1 /* Implementation of the GDB variable objects API. 2 3 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 4 2009, 2010 Free Software Foundation, Inc. 5 6 This program is free software; you can redistribute it and/or modify 7 it under the terms of the GNU General Public License as published by 8 the Free Software Foundation; either version 3 of the License, or 9 (at your option) any later version. 10 11 This program is distributed in the hope that it will be useful, 12 but WITHOUT ANY WARRANTY; without even the implied warranty of 13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 GNU General Public License for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 18 19 #include "defs.h" 20 #include "exceptions.h" 21 #include "value.h" 22 #include "expression.h" 23 #include "frame.h" 24 #include "language.h" 25 #include "wrapper.h" 26 #include "gdbcmd.h" 27 #include "block.h" 28 #include "valprint.h" 29 30 #include "gdb_assert.h" 31 #include "gdb_string.h" 32 #include "gdb_regex.h" 33 34 #include "varobj.h" 35 #include "vec.h" 36 #include "gdbthread.h" 37 #include "inferior.h" 38 39 #if HAVE_PYTHON 40 #include "python/python.h" 41 #include "python/python-internal.h" 42 #else 43 typedef int PyObject; 44 #endif 45 46 /* Non-zero if we want to see trace of varobj level stuff. */ 47 48 int varobjdebug = 0; 49 static void 50 show_varobjdebug (struct ui_file *file, int from_tty, 51 struct cmd_list_element *c, const char *value) 52 { 53 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value); 54 } 55 56 /* String representations of gdb's format codes */ 57 char *varobj_format_string[] = 58 { "natural", "binary", "decimal", "hexadecimal", "octal" }; 59 60 /* String representations of gdb's known languages */ 61 char *varobj_language_string[] = { "unknown", "C", "C++", "Java" }; 62 63 /* True if we want to allow Python-based pretty-printing. */ 64 static int pretty_printing = 0; 65 66 void 67 varobj_enable_pretty_printing (void) 68 { 69 pretty_printing = 1; 70 } 71 72 /* Data structures */ 73 74 /* Every root variable has one of these structures saved in its 75 varobj. Members which must be free'd are noted. */ 76 struct varobj_root 77 { 78 79 /* Alloc'd expression for this parent. */ 80 struct expression *exp; 81 82 /* Block for which this expression is valid */ 83 struct block *valid_block; 84 85 /* The frame for this expression. This field is set iff valid_block is 86 not NULL. */ 87 struct frame_id frame; 88 89 /* The thread ID that this varobj_root belong to. This field 90 is only valid if valid_block is not NULL. 91 When not 0, indicates which thread 'frame' belongs to. 92 When 0, indicates that the thread list was empty when the varobj_root 93 was created. */ 94 int thread_id; 95 96 /* If 1, the -var-update always recomputes the value in the 97 current thread and frame. Otherwise, variable object is 98 always updated in the specific scope/thread/frame */ 99 int floating; 100 101 /* Flag that indicates validity: set to 0 when this varobj_root refers 102 to symbols that do not exist anymore. */ 103 int is_valid; 104 105 /* Language info for this variable and its children */ 106 struct language_specific *lang; 107 108 /* The varobj for this root node. */ 109 struct varobj *rootvar; 110 111 /* Next root variable */ 112 struct varobj_root *next; 113 }; 114 115 /* Every variable in the system has a structure of this type defined 116 for it. This structure holds all information necessary to manipulate 117 a particular object variable. Members which must be freed are noted. */ 118 struct varobj 119 { 120 121 /* Alloc'd name of the variable for this object.. If this variable is a 122 child, then this name will be the child's source name. 123 (bar, not foo.bar) */ 124 /* NOTE: This is the "expression" */ 125 char *name; 126 127 /* Alloc'd expression for this child. Can be used to create a 128 root variable corresponding to this child. */ 129 char *path_expr; 130 131 /* The alloc'd name for this variable's object. This is here for 132 convenience when constructing this object's children. */ 133 char *obj_name; 134 135 /* Index of this variable in its parent or -1 */ 136 int index; 137 138 /* The type of this variable. This can be NULL 139 for artifial variable objects -- currently, the "accessibility" 140 variable objects in C++. */ 141 struct type *type; 142 143 /* The value of this expression or subexpression. A NULL value 144 indicates there was an error getting this value. 145 Invariant: if varobj_value_is_changeable_p (this) is non-zero, 146 the value is either NULL, or not lazy. */ 147 struct value *value; 148 149 /* The number of (immediate) children this variable has */ 150 int num_children; 151 152 /* If this object is a child, this points to its immediate parent. */ 153 struct varobj *parent; 154 155 /* Children of this object. */ 156 VEC (varobj_p) *children; 157 158 /* Whether the children of this varobj were requested. This field is 159 used to decide if dynamic varobj should recompute their children. 160 In the event that the frontend never asked for the children, we 161 can avoid that. */ 162 int children_requested; 163 164 /* Description of the root variable. Points to root variable for children. */ 165 struct varobj_root *root; 166 167 /* The format of the output for this object */ 168 enum varobj_display_formats format; 169 170 /* Was this variable updated via a varobj_set_value operation */ 171 int updated; 172 173 /* Last print value. */ 174 char *print_value; 175 176 /* Is this variable frozen. Frozen variables are never implicitly 177 updated by -var-update * 178 or -var-update <direct-or-indirect-parent>. */ 179 int frozen; 180 181 /* Is the value of this variable intentionally not fetched? It is 182 not fetched if either the variable is frozen, or any parents is 183 frozen. */ 184 int not_fetched; 185 186 /* Sub-range of children which the MI consumer has requested. If 187 FROM < 0 or TO < 0, means that all children have been 188 requested. */ 189 int from; 190 int to; 191 192 /* The pretty-printer constructor. If NULL, then the default 193 pretty-printer will be looked up. If None, then no 194 pretty-printer will be installed. */ 195 PyObject *constructor; 196 197 /* The pretty-printer that has been constructed. If NULL, then a 198 new printer object is needed, and one will be constructed. */ 199 PyObject *pretty_printer; 200 201 /* The iterator returned by the printer's 'children' method, or NULL 202 if not available. */ 203 PyObject *child_iter; 204 205 /* We request one extra item from the iterator, so that we can 206 report to the caller whether there are more items than we have 207 already reported. However, we don't want to install this value 208 when we read it, because that will mess up future updates. So, 209 we stash it here instead. */ 210 PyObject *saved_item; 211 }; 212 213 struct cpstack 214 { 215 char *name; 216 struct cpstack *next; 217 }; 218 219 /* A list of varobjs */ 220 221 struct vlist 222 { 223 struct varobj *var; 224 struct vlist *next; 225 }; 226 227 /* Private function prototypes */ 228 229 /* Helper functions for the above subcommands. */ 230 231 static int delete_variable (struct cpstack **, struct varobj *, int); 232 233 static void delete_variable_1 (struct cpstack **, int *, 234 struct varobj *, int, int); 235 236 static int install_variable (struct varobj *); 237 238 static void uninstall_variable (struct varobj *); 239 240 static struct varobj *create_child (struct varobj *, int, char *); 241 242 static struct varobj * 243 create_child_with_value (struct varobj *parent, int index, const char *name, 244 struct value *value); 245 246 /* Utility routines */ 247 248 static struct varobj *new_variable (void); 249 250 static struct varobj *new_root_variable (void); 251 252 static void free_variable (struct varobj *var); 253 254 static struct cleanup *make_cleanup_free_variable (struct varobj *var); 255 256 static struct type *get_type (struct varobj *var); 257 258 static struct type *get_value_type (struct varobj *var); 259 260 static struct type *get_target_type (struct type *); 261 262 static enum varobj_display_formats variable_default_display (struct varobj *); 263 264 static void cppush (struct cpstack **pstack, char *name); 265 266 static char *cppop (struct cpstack **pstack); 267 268 static int install_new_value (struct varobj *var, struct value *value, 269 int initial); 270 271 /* Language-specific routines. */ 272 273 static enum varobj_languages variable_language (struct varobj *var); 274 275 static int number_of_children (struct varobj *); 276 277 static char *name_of_variable (struct varobj *); 278 279 static char *name_of_child (struct varobj *, int); 280 281 static struct value *value_of_root (struct varobj **var_handle, int *); 282 283 static struct value *value_of_child (struct varobj *parent, int index); 284 285 static char *my_value_of_variable (struct varobj *var, 286 enum varobj_display_formats format); 287 288 static char *value_get_print_value (struct value *value, 289 enum varobj_display_formats format, 290 struct varobj *var); 291 292 static int varobj_value_is_changeable_p (struct varobj *var); 293 294 static int is_root_p (struct varobj *var); 295 296 #if HAVE_PYTHON 297 298 static struct varobj * 299 varobj_add_child (struct varobj *var, const char *name, struct value *value); 300 301 #endif /* HAVE_PYTHON */ 302 303 /* C implementation */ 304 305 static int c_number_of_children (struct varobj *var); 306 307 static char *c_name_of_variable (struct varobj *parent); 308 309 static char *c_name_of_child (struct varobj *parent, int index); 310 311 static char *c_path_expr_of_child (struct varobj *child); 312 313 static struct value *c_value_of_root (struct varobj **var_handle); 314 315 static struct value *c_value_of_child (struct varobj *parent, int index); 316 317 static struct type *c_type_of_child (struct varobj *parent, int index); 318 319 static char *c_value_of_variable (struct varobj *var, 320 enum varobj_display_formats format); 321 322 /* C++ implementation */ 323 324 static int cplus_number_of_children (struct varobj *var); 325 326 static void cplus_class_num_children (struct type *type, int children[3]); 327 328 static char *cplus_name_of_variable (struct varobj *parent); 329 330 static char *cplus_name_of_child (struct varobj *parent, int index); 331 332 static char *cplus_path_expr_of_child (struct varobj *child); 333 334 static struct value *cplus_value_of_root (struct varobj **var_handle); 335 336 static struct value *cplus_value_of_child (struct varobj *parent, int index); 337 338 static struct type *cplus_type_of_child (struct varobj *parent, int index); 339 340 static char *cplus_value_of_variable (struct varobj *var, 341 enum varobj_display_formats format); 342 343 /* Java implementation */ 344 345 static int java_number_of_children (struct varobj *var); 346 347 static char *java_name_of_variable (struct varobj *parent); 348 349 static char *java_name_of_child (struct varobj *parent, int index); 350 351 static char *java_path_expr_of_child (struct varobj *child); 352 353 static struct value *java_value_of_root (struct varobj **var_handle); 354 355 static struct value *java_value_of_child (struct varobj *parent, int index); 356 357 static struct type *java_type_of_child (struct varobj *parent, int index); 358 359 static char *java_value_of_variable (struct varobj *var, 360 enum varobj_display_formats format); 361 362 /* The language specific vector */ 363 364 struct language_specific 365 { 366 367 /* The language of this variable */ 368 enum varobj_languages language; 369 370 /* The number of children of PARENT. */ 371 int (*number_of_children) (struct varobj * parent); 372 373 /* The name (expression) of a root varobj. */ 374 char *(*name_of_variable) (struct varobj * parent); 375 376 /* The name of the INDEX'th child of PARENT. */ 377 char *(*name_of_child) (struct varobj * parent, int index); 378 379 /* Returns the rooted expression of CHILD, which is a variable 380 obtain that has some parent. */ 381 char *(*path_expr_of_child) (struct varobj * child); 382 383 /* The ``struct value *'' of the root variable ROOT. */ 384 struct value *(*value_of_root) (struct varobj ** root_handle); 385 386 /* The ``struct value *'' of the INDEX'th child of PARENT. */ 387 struct value *(*value_of_child) (struct varobj * parent, int index); 388 389 /* The type of the INDEX'th child of PARENT. */ 390 struct type *(*type_of_child) (struct varobj * parent, int index); 391 392 /* The current value of VAR. */ 393 char *(*value_of_variable) (struct varobj * var, 394 enum varobj_display_formats format); 395 }; 396 397 /* Array of known source language routines. */ 398 static struct language_specific languages[vlang_end] = { 399 /* Unknown (try treating as C */ 400 { 401 vlang_unknown, 402 c_number_of_children, 403 c_name_of_variable, 404 c_name_of_child, 405 c_path_expr_of_child, 406 c_value_of_root, 407 c_value_of_child, 408 c_type_of_child, 409 c_value_of_variable} 410 , 411 /* C */ 412 { 413 vlang_c, 414 c_number_of_children, 415 c_name_of_variable, 416 c_name_of_child, 417 c_path_expr_of_child, 418 c_value_of_root, 419 c_value_of_child, 420 c_type_of_child, 421 c_value_of_variable} 422 , 423 /* C++ */ 424 { 425 vlang_cplus, 426 cplus_number_of_children, 427 cplus_name_of_variable, 428 cplus_name_of_child, 429 cplus_path_expr_of_child, 430 cplus_value_of_root, 431 cplus_value_of_child, 432 cplus_type_of_child, 433 cplus_value_of_variable} 434 , 435 /* Java */ 436 { 437 vlang_java, 438 java_number_of_children, 439 java_name_of_variable, 440 java_name_of_child, 441 java_path_expr_of_child, 442 java_value_of_root, 443 java_value_of_child, 444 java_type_of_child, 445 java_value_of_variable} 446 }; 447 448 /* A little convenience enum for dealing with C++/Java */ 449 enum vsections 450 { 451 v_public = 0, v_private, v_protected 452 }; 453 454 /* Private data */ 455 456 /* Mappings of varobj_display_formats enums to gdb's format codes */ 457 static int format_code[] = { 0, 't', 'd', 'x', 'o' }; 458 459 /* Header of the list of root variable objects */ 460 static struct varobj_root *rootlist; 461 462 /* Prime number indicating the number of buckets in the hash table */ 463 /* A prime large enough to avoid too many colisions */ 464 #define VAROBJ_TABLE_SIZE 227 465 466 /* Pointer to the varobj hash table (built at run time) */ 467 static struct vlist **varobj_table; 468 469 /* Is the variable X one of our "fake" children? */ 470 #define CPLUS_FAKE_CHILD(x) \ 471 ((x) != NULL && (x)->type == NULL && (x)->value == NULL) 472 473 474 /* API Implementation */ 475 static int 476 is_root_p (struct varobj *var) 477 { 478 return (var->root->rootvar == var); 479 } 480 481 #ifdef HAVE_PYTHON 482 /* Helper function to install a Python environment suitable for 483 use during operations on VAR. */ 484 struct cleanup * 485 varobj_ensure_python_env (struct varobj *var) 486 { 487 return ensure_python_env (var->root->exp->gdbarch, 488 var->root->exp->language_defn); 489 } 490 #endif 491 492 /* Creates a varobj (not its children) */ 493 494 /* Return the full FRAME which corresponds to the given CORE_ADDR 495 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */ 496 497 static struct frame_info * 498 find_frame_addr_in_frame_chain (CORE_ADDR frame_addr) 499 { 500 struct frame_info *frame = NULL; 501 502 if (frame_addr == (CORE_ADDR) 0) 503 return NULL; 504 505 for (frame = get_current_frame (); 506 frame != NULL; 507 frame = get_prev_frame (frame)) 508 { 509 /* The CORE_ADDR we get as argument was parsed from a string GDB 510 output as $fp. This output got truncated to gdbarch_addr_bit. 511 Truncate the frame base address in the same manner before 512 comparing it against our argument. */ 513 CORE_ADDR frame_base = get_frame_base_address (frame); 514 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame)); 515 516 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT)) 517 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1; 518 519 if (frame_base == frame_addr) 520 return frame; 521 } 522 523 return NULL; 524 } 525 526 struct varobj * 527 varobj_create (char *objname, 528 char *expression, CORE_ADDR frame, enum varobj_type type) 529 { 530 struct varobj *var; 531 struct frame_info *fi; 532 struct frame_info *old_fi = NULL; 533 struct block *block; 534 struct cleanup *old_chain; 535 536 /* Fill out a varobj structure for the (root) variable being constructed. */ 537 var = new_root_variable (); 538 old_chain = make_cleanup_free_variable (var); 539 540 if (expression != NULL) 541 { 542 char *p; 543 enum varobj_languages lang; 544 struct value *value = NULL; 545 546 /* Parse and evaluate the expression, filling in as much of the 547 variable's data as possible. */ 548 549 if (has_stack_frames ()) 550 { 551 /* Allow creator to specify context of variable */ 552 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME)) 553 fi = get_selected_frame (NULL); 554 else 555 /* FIXME: cagney/2002-11-23: This code should be doing a 556 lookup using the frame ID and not just the frame's 557 ``address''. This, of course, means an interface 558 change. However, with out that interface change ISAs, 559 such as the ia64 with its two stacks, won't work. 560 Similar goes for the case where there is a frameless 561 function. */ 562 fi = find_frame_addr_in_frame_chain (frame); 563 } 564 else 565 fi = NULL; 566 567 /* frame = -2 means always use selected frame */ 568 if (type == USE_SELECTED_FRAME) 569 var->root->floating = 1; 570 571 block = NULL; 572 if (fi != NULL) 573 block = get_frame_block (fi, 0); 574 575 p = expression; 576 innermost_block = NULL; 577 /* Wrap the call to parse expression, so we can 578 return a sensible error. */ 579 if (!gdb_parse_exp_1 (&p, block, 0, &var->root->exp)) 580 { 581 return NULL; 582 } 583 584 /* Don't allow variables to be created for types. */ 585 if (var->root->exp->elts[0].opcode == OP_TYPE) 586 { 587 do_cleanups (old_chain); 588 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name" 589 " as an expression.\n"); 590 return NULL; 591 } 592 593 var->format = variable_default_display (var); 594 var->root->valid_block = innermost_block; 595 var->name = xstrdup (expression); 596 /* For a root var, the name and the expr are the same. */ 597 var->path_expr = xstrdup (expression); 598 599 /* When the frame is different from the current frame, 600 we must select the appropriate frame before parsing 601 the expression, otherwise the value will not be current. 602 Since select_frame is so benign, just call it for all cases. */ 603 if (innermost_block) 604 { 605 /* User could specify explicit FRAME-ADDR which was not found but 606 EXPRESSION is frame specific and we would not be able to evaluate 607 it correctly next time. With VALID_BLOCK set we must also set 608 FRAME and THREAD_ID. */ 609 if (fi == NULL) 610 error (_("Failed to find the specified frame")); 611 612 var->root->frame = get_frame_id (fi); 613 var->root->thread_id = pid_to_thread_id (inferior_ptid); 614 old_fi = get_selected_frame (NULL); 615 select_frame (fi); 616 } 617 618 /* We definitely need to catch errors here. 619 If evaluate_expression succeeds we got the value we wanted. 