4256 		b1 = gen_portrangeop(port1, port2, ip_proto, dir);
4257 		break;
4258 
4259 	case PROTO_UNDEF:
4260 		tmp = gen_portrangeop(port1, port2, IPPROTO_TCP, dir);
4261 		b1 = gen_portrangeop(port1, port2, IPPROTO_UDP, dir);
4262 		gen_or(tmp, b1);
4263 		tmp = gen_portrangeop(port1, port2, IPPROTO_SCTP, dir);
4264 		gen_or(tmp, b1);
4265 		break;
4266 
4267 	default:
4268 		abort();
4269 	}
4270 	gen_and(b0, b1);
4271 	return b1;
4272 }
4273 
4274 #ifdef INET6
4275 static struct block *
4276 gen_portrangeatom6(off, v1, v2)
4277 	int off;
4278 	bpf_int32 v1, v2;
4279 {
4280 	struct block *b1, *b2;
4281 
4282 	if (v1 > v2) {
4283 		/*
4284 		 * Reverse the order of the ports, so v1 is the lower one.
4285 		 */
4286 		bpf_int32 vtemp;
4287 
4288 		vtemp = v1;
4289 		v1 = v2;
4290 		v2 = vtemp;
4291 	}
4292 
4293 	b1 = gen_cmp_ge(OR_TRAN_IPV6, off, BPF_H, v1);
4294 	b2 = gen_cmp_le(OR_TRAN_IPV6, off, BPF_H, v2);
4295 
4296 	gen_and(b1, b2);
4297 
4298 	return b2;
4299 }
4300 
4301 struct block *
4302 gen_portrangeop6(port1, port2, proto, dir)
4303 	int port1, port2;
4304 	int proto;
4305 	int dir;
4306 {
4307 	struct block *b0, *b1, *tmp;
4308 
4309 	/* ip6 proto 'proto' */
4310 	b0 = gen_cmp(OR_NET, 6, BPF_B, (bpf_int32)proto);
4311 
4312 	switch (dir) {
4313 	case Q_SRC:
4314 		b1 = gen_portrangeatom6(0, (bpf_int32)port1, (bpf_int32)port2);
4315 		break;
4316 
4317 	case Q_DST:
4318 		b1 = gen_portrangeatom6(2, (bpf_int32)port1, (bpf_int32)port2);
4319 		break;
4320 
4321 	case Q_OR:
4322 	case Q_DEFAULT:
4323 		tmp = gen_portrangeatom6(0, (bpf_int32)port1, (bpf_int32)port2);
4324 		b1 = gen_portrangeatom6(2, (bpf_int32)port1, (bpf_int32)port2);
4325 		gen_or(tmp, b1);
4326 		break;
4327 
4328 	case Q_AND:
4329 		tmp = gen_portrangeatom6(0, (bpf_int32)port1, (bpf_int32)port2);
4330 		b1 = gen_portrangeatom6(2, (bpf_int32)port1, (bpf_int32)port2);
4331 		gen_and(tmp, b1);
4332 		break;
4333 
4334 	default:
4335 		abort();
4336 	}
4337 	gen_and(b0, b1);
4338 
4339 	return b1;
4340 }
4341 
4342 static struct block *
4343 gen_portrange6(port1, port2, ip_proto, dir)
4344 	int port1, port2;
4345 	int ip_proto;
4346 	int dir;
4347 {
4348 	struct block *b0, *b1, *tmp;
4349 
4350 	/* link proto ip6 */
4351 	b0 =  gen_linktype(ETHERTYPE_IPV6);
4352 
4353 	switch (ip_proto) {
4354 	case IPPROTO_UDP:
4355 	case IPPROTO_TCP:
4356 	case IPPROTO_SCTP:
4357 		b1 = gen_portrangeop6(port1, port2, ip_proto, dir);
4358 		break;
4359 
4360 	case PROTO_UNDEF:
4361 		tmp = gen_portrangeop6(port1, port2, IPPROTO_TCP, dir);
4362 		b1 = gen_portrangeop6(port1, port2, IPPROTO_UDP, dir);
4363 		gen_or(tmp, b1);
4364 		tmp = gen_portrangeop6(port1, port2, IPPROTO_SCTP, dir);
4365 		gen_or(tmp, b1);
4366 		break;
4367 
4368 	default:
4369 		abort();
4370 	}
4371 	gen_and(b0, b1);
4372 	return b1;
4373 }
4374 #endif /* INET6 */
4375 
4376 static int
4377 lookup_proto(name, proto)
4378 	register const char *name;
4379 	register int proto;
4380 {
4381 	register int v;
4382 
4383 	switch (proto) {
4384 
4385 	case Q_DEFAULT:
4386 	case Q_IP:
4387 	case Q_IPV6:
4388 		v = pcap_nametoproto(name);
4389 		if (v == PROTO_UNDEF)
4390 			bpf_error("unknown ip proto '%s'", name);
4391 		break;
4392 
4393 	case Q_LINK:
4394 		/* XXX should look up h/w protocol type based on linktype */
4395 		v = pcap_nametoeproto(name);
4396 		if (v == PROTO_UNDEF) {
4397 			v = pcap_nametollc(name);
4398 			if (v == PROTO_UNDEF)
4399 				bpf_error("unknown ether proto '%s'", name);
4400 		}
4401 		break;
4402 
4403 	case Q_ISO:
4404 		if (strcmp(name, "esis") == 0)
4405 			v = ISO9542_ESIS;
4406 		else if (strcmp(name, "isis") == 0)
4407 			v = ISO10589_ISIS;
4408 		else if (strcmp(name, "clnp") == 0)
4409 			v = ISO8473_CLNP;
4410 		else
4411 			bpf_error("unknown osi proto '%s'", name);
4412 		break;
4413 
4414 	default:
4415 		v = PROTO_UNDEF;
4416 		break;
4417 	}
4418 	return v;
4419 }
4420 
4421 #if 0
4422 struct stmt *
4423 gen_joinsp(s, n)
4424 	struct stmt **s;
4425 	int n;
4426 {
4427 	return NULL;
4428 }
4429 #endif
4430 
4431 static struct block *
4432 gen_protochain(v, proto, dir)
4433 	int v;
4434 	int proto;
4435 	int dir;
4436 {
4437 #ifdef NO_PROTOCHAIN
4438 	return gen_proto(v, proto, dir);
4439 #else
4440 	struct block *b0, *b;
4441 	struct slist *s[100];
4442 	int fix2, fix3, fix4, fix5;
4443 	int ahcheck, again, end;
4444 	int i, max;
4445 	int reg2 = alloc_reg();
4446 
4447 	memset(s, 0, sizeof(s));
4448 	fix2 = fix3 = fix4 = fix5 = 0;
4449 
4450 	switch (proto) {
4451 	case Q_IP:
4452 	case Q_IPV6:
4453 		break;
4454 	case Q_DEFAULT:
4455 		b0 = gen_protochain(v, Q_IP, dir);
4456 		b = gen_protochain(v, Q_IPV6, dir);
4457 		gen_or(b0, b);
4458 		return b;
4459 	default:
4460 		bpf_error("bad protocol applied for 'protochain'");
4461 		/*NOTREACHED*/
4462 	}
4463 
4464 	/*
4465 	 * We don't handle variable-length radiotap here headers yet.
4466 	 * We might want to add BPF instructions to do the protochain
4467 	 * work, to simplify that and, on platforms that have a BPF
4468 	 * interpreter with the new instructions, let the filtering
4469 	 * be done in the kernel.  (We already require a modified BPF
4470 	 * engine to do the protochain stuff, to support backward
4471 	 * branches, and backward branch support is unlikely to appear
4472 	 * in kernel BPF engines.)
4473 	 */
4474 	if (linktype == DLT_IEEE802_11_RADIO)
4475 		bpf_error("'protochain' not supported with radiotap headers");
4476 
4477 	if (linktype == DLT_PPI)
4478 		bpf_error("'protochain' not supported with PPI headers");
4479 
4480 	no_optimize = 1; /*this code is not compatible with optimzer yet */
4481 
4482 	/*
4483 	 * s[0] is a dummy entry to protect other BPF insn from damage
4484 	 * by s[fix] = foo with uninitialized variable "fix".  It is somewhat
4485 	 * hard to find interdependency made by jump table fixup.
4486 	 */
4487 	i = 0;
4488 	s[i] = new_stmt(0);	/*dummy*/
4489 	i++;
4490 
4491 	switch (proto) {
4492 	case Q_IP:
4493 		b0 = gen_linktype(ETHERTYPE_IP);
4494 
4495 		/* A = ip->ip_p */
4496 		s[i] = new_stmt(BPF_LD|BPF_ABS|BPF_B);
4497 		s[i]->s.k = off_ll + off_nl + 9;
4498 		i++;
4499 		/* X = ip->ip_hl << 2 */
4500 		s[i] = new_stmt(BPF_LDX|BPF_MSH|BPF_B);
4501 		s[i]->s.k = off_ll + off_nl;
4502 		i++;
4503 		break;
4504 #ifdef INET6
4505 	case Q_IPV6:
4506 		b0 = gen_linktype(ETHERTYPE_IPV6);
4507 
4508 		/* A = ip6->ip_nxt */
4509 		s[i] = new_stmt(BPF_LD|BPF_ABS|BPF_B);
4510 		s[i]->s.k = off_ll + off_nl + 6;
4511 		i++;
4512 		/* X = sizeof(struct ip6_hdr) */
4513 		s[i] = new_stmt(BPF_LDX|BPF_IMM);
4514 		s[i]->s.k = 40;
4515 		i++;
4516 		break;
4517 #endif
4518 	default:
4519 		bpf_error("unsupported proto to gen_protochain");
4520 		/*NOTREACHED*/
4521 	}
4522 
4523 	/* again: if (A == v) goto end; else fall through; */
4524 	again = i;
4525 	s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
4526 	s[i]->s.k = v;
4527 	s[i]->s.jt = NULL;		/*later*/
4528 	s[i]->s.jf = NULL;		/*update in next stmt*/
4529 	fix5 = i;
4530 	i++;
4531 
4532 #ifndef IPPROTO_NONE
4533 #define IPPROTO_NONE	59
4534 #endif
4535 	/* if (A == IPPROTO_NONE) goto end */
4536 	s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
4537 	s[i]->s.jt = NULL;	/*later*/
4538 	s[i]->s.jf = NULL;	/*update in next stmt*/
4539 	s[i]->s.k = IPPROTO_NONE;
4540 	s[fix5]->s.jf = s[i];
4541 	fix2 = i;
4542 	i++;
4543 
4544 #ifdef INET6
4545 	if (proto == Q_IPV6) {
4546 		int v6start, v6end, v6advance, j;
4547 
4548 		v6start = i;
4549 		/* if (A == IPPROTO_HOPOPTS) goto v6advance */
4550 		s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
4551 		s[i]->s.jt = NULL;	/*later*/
4552 		s[i]->s.jf = NULL;	/*update in next stmt*/
4553 		s[i]->s.k = IPPROTO_HOPOPTS;
4554 		s[fix2]->s.jf = s[i];
4555 		i++;
4556 		/* if (A == IPPROTO_DSTOPTS) goto v6advance */
4557 		s[i - 1]->s.jf = s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
4558 		s[i]->s.jt = NULL;	/*later*/
4559 		s[i]->s.jf = NULL;	/*update in next stmt*/
4560 		s[i]->s.k = IPPROTO_DSTOPTS;
4561 		i++;
4562 		/* if (A == IPPROTO_ROUTING) goto v6advance */
4563 		s[i - 1]->s.jf = s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
4564 		s[i]->s.jt = NULL;	/*later*/
4565 		s[i]->s.jf = NULL;	/*update in next stmt*/
4566 		s[i]->s.k = IPPROTO_ROUTING;
4567 		i++;
4568 		/* if (A == IPPROTO_FRAGMENT) goto v6advance; else goto ahcheck; */
4569 		s[i - 1]->s.jf = s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
4570 		s[i]->s.jt = NULL;	/*later*/
4571 		s[i]->s.jf = NULL;	/*later*/
4572 		s[i]->s.k = IPPROTO_FRAGMENT;
4573 		fix3 = i;
4574 		v6end = i;
4575 		i++;
4576 
4577 		/* v6advance: */
4578 		v6advance = i;
4579 
4580 		/*
4581 		 * in short,
4582 		 * A = P[X];
4583 		 * X = X + (P[X + 1] + 1) * 8;
4584 		 */
4585 		/* A = X */
4586 		s[i] = new_stmt(BPF_MISC|BPF_TXA);
4587 		i++;
4588 		/* A = P[X + packet head] */
4589 		s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
4590 		s[i]->s.k = off_ll + off_nl;
4591 		i++;
4592 		/* MEM[reg2] = A */
4593 		s[i] = new_stmt(BPF_ST);
4594 		s[i]->s.k = reg2;
4595 		i++;
4596 		/* A = X */
4597 		s[i] = new_stmt(BPF_MISC|BPF_TXA);
4598 		i++;
4599 		/* A += 1 */
4600 		s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
4601 		s[i]->s.k = 1;
4602 		i++;
4603 		/* X = A */
4604 		s[i] = new_stmt(BPF_MISC|BPF_TAX);
4605 		i++;
4606 		/* A = P[X + packet head]; */
4607 		s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
4608 		s[i]->s.k = off_ll + off_nl;
4609 		i++;
4610 		/* A += 1 */
4611 		s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
4612 		s[i]->s.k = 1;
4613 		i++;
4614 		/* A *= 8 */
4615 		s[i] = new_stmt(BPF_ALU|BPF_MUL|BPF_K);
4616 		s[i]->s.k = 8;
4617 		i++;
4618 		/* X = A; */
4619 		s[i] = new_stmt(BPF_MISC|BPF_TAX);
4620 		i++;
4621 		/* A = MEM[reg2] */
4622 		s[i] = new_stmt(BPF_LD|BPF_MEM);
4623 		s[i]->s.k = reg2;
4624 		i++;
4625 
4626 		/* goto again; (must use BPF_JA for backward jump) */
4627 		s[i] = new_stmt(BPF_JMP|BPF_JA);
4628 		s[i]->s.k = again - i - 1;
4629 		s[i - 1]->s.jf = s[i];
4630 		i++;
4631 
4632 		/* fixup */
4633 		for (j = v6start; j <= v6end; j++)
4634 			s[j]->s.jt = s[v6advance];
4635 	} else
4636 #endif
4637 	{
4638 		/* nop */
4639 		s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
4640 		s[i]->s.k = 0;
4641 		s[fix2]->s.jf = s[i];
4642 		i++;
4643 	}
4644 
4645 	/* ahcheck: */
4646 	ahcheck = i;
4647 	/* if (A == IPPROTO_AH) then fall through; else goto end; */
4648 	s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
4649 	s[i]->s.jt = NULL;	/*later*/
4650 	s[i]->s.jf = NULL;	/*later*/
4651 	s[i]->s.k = IPPROTO_AH;
4652 	if (fix3)
4653 		s[fix3]->s.jf = s[ahcheck];
4654 	fix4 = i;
