xref: /dflybsd-src/contrib/gmp/mpn/generic/toom_eval_pm2.c (revision 86d7f5d305c6adaa56ff4582ece9859d73106103)
186d7f5d3SJohn Marino /* mpn_toom_eval_pm2 -- Evaluate a polynomial in +2 and -2
286d7f5d3SJohn Marino 
386d7f5d3SJohn Marino    Contributed to the GNU project by Niels M�ller and Marco Bodrato
486d7f5d3SJohn Marino 
586d7f5d3SJohn Marino    THE FUNCTION IN THIS FILE IS INTERNAL WITH A MUTABLE INTERFACE.  IT IS ONLY
686d7f5d3SJohn Marino    SAFE TO REACH IT THROUGH DOCUMENTED INTERFACES.  IN FACT, IT IS ALMOST
786d7f5d3SJohn Marino    GUARANTEED THAT IT WILL CHANGE OR DISAPPEAR IN A FUTURE GNU MP RELEASE.
886d7f5d3SJohn Marino 
986d7f5d3SJohn Marino Copyright 2009 Free Software Foundation, Inc.
1086d7f5d3SJohn Marino 
1186d7f5d3SJohn Marino This file is part of the GNU MP Library.
1286d7f5d3SJohn Marino 
1386d7f5d3SJohn Marino The GNU MP Library is free software; you can redistribute it and/or modify
1486d7f5d3SJohn Marino it under the terms of the GNU Lesser General Public License as published by
1586d7f5d3SJohn Marino the Free Software Foundation; either version 3 of the License, or (at your
1686d7f5d3SJohn Marino option) any later version.
1786d7f5d3SJohn Marino 
1886d7f5d3SJohn Marino The GNU MP Library is distributed in the hope that it will be useful, but
1986d7f5d3SJohn Marino WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
2086d7f5d3SJohn Marino or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
2186d7f5d3SJohn Marino License for more details.
2286d7f5d3SJohn Marino 
2386d7f5d3SJohn Marino You should have received a copy of the GNU Lesser General Public License
2486d7f5d3SJohn Marino along with the GNU MP Library.  If not, see http://www.gnu.org/licenses/.  */
2586d7f5d3SJohn Marino 
2686d7f5d3SJohn Marino #include "gmp.h"
2786d7f5d3SJohn Marino #include "gmp-impl.h"
2886d7f5d3SJohn Marino 
2986d7f5d3SJohn Marino /* DO_addlsh2(d,a,b,n,cy) computes cy,{d,n} <- {a,n} + 4*(cy,{b,n}), it
3086d7f5d3SJohn Marino    can be used as DO_addlsh2(d,a,d,n,d[n]), for accumulation on {d,n+1}. */
3186d7f5d3SJohn Marino #if HAVE_NATIVE_mpn_addlsh2_n
3286d7f5d3SJohn Marino #define DO_addlsh2(d, a, b, n, cy)	\
3386d7f5d3SJohn Marino do {					\
3486d7f5d3SJohn Marino   (cy) <<= 2;				\
3586d7f5d3SJohn Marino   (cy) += mpn_addlsh2_n(d, a, b, n);	\
3686d7f5d3SJohn Marino } while (0)
3786d7f5d3SJohn Marino #else
3886d7f5d3SJohn Marino #if HAVE_NATIVE_mpn_addlsh_n
3986d7f5d3SJohn Marino #define DO_addlsh2(d, a, b, n, cy)	\
4086d7f5d3SJohn Marino do {					\
4186d7f5d3SJohn Marino   (cy) <<= 2;				\
4286d7f5d3SJohn Marino   (cy) += mpn_addlsh_n(d, a, b, n, 2);	\
4386d7f5d3SJohn Marino } while (0)
4486d7f5d3SJohn Marino #else
4586d7f5d3SJohn Marino /* The following is not a general substitute for addlsh2.