620 But if it fails, we still go on with a call to evaluate_type() */ 621 if (!gdb_evaluate_expression (var->root->exp, &value)) 622 { 623 /* Error getting the value. Try to at least get the 624 right type. */ 625 struct value *type_only_value = evaluate_type (var->root->exp); 626 627 var->type = value_type (type_only_value); 628 } 629 else 630 var->type = value_type (value); 631 632 install_new_value (var, value, 1 /* Initial assignment */); 633 634 /* Set language info */ 635 lang = variable_language (var); 636 var->root->lang = &languages[lang]; 637 638 /* Set ourselves as our root */ 639 var->root->rootvar = var; 640 641 /* Reset the selected frame */ 642 if (old_fi != NULL) 643 select_frame (old_fi); 644 } 645 646 /* If the variable object name is null, that means this 647 is a temporary variable, so don't install it. */ 648 649 if ((var != NULL) && (objname != NULL)) 650 { 651 var->obj_name = xstrdup (objname); 652 653 /* If a varobj name is duplicated, the install will fail so 654 we must clenup */ 655 if (!install_variable (var)) 656 { 657 do_cleanups (old_chain); 658 return NULL; 659 } 660 } 661 662 discard_cleanups (old_chain); 663 return var; 664 } 665 666 /* Generates an unique name that can be used for a varobj */ 667 668 char * 669 varobj_gen_name (void) 670 { 671 static int id = 0; 672 char *obj_name; 673 674 /* generate a name for this object */ 675 id++; 676 obj_name = xstrprintf ("var%d", id); 677 678 return obj_name; 679 } 680 681 /* Given an OBJNAME, returns the pointer to the corresponding varobj. Call 682 error if OBJNAME cannot be found. */ 683 684 struct varobj * 685 varobj_get_handle (char *objname) 686 { 687 struct vlist *cv; 688 const char *chp; 689 unsigned int index = 0; 690 unsigned int i = 1; 691 692 for (chp = objname; *chp; chp++) 693 { 694 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE; 695 } 696 697 cv = *(varobj_table + index); 698 while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0)) 699 cv = cv->next; 700 701 if (cv == NULL) 702 error (_("Variable object not found")); 703 704 return cv->var; 705 } 706 707 /* Given the handle, return the name of the object */ 708 709 char * 710 varobj_get_objname (struct varobj *var) 711 { 712 return var->obj_name; 713 } 714 715 /* Given the handle, return the expression represented by the object */ 716 717 char * 718 varobj_get_expression (struct varobj *var) 719 { 720 return name_of_variable (var); 721 } 722 723 /* Deletes a varobj and all its children if only_children == 0, 724 otherwise deletes only the children; returns a malloc'ed list of all the 725 (malloc'ed) names of the variables that have been deleted (NULL terminated) */ 726 727 int 728 varobj_delete (struct varobj *var, char ***dellist, int only_children) 729 { 730 int delcount; 731 int mycount; 732 struct cpstack *result = NULL; 733 char **cp; 734 735 /* Initialize a stack for temporary results */ 736 cppush (&result, NULL); 737 738 if (only_children) 739 /* Delete only the variable children */ 740 delcount = delete_variable (&result, var, 1 /* only the children */ ); 741 else 742 /* Delete the variable and all its children */ 743 delcount = delete_variable (&result, var, 0 /* parent+children */ ); 744 745 /* We may have been asked to return a list of what has been deleted */ 746 if (dellist != NULL) 747 { 748 *dellist = xmalloc ((delcount + 1) * sizeof (char *)); 749 750 cp = *dellist; 751 mycount = delcount; 752 *cp = cppop (&result); 753 while ((*cp != NULL) && (mycount > 0)) 754 { 755 mycount--; 756 cp++; 757 *cp = cppop (&result); 758 } 759 760 if (mycount || (*cp != NULL)) 761 warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"), 762 mycount); 763 } 764 765 return delcount; 766 } 767 768 #if HAVE_PYTHON 769 770 /* Convenience function for varobj_set_visualizer. Instantiate a 771 pretty-printer for a given value. */ 772 static PyObject * 773 instantiate_pretty_printer (PyObject *constructor, struct value *value) 774 { 775 PyObject *val_obj = NULL; 776 PyObject *printer; 777 778 val_obj = value_to_value_object (value); 779 if (! val_obj) 780 return NULL; 781 782 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL); 783 Py_DECREF (val_obj); 784 return printer; 785 return NULL; 786 } 787 788 #endif 789 790 /* Set/Get variable object display format */ 791 792 enum varobj_display_formats 793 varobj_set_display_format (struct varobj *var, 794 enum varobj_display_formats format) 795 { 796 switch (format) 797 { 798 case FORMAT_NATURAL: 799 case FORMAT_BINARY: 800 case FORMAT_DECIMAL: 801 case FORMAT_HEXADECIMAL: 802 case FORMAT_OCTAL: 803 var->format = format; 804 break; 805 806 default: 807 var->format = variable_default_display (var); 808 } 809 810 if (varobj_value_is_changeable_p (var) 811 && var->value && !value_lazy (var->value)) 812 { 813 xfree (var->print_value); 814 var->print_value = value_get_print_value (var->value, var->format, var); 815 } 816 817 return var->format; 818 } 819 820 enum varobj_display_formats 821 varobj_get_display_format (struct varobj *var) 822 { 823 return var->format; 824 } 825 826 char * 827 varobj_get_display_hint (struct varobj *var) 828 { 829 char *result = NULL; 830 831 #if HAVE_PYTHON 832 struct cleanup *back_to = varobj_ensure_python_env (var); 833 834 if (var->pretty_printer) 835 result = gdbpy_get_display_hint (var->pretty_printer); 836 837 do_cleanups (back_to); 838 #endif 839 840 return result; 841 } 842 843 /* Return true if the varobj has items after TO, false otherwise. */ 844 845 int 846 varobj_has_more (struct varobj *var, int to) 847 { 848 if (VEC_length (varobj_p, var->children) > to) 849 return 1; 850 return ((to == -1 || VEC_length (varobj_p, var->children) == to) 851 && var->saved_item != NULL); 852 } 853 854 /* If the variable object is bound to a specific thread, that 855 is its evaluation can always be done in context of a frame 856 inside that thread, returns GDB id of the thread -- which 857 is always positive. Otherwise, returns -1. */ 858 int 859 varobj_get_thread_id (struct varobj *var) 860 { 861 if (var->root->valid_block && var->root->thread_id > 0) 862 return var->root->thread_id; 863 else 864 return -1; 865 } 866 867 void 868 varobj_set_frozen (struct varobj *var, int frozen) 869 { 870 /* When a variable is unfrozen, we don't fetch its value. 871 The 'not_fetched' flag remains set, so next -var-update 872 won't complain. 873 874 We don't fetch the value, because for structures the client 875 should do -var-update anyway. It would be bad to have different 876 client-size logic for structure and other types. */ 877 var->frozen = frozen; 878 } 879 880 int 881 varobj_get_frozen (struct varobj *var) 882 { 883 return var->frozen; 884 } 885 886 /* A helper function that restricts a range to what is actually 887 available in a VEC. This follows the usual rules for the meaning 888 of FROM and TO -- if either is negative, the entire range is 889 used. */ 890 891 static void 892 restrict_range (VEC (varobj_p) *children, int *from, int *to) 893 { 894 if (*from < 0 || *to < 0) 895 { 896 *from = 0; 897 *to = VEC_length (varobj_p, children); 898 } 899 else 900 { 901 if (*from > VEC_length (varobj_p, children)) 902 *from = VEC_length (varobj_p, children); 903 if (*to > VEC_length (varobj_p, children)) 904 *to = VEC_length (varobj_p, children); 905 if (*from > *to) 906 *from = *to; 907 } 908 } 909 910 #if HAVE_PYTHON 911 912 /* A helper for update_dynamic_varobj_children that installs a new 913 child when needed. */ 914 915 static void 916 install_dynamic_child (struct varobj *var, 917 VEC (varobj_p) **changed, 918 VEC (varobj_p) **new, 919 VEC (varobj_p) **unchanged, 920 int *cchanged, 921 int index, 922 const char *name, 923 struct value *value) 924 { 925 if (VEC_length (varobj_p, var->children) < index + 1) 926 { 927 /* There's no child yet. */ 928 struct varobj *child = varobj_add_child (var, name, value); 929 930 if (new) 931 { 932 VEC_safe_push (varobj_p, *new, child); 933 *cchanged = 1; 934 } 935 } 936 else 937 { 938 varobj_p existing = VEC_index (varobj_p, var->children, index); 939 940 if (install_new_value (existing, value, 0)) 941 { 942 if (changed) 943 VEC_safe_push (varobj_p, *changed, existing); 944 } 945 else if (unchanged) 946 VEC_safe_push (varobj_p, *unchanged, existing); 947 } 948 } 949 950 static int 951 dynamic_varobj_has_child_method (struct varobj *var) 952 { 953 struct cleanup *back_to; 954 PyObject *printer = var->pretty_printer; 955 int result; 956 957 back_to = varobj_ensure_python_env (var); 958 result = PyObject_HasAttr (printer, gdbpy_children_cst); 959 do_cleanups (back_to); 960 return result; 961 } 962 963 #endif 964 965 static int 966 update_dynamic_varobj_children (struct varobj *var, 967 VEC (varobj_p) **changed, 968 VEC (varobj_p) **new, 969 VEC (varobj_p) **unchanged, 970 int *cchanged, 971 int update_children, 972 int from, 973 int to) 974 { 975 #if HAVE_PYTHON 976 struct cleanup *back_to; 977 PyObject *children; 978 int i; 979 PyObject *printer = var->pretty_printer; 980 981 back_to = varobj_ensure_python_env (var); 982 983 *cchanged = 0; 984 if (!PyObject_HasAttr (printer, gdbpy_children_cst)) 985 { 986 do_cleanups (back_to); 987 return 0; 988 } 989 990 if (update_children || !var->child_iter) 991 { 992 children = PyObject_CallMethodObjArgs (printer, gdbpy_children_cst, 993 NULL); 994 995 if (!children) 996 { 997 gdbpy_print_stack (); 998 error (_("Null value returned for children")); 999 } 1000 1001 make_cleanup_py_decref (children); 1002 1003 if (!PyIter_Check (children)) 1004 error (_("Returned value is not iterable")); 1005 1006 Py_XDECREF (var->child_iter); 1007 var->child_iter = PyObject_GetIter (children); 1008 if (!var->child_iter) 1009 { 1010 gdbpy_print_stack (); 1011 error (_("Could not get children iterator")); 1012 } 1013 1014 Py_XDECREF (var->saved_item); 1015 var->saved_item = NULL; 1016 1017 i = 0; 1018 } 1019 else 1020 i = VEC_length (varobj_p, var->children); 1021 1022 /* We ask for one extra child, so that MI can report whether there 1023 are more children. */ 1024 for (; to < 0 || i < to + 1; ++i) 1025 { 1026 PyObject *item; 1027 1028 /* See if there was a leftover from last time. */ 1029 if (var->saved_item) 1030 { 1031 item = var->saved_item; 1032 var->saved_item = NULL; 1033 } 1034 else 1035 item = PyIter_Next (var->child_iter); 1036 1037 if (!item) 1038 break; 1039 1040 /* We don't want to push the extra child on any report list. */ 1041 if (to < 0 || i < to) 1042 { 1043 PyObject *py_v; 1044 char *name; 1045 struct value *v; 1046 struct cleanup *inner; 1047 int can_mention = from < 0 || i >= from; 1048 1049 inner = make_cleanup_py_decref (item); 1050 1051 if (!PyArg_ParseTuple (item, "sO", &name, &py_v)) 1052 error (_("Invalid item from the child list")); 1053 1054 v = convert_value_from_python (py_v); 1055 install_dynamic_child (var, can_mention ? changed : NULL, 1056 can_mention ? new : NULL, 1057 can_mention ? unchanged : NULL, 1058 can_mention ? cchanged : NULL, i, name, v); 1059 do_cleanups (inner); 1060 } 1061 else 1062 { 1063 Py_XDECREF (var->saved_item); 1064 var->saved_item = item; 1065 1066 /* We want to truncate the child list just before this 1067 element. */ 1068 break; 1069 } 1070 } 1071 1072 if (i < VEC_length (varobj_p, var->children)) 1073 { 1074 int j; 1075 1076 *cchanged = 1; 1077 for (j = i; j < VEC_length (varobj_p, var->children); ++j) 1078 varobj_delete (VEC_index (varobj_p, var->children, j), NULL, 0); 1079 VEC_truncate (varobj_p, var->children, i); 1080 } 1081 1082 /* If there are fewer children than requested, note that the list of 1083 children changed. */ 1084 if (to >= 0 && VEC_length (varobj_p, var->children) < to) 1085 *cchanged = 1; 1086 1087 var->num_children = VEC_length (varobj_p, var->children); 1088 1089 do_cleanups (back_to); 1090 1091 return 1; 1092 #else 1093 gdb_assert (0 && "should never be called if Python is not enabled"); 1094 #endif 1095 } 1096 1097 int 1098 varobj_get_num_children (struct varobj *var) 1099 { 1100 if (var->num_children == -1) 1101 { 1102 if (var->pretty_printer) 1103 { 1104 int dummy; 1105 1106 /* If we have a dynamic varobj, don't report -1 children. 1107 So, try to fetch some children first. */ 1108 update_dynamic_varobj_children (var, NULL, NULL, NULL, &dummy, 1109 0, 0, 0); 1110 } 1111 else 1112 var->num_children = number_of_children (var); 1113 } 1114 1115 return var->num_children >= 0 ? var->num_children : 0; 1116 } 1117 1118 /* Creates a list of the immediate children of a variable object; 1119 the return code is the number of such children or -1 on error */ 1120 1121 VEC (varobj_p)* 1122 varobj_list_children (struct varobj *var, int *from, int *to) 1123 { 1124 char *name; 1125 int i, children_changed; 1126 1127 var->children_requested = 1; 1128 1129 if (var->pretty_printer) 1130 { 1131 /* This, in theory, can result in the number of children changing without 1132 frontend noticing. But well, calling -var-list-children on the same 1133 varobj twice is not something a sane frontend would do. */ 1134 update_dynamic_varobj_children (var, NULL, NULL, NULL, &children_changed, 1135 0, 0, *to); 1136 restrict_range (var->children, from, to); 1137 return var->children; 1138 } 1139 1140 if (var->num_children == -1) 1141 var->num_children = number_of_children (var); 1142 1143 /* If that failed, give up. */ 1144 if (var->num_children == -1) 1145 return var->children; 1146 1147 /* If we're called when the list of children is not yet initialized, 1148 allocate enough elements in it. */ 1149 while (VEC_length (varobj_p, var->children) < var->num_children) 1150 VEC_safe_push (varobj_p, var->children, NULL); 1151 1152 for (i = 0; i < var->num_children; i++) 1153 { 1154 varobj_p existing = VEC_index (varobj_p, var->children, i); 1155 1156 if (existing == NULL) 1157 { 1158 /* Either it's the first call to varobj_list_children for 1159 this variable object, and the child was never created, 1160 or it was explicitly deleted by the client. */ 1161 name = name_of_child (var, i); 1162 existing = create_child (var, i, name); 1163 VEC_replace (varobj_p, var->children, i, existing); 1164 } 1165 } 1166 1167 restrict_range (var->children, from, to); 1168 return var->children; 1169 } 1170 1171 #if HAVE_PYTHON 1172 1173 static struct varobj * 1174 varobj_add_child (struct varobj *var, const char *name, struct value *value) 1175 { 1176 varobj_p v = create_child_with_value (var, 1177 VEC_length (varobj_p, var->children), 1178 name, value); 1179 1180 VEC_safe_push (varobj_p, var->children, v); 1181 return v; 1182 } 1183 1184 #endif /* HAVE_PYTHON */ 1185 1186 /* Obtain the type of an object Variable as a string similar to the one gdb 1187 prints on the console */ 1188 1189 char * 1190 varobj_get_type (struct varobj *var) 1191 { 1192 /* For the "fake" variables, do not return a type. (It's type is 1193 NULL, too.) 1194 Do not return a type for invalid variables as well. */ 1195 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid) 1196 return NULL; 1197 1198 return type_to_string (var->type); 1199 } 1200 1201 /* Obtain the type of an object variable. */ 1202 1203 struct type * 1204 varobj_get_gdb_type (struct varobj *var) 1205 { 1206 return var->type; 1207 } 1208 1209 /* Return a pointer to the full rooted expression of varobj VAR. 1210 If it has not been computed yet, compute it. */ 1211 char * 1212 varobj_get_path_expr (struct varobj *var) 1213 { 1214 if (var->path_expr != NULL) 1215 return var->path_expr; 1216 else 1217 { 1218 /* For root varobjs, we initialize path_expr 1219 when creating varobj, so here it should be 1220 child varobj. */ 1221 gdb_assert (!is_root_p (var)); 1222 return (*var->root->lang->path_expr_of_child) (var); 1223 } 1224 } 1225 1226 enum varobj_languages 1227 varobj_get_language (struct varobj *var) 1228 { 1229 return variable_language (var); 1230 } 1231 1232 int 1233 varobj_get_attributes (struct varobj *var) 1234 { 1235 int attributes = 0; 1236 1237 if (varobj_editable_p (var)) 1238 /* FIXME: define masks for attributes */ 1239 attributes |= 0x00000001; /* Editable */ 1240 1241 return attributes; 1242 } 1243 1244 int 1245 varobj_pretty_printed_p (struct varobj *var) 1246 { 1247 return var->pretty_printer != NULL; 1248 } 1249 1250 char * 1251 varobj_get_formatted_value (struct varobj *var, 1252 enum varobj_display_formats format) 1253 { 1254 return my_value_of_variable (var, format); 1255 } 1256 1257 char * 1258 varobj_get_value (struct varobj *var) 1259 { 1260 return my_value_of_variable (var, var->format); 1261 } 1262 1263 /* Set the value of an object variable (if it is editable) to the 1264 value of the given expression */ 1265 /* Note: Invokes functions that can call error() */ 1266 1267 int 1268 varobj_set_value (struct varobj *var, char *expression) 1269 { 1270 struct value *val; 1271 1272 /* The argument "expression" contains the variable's new value. 1273 We need to first construct a legal expression for this -- ugh! */ 1274 /* Does this cover all the bases? */ 1275 struct expression *exp; 1276 struct value *value; 1277 int saved_input_radix = input_radix; 1278 char *s = expression; 1279 1280 gdb_assert (varobj_editable_p (var)); 1281 1282 input_radix = 10; /* ALWAYS reset to decimal temporarily */ 1283 exp = parse_exp_1 (&s, 0, 0); 1284 if (!gdb_evaluate_expression (exp, &value)) 1285 { 1286 /* We cannot proceed without a valid expression. */ 1287 xfree (exp); 1288 return 0; 1289 } 1290 1291 /* All types that are editable must also be changeable. */ 1292 gdb_assert (varobj_value_is_changeable_p (var)); 1293 1294 /* The value of a changeable variable object must not be lazy. */ 1295 gdb_assert (!value_lazy (var->value)); 1296 1297 /* Need to coerce the input. We want to check if the 1298 value of the variable object will be different 1299 after assignment, and the first thing value_assign 1300 does is coerce the input. 1301 For example, if we are assigning an array to a pointer variable we 1302 should compare the pointer with the the array's address, not with the 1303 array's content. */ 1304 value = coerce_array (value); 1305 1306 /* The new value may be lazy. gdb_value_assign, or 1307 rather value_contents, will take care of this. 1308 If fetching of the new value will fail, gdb_value_assign 1309 with catch the exception. */ 1310 if (!gdb_value_assign (var->value, value, &val)) 1311 return 0; 1312 1313 /* If the value has changed, record it, so that next -var-update can 1314 report this change. If a variable had a value of '1', we've set it 1315 to '333' and then set again to '1', when -var-update will report this 1316 variable as changed -- because the first assignment has set the 1317 'updated' flag. There's no need to optimize that, because return value 1318 of -var-update should be considered an approximation. */ 1319 var->updated = install_new_value (var, val, 0 /* Compare values. */); 1320 input_radix = saved_input_radix; 1321 return 1; 1322 } 1323 1324 #if HAVE_PYTHON 1325 1326 /* A helper function to install a constructor function and visualizer 1327 in a varobj. */ 1328 1329 static void 1330 install_visualizer (struct varobj *var, PyObject *constructor, 1331 PyObject *visualizer) 1332 { 1333 Py_XDECREF (var->constructor); 1334 var->constructor = constructor; 1335 1336 Py_XDECREF (var->pretty_printer); 1337 var->pretty_printer = visualizer; 1338 1339 Py_XDECREF (var->child_iter); 1340 var->child_iter = NULL; 1341 } 1342 1343 /* Install the default visualizer for VAR. */ 1344 1345 static void 1346 