4655 	i++;
4656 
4657 	/*
4658 	 * in short,
4659 	 * A = P[X];
4660 	 * X = X + (P[X + 1] + 2) * 4;
4661 	 */
4662 	/* A = X */
4663 	s[i - 1]->s.jt = s[i] = new_stmt(BPF_MISC|BPF_TXA);
4664 	i++;
4665 	/* A = P[X + packet head]; */
4666 	s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
4667 	s[i]->s.k = off_ll + off_nl;
4668 	i++;
4669 	/* MEM[reg2] = A */
4670 	s[i] = new_stmt(BPF_ST);
4671 	s[i]->s.k = reg2;
4672 	i++;
4673 	/* A = X */
4674 	s[i - 1]->s.jt = s[i] = new_stmt(BPF_MISC|BPF_TXA);
4675 	i++;
4676 	/* A += 1 */
4677 	s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
4678 	s[i]->s.k = 1;
4679 	i++;
4680 	/* X = A */
4681 	s[i] = new_stmt(BPF_MISC|BPF_TAX);
4682 	i++;
4683 	/* A = P[X + packet head] */
4684 	s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
4685 	s[i]->s.k = off_ll + off_nl;
4686 	i++;
4687 	/* A += 2 */
4688 	s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
4689 	s[i]->s.k = 2;
4690 	i++;
4691 	/* A *= 4 */
4692 	s[i] = new_stmt(BPF_ALU|BPF_MUL|BPF_K);
4693 	s[i]->s.k = 4;
4694 	i++;
4695 	/* X = A; */
4696 	s[i] = new_stmt(BPF_MISC|BPF_TAX);
4697 	i++;
4698 	/* A = MEM[reg2] */
4699 	s[i] = new_stmt(BPF_LD|BPF_MEM);
4700 	s[i]->s.k = reg2;
4701 	i++;
4702 
4703 	/* goto again; (must use BPF_JA for backward jump) */
4704 	s[i] = new_stmt(BPF_JMP|BPF_JA);
4705 	s[i]->s.k = again - i - 1;
4706 	i++;
4707 
4708 	/* end: nop */
4709 	end = i;
4710 	s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
4711 	s[i]->s.k = 0;
4712 	s[fix2]->s.jt = s[end];
4713 	s[fix4]->s.jf = s[end];
4714 	s[fix5]->s.jt = s[end];
4715 	i++;
4716 
4717 	/*
4718 	 * make slist chain
4719 	 */
4720 	max = i;
4721 	for (i = 0; i < max - 1; i++)
4722 		s[i]->next = s[i + 1];
4723 	s[max - 1]->next = NULL;
4724 
4725 	/*
4726 	 * emit final check
4727 	 */
4728 	b = new_block(JMP(BPF_JEQ));
4729 	b->stmts = s[1];	/*remember, s[0] is dummy*/
4730 	b->s.k = v;
4731 
4732 	free_reg(reg2);
4733 
4734 	gen_and(b0, b);
4735 	return b;
4736 #endif
4737 }
4738 
4739 
4740 /*
4741  * Generate code that checks whether the packet is a packet for protocol
4742  * <proto> and whether the type field in that protocol's header has
4743  * the value <v>, e.g. if <proto> is Q_IP, it checks whether it's an
4744  * IP packet and checks the protocol number in the IP header against <v>.
4745  *
4746  * If <proto> is Q_DEFAULT, i.e. just "proto" was specified, it checks
4747  * against Q_IP and Q_IPV6.
4748  */
4749 static struct block *
4750 gen_proto(v, proto, dir)
4751 	int v;
4752 	int proto;
4753 	int dir;
4754 {
4755 	struct block *b0, *b1;
4756 
4757 	if (dir != Q_DEFAULT)
4758 		bpf_error("direction applied to 'proto'");
4759 
4760 	switch (proto) {
4761 	case Q_DEFAULT:
4762 #ifdef INET6
4763 		b0 = gen_proto(v, Q_IP, dir);
4764 		b1 = gen_proto(v, Q_IPV6, dir);
4765 		gen_or(b0, b1);
4766 		return b1;
4767 #else
4768 		/*FALLTHROUGH*/
4769 #endif
4770 	case Q_IP:
4771 		/*
4772 		 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
4773 		 * not LLC encapsulation with LLCSAP_IP.
4774 		 *
4775 		 * For IEEE 802 networks - which includes 802.5 token ring
4776 		 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
4777 		 * says that SNAP encapsulation is used, not LLC encapsulation
4778 		 * with LLCSAP_IP.
4779 		 *
4780 		 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
4781 		 * RFC 2225 say that SNAP encapsulation is used, not LLC
4782 		 * encapsulation with LLCSAP_IP.
4783 		 *
4784 		 * So we always check for ETHERTYPE_IP.
4785 		 */
4786 		b0 = gen_linktype(ETHERTYPE_IP);
4787 #ifndef CHASE_CHAIN
4788 		b1 = gen_cmp(OR_NET, 9, BPF_B, (bpf_int32)v);
4789 #else
4790 		b1 = gen_protochain(v, Q_IP);
4791 #endif
4792 		gen_and(b0, b1);
4793 		return b1;
4794 
4795 	case Q_ISO:
4796 		switch (linktype) {
4797 
4798 		case DLT_FRELAY:
4799 			/*
4800 			 * Frame Relay packets typically have an OSI
4801 			 * NLPID at the beginning; "gen_linktype(LLCSAP_ISONS)"
4802 			 * generates code to check for all the OSI
4803 			 * NLPIDs, so calling it and then adding a check
4804 			 * for the particular NLPID for which we're
4805 			 * looking is bogus, as we can just check for
4806 			 * the NLPID.
4807 			 *
4808 			 * What we check for is the NLPID and a frame
4809 			 * control field value of UI, i.e. 0x03 followed
4810 			 * by the NLPID.
4811 			 *
4812 			 * XXX - assumes a 2-byte Frame Relay header with
4813 			 * DLCI and flags.  What if the address is longer?
4814 			 *
4815 			 * XXX - what about SNAP-encapsulated frames?
4816 			 */
4817 			return gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | v);
4818 			/*NOTREACHED*/
4819 			break;
4820 
4821 		case DLT_C_HDLC:
4822 			/*
4823 			 * Cisco uses an Ethertype lookalike - for OSI,
4824 			 * it's 0xfefe.
4825 			 */
4826 			b0 = gen_linktype(LLCSAP_ISONS<<8 | LLCSAP_ISONS);
4827 			/* OSI in C-HDLC is stuffed with a fudge byte */
4828 			b1 = gen_cmp(OR_NET_NOSNAP, 1, BPF_B, (long)v);
4829 			gen_and(b0, b1);
4830 			return b1;
4831 
4832 		default:
4833 			b0 = gen_linktype(LLCSAP_ISONS);
4834 			b1 = gen_cmp(OR_NET_NOSNAP, 0, BPF_B, (long)v);
4835 			gen_and(b0, b1);
4836 			return b1;
4837 		}
4838 
4839 	case Q_ISIS:
4840 		b0 = gen_proto(ISO10589_ISIS, Q_ISO, Q_DEFAULT);
4841 		/*
4842 		 * 4 is the offset of the PDU type relative to the IS-IS
4843 		 * header.
4844 		 */
4845 		b1 = gen_cmp(OR_NET_NOSNAP, 4, BPF_B, (long)v);
4846 		gen_and(b0, b1);
4847 		return b1;
4848 
4849 	case Q_ARP:
4850 		bpf_error("arp does not encapsulate another protocol");
4851 		/* NOTREACHED */
4852 
4853 	case Q_RARP:
4854 		bpf_error("rarp does not encapsulate another protocol");
4855 		/* NOTREACHED */
4856 
4857 	case Q_ATALK:
4858 		bpf_error("atalk encapsulation is not specifiable");
4859 		/* NOTREACHED */
4860 
4861 	case Q_DECNET:
4862 		bpf_error("decnet encapsulation is not specifiable");
4863 		/* NOTREACHED */
4864 
4865 	case Q_SCA:
4866 		bpf_error("sca does not encapsulate another protocol");
4867 		/* NOTREACHED */
4868 
4869 	case Q_LAT:
4870 		bpf_error("lat does not encapsulate another protocol");
4871 		/* NOTREACHED */
4872 
4873 	case Q_MOPRC:
4874 		bpf_error("moprc does not encapsulate another protocol");
4875 		/* NOTREACHED */
4876 
4877 	case Q_MOPDL:
4878 		bpf_error("mopdl does not encapsulate another protocol");
4879 		/* NOTREACHED */
4880 
4881 	case Q_LINK:
4882 		return gen_linktype(v);
4883 
4884 	case Q_UDP:
4885 		bpf_error("'udp proto' is bogus");
4886 		/* NOTREACHED */
4887 
4888 	case Q_TCP:
4889 		bpf_error("'tcp proto' is bogus");
4890 		/* NOTREACHED */
4891 
4892 	case Q_SCTP:
4893 		bpf_error("'sctp proto' is bogus");
4894 		/* NOTREACHED */
4895 
4896 	case Q_ICMP:
4897 		bpf_error("'icmp proto' is bogus");
4898 		/* NOTREACHED */
4899 
4900 	case Q_IGMP:
4901 		bpf_error("'igmp proto' is bogus");
4902 		/* NOTREACHED */
4903 
4904 	case Q_IGRP:
4905 		bpf_error("'igrp proto' is bogus");
4906 		/* NOTREACHED */
4907 
4908 	case Q_PIM:
4909 		bpf_error("'pim proto' is bogus");
4910 		/* NOTREACHED */
4911 
4912 	case Q_VRRP:
4913 		bpf_error("'vrrp proto' is bogus");
4914 		/* NOTREACHED */
4915 
4916 #ifdef INET6
4917 	case Q_IPV6:
4918 		b0 = gen_linktype(ETHERTYPE_IPV6);
4919 #ifndef CHASE_CHAIN
4920 		b1 = gen_cmp(OR_NET, 6, BPF_B, (bpf_int32)v);
4921 #else
4922 		b1 = gen_protochain(v, Q_IPV6);
4923 #endif
4924 		gen_and(b0, b1);
4925 		return b1;
4926 
4927 	case Q_ICMPV6:
4928 		bpf_error("'icmp6 proto' is bogus");
4929 #endif /* INET6 */
4930 
4931 	case Q_AH:
4932 		bpf_error("'ah proto' is bogus");
4933 
4934 	case Q_ESP:
4935 		bpf_error("'ah proto' is bogus");
4936 
4937 	case Q_STP:
4938 		bpf_error("'stp proto' is bogus");
4939 
4940 	case Q_IPX:
4941 		bpf_error("'ipx proto' is bogus");
4942 
4943 	case Q_NETBEUI:
4944 		bpf_error("'netbeui proto' is bogus");
4945 
4946 	case Q_RADIO:
4947 		bpf_error("'radio proto' is bogus");
4948 
4949 	default:
4950 		abort();
4951 		/* NOTREACHED */
4952 	}
4953 	/* NOTREACHED */
4954 }
4955 
4956 struct block *
4957 gen_scode(name, q)
4958 	register const char *name;
4959 	struct qual q;
4960 {
4961 	int proto = q.proto;
4962 	int dir = q.dir;
4963 	int tproto;
4964 	u_char *eaddr;
4965 	bpf_u_int32 mask, addr;
4966 #ifndef INET6
4967 	bpf_u_int32 **alist;
4968 #else
4969 	int tproto6;
4970 	struct sockaddr_in *sin4;
4971 	struct sockaddr_in6 *sin6;
4972 	struct addrinfo *res, *res0;
4973 	struct in6_addr mask128;
4974 #endif /*INET6*/
4975 	struct block *b, *tmp;
4976 	int port, real_proto;
4977 	int port1, port2;
4978 
4979 	switch (q.addr) {
4980 
4981 	case Q_NET:
4982 		addr = pcap_nametonetaddr(name);
4983 		if (addr == 0)
4984 			bpf_error("unknown network '%s'", name);
4985 		/* Left justify network addr and calculate its network mask */
4986 		mask = 0xffffffff;
4987 		while (addr && (addr & 0xff000000) == 0) {
4988 			addr <<= 8;
4989 			mask <<= 8;
4990 		}
4991 		return gen_host(addr, mask, proto, dir, q.addr);
4992 
4993 	case Q_DEFAULT:
4994 	case Q_HOST:
4995 		if (proto == Q_LINK) {
4996 			switch (linktype) {
4997 
4998 			case DLT_EN10MB:
4999 				eaddr = pcap_ether_hostton(name);
5000 				if (eaddr == NULL)
5001 					bpf_error(
5002 					    "unknown ether host '%s'", name);
5003 				b = gen_ehostop(eaddr, dir);
5004 				free(eaddr);
5005 				return b;
5006 
5007 			case DLT_FDDI:
5008 				eaddr = pcap_ether_hostton(name);
5009 				if (eaddr == NULL)
5010 					bpf_error(
5011 					    "unknown FDDI host '%s'", name);
5012 				b = gen_fhostop(eaddr, dir);
5013 				free(eaddr);
5014 				return b;
5015 
5016 			case DLT_IEEE802:
5017 				eaddr = pcap_ether_hostton(name);
5018 				if (eaddr == NULL)
5019 					bpf_error(
5020 					    "unknown token ring host '%s'", name);
5021 				b = gen_thostop(eaddr, dir);
5022 				free(eaddr);
5023 				return b;
5024 
5025 			case DLT_IEEE802_11:
5026 			case DLT_IEEE802_11_RADIO_AVS:
5027 			case DLT_IEEE802_11_RADIO:
5028 			case DLT_PRISM_HEADER:
5029 			case DLT_PPI:
5030 				eaddr = pcap_ether_hostton(name);
5031 				if (eaddr == NULL)
5032 					bpf_error(
5033 					    "unknown 802.11 host '%s'", name);
5034 				b = gen_wlanhostop(eaddr, dir);
5035 				free(eaddr);
5036 				return b;
5037 
5038 			case DLT_IP_OVER_FC:
5039 				eaddr = pcap_ether_hostton(name);
5040 				if (eaddr == NULL)
5041 					bpf_error(
5042 					    "unknown Fibre Channel host '%s'", name);
5043 				b = gen_ipfchostop(eaddr, dir);
5044 				free(eaddr);
5045 				return b;
5046 
5047 			case DLT_SUNATM:
5048 				if (!is_lane)
5049 					break;
5050 
5051 				/*
5052 				 * Check that the packet doesn't begin
5053 				 * with an LE Control marker.  (We've
5054 				 * already generated a test for LANE.)