4686d7f5d3SJohn Marino    It is correct if d == b, but it is not if d == a.	*/
4786d7f5d3SJohn Marino #define DO_addlsh2(d, a, b, n, cy)	\
4886d7f5d3SJohn Marino do {					\
4986d7f5d3SJohn Marino   (cy) <<= 2;				\
5086d7f5d3SJohn Marino   (cy) += mpn_lshift(d, b, n, 2);	\
5186d7f5d3SJohn Marino   (cy) += mpn_add_n(d, d, a, n);	\
5286d7f5d3SJohn Marino } while (0)
5386d7f5d3SJohn Marino #endif
5486d7f5d3SJohn Marino #endif
5586d7f5d3SJohn Marino 
5686d7f5d3SJohn Marino /* Evaluates a polynomial of degree 2 < k < GMP_NUMB_BITS, in the
5786d7f5d3SJohn Marino    points +2 and -2. */
5886d7f5d3SJohn Marino int
mpn_toom_eval_pm2(mp_ptr xp2,mp_ptr xm2,unsigned k,mp_srcptr xp,mp_size_t n,mp_size_t hn,mp_ptr tp)5986d7f5d3SJohn Marino mpn_toom_eval_pm2 (mp_ptr xp2, mp_ptr xm2, unsigned k,
6086d7f5d3SJohn Marino 		   mp_srcptr xp, mp_size_t n, mp_size_t hn, mp_ptr tp)
6186d7f5d3SJohn Marino {
6286d7f5d3SJohn Marino   int i;
6386d7f5d3SJohn Marino   int neg;
6486d7f5d3SJohn Marino   mp_limb_t cy;
6586d7f5d3SJohn Marino 
6686d7f5d3SJohn Marino   ASSERT (k >= 3);
6786d7f5d3SJohn Marino   ASSERT (k < GMP_NUMB_BITS);
6886d7f5d3SJohn Marino 
6986d7f5d3SJohn Marino   ASSERT (hn > 0);
7086d7f5d3SJohn Marino   ASSERT (hn <= n);
7186d7f5d3SJohn Marino 
7286d7f5d3SJohn Marino   /* The degree k is also the number of full-size coefficients, so
7386d7f5d3SJohn Marino    * that last coefficient, of size hn, starts at xp + k*n. */
7486d7f5d3SJohn Marino 
7586d7f5d3SJohn Marino   cy = 0;
7686d7f5d3SJohn Marino   DO_addlsh2 (xp2, xp + (k-2) * n, xp + k * n, hn, cy);
7786d7f5d3SJohn Marino   if (hn != n)
7886d7f5d3SJohn Marino     cy = mpn_add_1 (xp2 + hn, xp + (k-2) * n + hn, n - hn, cy);
7986d7f5d3SJohn Marino   for (i = k - 4; i >= 0; i -= 2)
8086d7f5d3SJohn Marino     DO_addlsh2 (xp2, xp + i * n, xp2, n, cy);
8186d7f5d3SJohn Marino   xp2[n] = cy;
8286d7f5d3SJohn Marino 
8386d7f5d3SJohn Marino   k--;
8486d7f5d3SJohn Marino 
8586d7f5d3SJohn Marino   cy = 0;
8686d7f5d3SJohn Marino   DO_addlsh2 (tp, xp + (k-2) * n, xp + k * n, n, cy);
8786d7f5d3SJohn Marino   for (i = k - 4; i >= 0; i -= 2)
8886d7f5d3SJohn Marino     DO_addlsh2 (tp, xp + i * n, tp, n, cy);
8986d7f5d3SJohn Marino   tp[n] = cy;
9086d7f5d3SJohn Marino 
9186d7f5d3SJohn Marino   if (k & 1)
9286d7f5d3SJohn Marino     ASSERT_NOCARRY(mpn_lshift (tp , tp , n + 1, 1));
9386d7f5d3SJohn Marino   else
9486d7f5d3SJohn Marino     ASSERT_NOCARRY(mpn_lshift (xp2, xp2, n + 1, 1));
9586d7f5d3SJohn Marino 
9686d7f5d3SJohn Marino   neg = (mpn_cmp (xp2, tp, n + 1) < 0) ? ~0 : 0;
9786d7f5d3SJohn Marino 
9886d7f5d3SJohn Marino #if HAVE_NATIVE_mpn_add_n_sub_n
9986d7f5d3SJohn Marino   if (neg)
10086d7f5d3SJohn Marino     mpn_add_n_sub_n (xp2, xm2, tp, xp2, n + 1);
10186d7f5d3SJohn Marino   else
10286d7f5d3SJohn Marino     mpn_add_n_sub_n (xp2, xm2, xp2, tp, n + 1);
10386d7f5d3SJohn Marino #else /* !HAVE_NATIVE_mpn_add_n_sub_n */
10486d7f5d3SJohn Marino   if (neg)
10586d7f5d3SJohn Marino     mpn_sub_n (xm2, tp, xp2, n + 1);
10686d7f5d3SJohn Marino   else
10786d7f5d3SJohn Marino     mpn_sub_n (xm2, xp2, tp, n + 1);
10886d7f5d3SJohn Marino 
10986d7f5d3SJohn Marino   mpn_add_n (xp2, xp2, tp, n + 1);
11086d7f5d3SJohn Marino #endif /* !HAVE_NATIVE_mpn_add_n_sub_n */
11186d7f5d3SJohn Marino 
11286d7f5d3SJohn Marino   ASSERT (xp2[n] < (1<<(k+2))-1);
11386d7f5d3SJohn Marino   ASSERT (xm2[n] < ((1<<(k+3))-1 - (1^k&1))/3);
11486d7f5d3SJohn Marino 
11586d7f5d3SJohn Marino   neg ^= ((k & 1) - 1);
11686d7f5d3SJohn Marino 
11786d7f5d3SJohn Marino   return neg;
11886d7f5d3SJohn Marino }
11986d7f5d3SJohn Marino 
12086d7f5d3SJohn Marino #undef DO_addlsh2
121