186d7f5d3SJohn Marino /* mpz_bin_ui - compute n over k.
286d7f5d3SJohn Marino
386d7f5d3SJohn Marino Copyright 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
486d7f5d3SJohn Marino
586d7f5d3SJohn Marino This file is part of the GNU MP Library.
686d7f5d3SJohn Marino
786d7f5d3SJohn Marino The GNU MP Library is free software; you can redistribute it and/or modify
886d7f5d3SJohn Marino it under the terms of the GNU Lesser General Public License as published by
986d7f5d3SJohn Marino the Free Software Foundation; either version 3 of the License, or (at your
1086d7f5d3SJohn Marino option) any later version.
1186d7f5d3SJohn Marino
1286d7f5d3SJohn Marino The GNU MP Library is distributed in the hope that it will be useful, but
1386d7f5d3SJohn Marino WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
1486d7f5d3SJohn Marino or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
1586d7f5d3SJohn Marino License for more details.
1686d7f5d3SJohn Marino
1786d7f5d3SJohn Marino You should have received a copy of the GNU Lesser General Public License
1886d7f5d3SJohn Marino along with the GNU MP Library. If not, see http://www.gnu.org/licenses/. */
1986d7f5d3SJohn Marino
2086d7f5d3SJohn Marino #include "gmp.h"
2186d7f5d3SJohn Marino #include "gmp-impl.h"
2286d7f5d3SJohn Marino #include "longlong.h"
2386d7f5d3SJohn Marino
2486d7f5d3SJohn Marino
2586d7f5d3SJohn Marino /* This is a poor implementation. Look at bin_uiui.c for improvement ideas.
2686d7f5d3SJohn Marino In fact consider calling mpz_bin_uiui() when the arguments fit, leaving
2786d7f5d3SJohn Marino the code here only for big n.
2886d7f5d3SJohn Marino
2986d7f5d3SJohn Marino The identity bin(n,k) = (-1)^k * bin(-n+k-1,k) can be found in Knuth vol
3086d7f5d3SJohn Marino 1 section 1.2.6 part G. */
3186d7f5d3SJohn Marino
3286d7f5d3SJohn Marino
3386d7f5d3SJohn Marino #define DIVIDE() \
3486d7f5d3SJohn Marino do { \
3586d7f5d3SJohn Marino ASSERT (SIZ(r) > 0); \
3686d7f5d3SJohn Marino MPN_DIVREM_OR_DIVEXACT_1 (PTR(r), PTR(r), (mp_size_t) SIZ(r), kacc); \
3786d7f5d3SJohn Marino SIZ(r) -= (PTR(r)[SIZ(r)-1] == 0); \
3886d7f5d3SJohn Marino } while (0)
3986d7f5d3SJohn Marino
4086d7f5d3SJohn Marino void
mpz_bin_ui(mpz_ptr r,mpz_srcptr n,unsigned long int k)4186d7f5d3SJohn Marino mpz_bin_ui (mpz_ptr r, mpz_srcptr n, unsigned long int k)
4286d7f5d3SJohn Marino {
4386d7f5d3SJohn Marino mpz_t ni;
4486d7f5d3SJohn Marino mp_limb_t i;
4586d7f5d3SJohn Marino mpz_t nacc;
4686d7f5d3SJohn Marino mp_limb_t kacc;
4786d7f5d3SJohn Marino mp_size_t negate;
4886d7f5d3SJohn Marino
4986d7f5d3SJohn Marino if (mpz_sgn (n) < 0)
5086d7f5d3SJohn Marino {
5186d7f5d3SJohn Marino /* bin(n,k) = (-1)^k * bin(-n+k-1,k), and set ni = -n+k-1 - k = -n-1 */
5286d7f5d3SJohn Marino mpz_init (ni);
5386d7f5d3SJohn Marino mpz_neg (ni, n);
5486d7f5d3SJohn Marino mpz_sub_ui (ni, ni, 1L);
5586d7f5d3SJohn Marino negate = (k & 1); /* (-1)^k */
5686d7f5d3SJohn Marino }
5786d7f5d3SJohn Marino else
5886d7f5d3SJohn Marino {
5986d7f5d3SJohn Marino /* bin(n,k) == 0 if k>n