5055 				 */
5056 				tmp = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS,
5057 				    BPF_H, 0xFF00);
5058 				gen_not(tmp);
5059 
5060 				eaddr = pcap_ether_hostton(name);
5061 				if (eaddr == NULL)
5062 					bpf_error(
5063 					    "unknown ether host '%s'", name);
5064 				b = gen_ehostop(eaddr, dir);
5065 				gen_and(tmp, b);
5066 				free(eaddr);
5067 				return b;
5068 			}
5069 
5070 			bpf_error("only ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel supports link-level host name");
5071 		} else if (proto == Q_DECNET) {
5072 			unsigned short dn_addr = __pcap_nametodnaddr(name);
5073 			/*
5074 			 * I don't think DECNET hosts can be multihomed, so
5075 			 * there is no need to build up a list of addresses
5076 			 */
5077 			return (gen_host(dn_addr, 0, proto, dir, q.addr));
5078 		} else {
5079 #ifndef INET6
5080 			alist = pcap_nametoaddr(name);
5081 			if (alist == NULL || *alist == NULL)
5082 				bpf_error("unknown host '%s'", name);
5083 			tproto = proto;
5084 			if (off_linktype == (u_int)-1 && tproto == Q_DEFAULT)
5085 				tproto = Q_IP;
5086 			b = gen_host(**alist++, 0xffffffff, tproto, dir, q.addr);
5087 			while (*alist) {
5088 				tmp = gen_host(**alist++, 0xffffffff,
5089 					       tproto, dir, q.addr);
5090 				gen_or(b, tmp);
5091 				b = tmp;
5092 			}
5093 			return b;
5094 #else
5095 			memset(&mask128, 0xff, sizeof(mask128));
5096 			res0 = res = pcap_nametoaddrinfo(name);
5097 			if (res == NULL)
5098 				bpf_error("unknown host '%s'", name);
5099 			b = tmp = NULL;
5100 			tproto = tproto6 = proto;
5101 			if (off_linktype == -1 && tproto == Q_DEFAULT) {
5102 				tproto = Q_IP;
5103 				tproto6 = Q_IPV6;
5104 			}
5105 			for (res = res0; res; res = res->ai_next) {
5106 				switch (res->ai_family) {
5107 				case AF_INET:
5108 					if (tproto == Q_IPV6)
5109 						continue;
5110 
5111 					sin4 = (struct sockaddr_in *)
5112 						res->ai_addr;
5113 					tmp = gen_host(ntohl(sin4->sin_addr.s_addr),
5114 						0xffffffff, tproto, dir, q.addr);
5115 					break;
5116 				case AF_INET6:
5117 					if (tproto6 == Q_IP)
5118 						continue;
5119 
5120 					sin6 = (struct sockaddr_in6 *)
5121 						res->ai_addr;
5122 					tmp = gen_host6(&sin6->sin6_addr,
5123 						&mask128, tproto6, dir, q.addr);
5124 					break;
5125 				default:
5126 					continue;
5127 				}
5128 				if (b)
5129 					gen_or(b, tmp);
5130 				b = tmp;
5131 			}
5132 			freeaddrinfo(res0);
5133 			if (b == NULL) {
5134 				bpf_error("unknown host '%s'%s", name,
5135 				    (proto == Q_DEFAULT)
5136 					? ""
5137 					: " for specified address family");
5138 			}
5139 			return b;
5140 #endif /*INET6*/
5141 		}
5142 
5143 	case Q_PORT:
5144 		if (proto != Q_DEFAULT &&
5145 		    proto != Q_UDP && proto != Q_TCP && proto != Q_SCTP)
5146 			bpf_error("illegal qualifier of 'port'");
5147 		if (pcap_nametoport(name, &port, &real_proto) == 0)
5148 			bpf_error("unknown port '%s'", name);
5149 		if (proto == Q_UDP) {
5150 			if (real_proto == IPPROTO_TCP)
5151 				bpf_error("port '%s' is tcp", name);
5152 			else if (real_proto == IPPROTO_SCTP)
5153 				bpf_error("port '%s' is sctp", name);
5154 			else
5155 				/* override PROTO_UNDEF */
5156 				real_proto = IPPROTO_UDP;
5157 		}
5158 		if (proto == Q_TCP) {
5159 			if (real_proto == IPPROTO_UDP)
5160 				bpf_error("port '%s' is udp", name);
5161 
5162 			else if (real_proto == IPPROTO_SCTP)
5163 				bpf_error("port '%s' is sctp", name);
5164 			else
5165 				/* override PROTO_UNDEF */
5166 				real_proto = IPPROTO_TCP;
5167 		}
5168 		if (proto == Q_SCTP) {
5169 			if (real_proto == IPPROTO_UDP)
5170 				bpf_error("port '%s' is udp", name);
5171 
5172 			else if (real_proto == IPPROTO_TCP)
5173 				bpf_error("port '%s' is tcp", name);
5174 			else
5175 				/* override PROTO_UNDEF */
5176 				real_proto = IPPROTO_SCTP;
5177 		}
5178 #ifndef INET6
5179 		return gen_port(port, real_proto, dir);
5180 #else
5181 		b = gen_port(port, real_proto, dir);
5182 		gen_or(gen_port6(port, real_proto, dir), b);
5183 		return b;
5184 #endif /* INET6 */
5185 
5186 	case Q_PORTRANGE:
5187 		if (proto != Q_DEFAULT &&
5188 		    proto != Q_UDP && proto != Q_TCP && proto != Q_SCTP)
5189 			bpf_error("illegal qualifier of 'portrange'");
5190 		if (pcap_nametoportrange(name, &port1, &port2, &real_proto) == 0)
5191 			bpf_error("unknown port in range '%s'", name);
5192 		if (proto == Q_UDP) {
5193 			if (real_proto == IPPROTO_TCP)
5194 				bpf_error("port in range '%s' is tcp", name);
5195 			else if (real_proto == IPPROTO_SCTP)
5196 				bpf_error("port in range '%s' is sctp", name);
5197 			else
5198 				/* override PROTO_UNDEF */
5199 				real_proto = IPPROTO_UDP;
5200 		}
5201 		if (proto == Q_TCP) {
5202 			if (real_proto == IPPROTO_UDP)
5203 				bpf_error("port in range '%s' is udp", name);
5204 			else if (real_proto == IPPROTO_SCTP)
5205 				bpf_error("port in range '%s' is sctp", name);
5206 			else
5207 				/* override PROTO_UNDEF */
5208 				real_proto = IPPROTO_TCP;
5209 		}
5210 		if (proto == Q_SCTP) {
5211 			if (real_proto == IPPROTO_UDP)
5212 				bpf_error("port in range '%s' is udp", name);
5213 			else if (real_proto == IPPROTO_TCP)
5214 				bpf_error("port in range '%s' is tcp", name);
5215 			else
5216 				/* override PROTO_UNDEF */
5217 				real_proto = IPPROTO_SCTP;
5218 		}
5219 #ifndef INET6
5220 		return gen_portrange(port1, port2, real_proto, dir);
5221 #else
5222 		b = gen_portrange(port1, port2, real_proto, dir);
5223 		gen_or(gen_portrange6(port1, port2, real_proto, dir), b);
5224 		return b;
5225 #endif /* INET6 */
5226 
5227 	case Q_GATEWAY:
5228 #ifndef INET6
5229 		eaddr = pcap_ether_hostton(name);
5230 		if (eaddr == NULL)
5231 			bpf_error("unknown ether host: %s", name);
5232 
5233 		alist = pcap_nametoaddr(name);
5234 		if (alist == NULL || *alist == NULL)
5235 			bpf_error("unknown host '%s'", name);
5236 		b = gen_gateway(eaddr, alist, proto, dir);
5237 		free(eaddr);
5238 		return b;
5239 #else
5240 		bpf_error("'gateway' not supported in this configuration");
5241 #endif /*INET6*/
5242 
5243 	case Q_PROTO:
5244 		real_proto = lookup_proto(name, proto);
5245 		if (real_proto >= 0)
5246 			return gen_proto(real_proto, proto, dir);
5247 		else
5248 			bpf_error("unknown protocol: %s", name);
5249 
5250 	case Q_PROTOCHAIN:
5251 		real_proto = lookup_proto(name, proto);
5252 		if (real_proto >= 0)
5253 			return gen_protochain(real_proto, proto, dir);
5254 		else
5255 			bpf_error("unknown protocol: %s", name);
5256 
5257 
5258 	case Q_UNDEF:
5259 		syntax();
5260 		/* NOTREACHED */
5261 	}
5262 	abort();
5263 	/* NOTREACHED */
5264 }
5265 
5266 struct block *
5267 gen_mcode(s1, s2, masklen, q)
5268 	register const char *s1, *s2;
5269 	register int masklen;
5270 	struct qual q;
5271 {
5272 	register int nlen, mlen;
5273 	bpf_u_int32 n, m;
5274 
5275 	nlen = __pcap_atoin(s1, &n);
5276 	/* Promote short ipaddr */
5277 	n <<= 32 - nlen;
5278 
5279 	if (s2 != NULL) {
5280 		mlen = __pcap_atoin(s2, &m);
5281 		/* Promote short ipaddr */
5282 		m <<= 32 - mlen;
5283 		if ((n & ~m) != 0)
5284 			bpf_error("non-network bits set in \"%s mask %s\"",
5285 			    s1, s2);
5286 	} else {
5287 		/* Convert mask len to mask */
5288 		if (masklen > 32)
5289 			bpf_error("mask length must be <= 32");
5290 		if (masklen == 0) {
5291 			/*
5292 			 * X << 32 is not guaranteed by C to be 0; it's
5293 			 * undefined.