install_default_visualizer (struct varobj *var) 1347 { 1348 if (pretty_printing) 1349 { 1350 PyObject *pretty_printer = NULL; 1351 1352 if (var->value) 1353 { 1354 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value); 1355 if (! pretty_printer) 1356 { 1357 gdbpy_print_stack (); 1358 error (_("Cannot instantiate printer for default visualizer")); 1359 } 1360 } 1361 1362 if (pretty_printer == Py_None) 1363 { 1364 Py_DECREF (pretty_printer); 1365 pretty_printer = NULL; 1366 } 1367 1368 install_visualizer (var, NULL, pretty_printer); 1369 } 1370 } 1371 1372 /* Instantiate and install a visualizer for VAR using CONSTRUCTOR to 1373 make a new object. */ 1374 1375 static void 1376 construct_visualizer (struct varobj *var, PyObject *constructor) 1377 { 1378 PyObject *pretty_printer; 1379 1380 Py_INCREF (constructor); 1381 if (constructor == Py_None) 1382 pretty_printer = NULL; 1383 else 1384 { 1385 pretty_printer = instantiate_pretty_printer (constructor, var->value); 1386 if (! pretty_printer) 1387 { 1388 gdbpy_print_stack (); 1389 Py_DECREF (constructor); 1390 constructor = Py_None; 1391 Py_INCREF (constructor); 1392 } 1393 1394 if (pretty_printer == Py_None) 1395 { 1396 Py_DECREF (pretty_printer); 1397 pretty_printer = NULL; 1398 } 1399 } 1400 1401 install_visualizer (var, constructor, pretty_printer); 1402 } 1403 1404 #endif /* HAVE_PYTHON */ 1405 1406 /* A helper function for install_new_value. This creates and installs 1407 a visualizer for VAR, if appropriate. */ 1408 1409 static void 1410 install_new_value_visualizer (struct varobj *var) 1411 { 1412 #if HAVE_PYTHON 1413 /* If the constructor is None, then we want the raw value. If VAR 1414 does not have a value, just skip this. */ 1415 if (var->constructor != Py_None && var->value) 1416 { 1417 struct cleanup *cleanup; 1418 1419 cleanup = varobj_ensure_python_env (var); 1420 1421 if (!var->constructor) 1422 install_default_visualizer (var); 1423 else 1424 construct_visualizer (var, var->constructor); 1425 1426 do_cleanups (cleanup); 1427 } 1428 #else 1429 /* Do nothing. */ 1430 #endif 1431 } 1432 1433 /* Assign a new value to a variable object. If INITIAL is non-zero, 1434 this is the first assignement after the variable object was just 1435 created, or changed type. In that case, just assign the value 1436 and return 0. 1437 Otherwise, assign the new value, and return 1 if the value is different 1438 from the current one, 0 otherwise. The comparison is done on textual 1439 representation of value. Therefore, some types need not be compared. E.g. 1440 for structures the reported value is always "{...}", so no comparison is 1441 necessary here. If the old value was NULL and new one is not, or vice versa, 1442 we always return 1. 1443 1444 The VALUE parameter should not be released -- the function will 1445 take care of releasing it when needed. */ 1446 static int 1447 install_new_value (struct varobj *var, struct value *value, int initial) 1448 { 1449 int changeable; 1450 int need_to_fetch; 1451 int changed = 0; 1452 int intentionally_not_fetched = 0; 1453 char *print_value = NULL; 1454 1455 /* We need to know the varobj's type to decide if the value should 1456 be fetched or not. C++ fake children (public/protected/private) don't have 1457 a type. */ 1458 gdb_assert (var->type || CPLUS_FAKE_CHILD (var)); 1459 changeable = varobj_value_is_changeable_p (var); 1460 1461 /* If the type has custom visualizer, we consider it to be always 1462 changeable. FIXME: need to make sure this behaviour will not 1463 mess up read-sensitive values. */ 1464 if (var->pretty_printer) 1465 changeable = 1; 1466 1467 need_to_fetch = changeable; 1468 1469 /* We are not interested in the address of references, and given 1470 that in C++ a reference is not rebindable, it cannot 1471 meaningfully change. So, get hold of the real value. */ 1472 if (value) 1473 value = coerce_ref (value); 1474 1475 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION) 1476 /* For unions, we need to fetch the value implicitly because 1477 of implementation of union member fetch. When gdb 1478 creates a value for a field and the value of the enclosing 1479 structure is not lazy, it immediately copies the necessary 1480 bytes from the enclosing values. If the enclosing value is 1481 lazy, the call to value_fetch_lazy on the field will read 1482 the data from memory. For unions, that means we'll read the 1483 same memory more than once, which is not desirable. So 1484 fetch now. */ 1485 need_to_fetch = 1; 1486 1487 /* The new value might be lazy. If the type is changeable, 1488 that is we'll be comparing values of this type, fetch the 1489 value now. Otherwise, on the next update the old value 1490 will be lazy, which means we've lost that old value. */ 1491 if (need_to_fetch && value && value_lazy (value)) 1492 { 1493 struct varobj *parent = var->parent; 1494 int frozen = var->frozen; 1495 1496 for (; !frozen && parent; parent = parent->parent) 1497 frozen |= parent->frozen; 1498 1499 if (frozen && initial) 1500 { 1501 /* For variables that are frozen, or are children of frozen 1502 variables, we don't do fetch on initial assignment. 1503 For non-initial assignemnt we do the fetch, since it means we're 1504 explicitly asked to compare the new value with the old one. */ 1505 intentionally_not_fetched = 1; 1506 } 1507 else if (!gdb_value_fetch_lazy (value)) 1508 { 1509 /* Set the value to NULL, so that for the next -var-update, 1510 we don't try to compare the new value with this value, 1511 that we couldn't even read. */ 1512 value = NULL; 1513 } 1514 } 1515 1516 1517 /* Below, we'll be comparing string rendering of old and new 1518 values. Don't get string rendering if the value is 1519 lazy -- if it is, the code above has decided that the value 1520 should not be fetched. */ 1521 if (value && !value_lazy (value) && !var->pretty_printer) 1522 print_value = value_get_print_value (value, var->format, var); 1523 1524 /* If the type is changeable, compare the old and the new values. 1525 If this is the initial assignment, we don't have any old value 1526 to compare with. */ 1527 if (!initial && changeable) 1528 { 1529 /* If the value of the varobj was changed by -var-set-value, then the 1530 value in the varobj and in the target is the same. However, that value 1531 is different from the value that the varobj had after the previous 1532 -var-update. So need to the varobj as changed. */ 1533 if (var->updated) 1534 { 1535 changed = 1; 1536 } 1537 else if (! var->pretty_printer) 1538 { 1539 /* Try to compare the values. That requires that both 1540 values are non-lazy. */ 1541 if (var->not_fetched && value_lazy (var->value)) 1542 { 1543 /* This is a frozen varobj and the value was never read. 1544 Presumably, UI shows some "never read" indicator. 1545 Now that we've fetched the real value, we need to report 1546 this varobj as changed so that UI can show the real 1547 value. */ 1548 changed = 1; 1549 } 1550 else if (var->value == NULL && value == NULL) 1551 /* Equal. */ 1552 ; 1553 else if (var->value == NULL || value == NULL) 1554 { 1555 changed = 1; 1556 } 1557 else 1558 { 1559 gdb_assert (!value_lazy (var->value)); 1560 gdb_assert (!value_lazy (value)); 1561 1562 gdb_assert (var->print_value != NULL && print_value != NULL); 1563 if (strcmp (var->print_value, print_value) != 0) 1564 changed = 1; 1565 } 1566 } 1567 } 1568 1569 if (!initial && !changeable) 1570 { 1571 /* For values that are not changeable, we don't compare the values. 1572 However, we want to notice if a value was not NULL and now is NULL, 1573 or vise versa, so that we report when top-level varobjs come in scope 1574 and leave the scope. */ 1575 changed = (var->value != NULL) != (value != NULL); 1576 } 1577 1578 /* We must always keep the new value, since children depend on it. */ 1579 if (var->value != NULL && var->value != value) 1580 value_free (var->value); 1581 var->value = value; 1582 if (value != NULL) 1583 value_incref (value); 1584 if (value && value_lazy (value) && intentionally_not_fetched) 1585 var->not_fetched = 1; 1586 else 1587 var->not_fetched = 0; 1588 var->updated = 0; 1589 1590 install_new_value_visualizer (var); 1591 1592 /* If we installed a pretty-printer, re-compare the printed version 1593 to see if the variable changed. */ 1594 if (var->pretty_printer) 1595 { 1596 xfree (print_value); 1597 print_value = value_get_print_value (var->value, var->format, var); 1598 if ((var->print_value == NULL && print_value != NULL) 1599 || (var->print_value != NULL && print_value == NULL) 1600 || (var->print_value != NULL && print_value != NULL 1601 && strcmp (var->print_value, print_value) != 0)) 1602 changed = 1; 1603 } 1604 if (var->print_value) 1605 xfree (var->print_value); 1606 var->print_value = print_value; 1607 1608 gdb_assert (!var->value || value_type (var->value)); 1609 1610 return changed; 1611 } 1612 1613 /* Return the requested range for a varobj. VAR is the varobj. FROM 1614 and TO are out parameters; *FROM and *TO will be set to the 1615 selected sub-range of VAR. If no range was selected using 1616 -var-set-update-range, then both will be -1. */ 1617 void 1618 varobj_get_child_range (struct varobj *var, int *from, int *to) 1619 { 1620 *from = var->from; 1621 *to = var->to; 1622 } 1623 1624 /* Set the selected sub-range of children of VAR to start at index 1625 FROM and end at index TO. If either FROM or TO is less than zero, 1626 this is interpreted as a request for all children. */ 1627 void 1628 varobj_set_child_range (struct varobj *var, int from, int to) 1629 { 1630 var->from = from; 1631 var->to = to; 1632 } 1633 1634 void 1635 varobj_set_visualizer (struct varobj *var, const char *visualizer) 1636 { 1637 #if HAVE_PYTHON 1638 PyObject *mainmod, *globals, *constructor; 1639 struct cleanup *back_to; 1640 1641 back_to = varobj_ensure_python_env (var); 1642 1643 mainmod = PyImport_AddModule ("__main__"); 1644 globals = PyModule_GetDict (mainmod); 1645 Py_INCREF (globals); 1646 make_cleanup_py_decref (globals); 1647 1648 constructor = PyRun_String (visualizer, Py_eval_input, globals, globals); 1649 1650 if (! constructor) 1651 { 1652 gdbpy_print_stack (); 1653 error (_("Could not evaluate visualizer expression: %s"), visualizer); 1654 } 1655 1656 construct_visualizer (var, constructor); 1657 Py_XDECREF (constructor); 1658 1659 /* If there are any children now, wipe them. */ 1660 varobj_delete (var, NULL, 1 /* children only */); 1661 var->num_children = -1; 1662 1663 do_cleanups (back_to); 1664 #else 1665 error (_("Python support required")); 1666 #endif 1667 } 1668 1669 /* Update the values for a variable and its children. This is a 1670 two-pronged attack. First, re-parse the value for the root's 1671 expression to see if it's changed. Then go all the way 1672 through its children, reconstructing them and noting if they've 1673 changed. 