6086d7f5d3SJohn Marino (no test for this under the n<0 case, since -n+k-1 >= k there) */
6186d7f5d3SJohn Marino if (mpz_cmp_ui (n, k) < 0)
6286d7f5d3SJohn Marino {
6386d7f5d3SJohn Marino mpz_set_ui (r, 0L);
6486d7f5d3SJohn Marino return;
6586d7f5d3SJohn Marino }
6686d7f5d3SJohn Marino
6786d7f5d3SJohn Marino /* set ni = n-k */
6886d7f5d3SJohn Marino mpz_init (ni);
6986d7f5d3SJohn Marino mpz_sub_ui (ni, n, k);
7086d7f5d3SJohn Marino negate = 0;
7186d7f5d3SJohn Marino }
7286d7f5d3SJohn Marino
7386d7f5d3SJohn Marino /* Now wanting bin(ni+k,k), with ni positive, and "negate" is the sign (0
7486d7f5d3SJohn Marino for positive, 1 for negative). */
7586d7f5d3SJohn Marino mpz_set_ui (r, 1L);
7686d7f5d3SJohn Marino
7786d7f5d3SJohn Marino /* Rewrite bin(n,k) as bin(n,n-k) if that is smaller. In this case it's
7886d7f5d3SJohn Marino whether ni+k-k < k meaning ni<k, and if so change to denominator ni+k-k
7986d7f5d3SJohn Marino = ni, and new ni of ni+k-ni = k. */
8086d7f5d3SJohn Marino if (mpz_cmp_ui (ni, k) < 0)
8186d7f5d3SJohn Marino {
8286d7f5d3SJohn Marino unsigned long tmp;
8386d7f5d3SJohn Marino tmp = k;
8486d7f5d3SJohn Marino k = mpz_get_ui (ni);
8586d7f5d3SJohn Marino mpz_set_ui (ni, tmp);
8686d7f5d3SJohn Marino }
8786d7f5d3SJohn Marino
8886d7f5d3SJohn Marino kacc = 1;
8986d7f5d3SJohn Marino mpz_init_set_ui (nacc, 1L);
9086d7f5d3SJohn Marino
9186d7f5d3SJohn Marino for (i = 1; i <= k; i++)
9286d7f5d3SJohn Marino {
9386d7f5d3SJohn Marino mp_limb_t k1, k0;
9486d7f5d3SJohn Marino
9586d7f5d3SJohn Marino #if 0
9686d7f5d3SJohn Marino mp_limb_t nacclow;
9786d7f5d3SJohn Marino int c;
9886d7f5d3SJohn Marino
9986d7f5d3SJohn Marino nacclow = PTR(nacc)[0];
10086d7f5d3SJohn Marino for (c = 0; (((kacc | nacclow) & 1) == 0); c++)
10186d7f5d3SJohn Marino {
10286d7f5d3SJohn Marino kacc >>= 1;
10386d7f5d3SJohn Marino nacclow >>= 1;
10486d7f5d3SJohn Marino }
10586d7f5d3SJohn Marino mpz_div_2exp (nacc, nacc, c);
10686d7f5d3SJohn Marino #endif
10786d7f5d3SJohn Marino
10886d7f5d3SJohn Marino mpz_add_ui (ni, ni, 1L);
10986d7f5d3SJohn Marino mpz_mul (nacc, nacc, ni);
11086d7f5d3SJohn Marino umul_ppmm (k1, k0, kacc, i << GMP_NAIL_BITS);
11186d7f5d3SJohn Marino k0 >>= GMP_NAIL_BITS;
11286d7f5d3SJohn Marino if (k1 != 0)
11386d7f5d3SJohn Marino {
11486d7f5d3SJohn Marino /* Accumulator overflow. Perform bignum step. */
11586d7f5d3SJohn Marino mpz_mul (r, r, nacc);
11686d7f5d3SJohn Marino mpz_set_ui (nacc, 1L);
11786d7f5d3SJohn Marino DIVIDE ();
11886d7f5d3SJohn Marino kacc = i;
11986d7f5d3SJohn Marino }
12086d7f5d3SJohn Marino else
12186d7f5d3SJohn Marino {
12286d7f5d3SJohn Marino /* Save new products in accumulators to keep accumulating. */
12386d7f5d3SJohn Marino kacc = k0;
12486d7f5d3SJohn Marino }
12586d7f5d3SJohn Marino }
12686d7f5d3SJohn Marino
12786d7f5d3SJohn Marino mpz_mul (r, r, nacc);
12886d7f5d3SJohn Marino DIVIDE ();
12986d7f5d3SJohn Marino SIZ(r) = (SIZ(r) ^ -negate) + negate;
13086d7f5d3SJohn Marino
13186d7f5d3SJohn Marino mpz_clear (nacc);
13286d7f5d3SJohn Marino mpz_clear (ni);
13386d7f5d3SJohn Marino }
134