5294 			 */
5295 			m = 0;
5296 		} else
5297 			m = 0xffffffff << (32 - masklen);
5298 		if ((n & ~m) != 0)
5299 			bpf_error("non-network bits set in \"%s/%d\"",
5300 			    s1, masklen);
5301 	}
5302 
5303 	switch (q.addr) {
5304 
5305 	case Q_NET:
5306 		return gen_host(n, m, q.proto, q.dir, q.addr);
5307 
5308 	default:
5309 		bpf_error("Mask syntax for networks only");
5310 		/* NOTREACHED */
5311 	}
5312 	/* NOTREACHED */
5313 	return NULL;
5314 }
5315 
5316 struct block *
5317 gen_ncode(s, v, q)
5318 	register const char *s;
5319 	bpf_u_int32 v;
5320 	struct qual q;
5321 {
5322 	bpf_u_int32 mask;
5323 	int proto = q.proto;
5324 	int dir = q.dir;
5325 	register int vlen;
5326 
5327 	if (s == NULL)
5328 		vlen = 32;
5329 	else if (q.proto == Q_DECNET)
5330 		vlen = __pcap_atodn(s, &v);
5331 	else
5332 		vlen = __pcap_atoin(s, &v);
5333 
5334 	switch (q.addr) {
5335 
5336 	case Q_DEFAULT:
5337 	case Q_HOST:
5338 	case Q_NET:
5339 		if (proto == Q_DECNET)
5340 			return gen_host(v, 0, proto, dir, q.addr);
5341 		else if (proto == Q_LINK) {
5342 			bpf_error("illegal link layer address");
5343 		} else {
5344 			mask = 0xffffffff;
5345 			if (s == NULL && q.addr == Q_NET) {
5346 				/* Promote short net number */
5347 				while (v && (v & 0xff000000) == 0) {
5348 					v <<= 8;
5349 					mask <<= 8;
5350 				}
5351 			} else {
5352 				/* Promote short ipaddr */
5353 				v <<= 32 - vlen;
5354 				mask <<= 32 - vlen;
5355 			}
5356 			return gen_host(v, mask, proto, dir, q.addr);
5357 		}
5358 
5359 	case Q_PORT:
5360 		if (proto == Q_UDP)
5361 			proto = IPPROTO_UDP;
5362 		else if (proto == Q_TCP)
5363 			proto = IPPROTO_TCP;
5364 		else if (proto == Q_SCTP)
5365 			proto = IPPROTO_SCTP;
5366 		else if (proto == Q_DEFAULT)
5367 			proto = PROTO_UNDEF;
5368 		else
5369 			bpf_error("illegal qualifier of 'port'");
5370 
5371 #ifndef INET6
5372 		return gen_port((int)v, proto, dir);
5373 #else
5374 	    {
5375 		struct block *b;
5376 		b = gen_port((int)v, proto, dir);
5377 		gen_or(gen_port6((int)v, proto, dir), b);
5378 		return b;
5379 	    }
5380 #endif /* INET6 */
5381 
5382 	case Q_PORTRANGE:
5383 		if (proto == Q_UDP)
5384 			proto = IPPROTO_UDP;
5385 		else if (proto == Q_TCP)
5386 			proto = IPPROTO_TCP;
5387 		else if (proto == Q_SCTP)
5388 			proto = IPPROTO_SCTP;
5389 		else if (proto == Q_DEFAULT)
5390 			proto = PROTO_UNDEF;
5391 		else
5392 			bpf_error("illegal qualifier of 'portrange'");
5393 
5394 #ifndef INET6
5395 		return gen_portrange((int)v, (int)v, proto, dir);
5396 #else
5397 	    {
5398 		struct block *b;
5399 		b = gen_portrange((int)v, (int)v, proto, dir);
5400 		gen_or(gen_portrange6((int)v, (int)v, proto, dir), b);
5401 		return b;
5402 	    }
5403 #endif /* INET6 */
5404 
5405 	case Q_GATEWAY:
5406 		bpf_error("'gateway' requires a name");
5407 		/* NOTREACHED */
5408 
5409 	case Q_PROTO:
5410 		return gen_proto((int)v, proto, dir);
5411 
5412 	case Q_PROTOCHAIN:
5413 		return gen_protochain((int)v, proto, dir);
5414 
5415 	case Q_UNDEF:
5416 		syntax();
5417 		/* NOTREACHED */
5418 
5419 	default:
5420 		abort();
5421 		/* NOTREACHED */
5422 	}
5423 	/* NOTREACHED */
5424 }
5425 
5426 #ifdef INET6
5427 struct block *
5428 gen_mcode6(s1, s2, masklen, q)
5429 	register const char *s1, *s2;
5430 	register int masklen;
5431 	struct qual q;
5432 {
5433 	struct addrinfo *res;
5434 	struct in6_addr *addr;
5435 	struct in6_addr mask;
5436 	struct block *b;
5437 	u_int32_t *a, *m;
5438 
5439 	if (s2)
5440 		bpf_error("no mask %s supported", s2);
5441 
5442 	res = pcap_nametoaddrinfo(s1);
5443 	if (!res)
5444 		bpf_error("invalid ip6 address %s", s1);
5445 	if (res->ai_next)
5446 		bpf_error("%s resolved to multiple address", s1);
5447 	addr = &((struct sockaddr_in6 *)res->ai_addr)->sin6_addr;
5448 
5449 	if (sizeof(mask) * 8 < masklen)
5450 		bpf_error("mask length must be <= %u", (unsigned int)(sizeof(mask) * 8));
5451 	memset(&mask, 0, sizeof(mask));
5452 	memset(&mask, 0xff, masklen / 8);
5453 	if (masklen % 8) {
5454 		mask.s6_addr[masklen / 8] =
5455 			(0xff << (8 - masklen % 8)) & 0xff;
5456 	}
5457 
5458 	a = (u_int32_t *)addr;
5459 	m = (u_int32_t *)&mask;
5460 	if ((a[0] & ~m[0]) || (a[1] & ~m[1])
5461 	 || (a[2] & ~m[2]) || (a[3] & ~m[3])) {
5462 		bpf_error("non-network bits set in \"%s/%d\"", s1, masklen);
5463 	}
5464 
5465 	switch (q.addr) {
5466 
5467 	case Q_DEFAULT:
5468 	case Q_HOST:
5469 		if (masklen != 128)
5470 			bpf_error("Mask syntax for networks only");
5471 		/* FALLTHROUGH */
5472 
5473 	case Q_NET:
5474 		b = gen_host6(addr, &mask, q.proto, q.dir, q.addr);
5475 		freeaddrinfo(res);
5476 		return b;
5477 
5478 	default:
5479 		bpf_error("invalid qualifier against IPv6 address");
5480 		/* NOTREACHED */
5481 	}
5482 	return NULL;
5483 }
5484 #endif /*INET6*/
5485 
5486 struct block *
5487 gen_ecode(eaddr, q)
5488 	register const u_char *eaddr;
5489 	struct qual q;
5490 {
5491 	struct block *b, *tmp;
5492 
5493 	if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) && q.proto == Q_LINK) {
5494             switch (linktype) {
5495             case DLT_EN10MB:
5496                 return gen_ehostop(eaddr, (int)q.dir);
5497             case DLT_FDDI:
5498                 return gen_fhostop(eaddr, (int)q.dir);
5499             case DLT_IEEE802:
5500                 return gen_thostop(eaddr, (int)q.dir);
5501 			case DLT_IEEE802_11:
5502 			case DLT_IEEE802_11_RADIO_AVS:
5503 			case DLT_IEEE802_11_RADIO:
5504 			case DLT_PRISM_HEADER:
5505 			case DLT_PPI:
5506 				return gen_wlanhostop(eaddr, (int)q.dir);
5507 			case DLT_SUNATM:
5508 				if (is_lane) {
5509 					/*
5510 					 * Check that the packet doesn't begin with an
5511 					 * LE Control marker.  (We've already generated
5512 					 * a test for LANE.)
5513 					 */
5514 					tmp = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS, BPF_H,
5515 						0xFF00);
5516 					gen_not(tmp);
5517 
5518 					/*
5519 					 * Now check the MAC address.
5520 					 */
5521 					b = gen_ehostop(eaddr, (int)q.dir);
5522 					gen_and(tmp, b);
5523 					return b;
5524 				}
5525 				break;
5526 			case DLT_IP_OVER_FC:
5527                 return gen_ipfchostop(eaddr, (int)q.dir);
5528             default:
5529 				bpf_error("ethernet addresses supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
5530                 break;
5531             }
5532 	}
5533 	bpf_error("ethernet address used in non-ether expression");
5534 	/* NOTREACHED */
5535 	return NULL;
5536 }
5537 
5538 void
5539 sappend(s0, s1)
5540 	struct slist *s0, *s1;
5541 {
5542 	/*
5543 	 * This is definitely not the best way to do this, but the
5544 	 * lists will rarely get long.
5545 	 */
5546 	while (s0->next)
5547 		s0 = s0->next;
5548 	s0->next = s1;
5549 }
5550 
5551 static struct slist *
5552 xfer_to_x(a)
5553 	struct arth *a;
5554 {
5555 	struct slist *s;
5556 
5557 	s = new_stmt(BPF_LDX|BPF_MEM);
5558 	s->s.k = a->regno;
5559 	return s;
5560 }
5561 
5562 static struct slist *
5563 xfer_to_a(a)
5564 	struct arth *a;
5565 {
5566 	struct slist *s;
5567 
5568 	s = new_stmt(BPF_LD|BPF_MEM);
5569 	s->s.k = a->regno;
5570 	return s;
5571 }
5572 
5573 /*
5574  * Modify "index" to use the value stored into its register as an
5575  * offset relative to the beginning of the header for the protocol
5576  * "proto", and allocate a register and put an item "size" bytes long
5577  * (1, 2, or 4) at that offset into that register, making it the register
5578  * for "index".
5579  */
5580 struct arth *
5581 gen_load(proto, inst, size)
5582 	int proto;
5583 	struct arth *inst;
5584 	int size;
5585 {
5586 	struct slist *s, *tmp;
5587 	struct block *b;
5588 	int regno = alloc_reg();
5589 
5590 	free_reg(inst->regno);
5591 	switch (size) {
5592 
5593 	default:
5594 		bpf_error("data size must be 1, 2, or 4");
5595 
5596 	case 1:
5597 		size = BPF_B;
5598 		break;
5599 
5600 	case 2:
5601 		size = BPF_H;
5602 		break;
5603 
5604 	case 4:
5605 		size = BPF_W;
5606 		break;
5607 	}
5608 	switch (proto) {
5609 	default:
5610 		bpf_error("unsupported index operation");
5611 
5612 	case Q_RADIO:
5613 		/*
5614 		 * The offset is relative to the beginning of the packet
5615 		 * data, if we have a radio header.  (If we don't, this
5616 		 * is an error.)
5617 		 */
5618 		if (linktype != DLT_IEEE802_11_RADIO_AVS &&
5619 		    linktype != DLT_IEEE802_11_RADIO &&
5620 		    linktype != DLT_PRISM_HEADER)
5621 			bpf_error("radio information not present in capture");
5622 
5623 		/*
5624 		 * Load into the X register the offset computed into the
5625 		 * register specifed by "index".
5626 		 */
5627 		s = xfer_to_x(inst);
5628 
5629 		/*
5630 		 * Load the item at that offset.
5631 		 */
5632 		tmp = new_stmt(BPF_LD|BPF_IND|size);
5633 		sappend(s, tmp);
5634 		sappend(inst->s, s);
5635 		break;
5636 
5637 	case Q_LINK:
5638 		/*
5639 		 * The offset is relative to the beginning of
5640 		 * the link-layer header.
5641 		 *
5642 		 * XXX - what about ATM LANE?  Should the index be
5643 		 * relative to the beginning of the AAL5 frame, so
5644 		 * that 0 refers to the beginning of the LE Control
5645 		 * field, or relative to the beginning of the LAN
5646 		 * frame, so that 0 refers, for Ethernet LANE, to
5647 		 * the beginning of the destination address?
5648 		 */
5649 		s = gen_llprefixlen();
5650 
5651 		/*
5652 		 * If "s" is non-null, it has code to arrange that the
5653 		 * X register contains the length of the prefix preceding
5654 		 * the link-layer header.  Add to it the offset computed
5655 		 * into the register specified by "index", and move that
5656 		 * into the X register.  Otherwise, just load into the X
5657 		 * register the offset computed into the register specifed
5658 		 * by "index".
5659 		 */
5660 		if (s != NULL) {
5661 			sappend(s, xfer_to_a(inst));
5662 			sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
5663 			sappend(s, new_stmt(BPF_MISC|BPF_TAX));
5664 		} else
5665 			s = xfer_to_x(inst);
5666 
5667 		/*
5668 		 * Load the item at the sum of the offset we've put in the
5669 		 * X register and the offset of the start of the link
5670 		 * layer header (which is 0 if the radio header is
5671 		 * variable-length; that header length is what we put
5672 		 * into the X register and then added to the index).
5673 		 */
5674 		tmp = new_stmt(BPF_LD|BPF_IND|size);
5675 		tmp->s.k = off_ll;
5676 		sappend(s, tmp);
5677 		sappend(inst->s, s);
5678 		break;
5679 
5680 	case Q_IP:
5681 	case Q_ARP:
5682 	case Q_RARP:
5683 	case Q_ATALK:
5684 	case Q_DECNET:
5685 	case Q_SCA:
5686 	case Q_LAT:
5687 	case Q_MOPRC:
5688 	case Q_MOPDL:
5689 #ifdef INET6
5690 	case Q_IPV6:
5691 #endif
5692 		/*
5693 		 * The offset is relative to the beginning of
5694 		 * the network-layer header.
5695 		 * XXX - are there any cases where we want
5696 		 * off_nl_nosnap?
5697 		 */
5698 		s = gen_llprefixlen();
5699 
5700 		/*
5701 		 * If "s" is non-null, it has code to arrange that the
5702 		 * X register contains the length of the prefix preceding
5703 		 * the link-layer header.  Add to it the offset computed
5704 		 * into the register specified by "index", and move that
5705 		 * into the X register.  Otherwise, just load into the X
5706 		 * register the offset computed into the register specifed
5707 		 * by "index".
5708 		 */
5709 		if (s != NULL) {
5710 			sappend(s, xfer_to_a(inst));
5711 			sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
5712 			sappend(s, new_stmt(BPF_MISC|BPF_TAX));
5713 		} else
5714 			s = xfer_to_x(inst);
5715 
5716 		/*
5717 		 * Load the item at the sum of the offset we've put in the
5718 		 * X register, the offset of the start of the network
5719 		 * layer header, and the offset of the start of the link
5720 		 * layer header (which is 0 if the radio header is
5721 		 * variable-length; that header length is what we put
5722 		 * into the X register and then added to the index).
5723 		 */
5724 		tmp = new_stmt(BPF_LD|BPF_IND|size);
5725 		tmp->s.k = off_ll + off_nl;
5726 		sappend(s, tmp);
5727 		sappend(inst->s, s);
5728 
5729 		/*
5730 		 * Do the computation only if the packet contains
5731 		 * the protocol in question.
5732 		 */
5733 		b = gen_proto_abbrev(proto);
5734 		if (inst->b)
5735 			gen_and(inst->b, b);
5736 		inst->b = b;
5737 		break;
5738 
5739 	case Q_SCTP:
5740 	case Q_TCP:
5741 	case Q_UDP:
5742 	case Q_ICMP:
5743 	case Q_IGMP:
5744 	case Q_IGRP:
5745 	case Q_PIM:
5746 	case Q_VRRP:
5747 		/*
5748 		 * The offset is relative to the beginning of
5749 		 * the transport-layer header.
5750 		 *
5751 		 * Load the X register with the length of the IPv4 header
5752 		 * (plus the offset of the link-layer header, if it's
5753 		 * a variable-length header), in bytes.
5754 		 *
5755 		 * XXX - are there any cases where we want
5756 		 * off_nl_nosnap?
5757 		 * XXX - we should, if we're built with
5758 		 * IPv6 support, generate code to load either
5759 		 * IPv4, IPv6, or both, as appropriate.
5760 		 */
5761 		s = gen_loadx_iphdrlen();
5762 
5763 		/*
5764 		 * The X register now contains the sum of the length
5765 		 * of any variable-length header preceding the link-layer
5766 		 * header and the length of the network-layer header.