1674 1675 The EXPLICIT parameter specifies if this call is result 1676 of MI request to update this specific variable, or 1677 result of implicit -var-update *. For implicit request, we don't 1678 update frozen variables. 1679 1680 NOTE: This function may delete the caller's varobj. If it 1681 returns TYPE_CHANGED, then it has done this and VARP will be modified 1682 to point to the new varobj. */ 1683 1684 VEC(varobj_update_result) *varobj_update (struct varobj **varp, int explicit) 1685 { 1686 int changed = 0; 1687 int type_changed = 0; 1688 int i; 1689 struct value *new; 1690 VEC (varobj_update_result) *stack = NULL; 1691 VEC (varobj_update_result) *result = NULL; 1692 1693 /* Frozen means frozen -- we don't check for any change in 1694 this varobj, including its going out of scope, or 1695 changing type. One use case for frozen varobjs is 1696 retaining previously evaluated expressions, and we don't 1697 want them to be reevaluated at all. */ 1698 if (!explicit && (*varp)->frozen) 1699 return result; 1700 1701 if (!(*varp)->root->is_valid) 1702 { 1703 varobj_update_result r = {0}; 1704 1705 r.varobj = *varp; 1706 r.status = VAROBJ_INVALID; 1707 VEC_safe_push (varobj_update_result, result, &r); 1708 return result; 1709 } 1710 1711 if ((*varp)->root->rootvar == *varp) 1712 { 1713 varobj_update_result r = {0}; 1714 1715 r.varobj = *varp; 1716 r.status = VAROBJ_IN_SCOPE; 1717 1718 /* Update the root variable. value_of_root can return NULL 1719 if the variable is no longer around, i.e. we stepped out of 1720 the frame in which a local existed. We are letting the 1721 value_of_root variable dispose of the varobj if the type 1722 has changed. */ 1723 new = value_of_root (varp, &type_changed); 1724 r.varobj = *varp; 1725 1726 r.type_changed = type_changed; 1727 if (install_new_value ((*varp), new, type_changed)) 1728 r.changed = 1; 1729 1730 if (new == NULL) 1731 r.status = VAROBJ_NOT_IN_SCOPE; 1732 r.value_installed = 1; 1733 1734 if (r.status == VAROBJ_NOT_IN_SCOPE) 1735 { 1736 if (r.type_changed || r.changed) 1737 VEC_safe_push (varobj_update_result, result, &r); 1738 return result; 1739 } 1740 1741 VEC_safe_push (varobj_update_result, stack, &r); 1742 } 1743 else 1744 { 1745 varobj_update_result r = {0}; 1746 1747 r.varobj = *varp; 1748 VEC_safe_push (varobj_update_result, stack, &r); 1749 } 1750 1751 /* Walk through the children, reconstructing them all. */ 1752 while (!VEC_empty (varobj_update_result, stack)) 1753 { 1754 varobj_update_result r = *(VEC_last (varobj_update_result, stack)); 1755 struct varobj *v = r.varobj; 1756 1757 VEC_pop (varobj_update_result, stack); 1758 1759 /* Update this variable, unless it's a root, which is already 1760 updated. */ 1761 if (!r.value_installed) 1762 { 1763 new = value_of_child (v->parent, v->index); 1764 if (install_new_value (v, new, 0 /* type not changed */)) 1765 { 1766 r.changed = 1; 1767 v->updated = 0; 1768 } 1769 } 1770 1771 /* We probably should not get children of a varobj that has a 1772 pretty-printer, but for which -var-list-children was never 1773 invoked. */ 1774 if (v->pretty_printer) 1775 { 1776 VEC (varobj_p) *changed = 0, *new = 0, *unchanged = 0; 1777 int i, children_changed = 0; 1778 1779 if (v->frozen) 1780 continue; 1781 1782 if (!v->children_requested) 1783 { 1784 int dummy; 1785 1786 /* If we initially did not have potential children, but 1787 now we do, consider the varobj as changed. 1788 Otherwise, if children were never requested, consider 1789 it as unchanged -- presumably, such varobj is not yet 1790 expanded in the UI, so we need not bother getting 1791 it. */ 1792 if (!varobj_has_more (v, 0)) 1793 { 1794 update_dynamic_varobj_children (v, NULL, NULL, NULL, 1795 &dummy, 0, 0, 0); 1796 if (varobj_has_more (v, 0)) 1797 r.changed = 1; 1798 } 1799 1800 if (r.changed) 1801 VEC_safe_push (varobj_update_result, result, &r); 1802 1803 continue; 1804 } 1805 1806 /* If update_dynamic_varobj_children returns 0, then we have 1807 a non-conforming pretty-printer, so we skip it. */ 1808 if (update_dynamic_varobj_children (v, &changed, &new, &unchanged, 1809 &children_changed, 1, 1810 v->from, v->to)) 1811 { 1812 if (children_changed || new) 1813 { 1814 r.children_changed = 1; 1815 r.new = new; 1816 } 1817 /* Push in reverse order so that the first child is 1818 popped from the work stack first, and so will be 1819 added to result first. This does not affect 1820 correctness, just "nicer". */ 1821 for (i = VEC_length (varobj_p, changed) - 1; i >= 0; --i) 1822 { 1823 varobj_p tmp = VEC_index (varobj_p, changed, i); 1824 varobj_update_result r = {0}; 1825 1826 r.varobj = tmp; 1827 r.changed = 1; 1828 r.value_installed = 1; 1829 VEC_safe_push (varobj_update_result, stack, &r); 1830 } 1831 for (i = VEC_length (varobj_p, unchanged) - 1; i >= 0; --i) 1832 { 1833 varobj_p tmp = VEC_index (varobj_p, unchanged, i); 1834 1835 if (!tmp->frozen) 1836 { 1837 varobj_update_result r = {0}; 1838 1839 r.varobj = tmp; 1840 r.value_installed = 1; 1841 VEC_safe_push (varobj_update_result, stack, &r); 1842 } 1843 } 1844 if (r.changed || r.children_changed) 1845 VEC_safe_push (varobj_update_result, result, &r); 1846 1847 /* Free CHANGED and UNCHANGED, but not NEW, because NEW 1848 has been put into the result vector. */ 1849 VEC_free (varobj_p, changed); 1850 VEC_free (varobj_p, unchanged); 1851 1852 continue; 1853 } 1854 } 1855 1856 /* Push any children. Use reverse order so that the first 1857 child is popped from the work stack first, and so 1858 will be added to result first. This does not 1859 affect correctness, just "nicer". */ 1860 for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i) 1861 { 1862 varobj_p c = VEC_index (varobj_p, v->children, i); 1863 1864 /* Child may be NULL if explicitly deleted by -var-delete. */ 1865 if (c != NULL && !c->frozen) 1866 { 1867 varobj_update_result r = {0}; 1868 1869 r.varobj = c; 1870 VEC_safe_push (varobj_update_result, stack, &r); 1871 } 1872 } 1873 1874 if (r.changed || r.type_changed) 1875 VEC_safe_push (varobj_update_result, result, &r); 1876 } 1877 1878 VEC_free (varobj_update_result, stack); 1879 1880 return result; 1881 } 1882 1883 1884 /* Helper functions */ 1885 1886 /* 1887 * Variable object construction/destruction 1888 */ 1889 1890 static int 1891 delete_variable (struct cpstack **resultp, struct varobj *var, 1892 int only_children_p) 1893 { 1894 int delcount = 0; 1895 1896 delete_variable_1 (resultp, &delcount, var, 1897 only_children_p, 1 /* remove_from_parent_p */ ); 1898 1899 return delcount; 1900 } 1901 1902 /* Delete the variable object VAR and its children */ 1903 /* IMPORTANT NOTE: If we delete a variable which is a child 1904 and the parent is not removed we dump core. It must be always 1905 initially called with remove_from_parent_p set */ 1906 static void 1907 delete_variable_1 (struct cpstack **resultp, int *delcountp, 1908 struct varobj *var, int only_children_p, 1909 int remove_from_parent_p) 1910 { 1911 int i; 1912 1913 /* Delete any children of this variable, too. */ 1914 for (i = 0; i < VEC_length (varobj_p, var->children); ++i) 1915 { 1916 varobj_p child = VEC_index (varobj_p, var->children, i); 1917 1918 if (!child) 1919 continue; 1920 if (!remove_from_parent_p) 1921 child->parent = NULL; 1922 delete_variable_1 (resultp, delcountp, child, 0, only_children_p); 1923 } 1924 VEC_free (varobj_p, var->children); 1925 1926 /* if we were called to delete only the children we are done here */ 1927 if (only_children_p) 1928 return; 1929 1930 /* Otherwise, add it to the list of deleted ones and proceed to do so */ 1931 /* If the name is null, this is a temporary variable, that has not 1932 yet been installed, don't report it, it belongs to the caller... */ 1933 if (var->obj_name != NULL) 1934 { 1935 cppush (resultp, xstrdup (var->obj_name)); 1936 *delcountp = *delcountp + 1; 1937 } 1938 1939 /* If this variable has a parent, remove it from its parent's list */ 1940 /* OPTIMIZATION: if the parent of this variable is also being deleted, 1941 (as indicated by remove_from_parent_p) we don't bother doing an 1942 expensive list search to find the element to remove when we are 1943 discarding the list afterwards */ 1944 if ((remove_from_parent_p) && (var->parent != NULL)) 1945 { 1946 VEC_replace (varobj_p, var->parent->children, var->index, NULL); 1947 } 1948 1949 if (var->obj_name != NULL) 1950 uninstall_variable (var); 1951 1952 /* Free memory associated with this variable */ 1953 free_variable (var); 1954 } 1955 1956 /* Install the given variable VAR with the object name VAR->OBJ_NAME. */ 1957 static int 1958 install_variable (struct varobj *var) 1959 { 1960 struct vlist *cv; 1961 struct vlist *newvl; 1962 const char *chp; 1963 unsigned int index = 0; 1964 unsigned int i = 1; 1965 1966 for (chp = var->obj_name; *chp; chp++) 1967 { 1968 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE; 1969 } 1970 1971 cv = *(varobj_table + index); 1972 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0)) 1973 cv = cv->next; 1974 1975 if (cv != NULL) 1976 error (_("Duplicate variable object name")); 1977 1978 /* Add varobj to hash table */ 1979 newvl = xmalloc (sizeof (struct vlist)); 1980 newvl->next = *(varobj_table + index); 1981 newvl->var = var; 1982 *(varobj_table + index) = newvl; 1983 1984 /* If root, add varobj to root list */ 1985 if (is_root_p (var)) 1986 { 1987 /* Add to list of root variables */ 1988 if (rootlist == NULL) 1989 var->root->next = NULL; 1990 else 1991 var->root->next = rootlist; 1992 rootlist = var->root; 1993 } 1994 1995 return 1; /* OK */ 1996 } 1997 1998 /* Unistall the object VAR. */ 1999 static void 2000 uninstall_variable (struct varobj *var) 2001 { 2002 struct vlist *cv; 2003 struct vlist *prev; 2004 struct varobj_root *cr; 2005 struct varobj_root *prer; 2006 const char *chp; 2007 unsigned int index = 0; 2008 unsigned int i = 1; 2009 2010 /* Remove varobj from hash table */ 2011 for (chp = var->obj_name; *chp; chp++) 2012 { 2013 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE; 2014 } 2015 2016 cv = *(varobj_table + index); 2017 prev = NULL; 2018 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0)) 2019 { 2020 prev = cv; 2021 cv = cv->next; 2022 } 2023 2024 if (varobjdebug) 2025 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name); 2026 2027 if (cv == NULL) 2028 { 2029 warning 2030 ("Assertion failed: Could not find variable object \"%s\" to delete", 2031 var->obj_name); 2032 return; 2033 } 2034 2035 if (prev == NULL) 2036 *(varobj_table + index) = cv->next; 2037 else 2038 prev->next = cv->next; 2039 2040 xfree (cv); 2041 2042 /* If root, remove varobj from root list */ 2043 if (is_root_p (var)) 2044 { 2045 /* Remove from list of root variables */ 2046 if (rootlist == var->root) 2047 rootlist = var->root->next; 2048 else 2049 { 2050 prer = NULL; 2051 cr = rootlist; 2052 while ((cr != NULL) && (cr->rootvar != var)) 2053 { 2054 prer = cr; 2055 cr = cr->next; 2056 } 2057 if (cr == NULL) 2058 { 2059 warning 2060 ("Assertion failed: Could not find varobj \"%s\" in root list", 2061 var->obj_name); 2062 return; 2063 } 2064 if (prer == NULL) 2065 rootlist = NULL; 2066 else 2067 prer->next = cr->next; 2068 } 2069 } 2070 2071 } 2072 2073 /* Create and install a child of the parent of the given name */ 2074 static struct varobj * 2075 create_child (struct varobj *parent, int index, char *name) 2076 { 2077 return create_child_with_value (parent, index, name, 2078 value_of_child (parent, index)); 2079 } 2080 2081 static struct varobj * 2082 create_child_with_value (struct varobj *parent, int index, const char *name, 2083 struct value *value) 2084 { 2085 struct varobj *child; 2086 char *childs_name; 2087 2088 child = new_variable (); 2089 2090 /* name is allocated by name_of_child */ 2091 /* FIXME: xstrdup should not be here. */ 2092 child->name = xstrdup (name); 2093 child->index = index; 2094 child->parent = parent; 2095 child->root = parent->root; 2096 childs_name = xstrprintf ("%s.%s", parent->obj_name, name); 2097 child->obj_name = childs_name; 2098 install_variable (child); 2099 2100 /* Compute the type of the child. Must do this before 2101 calling install_new_value. */ 2102 if (value != NULL) 2103 /* If the child had no evaluation errors, var->value 2104 will be non-NULL and contain a valid type. */ 2105 child->type = value_type (value); 2106 else 2107 /* Otherwise, we must compute the type. */ 2108 child->type = (*child->root->lang->type_of_child) (child->parent, 2109 child->index); 2110 install_new_value (child, value, 1); 2111 2112 return child; 2113 } 2114 2115 2116 /* 2117 * Miscellaneous utility functions. 2118 */ 2119 2120 /* Allocate memory and initialize a new variable */ 2121 static struct varobj * 2122 new_variable (void) 2123 { 2124 struct varobj *var; 2125 2126 var = (struct varobj *) xmalloc (sizeof (struct varobj)); 2127 var->name = NULL; 2128 var->path_expr = NULL; 2129 var->obj_name = NULL; 2130 var->index = -1; 2131 var->type = NULL; 2132 var->value = NULL; 2133 var->num_children = -1; 2134 var->parent = NULL; 2135 var->children = NULL; 2136 var->format = 0; 2137 var->root = NULL; 2138 var->updated = 0; 2139 var->print_value = NULL; 2140 var->frozen = 0; 2141 var->not_fetched = 0; 2142 var->children_requested = 0; 2143 var->from = -1; 2144 var->to = -1; 2145 var->constructor = 0; 2146 var->pretty_printer = 0; 2147 var->child_iter = 0; 2148 var->saved_item = 0; 2149 2150 return var; 2151 } 2152 2153 /* Allocate memory and initialize a new root variable */ 2154 static struct varobj * 2155 new_root_variable (void) 2156 { 2157 struct varobj *var = new_variable (); 2158 2159 var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));; 2160 var->root->lang = NULL; 2161 var->root->exp = NULL; 2162 var->root->valid_block = NULL; 2163 var->root->frame = null_frame_id; 2164 var->root->floating = 0; 2165 var->root->rootvar = NULL; 2166 var->root->is_valid = 1; 2167 2168 return var; 2169 } 2170 2171 /* Free any allocated memory associated with VAR. */ 2172 static void 2173 free_variable (struct varobj *var) 2174 { 2175 #if HAVE_PYTHON 2176 if (var->pretty_printer) 2177 { 2178 struct cleanup *cleanup = varobj_ensure_python_env (var); 2179 Py_XDECREF (var->constructor); 2180 Py_XDECREF (var->pretty_printer); 2181 Py_XDECREF (var->child_iter); 2182 Py_XDECREF (var->saved_item); 2183 do_cleanups (cleanup); 2184 } 2185 #endif 2186 2187 value_free (var->value); 2188 2189 /* Free the expression if this is a root variable. */ 2190 if (is_root_p (var)) 2191 { 2192 xfree (var->root->exp); 2193 xfree (var->root); 2194 } 2195 2196 xfree (var->name); 2197 xfree (var->obj_name); 2198 xfree (var->print_value); 2199 xfree (var->path_expr); 2200 xfree (var); 2201 } 2202 2203 static void 2204 do_free_variable_cleanup (void *var) 2205 { 2206 free_variable (var); 2207 } 2208 2209 static struct cleanup * 2210 make_cleanup_free_variable (struct varobj *var) 2211 { 2212 return make_cleanup (do_free_variable_cleanup, var); 2213 } 2214 2215 /* This returns the type of the variable. It also skips past typedefs 2216 to return the real type of the variable. 2217 2218 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file 2219 except within get_target_type and get_type. */ 2220 static struct type * 2221 get_type (struct varobj *var) 2222 { 2223 struct type *type; 2224 2225 type = var->type; 2226 if (type != NULL) 2227 type = check_typedef (type); 2228 2229 return type; 2230 } 2231 2232 /* Return the type of the value that's stored in VAR, 2233 or that would have being stored there if the 2234 value were accessible. 2235 2236 This differs from VAR->type in that VAR->type is always 2237 the true type of the expession in the source language. 2238 The return value of this function is the type we're 2239 actually storing in varobj, and using for displaying 2240 the values and for comparing previous and new values. 2241 2242 For example, top-level references are always stripped. */ 2243 static struct type * 2244 get_value_type (struct varobj *var) 2245 { 2246 struct type *type; 2247 2248 if (var->value) 2249 type = value_type (var->value); 2250 else 2251 type = var->type; 2252 2253 type = check_typedef (type); 2254 2255 if (TYPE_CODE (type) == TYPE_CODE_REF) 2256 type = get_target_type (type); 2257 2258 type = check_typedef (type); 2259 2260 return type; 2261 } 2262 2263 /* This returns the target type (or NULL) of TYPE, also skipping 2264 past typedefs, just like get_type (). 2265 2266 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file 2267 except within get_target_type and get_type. */ 2268 static struct type * 2269 get_target_type (struct type *type) 2270 { 2271 if (type != NULL) 2272 { 2273 type = TYPE_TARGET_TYPE (type); 2274 if (type != NULL) 2275 type = check_typedef (type); 2276 } 2277 2278 return type; 2279 } 2280 2281 /* What is the default display for this variable? We assume that 2282 everything is "natural". Any exceptions? */ 2283 static enum varobj_display_formats 2284 variable_default_display (struct varobj *var) 2285 { 2286 return FORMAT_NATURAL; 2287 } 2288 2289 /* FIXME: The following should be generic for any pointer */ 2290 static void 2291 cppush (struct cpstack **pstack, char *name) 2292 { 2293 struct cpstack *s; 2294 2295 s = (struct cpstack *) xmalloc (sizeof (struct cpstack)); 2296 s->name = name; 2297 s->next = *pstack; 2298 *pstack = s; 2299 } 2300 2301 /* FIXME: The following should be generic for any pointer */ 2302 static char * 2303 cppop (struct cpstack **pstack) 2304 { 2305 struct cpstack *s; 2306 char *v; 2307 2308 if ((*pstack)->name == NULL && (*pstack)->next == NULL) 2309 return NULL; 2310 2311 s = *pstack; 2312 v = s->name; 2313 *pstack = (*pstack)->next; 2314 xfree (s); 2315 2316 return v; 2317 } 2318 2319 /* 2320 * Language-dependencies 2321 */ 2322 2323 /* Common entry points */ 2324 2325 /* Get the language of variable VAR. */ 2326 static enum varobj_languages 2327 variable_language (struct varobj *var) 2328 { 2329 enum varobj_languages lang; 2330 2331 switch (var->root->exp->language_defn->la_language) 2332 { 2333 default: 2334 case language_c: 2335 lang = vlang_c; 2336 break; 2337 case language_cplus: 2338 lang = vlang_cplus; 2339 break; 2340 case language_java: 2341 lang = vlang_java; 2342 break; 2343 } 2344 2345 return lang; 2346 } 2347 2348 /* Return the number of children for a given variable. 