5767 		 * Load into the A register the offset relative to
5768 		 * the beginning of the transport layer header,
5769 		 * add the X register to that, move that to the
5770 		 * X register, and load with an offset from the
5771 		 * X register equal to the offset of the network
5772 		 * layer header relative to the beginning of
5773 		 * the link-layer header plus the length of any
5774 		 * fixed-length header preceding the link-layer
5775 		 * header.
5776 		 */
5777 		sappend(s, xfer_to_a(inst));
5778 		sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
5779 		sappend(s, new_stmt(BPF_MISC|BPF_TAX));
5780 		sappend(s, tmp = new_stmt(BPF_LD|BPF_IND|size));
5781 		tmp->s.k = off_ll + off_nl;
5782 		sappend(inst->s, s);
5783 
5784 		/*
5785 		 * Do the computation only if the packet contains
5786 		 * the protocol in question - which is true only
5787 		 * if this is an IP datagram and is the first or
5788 		 * only fragment of that datagram.
5789 		 */
5790 		gen_and(gen_proto_abbrev(proto), b = gen_ipfrag());
5791 		if (inst->b)
5792 			gen_and(inst->b, b);
5793 #ifdef INET6
5794 		gen_and(gen_proto_abbrev(Q_IP), b);
5795 #endif
5796 		inst->b = b;
5797 		break;
5798 #ifdef INET6
5799 	case Q_ICMPV6:
5800 		bpf_error("IPv6 upper-layer protocol is not supported by proto[x]");
5801 		/*NOTREACHED*/
5802 #endif
5803 	}
5804 	inst->regno = regno;
5805 	s = new_stmt(BPF_ST);
5806 	s->s.k = regno;
5807 	sappend(inst->s, s);
5808 
5809 	return inst;
5810 }
5811 
5812 struct block *
5813 gen_relation(code, a0, a1, reversed)
5814 	int code;
5815 	struct arth *a0, *a1;
5816 	int reversed;
5817 {
5818 	struct slist *s0, *s1, *s2;
5819 	struct block *b, *tmp;
5820 
5821 	s0 = xfer_to_x(a1);
5822 	s1 = xfer_to_a(a0);
5823 	if (code == BPF_JEQ) {
5824 		s2 = new_stmt(BPF_ALU|BPF_SUB|BPF_X);
5825 		b = new_block(JMP(code));
5826 		sappend(s1, s2);
5827 	}
5828 	else
5829 		b = new_block(BPF_JMP|code|BPF_X);
5830 	if (reversed)
5831 		gen_not(b);
5832 
5833 	sappend(s0, s1);
5834 	sappend(a1->s, s0);
5835 	sappend(a0->s, a1->s);
5836 
5837 	b->stmts = a0->s;
5838 
5839 	free_reg(a0->regno);
5840 	free_reg(a1->regno);
5841 
5842 	/* 'and' together protocol checks */
5843 	if (a0->b) {
5844 		if (a1->b) {
5845 			gen_and(a0->b, tmp = a1->b);
5846 		}
5847 		else
5848 			tmp = a0->b;
5849 	} else
5850 		tmp = a1->b;
5851 
5852 	if (tmp)
5853 		gen_and(tmp, b);
5854 
5855 	return b;
5856 }
5857 
5858 struct arth *
5859 gen_loadlen()
5860 {
5861 	int regno = alloc_reg();
5862 	struct arth *a = (struct arth *)newchunk(sizeof(*a));
5863 	struct slist *s;
5864 
5865 	s = new_stmt(BPF_LD|BPF_LEN);
5866 	s->next = new_stmt(BPF_ST);
5867 	s->next->s.k = regno;
5868 	a->s = s;
5869 	a->regno = regno;
5870 
5871 	return a;
5872 }
5873 
5874 struct arth *
5875 gen_loadi(val)
5876 	int val;
5877 {
5878 	struct arth *a;
5879 	struct slist *s;
5880 	int reg;
5881 
5882 	a = (struct arth *)newchunk(sizeof(*a));
5883 
5884 	reg = alloc_reg();
5885 
5886 	s = new_stmt(BPF_LD|BPF_IMM);
5887 	s->s.k = val;
5888 	s->next = new_stmt(BPF_ST);
5889 	s->next->s.k = reg;
5890 	a->s = s;
5891 	a->regno = reg;
5892 
5893 	return a;
5894 }
5895 
5896 struct arth *
5897 gen_neg(a)
5898 	struct arth *a;
5899 {
5900 	struct slist *s;
5901 
5902 	s = xfer_to_a(a);
5903 	sappend(a->s, s);
5904 	s = new_stmt(BPF_ALU|BPF_NEG);
5905 	s->s.k = 0;
5906 	sappend(a->s, s);
5907 	s = new_stmt(BPF_ST);
5908 	s->s.k = a->regno;
5909 	sappend(a->s, s);
5910 
5911 	return a;
5912 }
5913 
5914 struct arth *
5915 gen_arth(code, a0, a1)
5916 	int code;
5917 	struct arth *a0, *a1;
5918 {
5919 	struct slist *s0, *s1, *s2;
5920 
5921 	s0 = xfer_to_x(a1);
5922 	s1 = xfer_to_a(a0);
5923 	s2 = new_stmt(BPF_ALU|BPF_X|code);
5924 
5925 	sappend(s1, s2);
5926 	sappend(s0, s1);
5927 	sappend(a1->s, s0);
5928 	sappend(a0->s, a1->s);
5929 
5930 	free_reg(a0->regno);
5931 	free_reg(a1->regno);
5932 
5933 	s0 = new_stmt(BPF_ST);
5934 	a0->regno = s0->s.k = alloc_reg();
5935 	sappend(a0->s, s0);
5936 
5937 	return a0;
5938 }
5939 
5940 /*
5941  * Here we handle simple allocation of the scratch registers.
5942  * If too many registers are alloc'd, the allocator punts.
5943  */
5944 static int regused[BPF_MEMWORDS];
5945 static int curreg;
5946 
5947 /*
5948  * Return the next free register.
5949  */
5950 static int
5951 alloc_reg()
5952 {
5953 	int n = BPF_MEMWORDS;
5954 
5955 	while (--n >= 0) {
5956 		if (regused[curreg])
5957 			curreg = (curreg + 1) % BPF_MEMWORDS;
5958 		else {
5959 			regused[curreg] = 1;
5960 			return curreg;
5961 		}
5962 	}
5963 	bpf_error("too many registers needed to evaluate expression");
5964 	/* NOTREACHED */
5965 	return 0;
5966 }
5967 
5968 /*
5969  * Return a register to the table so it can
5970  * be used later.
5971  */
5972 static void
5973 free_reg(n)
5974 	int n;
5975 {
5976 	regused[n] = 0;
5977 }
5978 
5979 static struct block *
5980 gen_len(jmp, n)
5981 	int jmp, n;
5982 {
5983 	struct slist *s;
5984 	struct block *b;
5985 
5986 	s = new_stmt(BPF_LD|BPF_LEN);
5987 	b = new_block(JMP(jmp));
5988 	b->stmts = s;
5989 	b->s.k = n;
5990 
5991 	return b;
5992 }
5993 
5994 struct block *
5995 gen_greater(n)
5996 	int n;
5997 {
5998 	return gen_len(BPF_JGE, n);
5999 }
6000 
6001 /*
6002  * Actually, this is less than or equal.
6003  */
6004 struct block *
6005 gen_less(n)
6006 	int n;
6007 {
6008 	struct block *b;
6009 
6010 	b = gen_len(BPF_JGT, n);
6011 	gen_not(b);
6012 
6013 	return b;
6014 }
6015 
6016 /*
6017  * This is for "byte {idx} {op} {val}"; "idx" is treated as relative to
6018  * the beginning of the link-layer header.
6019  * XXX - that means you can't test values in the radiotap header, but
6020  * as that header is difficult if not impossible to parse generally
6021  * without a loop, that might not be a severe problem.  A new keyword
6022  * "radio" could be added for that, although what you'd really want
6023  * would be a way of testing particular radio header values, which
6024  * would generate code appropriate to the radio header in question.
6025  */
6026 struct block *
6027 gen_byteop(op, idx, val)
6028 	int op, idx, val;
6029 {
6030 	struct block *b;
6031 	struct slist *s;
6032 
6033 	switch (op) {
6034 	default:
6035 		abort();
6036 
6037 	case '=':
6038 		return gen_cmp(OR_LINK, (u_int)idx, BPF_B, (bpf_int32)val);
6039 
6040 	case '<':
6041 		b = gen_cmp_lt(OR_LINK, (u_int)idx, BPF_B, (bpf_int32)val);
6042 		return b;
6043 
6044 	case '>':
6045 		b = gen_cmp_gt(OR_LINK, (u_int)idx, BPF_B, (bpf_int32)val);
6046 		return b;
6047 
6048 	case '|':
6049 		s = new_stmt(BPF_ALU|BPF_OR|BPF_K);
6050 		break;
6051 
6052 	case '&':
6053 		s = new_stmt(BPF_ALU|BPF_AND|BPF_K);
6054 		break;
6055 	}
6056 	s->s.k = val;
6057 	b = new_block(JMP(BPF_JEQ));
6058 	b->stmts = s;
6059 	gen_not(b);
6060 
6061 	return b;
6062 }
6063 
6064 static u_char abroadcast[] = { 0x0 };
6065 
6066 struct block *
6067 gen_broadcast(proto)
6068 	int proto;
6069 {
6070 	bpf_u_int32 hostmask;
6071 	struct block *b0, *b1, *b2;
6072 	static u_char ebroadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
6073 
6074 	switch (proto) {
6075 
6076 	case Q_DEFAULT:
6077 	case Q_LINK:
6078                 switch (linktype) {
6079                 case DLT_ARCNET:
6080                 case DLT_ARCNET_LINUX:
6081                     return gen_ahostop(abroadcast, Q_DST);
6082                 case DLT_EN10MB:
6083                     return gen_ehostop(ebroadcast, Q_DST);
6084                 case DLT_FDDI:
6085                     return gen_fhostop(ebroadcast, Q_DST);
6086                 case DLT_IEEE802:
6087                     return gen_thostop(ebroadcast, Q_DST);
6088                 case DLT_IEEE802_11:
6089                 case DLT_IEEE802_11_RADIO_AVS:
6090                 case DLT_IEEE802_11_RADIO:
6091 				case DLT_PPI:
6092                 case DLT_PRISM_HEADER:
6093                     return gen_wlanhostop(ebroadcast, Q_DST);
6094                 case DLT_IP_OVER_FC:
6095                     return gen_ipfchostop(ebroadcast, Q_DST);
6096                 case DLT_SUNATM:
6097                     if (is_lane) {
6098 			/*
6099 			 * Check that the packet doesn't begin with an
6100 			 * LE Control marker.  (We've already generated
6101 			 * a test for LANE.)
6102 			 */
6103 			b1 = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS, BPF_H,
6104 			    0xFF00);
6105 			gen_not(b1);
6106 
6107 			/*
6108 			 * Now check the MAC address.
6109 			 */
6110 			b0 = gen_ehostop(ebroadcast, Q_DST);
6111 			gen_and(b1, b0);
6112 			return b0;
6113                     }
6114                     break;
6115                 default:
6116                     bpf_error("not a broadcast link");
6117                 }
6118 		break;
6119 
6120 	case Q_IP:
6121 		b0 = gen_linktype(ETHERTYPE_IP);
6122 		hostmask = ~netmask;
6123 		b1 = gen_mcmp(OR_NET, 16, BPF_W, (bpf_int32)0, hostmask);
6124 		b2 = gen_mcmp(OR_NET, 16, BPF_W,
6125 			      (bpf_int32)(~0 & hostmask), hostmask);
6126 		gen_or(b1, b2);
6127 		gen_and(b0, b2);
6128 		return b2;
6129 	}
6130 	bpf_error("only link-layer/IP broadcast filters supported");
6131 	/* NOTREACHED */
6132 	return NULL;
6133 }
6134 
6135 /*
6136  * Generate code to test the low-order bit of a MAC address (that's
6137  * the bottom bit of the *first* byte).
6138  */
6139 static struct block *
6140 gen_mac_multicast(offset)
6141 	int offset;
6142 {
6143 	register struct block *b0;
6144 	register struct slist *s;
6145 
6146 	/* link[offset] & 1 != 0 */
6147 	s = gen_load_a(OR_LINK, offset, BPF_B);
6148 	b0 = new_block(JMP(BPF_JSET));
6149 	b0->s.k = 1;
6150 	b0->stmts = s;
6151 	return b0;
6152 }
6153 
6154 struct block *
6155 gen_multicast(proto)
6156 	int proto;
6157 {
6158 	register struct block *b0, *b1, *b2;
6159 	register struct slist *s;
6160 
6161 	switch (proto) {
6162 
6163 	case Q_DEFAULT:
6164 	case Q_LINK:
6165                 switch (linktype) {
6166                 case DLT_ARCNET:
6167                 case DLT_ARCNET_LINUX:
6168                     /* all ARCnet multicasts use the same address */
6169                     return gen_ahostop(abroadcast, Q_DST);
6170                 case  DLT_EN10MB:
6171                     /* ether[0] & 1 != 0 */
6172                     return gen_mac_multicast(0);
6173                 case DLT_FDDI:
6174                     /*
6175                      * XXX TEST THIS: MIGHT NOT PORT PROPERLY XXX
6176                      *
6177                      * XXX - was that referring to bit-order issues?
6178                      */
6179                     /* fddi[1] & 1 != 0 */
6180                     return gen_mac_multicast(1);
6181                 case DLT_IEEE802:
6182                     /* tr[2] & 1 != 0 */
6183                     return gen_mac_multicast(2);
6184                 case DLT_IEEE802_11:
6185                 case DLT_IEEE802_11_RADIO_AVS:
6186 				case DLT_PPI:
6187                 case DLT_IEEE802_11_RADIO:
6188                 case DLT_PRISM_HEADER:
6189                     /*
6190                      * Oh, yuk.
6191                      *
6192                      *	For control frames, there is no DA.
6193                      *
6194                      *	For management frames, DA is at an
6195                      *	offset of 4 from the beginning of
6196                      *	the packet.
6197                      *
6198                      *	For data frames, DA is at an offset
6199                      *	of 4 from the beginning of the packet
6200                      *	if To DS is clear and at an offset of
6201                      *	16 from the beginning of the packet
6202                      *	if To DS is set.
6203                      */
6204 
6205                     /*
6206                      * Generate the tests to be done for data frames.
6207                      *
6208                      * First, check for To DS set, i.e. "link[1] & 0x01".
6209                      */
6210                     s = gen_load_a(OR_LINK, 1, BPF_B);
6211                     b1 = new_block(JMP(BPF_JSET));
6212                     b1->s.k = 0x01;	/* To DS */
6213                     b1->stmts = s;
6214 
6215                     /*
6216                      * If To DS is set, the DA is at 16.
6217                      */
6218                     b0 = gen_mac_multicast(16);
6219                     gen_and(b1, b0);
6220 
6221                     /*
6222                      * Now, check for To DS not set, i.e. check
6223                      * "!(link[1] & 0x01)".
6224                      */
6225                     s = gen_load_a(OR_LINK, 1, BPF_B);
6226                     b2 = new_block(JMP(BPF_JSET));
6227                     b2->s.k = 0x01;	/* To DS */
6228                     b2->stmts = s;
6229                     gen_not(b2);
6230 
6231                     /*
6232                      * If To DS is not set, the DA is at 4.
6233                      */
6234                     b1 = gen_mac_multicast(4);
6235                     gen_and(b2, b1);
6236 
6237                     /*
6238                      * Now OR together the last two checks.  That gives
6239                      * the complete set of checks for data frames.
6240                      */
6241                     gen_or(b1, b0);
6242 
6243                     /*
6244                      * Now check for a data frame.
6245                      * I.e, check "link[0] & 0x08".
6246                      */
6247                     s = gen_load_a(OR_LINK, 0, BPF_B);
6248                     b1 = new_block(JMP(BPF_JSET));
6249                     b1->s.k = 0x08;
6250                     b1->stmts = s;
6251 
6252                     /*
6253                      * AND that with the checks done for data frames.
6254                      */
6255                     gen_and(b1, b0);
6256 
6257                     /*
6258                      * If the high-order bit of the type value is 0, this
6259                      * is a management frame.
6260                      * I.e, check "!(link[0] & 0x08)".
6261                      */
6262                     s = gen_load_a(OR_LINK, 0, BPF_B);
6263                     b2 = new_block(JMP(BPF_JSET));
6264                     b2->s.k = 0x08;
6265                     b2->stmts = s;
6266                     gen_not(b2);
6267 
6268                     /*
6269                      * For management frames, the DA is at 4.
6270                      */
6271                     b1 = gen_mac_multicast(4);
6272                     gen_and(b2, b1);
6273 
6274                     /*
6275                      * OR that with the checks done for data frames.
6276                      * That gives the checks done for management and
6277                      * data frames.
6278                      */
6279                     gen_or(b1, b0);
6280 
6281                     /*
6282                      * If the low-order bit of the type value is 1,
6283                      * this is either a control frame or a frame
6284                      * with a reserved type, and thus not a
6285                      * frame with an SA.
6286                      *
6287                      * I.e., check "!(link[0] & 0x04)".
6288                      */
6289                     s = gen_load_a(OR_LINK, 0, BPF_B);
6290                     b1 = new_block(JMP(BPF_JSET));
6291                     b1->s.k = 0x04;
6292                     b1->stmts = s;
6293                     gen_not(b1);
6294 
6295                     /*
6296                      * AND that with the checks for data and management
6297                      * frames.
6298                      */
6299                     gen_and(b1, b0);
6300                     return b0;
6301                 case DLT_IP_OVER_FC:
6302                     b0 = gen_mac_multicast(2);
6303                     return b0;
6304                 case DLT_SUNATM:
6305                     if (is_lane) {
6306 			/*
6307 			 * Check that the packet doesn't begin with an
6308 			 * LE Control marker.  (We've already generated
6309 			 * a test for LANE.)
6310 			 */
6311 			b1 = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS, BPF_H,
6312 			    0xFF00);
6313 			gen_not(b1);
6314 
6315 			/* ether[off_mac] & 1 != 0 */
6316 			b0 = gen_mac_multicast(off_mac);
6317 			gen_and(b1, b0);
6318 			return b0;
6319                     }
6320                     break;
6321                 default:
6322                     break;
6323                 }
6324                 /* Link not known to support multicasts */
6325                 break;
6326 
6327 	case Q_IP:
6328 		b0 = gen_linktype(ETHERTYPE_IP);
6329 		b1 = gen_cmp_ge(OR_NET, 16, BPF_B, (bpf_int32)224);
6330 		gen_and(b0, b1);
6331 		return b1;
6332 
6333 #ifdef INET6
6334 	case Q_IPV6:
6335 		b0 = gen_linktype(ETHERTYPE_IPV6);
6336 		b1 = gen_cmp(OR_NET, 24, BPF_B, (bpf_int32)255);
6337 		gen_and(b0, b1);
6338 		return b1;
6339 #endif /* INET6 */
6340 	}
6341 	bpf_error("link-layer multicast filters supported only on ethernet/FDDI/token ring/ARCNET/802.11/ATM LANE/Fibre Channel");
6342 	/* NOTREACHED */
6343 	return NULL;
6344 }
6345 
6346 /*
6347  * generate command for inbound/outbound.  It's here so we can
6348  * make it link-type specific.  'dir' = 0 implies "inbound",
6349  * = 1 implies "outbound".
6350  */
6351 struct block *
6352 gen_inbound(dir)
6353 	int dir;
6354 {
6355 	register struct block *b0;
6356 
6357 	/*
6358 	 * Only some data link types support inbound/outbound qualifiers.
6359 	 */
6360 	switch (linktype) {
6361 	case DLT_SLIP:
6362 		b0 = gen_relation(BPF_JEQ,
6363 			  gen_load(Q_LINK, gen_loadi(0), 1),
6364 			  gen_loadi(0),
6365 			  dir);
6366 		break;
6367 
6368 	case DLT_LINUX_SLL:
6369 		if (dir) {
6370 			/*
6371 			 * Match packets sent by this machine.
6372 			 */
6373 			b0 = gen_cmp(OR_LINK, 0, BPF_H, LINUX_SLL_OUTGOING);
6374 		} else {
6375 			/*
6376 			 * Match packets sent to this machine.
6377 			 * (No broadcast or multicast packets, or
6378 			 * packets sent to some other machine and
6379 			 * received promiscuously.)
6380 			 *
6381 			 * XXX - packets sent to other machines probably
6382 			 * shouldn't be matched, but what about broadcast
6383 			 * or multicast packets we received?
6384 			 */
6385 			b0 = gen_cmp(OR_LINK, 0, BPF_H, LINUX_SLL_HOST);
6386 		}
6387 		break;
6388 
6389 #ifdef HAVE_NET_PFVAR_H
6390 	case DLT_PFLOG:
6391 		b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, dir), BPF_B,
6392 		    (bpf_int32)((dir == 0) ? PF_IN : PF_OUT));
6393 		break;
6394 #endif
6395 
6396 	case DLT_PPP_PPPD:
6397 		if (dir) {
6398 			/* match outgoing packets */
6399 			b0 = gen_cmp(OR_LINK, 0, BPF_B, PPP_PPPD_OUT);
6400 		} else {
6401 			/* match incoming packets */
6402 			b0 = gen_cmp(OR_LINK, 0, BPF_B, PPP_PPPD_IN);
6403 		}
6404 		break;
6405 
6406         case DLT_JUNIPER_MFR:
6407         case DLT_JUNIPER_MLFR:
6408         case DLT_JUNIPER_MLPPP:
6409 	case DLT_JUNIPER_ATM1:
6410 	case DLT_JUNIPER_ATM2:
6411 	case DLT_JUNIPER_PPPOE:
6412 	case DLT_JUNIPER_PPPOE_ATM:
6413         case DLT_JUNIPER_GGSN:
6414         case DLT_JUNIPER_ES:
6415         case DLT_JUNIPER_MONITOR:
6416         case DLT_JUNIPER_SERVICES:
6417         case DLT_JUNIPER_ETHER:
6418         case DLT_JUNIPER_PPP:
6419         case DLT_JUNIPER_FRELAY:
6420         case DLT_JUNIPER_CHDLC:
6421         case DLT_JUNIPER_VP:
6422 		/* juniper flags (including direction) are stored
6423 		 * the byte after the 3-byte magic number */
6424 		if (dir) {
6425 			/* match outgoing packets */
6426 			b0 = gen_mcmp(OR_LINK, 3, BPF_B, 0, 0x01);
6427 		} else {
6428 			/* match incoming packets */
6429 			b0 = gen_mcmp(OR_LINK, 3, BPF_B, 1, 0x01);
6430 		}
6431 	    break;
6432 
6433 	default:
6434 		bpf_error("inbound/outbound not supported on linktype %d",
6435 		    linktype);
6436 		b0 = NULL;
6437 		/* NOTREACHED */
6438 	}
6439 	return (b0);
6440 }
6441 
6442 #ifdef HAVE_NET_PFVAR_H
6443 /* PF firewall log matched interface */
6444 struct block *
6445 gen_pf_ifname(const char *ifname)
6446 {
6447 	struct block *b0;
6448 	u_int len, off;
6449 
6450 	if (linktype == DLT_PFLOG) {
6451 		len = sizeof(((struct pfloghdr *)0)->ifname);
6452 		off = offsetof(struct pfloghdr, ifname);
6453 	} else {
6454 		bpf_error("ifname not supported on linktype 0x%x", linktype);
6455 		/* NOTREACHED */
6456 	}
6457 	if (strlen(ifname) >= len) {
6458 		bpf_error("ifname interface names can only be %d characters",
6459 		    len-1);
6460 		/* NOTREACHED */
6461 	}
6462 	b0 = gen_bcmp(OR_LINK, off, strlen(ifname), (const u_char *)ifname);
6463 	return (b0);
6464 }
6465 
6466 /* PF firewall log ruleset name */
6467 struct block *
6468 gen_pf_ruleset(char *ruleset)
6469 {
6470 	struct block *b0;
6471 
6472 	if (linktype != DLT_PFLOG) {
6473 		bpf_error("ruleset not supported on linktype 0x%x", linktype);
6474 		/* NOTREACHED */
6475 	}
6476 	if (strlen(ruleset) >= sizeof(((struct pfloghdr *)0)->ruleset)) {
6477 		bpf_error("ruleset names can only be %ld characters",
6478 		    (long)(sizeof(((struct pfloghdr *)0)->ruleset) - 1));
6479 		/* NOTREACHED */
6480 	}
6481 	b0 = gen_bcmp(OR_LINK, offsetof(struct pfloghdr, ruleset),
6482 	    strlen(ruleset), (const u_char *)ruleset);
6483 	return (b0);
6484 }
6485 
6486 /* PF firewall log rule number */
6487 struct block *
6488 gen_pf_rnr(int rnr)
6489 {
6490 	struct block *b0;
6491 
6492 	if (linktype == DLT_PFLOG) {
6493 		b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, rulenr), BPF_W,
6494 			 (bpf_int32)rnr);
6495 	} else {
6496 		bpf_error("rnr not supported on linktype 0x%x", linktype);
6497 		/* NOTREACHED */
6498 	}
6499 
6500 	return (b0);
6501 }
6502 
6503 /* PF firewall log sub-rule number */
6504 struct block *
6505 gen_pf_srnr(int srnr)
6506 {
6507 	struct block *b0;
6508 
6509 	if (linktype != DLT_PFLOG) {
6510 		bpf_error("srnr not supported on linktype 0x%x", linktype);
6511 		/* NOTREACHED */
6512 	}
6513 
6514 	b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, subrulenr), BPF_W,
6515 	    (bpf_int32)srnr);
6516 	return (b0);
6517 }
6518 
6519 /* PF firewall log reason code */
6520 struct block *
6521 gen_pf_reason(int reason)
6522 {
6523 	struct block *b0;
6524 
6525 	if (linktype == DLT_PFLOG) {
6526 		b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, reason), BPF_B,
6527 		    (bpf_int32)reason);
6528 	} else {
6529 		bpf_error("reason not supported on linktype 0x%x", linktype);
6530 		/* NOTREACHED */
6531 	}
6532 
6533 	return (b0);
6534 }
6535 
6536 /* PF firewall log action */
6537 struct block *
6538 gen_pf_action(int action)
6539 {
6540 	struct block *b0;
6541 
6542 	if (linktype == DLT_PFLOG) {
6543 		b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, action), BPF_B,
6544 		    (bpf_int32)action);
6545 	} else {
6546 		bpf_error("action not supported on linktype 0x%x", linktype);
6547 		/* NOTREACHED */
6548 	}
6549 
6550 	return (b0);
6551 }
6552 #else /* !HAVE_NET_PFVAR_H */
6553 struct block *
6554 gen_pf_ifname(const char *ifname)
6555 {
6556 	bpf_error("libpcap was compiled without pf support");
6557 	/* NOTREACHED */
6558 	return (NULL);
6559 }
6560 
6561 struct block *
6562 gen_pf_ruleset(char *ruleset)
6563 {
6564 	bpf_error("libpcap was compiled on a machine without pf support");
6565 	/* NOTREACHED */
6566 	return (NULL);
6567 }
6568 
6569 struct block *
6570 gen_pf_rnr(int rnr)
6571 {
6572 	bpf_error("libpcap was compiled on a machine without pf support");
6573 	/* NOTREACHED */
6574 	return (NULL);
6575 }
6576 
6577 struct block *
6578 gen_pf_srnr(int srnr)
6579 {
6580 	bpf_error("libpcap was compiled on a machine without pf support");
6581 	/* NOTREACHED */
6582 	return (NULL);
6583 }
6584 
6585 struct block *
6586 gen_pf_reason(int reason)
6587 {
6588 	bpf_error("libpcap was compiled on a machine without pf support");
6589 	/* NOTREACHED */
6590 	return (NULL);
6591 }
6592 
6593 struct block *
6594 gen_pf_action(int action)
6595 {
6596 	bpf_error("libpcap was compiled on a machine without pf support");
6597 	/* NOTREACHED */
6598 	return (NULL);
6599 }
6600 #endif /* HAVE_NET_PFVAR_H */
6601 
6602 /* IEEE 802.11 wireless header */
6603 struct block *
6604 gen_p80211_type(int type, int mask)
6605 {
6606 	struct block *b0;
6607 
6608 	if (linktype != DLT_IEEE802_11 && linktype != DLT_IEEE802_11_RADIO) {
6609 		bpf_error("action not supported on linktype 0x%x\n", linktype);
6610 		/* NOTREACHED */
6611 	}
6612 	b0 = gen_mcmp(OR_LINK, offsetof(struct ieee80211_frame, i_fc[0]),
6613 		      BPF_B, (bpf_int32)type, (bpf_int32)mask);
6614 	return (b0);
6615 }
6616 
6617 struct block *
6618 gen_acode(eaddr, q)
6619 	register const u_char *eaddr;
6620 	struct qual q;
6621 {
6622 	if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) && q.proto == Q_LINK) {
6623 		if (linktype == DLT_ARCNET || linktype == DLT_ARCNET_LINUX)
6624 			return gen_ahostop(eaddr, (int)q.dir);
6625 	}
6626 	bpf_error("ARCnet address used in non-arc expression");
6627 	/* NOTREACHED */
6628 	return NULL;
6629 }
6630 
6631 static struct block *
6632 gen_ahostop(eaddr, dir)
6633 	register const u_char *eaddr;
6634 	register int dir;
6635 {
6636 	register struct block *b0, *b1;
6637 
6638 	switch (dir) {
6639 	/* src comes first, different from Ethernet */
6640 	case Q_SRC:
6641 		return gen_bcmp(OR_LINK, 0, 1, eaddr);
6642 
6643 	case Q_DST:
6644 		return gen_bcmp(OR_LINK, 1, 1, eaddr);
6645 
6646 	case Q_AND:
6647 		b0 = gen_ahostop(eaddr, Q_SRC);
6648 		b1 = gen_ahostop(eaddr, Q_DST);
6649 		gen_and(b0, b1);
6650 		return b1;
6651 
6652 	case Q_DEFAULT:
6653 	case Q_OR:
6654 		b0 = gen_ahostop(eaddr, Q_SRC);
6655 		b1 = gen_ahostop(eaddr, Q_DST);
6656 		gen_or(b0, b1);
6657 		return b1;
6658 	}
6659 	abort();
6660 	/* NOTREACHED */
6661 }
6662 
6663 /*
6664  * support IEEE 802.1Q VLAN trunk over ethernet
6665  */
6666 struct block *
6667 gen_vlan(vlan_num)
6668 	int vlan_num;
6669 {
6670 	struct	block	*b0, *b1;
6671 
6672 	/* can't check for VLAN-encapsulated packets inside MPLS */
6673 	if (label_stack_depth > 0)
6674 		bpf_error("no VLAN match after MPLS");
6675 
6676 	/*
6677 	 * Change the offsets to point to the type and data fields within
6678 	 * the VLAN packet.  Just increment the offsets, so that we
6679 	 * can support a hierarchy, e.g. "vlan 300 && vlan 200" to
6680 	 * capture VLAN 200 encapsulated within VLAN 100.
6681 	 *
6682 	 * XXX - this is a bit of a kludge.  If we were to split the
6683 	 * compiler into a parser that parses an expression and
6684 	 * generates an expression tree, and a code generator that
6685 	 * takes an expression tree (which could come from our
6686 	 * parser or from some other parser) and generates BPF code,
6687 	 * we could perhaps make the offsets parameters of routines
6688 	 * and, in the handler for an "AND" node, pass to subnodes
6689 	 * other than the VLAN node the adjusted offsets.
6690 	 *
6691 	 * This would mean that "vlan" would, instead of changing the
6692 	 * behavior of *all* tests after it, change only the behavior
6693 	 * of tests ANDed with it.  That would change the documented
6694 	 * semantics of "vlan", which might break some expressions.
6695 	 * However, it would mean that "(vlan and ip) or ip" would check
6696 	 * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than
6697 	 * checking only for VLAN-encapsulated IP, so that could still
6698 	 * be considered worth doing; it wouldn't break expressions
6699 	 * that are of the form "vlan and ..." or "vlan N and ...",
6700 	 * which I suspect are the most common expressions involving
6701 	 * "vlan".  "vlan or ..." doesn't necessarily do what the user
6702 	 * would really want, now, as all the "or ..." tests would
6703 	 * be done assuming a VLAN, even though the "or" could be viewed
6704 	 * as meaning "or, if this isn't a VLAN packet...".
6705 	 */
6706 	orig_linktype = off_linktype;	/* save original values */
6707 	orig_nl = off_nl;
6708 
6709 	switch (linktype) {
6710 
6711 	case DLT_EN10MB:
6712 		off_linktype += 4;
6713 		off_nl_nosnap += 4;
6714 		off_nl += 4;
6715 		break;
6716 
6717 	default:
6718 		bpf_error("no VLAN support for data link type %d",
6719 		      linktype);
6720 		/*NOTREACHED*/
6721 	}
6722 
6723 	/* check for VLAN */
6724 	b0 = gen_cmp(OR_LINK, orig_linktype, BPF_H, (bpf_int32)ETHERTYPE_8021Q);
6725 
6726 	/* If a specific VLAN is requested, check VLAN id */
6727 	if (vlan_num >= 0) {
6728 		b1 = gen_mcmp(OR_LINK, orig_nl, BPF_H, (bpf_int32)vlan_num,
6729 		    0x0fff);
6730 		gen_and(b0, b1);
6731 		b0 = b1;
6732 	}
6733 
6734 	return (b0);
6735 }
6736 
6737 /*
6738  * support for MPLS
6739  */
6740 struct block *
6741 gen_mpls(label_num)
6742 	int label_num;
6743 {
6744 	struct	block	*b0,*b1;
6745 
6746 	/*
6747 	 * Change the offsets to point to the type and data fields within
6748 	 * the MPLS packet.  Just increment the offsets, so that we
6749 	 * can support a hierarchy, e.g. "mpls 100000 && mpls 1024" to
6750 	 * capture packets with an outer label of 100000 and an inner
6751 	 * label of 1024.
6752 	 *
6753 	 * XXX - this is a bit of a kludge.  See comments in gen_vlan().
6754 	 */
6755         orig_nl = off_nl;
6756 
6757         if (label_stack_depth > 0) {
6758             /* just match the bottom-of-stack bit clear */
6759             b0 = gen_mcmp(OR_LINK, orig_nl-2, BPF_B, 0, 0x01);
6760         } else {
6761             /*
6762              * Indicate that we're checking MPLS-encapsulated headers,
6763              * to make sure higher level code generators don't try to
6764              * match against IP-related protocols such as Q_ARP, Q_RARP
6765              * etc.
6766              */
6767             switch (linktype) {
6768 
6769             case DLT_C_HDLC: /* fall through */
6770             case DLT_EN10MB:
6771                     b0 = gen_linktype(ETHERTYPE_MPLS);
6772                     break;
6773 
6774             case DLT_PPP:
6775                     b0 = gen_linktype(PPP_MPLS_UCAST);
6776                     break;
6777 
6778                     /* FIXME add other DLT_s ...
6779                      * for Frame-Relay/and ATM this may get messy due to SNAP headers
6780                      * leave it for now */
6781 
6782             default:
6783                     bpf_error("no MPLS support for data link type %d",
6784                           linktype);
6785                     b0 = NULL;
6786                     /*NOTREACHED*/
6787                     break;
6788             }
6789         }
6790 
6791 	/* If a specific MPLS label is requested, check it */
6792 	if (label_num >= 0) {
6793 		label_num = label_num << 12; /* label is shifted 12 bits on the wire */
6794 		b1 = gen_mcmp(OR_LINK, orig_nl, BPF_W, (bpf_int32)label_num,
6795 		    0xfffff000); /* only compare the first 20 bits */
6796 		gen_and(b0, b1);
6797 		b0 = b1;
6798 	}
6799 
6800         off_nl_nosnap += 4;
6801         off_nl += 4;
6802         label_stack_depth++;
6803 	return (b0);
6804 }
6805 
6806 /*
6807  * Support PPPOE discovery and session.
6808  */
6809 struct block *
6810 gen_pppoed()
6811 {
6812 	/* check for PPPoE discovery */
6813 	return gen_linktype((bpf_int32)ETHERTYPE_PPPOED);
6814 }
6815 
6816 struct block *
6817 gen_pppoes()
6818 {
6819 	struct block *b0;
6820 
6821 	/*
6822 	 * Test against the PPPoE session link-layer type.
6823 	 */
6824 	b0 = gen_linktype((bpf_int32)ETHERTYPE_PPPOES);
6825 
6826 	/*
6827 	 * Change the offsets to point to the type and data fields within
6828 	 * the PPP packet.
6829 	 *
6830 	 * XXX - this is a bit of a kludge.  If we were to split the
6831 	 * compiler into a parser that parses an expression and
6832 	 * generates an expression tree, and a code generator that
6833 	 * takes an expression tree (which could come from our
6834 	 * parser or from some other parser) and generates BPF code,
6835 	 * we could perhaps make the offsets parameters of routines
6836 	 * and, in the handler for an "AND" node, pass to subnodes
6837 	 * other than the PPPoE node the adjusted offsets.
6838 	 *
6839 	 * This would mean that "pppoes" would, instead of changing the
6840 	 * behavior of *all* tests after it, change only the behavior
6841 	 * of tests ANDed with it.  That would change the documented
6842 	 * semantics of "pppoes", which might break some expressions.
6843 	 * However, it would mean that "(pppoes and ip) or ip" would check
6844 	 * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than
6845 	 * checking only for VLAN-encapsulated IP, so that could still
6846 	 * be considered worth doing; it wouldn't break expressions
6847 	 * that are of the form "pppoes and ..." which I suspect are the
6848 	 * most common expressions involving "pppoes".  "pppoes or ..."
6849 	 * doesn't necessarily do what the user would really want, now,
6850 	 * as all the "or ..." tests would be done assuming PPPoE, even
6851 	 * though the "or" could be viewed as meaning "or, if this isn't
6852 	 * a PPPoE packet...".
6853 	 */
6854 	orig_linktype = off_linktype;	/* save original values */
6855 	orig_nl = off_nl;
6856 
6857 	/*
6858 	 * The "network-layer" protocol is PPPoE, which has a 6-byte
6859 	 * PPPoE header, followed by PPP payload, so we set the
6860 	 * offsets to the network layer offset plus 6 bytes for
6861 	 * the PPPoE header plus the values appropriate for PPP when
6862 	 * encapsulated in Ethernet (which means there's no HDLC
6863 	 * encapsulation).
6864 	 */
6865 	off_linktype = orig_nl + 6;
6866 	off_nl = orig_nl + 6 + 2;
6867 	off_nl_nosnap = orig_nl + 6 + 2;
6868 
6869 	/*
6870 	 * Set the link-layer type to PPP, as all subsequent tests will
6871 	 * be on the encapsulated PPP header.
6872 	 */
6873 	linktype = DLT_PPP;
6874 
6875 	return b0;
6876 }
6877 
6878 struct block *
6879 gen_atmfield_code(atmfield, jvalue, jtype, reverse)
6880 	int atmfield;
6881 	bpf_int32 jvalue;
6882 	bpf_u_int32 jtype;
6883 	int reverse;
6884 {
6885 	struct block *b0;
6886 
6887 	switch (atmfield) {
6888 
6889 	case A_VPI:
6890 		if (!is_atm)
6891 			bpf_error("'vpi' supported only on raw ATM");
6892 		if (off_vpi == (u_int)-1)
6893 			abort();
6894 		b0 = gen_ncmp(OR_LINK, off_vpi, BPF_B, 0xffffffff, jtype,
6895 		    reverse, jvalue);
6896 		break;
6897 
6898 	case A_VCI:
6899 		if (!is_atm)
6900 			bpf_error("'vci' supported only on raw ATM");
6901 		if (off_vci == (u_int)-1)
6902 			abort();
6903 		b0 = gen_ncmp(OR_LINK, off_vci, BPF_H, 0xffffffff, jtype,
6904 		    reverse, jvalue);
6905 		break;
6906 
6907 	case A_PROTOTYPE:
6908 		if (off_proto == (u_int)-1)
6909 			abort();	/* XXX - this isn't on FreeBSD */
6910 		b0 = gen_ncmp(OR_LINK, off_proto, BPF_B, 0x0f, jtype,
6911 		    reverse, jvalue);
6912 		break;
6913 
6914 	case A_MSGTYPE:
6915 		if (off_payload == (u_int)-1)
6916 			abort();
6917 		b0 = gen_ncmp(OR_LINK, off_payload + MSG_TYPE_POS, BPF_B,
6918 		    0xffffffff, jtype, reverse, jvalue);
6919 		break;
6920 
6921 	case A_CALLREFTYPE:
6922 		if (!is_atm)
6923 			bpf_error("'callref' supported only on raw ATM");
6924 		if (off_proto == (u_int)-1)
6925 			abort();
6926 		b0 = gen_ncmp(OR_LINK, off_proto, BPF_B, 0xffffffff,
6927 		    jtype, reverse, jvalue);
6928 		break;
6929 
6930 	default:
6931 		abort();
6932 	}
6933 	return b0;
6934 }
6935 
6936 struct block *
6937 gen_atmtype_abbrev(type)
6938 	int type;
6939 {
6940 	struct block *b0, *b1;
6941 
6942 	switch (type) {
6943 
6944 	case A_METAC:
6945 		/* Get all packets in Meta signalling Circuit */
6946 		if (!is_atm)
6947 			bpf_error("'metac' supported only on raw ATM");
6948 		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
6949 		b1 = gen_atmfield_code(A_VCI, 1, BPF_JEQ, 0);
6950 		gen_and(b0, b1);
6951 		break;
6952 
6953 	case A_BCC:
6954 		/* Get all packets in Broadcast Circuit*/
6955 		if (!is_atm)
6956 			bpf_error("'bcc' supported only on raw ATM");
6957 		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
6958 		b1 = gen_atmfield_code(A_VCI, 2, BPF_JEQ, 0);
6959 		gen_and(b0, b1);
6960 		break;
6961 
6962 	case A_OAMF4SC:
6963 		/* Get all cells in Segment OAM F4 circuit*/
6964 		if (!is_atm)
6965 			bpf_error("'oam4sc' supported only on raw ATM");
6966 		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
6967 		b1 = gen_atmfield_code(A_VCI, 3, BPF_JEQ, 0);
6968 		gen_and(b0, b1);
6969 		break;
6970 
6971 	case A_OAMF4EC:
6972 		/* Get all cells in End-to-End OAM F4 Circuit*/
6973 		if (!is_atm)
6974 			bpf_error("'oam4ec' supported only on raw ATM");
6975 		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
6976 		b1 = gen_atmfield_code(A_VCI, 4, BPF_JEQ, 0);
6977 		gen_and(b0, b1);
6978 		break;
6979 
6980 	case A_SC:
6981 		/*  Get all packets in connection Signalling Circuit */
6982 		if (!is_atm)
6983 			bpf_error("'sc' supported only on raw ATM");
6984 		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
6985 		b1 = gen_atmfield_code(A_VCI, 5, BPF_JEQ, 0);
6986 		gen_and(b0, b1);
6987 		break;
6988 
6989 	case A_ILMIC:
6990 		/* Get all packets in ILMI Circuit */
6991 		if (!is_atm)
6992 			bpf_error("'ilmic' supported only on raw ATM");
6993 		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
6994 		b1 = gen_atmfield_code(A_VCI, 16, BPF_JEQ, 0);
6995 		gen_and(b0, b1);
6996 		break;
6997 
6998 	case A_LANE:
6999 		/* Get all LANE packets */
7000 		if (!is_atm)
7001 			bpf_error("'lane' supported only on raw ATM");
7002 		b1 = gen_atmfield_code(A_PROTOTYPE, PT_LANE, BPF_JEQ, 0);
7003 
7004 		/*
7005 		 * Arrange that all subsequent tests assume LANE
7006 		 * rather than LLC-encapsulated packets, and set
7007 		 * the offsets appropriately for LANE-encapsulated
7008 		 * Ethernet.
7009 		 *
7010 		 * "off_mac" is the offset of the Ethernet header,
7011 		 * which is 2 bytes past the ATM pseudo-header
7012 		 * (skipping the pseudo-header and 2-byte LE Client
7013 		 * field).  The other offsets are Ethernet offsets
7014 		 * relative to "off_mac".
7015 		 */
7016 		is_lane = 1;
7017 		off_mac = off_payload + 2;	/* MAC header */
7018 		off_linktype = off_mac + 12;
7019 		off_nl = off_mac + 14;		/* Ethernet II */
7020 		off_nl_nosnap = off_mac + 17;	/* 802.3+802.2 */
7021 		break;
7022 
7023 	case A_LLC:
7024 		/* Get all LLC-encapsulated packets */
7025 		if (!is_atm)
7026 			bpf_error("'llc' supported only on raw ATM");
7027 		b1 = gen_atmfield_code(A_PROTOTYPE, PT_LLC, BPF_JEQ, 0);
7028 		is_lane = 0;
7029 		break;
7030 
7031 	default:
7032 		abort();
7033 	}
7034 	return b1;
7035 }
7036 
7037 /*
7038  * Filtering for MTP2 messages based on li value
7039  * FISU, length is null
7040  * LSSU, length is 1 or 2
7041  * MSU, length is 3 or more
7042  */
7043 struct block *
7044 gen_mtp2type_abbrev(type)
7045 	int type;
7046 {
7047 	struct block *b0, *b1;
7048 
7049 	switch (type) {
7050 
7051 	case M_FISU:
7052 		if ( (linktype != DLT_MTP2) &&
7053 		     (linktype != DLT_MTP2_WITH_PHDR) )
7054 			bpf_error("'fisu' supported only on MTP2");
7055 		/* gen_ncmp(offrel, offset, size, mask, jtype, reverse, value) */
7056 		b0 = gen_ncmp(OR_PACKET, off_li, BPF_B, 0x3f, BPF_JEQ, 0, 0);
7057 		break;
7058 
7059 	case M_LSSU:
7060 		if ( (linktype != DLT_MTP2) &&
7061 		     (linktype != DLT_MTP2_WITH_PHDR) )
7062 			bpf_error("'lssu' supported only on MTP2");
7063 		b0 = gen_ncmp(OR_PACKET, off_li, BPF_B, 0x3f, BPF_JGT, 1, 2);
7064 		b1 = gen_ncmp(OR_PACKET, off_li, BPF_B, 0x3f, BPF_JGT, 0, 0);
7065 		gen_and(b1, b0);
7066 		break;
7067 
7068 	case M_MSU:
7069 		if ( (linktype != DLT_MTP2) &&
7070 		     (linktype != DLT_MTP2_WITH_PHDR) )
7071 			bpf_error("'msu' supported only on MTP2");
7072 		b0 = gen_ncmp(OR_PACKET, off_li, BPF_B, 0x3f, BPF_JGT, 0, 2);
7073 		break;
7074 
7075 	default:
7076 		abort();
7077 	}
7078 	return b0;
7079 }
7080 
7081 struct block *
7082 gen_mtp3field_code(mtp3field, jvalue, jtype, reverse)
7083 	int mtp3field;
7084 	bpf_u_int32 jvalue;
7085 	bpf_u_int32 jtype;
7086 	int reverse;
7087 {
7088 	struct block *b0;
7089 	bpf_u_int32 val1 , val2 , val3;
7090 
7091 	switch (mtp3field) {
7092 
7093 	case M_SIO:
7094 		if (off_sio == (u_int)-1)
7095 			bpf_error("'sio' supported only on SS7");
7096 		/* sio coded on 1 byte so max value 255 */
7097 		if(jvalue > 255)
7098 		        bpf_error("sio value %u too big; max value = 255",
7099 		            jvalue);
7100 		b0 = gen_ncmp(OR_PACKET, off_sio, BPF_B, 0xffffffff,
7101 		    (u_int)jtype, reverse, (u_int)jvalue);
7102 		break;
7103 
7104         case M_OPC:
7105 	        if (off_opc == (u_int)-1)
7106 			bpf_error("'opc' supported only on SS7");
7107 		/* opc coded on 14 bits so max value 16383 */
7108 		if (jvalue > 16383)
7109 		        bpf_error("opc value %u too big; max value = 16383",
7110 		            jvalue);
7111 		/* the following instructions are made to convert jvalue
7112 		 * to the form used to write opc in an ss7 message*/
7113 		val1 = jvalue & 0x00003c00;
7114 		val1 = val1 >>10;
7115 		val2 = jvalue & 0x000003fc;
7116 		val2 = val2 <<6;
7117 		val3 = jvalue & 0x00000003;
7118 		val3 = val3 <<22;
7119 		jvalue = val1 + val2 + val3;
7120 		b0 = gen_ncmp(OR_PACKET, off_opc, BPF_W, 0x00c0ff0f,
7121 		    (u_int)jtype, reverse, (u_int)jvalue);
7122 		break;
7123 
7124 	case M_DPC:
7125 	        if (off_dpc == (u_int)-1)
7126 			bpf_error("'dpc' supported only on SS7");
7127 		/* dpc coded on 14 bits so max value 16383 */
7128 		if (jvalue > 16383)
7129 		        bpf_error("dpc value %u too big; max value = 16383",
7130 		            jvalue);
7131 		/* the following instructions are made to convert jvalue
7132 		 * to the forme used to write dpc in an ss7 message*/
7133 		val1 = jvalue & 0x000000ff;
7134 		val1 = val1 << 24;
7135 		val2 = jvalue & 0x00003f00;
7136 		val2 = val2 << 8;
7137 		jvalue = val1 + val2;
7138 		b0 = gen_ncmp(OR_PACKET, off_dpc, BPF_W, 0xff3f0000,
7139 		    (u_int)jtype, reverse, (u_int)jvalue);
7140 		break;
7141 
7142 	case M_SLS:
7143 	        if (off_sls == (u_int)-1)
7144 			bpf_error("'sls' supported only on SS7");
7145 		/* sls coded on 4 bits so max value 15 */
7146 		if (jvalue > 15)
7147 		         bpf_error("sls value %u too big; max value = 15",
7148 		             jvalue);
7149 		/* the following instruction is made to convert jvalue
7150 		 * to the forme used to write sls in an ss7 message*/
7151 		jvalue = jvalue << 4;
7152 		b0 = gen_ncmp(OR_PACKET, off_sls, BPF_B, 0xf0,
7153 		    (u_int)jtype,reverse, (u_int)jvalue);
7154 		break;
7155 
7156 	default:
7157 		abort();
7158 	}
7159 	return b0;
7160 }
7161 
7162 static struct block *
7163 gen_msg_abbrev(type)
7164 	int type;
7165 {
7166 	struct block *b1;
7167 
7168 	/*
7169 	 * Q.2931 signalling protocol messages for handling virtual circuits
7170 	 * establishment and teardown
7171 	 */
7172 	switch (type) {
7173 
7174 	case A_SETUP:
7175 		b1 = gen_atmfield_code(A_MSGTYPE, SETUP, BPF_JEQ, 0);
7176 		break;
7177 
7178 	case A_CALLPROCEED:
7179 		b1 = gen_atmfield_code(A_MSGTYPE, CALL_PROCEED, BPF_JEQ, 0);
7180 		break;
7181 
7182 	case A_CONNECT:
7183 		b1 = gen_atmfield_code(A_MSGTYPE, CONNECT, BPF_JEQ, 0);
7184 		break;
7185 
7186 	case A_CONNECTACK:
7187 		b1 = gen_atmfield_code(A_MSGTYPE, CONNECT_ACK, BPF_JEQ, 0);
7188 		break;
7189 
7190 	case A_RELEASE:
7191 		b1 = gen_atmfield_code(A_MSGTYPE, RELEASE, BPF_JEQ, 0);
7192 		break;
7193 
7194 	case A_RELEASE_DONE:
7195 		b1 = gen_atmfield_code(A_MSGTYPE, RELEASE_DONE, BPF_JEQ, 0);
7196 		break;
7197 
7198 	default:
7199 		abort();
7200 	}
7201 	return b1;
7202 }
7203 
7204 struct block *
7205 gen_atmmulti_abbrev(type)
7206 	int type;
7207 {
7208 	struct block *b0, *b1;
7209 
7210 	switch (type) {
7211 
7212 	case A_OAM:
7213 		if (!is_atm)
7214 			bpf_error("'oam' supported only on raw ATM");
7215 		b1 = gen_atmmulti_abbrev(A_OAMF4);
7216 		break;
7217 
7218 	case A_OAMF4:
7219 		if (!is_atm)
7220 			bpf_error("'oamf4' supported only on raw ATM");
7221 		/* OAM F4 type */
7222 		b0 = gen_atmfield_code(A_VCI, 3, BPF_JEQ, 0);
7223 		b1 = gen_atmfield_code(A_VCI, 4, BPF_JEQ, 0);
7224 		gen_or(b0, b1);
7225 		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
7226 		gen_and(b0, b1);
7227 		break;
7228 
7229 	case A_CONNECTMSG:
7230 		/*
7231 		 * Get Q.2931 signalling messages for switched
7232 		 * virtual connection
7233 		 */
7234 		if (!is_atm)
7235 			bpf_error("'connectmsg' supported only on raw ATM");
7236 		b0 = gen_msg_abbrev(A_SETUP);
7237 		b1 = gen_msg_abbrev(A_CALLPROCEED);
7238 		gen_or(b0, b1);
7239 		b0 = gen_msg_abbrev(A_CONNECT);
7240 		gen_or(b0, b1);
7241 		b0 = gen_msg_abbrev(A_CONNECTACK);
7242 		gen_or(b0, b1);
7243 		b0 = gen_msg_abbrev(A_RELEASE);
7244 		gen_or(b0, b1);
7245 		b0 = gen_msg_abbrev(A_RELEASE_DONE);
7246 		gen_or(b0, b1);
7247 		b0 = gen_atmtype_abbrev(A_SC);
7248 		gen_and(b0, b1);
7249 		break;
7250 
7251 	case A_METACONNECT:
7252 		if (!is_atm)
7253 			bpf_error("'metaconnect' supported only on raw ATM");
7254 		b0 = gen_msg_abbrev(A_SETUP);
7255 		b1 = gen_msg_abbrev(A_CALLPROCEED);
7256 		gen_or(b0, b1);
7257 		b0 = gen_msg_abbrev(A_CONNECT);
7258 		gen_or(b0, b1);
7259 		b0 = gen_msg_abbrev(A_RELEASE);
7260 		gen_or(b0, b1);
7261 		b0 = gen_msg_abbrev(A_RELEASE_DONE);
7262 		gen_or(b0, b1);
7263 		b0 = gen_atmtype_abbrev(A_METAC);
7264 		gen_and(b0, b1);
7265 		break;
7266 
7267 	default:
7268 		abort();
7269 	}
7270 	return b1;
7271 }
7272