2349 The result of this function is defined by the language 2350 implementation. The number of children returned by this function 2351 is the number of children that the user will see in the variable 2352 display. */ 2353 static int 2354 number_of_children (struct varobj *var) 2355 { 2356 return (*var->root->lang->number_of_children) (var);; 2357 } 2358 2359 /* What is the expression for the root varobj VAR? Returns a malloc'd string. */ 2360 static char * 2361 name_of_variable (struct varobj *var) 2362 { 2363 return (*var->root->lang->name_of_variable) (var); 2364 } 2365 2366 /* What is the name of the INDEX'th child of VAR? Returns a malloc'd string. */ 2367 static char * 2368 name_of_child (struct varobj *var, int index) 2369 { 2370 return (*var->root->lang->name_of_child) (var, index); 2371 } 2372 2373 /* What is the ``struct value *'' of the root variable VAR? 2374 For floating variable object, evaluation can get us a value 2375 of different type from what is stored in varobj already. In 2376 that case: 2377 - *type_changed will be set to 1 2378 - old varobj will be freed, and new one will be 2379 created, with the same name. 2380 - *var_handle will be set to the new varobj 2381 Otherwise, *type_changed will be set to 0. */ 2382 static struct value * 2383 value_of_root (struct varobj **var_handle, int *type_changed) 2384 { 2385 struct varobj *var; 2386 2387 if (var_handle == NULL) 2388 return NULL; 2389 2390 var = *var_handle; 2391 2392 /* This should really be an exception, since this should 2393 only get called with a root variable. */ 2394 2395 if (!is_root_p (var)) 2396 return NULL; 2397 2398 if (var->root->floating) 2399 { 2400 struct varobj *tmp_var; 2401 char *old_type, *new_type; 2402 2403 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0, 2404 USE_SELECTED_FRAME); 2405 if (tmp_var == NULL) 2406 { 2407 return NULL; 2408 } 2409 old_type = varobj_get_type (var); 2410 new_type = varobj_get_type (tmp_var); 2411 if (strcmp (old_type, new_type) == 0) 2412 { 2413 /* The expression presently stored inside var->root->exp 2414 remembers the locations of local variables relatively to 2415 the frame where the expression was created (in DWARF location 2416 button, for example). Naturally, those locations are not 2417 correct in other frames, so update the expression. */ 2418 2419 struct expression *tmp_exp = var->root->exp; 2420 2421 var->root->exp = tmp_var->root->exp; 2422 tmp_var->root->exp = tmp_exp; 2423 2424 varobj_delete (tmp_var, NULL, 0); 2425 *type_changed = 0; 2426 } 2427 else 2428 { 2429 tmp_var->obj_name = xstrdup (var->obj_name); 2430 tmp_var->from = var->from; 2431 tmp_var->to = var->to; 2432 varobj_delete (var, NULL, 0); 2433 2434 install_variable (tmp_var); 2435 *var_handle = tmp_var; 2436 var = *var_handle; 2437 *type_changed = 1; 2438 } 2439 xfree (old_type); 2440 xfree (new_type); 2441 } 2442 else 2443 { 2444 *type_changed = 0; 2445 } 2446 2447 return (*var->root->lang->value_of_root) (var_handle); 2448 } 2449 2450 /* What is the ``struct value *'' for the INDEX'th child of PARENT? */ 2451 static struct value * 2452 value_of_child (struct varobj *parent, int index) 2453 { 2454 struct value *value; 2455 2456 value = (*parent->root->lang->value_of_child) (parent, index); 2457 2458 return value; 2459 } 2460 2461 /* GDB already has a command called "value_of_variable". Sigh. */ 2462 static char * 2463 my_value_of_variable (struct varobj *var, enum varobj_display_formats format) 2464 { 2465 if (var->root->is_valid) 2466 { 2467 if (var->pretty_printer) 2468 return value_get_print_value (var->value, var->format, var); 2469 return (*var->root->lang->value_of_variable) (var, format); 2470 } 2471 else 2472 return NULL; 2473 } 2474 2475 static char * 2476 value_get_print_value (struct value *value, enum varobj_display_formats format, 2477 struct varobj *var) 2478 { 2479 struct ui_file *stb; 2480 struct cleanup *old_chain; 2481 gdb_byte *thevalue = NULL; 2482 struct value_print_options opts; 2483 struct type *type = NULL; 2484 long len = 0; 2485 char *encoding = NULL; 2486 struct gdbarch *gdbarch = NULL; 2487 2488 if (value == NULL) 2489 return NULL; 2490 2491 gdbarch = get_type_arch (value_type (value)); 2492 #if HAVE_PYTHON 2493 { 2494 struct cleanup *back_to = varobj_ensure_python_env (var); 2495 PyObject *value_formatter = var->pretty_printer; 2496 2497 if (value_formatter) 2498 { 2499 /* First check to see if we have any children at all. If so, 2500 we simply return {...}. */ 2501 if (dynamic_varobj_has_child_method (var)) 2502 return xstrdup ("{...}"); 2503 2504 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst)) 2505 { 2506 char *hint; 2507 struct value *replacement; 2508 int string_print = 0; 2509 PyObject *output = NULL; 2510 2511 hint = gdbpy_get_display_hint (value_formatter); 2512 if (hint) 2513 { 2514 if (!strcmp (hint, "string")) 2515 string_print = 1; 2516 xfree (hint); 2517 } 2518 2519 output = apply_varobj_pretty_printer (value_formatter, 2520 &replacement); 2521 if (output) 2522 { 2523 if (gdbpy_is_lazy_string (output)) 2524 { 2525 thevalue = gdbpy_extract_lazy_string (output, &type, 2526 &len, &encoding); 2527 string_print = 1; 2528 } 2529 else 2530 { 2531 PyObject *py_str 2532 = python_string_to_target_python_string (output); 2533 2534 if (py_str) 2535 { 2536 char *s = PyString_AsString (py_str); 2537 2538 len = PyString_Size (py_str); 2539 thevalue = xmemdup (s, len + 1, len + 1); 2540 type = builtin_type (gdbarch)->builtin_char; 2541 Py_DECREF (py_str); 2542 } 2543 } 2544 Py_DECREF (output); 2545 } 2546 if (thevalue && !string_print) 2547 { 2548 do_cleanups (back_to); 2549 xfree (encoding); 2550 return thevalue; 2551 } 2552 if (replacement) 2553 value = replacement; 2554 } 2555 } 2556 do_cleanups (back_to); 2557 } 2558 #endif 2559 2560 stb = mem_fileopen (); 2561 old_chain = make_cleanup_ui_file_delete (stb); 2562 2563 get_formatted_print_options (&opts, format_code[(int) format]); 2564 opts.deref_ref = 0; 2565 opts.raw = 1; 2566 if (thevalue) 2567 { 2568 make_cleanup (xfree, thevalue); 2569 make_cleanup (xfree, encoding); 2570 LA_PRINT_STRING (stb, type, thevalue, len, encoding, 0, &opts); 2571 } 2572 else 2573 common_val_print (value, stb, 0, &opts, current_language); 2574 thevalue = ui_file_xstrdup (stb, NULL); 2575 2576 do_cleanups (old_chain); 2577 return thevalue; 2578 } 2579 2580 int 2581 varobj_editable_p (struct varobj *var) 2582 { 2583 struct type *type; 2584 2585 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value))) 2586 return 0; 2587 2588 type = get_value_type (var); 2589 2590 switch (TYPE_CODE (type)) 2591 { 2592 case TYPE_CODE_STRUCT: 2593 case TYPE_CODE_UNION: 2594 case TYPE_CODE_ARRAY: 2595 case TYPE_CODE_FUNC: 2596 case TYPE_CODE_METHOD: 2597 return 0; 2598 break; 2599 2600 default: 2601 return 1; 2602 break; 2603 } 2604 } 2605 2606 /* Return non-zero if changes in value of VAR 2607 must be detected and reported by -var-update. 2608 Return zero is -var-update should never report 2609 changes of such values. This makes sense for structures 2610 (since the changes in children values will be reported separately), 2611 or for artifical objects (like 'public' pseudo-field in C++). 2612 2613 Return value of 0 means that gdb need not call value_fetch_lazy 2614 for the value of this variable object. */ 2615 static int 2616 varobj_value_is_changeable_p (struct varobj *var) 2617 { 2618 int r; 2619 struct type *type; 2620 2621 if (CPLUS_FAKE_CHILD (var)) 2622 return 0; 2623 2624 type = get_value_type (var); 2625 2626 switch (TYPE_CODE (type)) 2627 { 2628 case TYPE_CODE_STRUCT: 2629 case TYPE_CODE_UNION: 2630 case TYPE_CODE_ARRAY: 2631 r = 0; 2632 break; 2633 2634 default: 2635 r = 1; 2636 } 2637 2638 return r; 2639 } 2640 2641 /* Return 1 if that varobj is floating, that is is always evaluated in the 2642 selected frame, and not bound to thread/frame. Such variable objects 2643 are created using '@' as frame specifier to -var-create. */ 2644 int 2645 varobj_floating_p (struct varobj *var) 2646 { 2647 return var->root->floating; 2648 } 2649 2650 /* Given the value and the type of a variable object, 2651 adjust the value and type to those necessary 2652 for getting children of the variable object. 2653 This includes dereferencing top-level references 2654 to all types and dereferencing pointers to 2655 structures. 2656 2657 Both TYPE and *TYPE should be non-null. VALUE 2658 can be null if we want to only translate type. 2659 *VALUE can be null as well -- if the parent 2660 value is not known. 2661 2662 If WAS_PTR is not NULL, set *WAS_PTR to 0 or 1 2663 depending on whether pointer was dereferenced 2664 in this function. */ 2665 static void 2666 adjust_value_for_child_access (struct value **value, 2667 struct type **type, 2668 int *was_ptr) 2669 { 2670 gdb_assert (type && *type); 2671 2672 if (was_ptr) 2673 *was_ptr = 0; 2674 2675 *type = check_typedef (*type); 2676 2677 /* The type of value stored in varobj, that is passed 2678 to us, is already supposed to be 2679 reference-stripped. */ 2680 2681 gdb_assert (TYPE_CODE (*type) != TYPE_CODE_REF); 2682 2683 /* Pointers to structures are treated just like 2684 structures when accessing children. Don't 2685 dererences pointers to other types. */ 2686 if (TYPE_CODE (*type) == TYPE_CODE_PTR) 2687 { 2688 struct type *target_type = get_target_type (*type); 2689 if (TYPE_CODE (target_type) == TYPE_CODE_STRUCT 2690 || TYPE_CODE (target_type) == TYPE_CODE_UNION) 2691 { 2692 if (value && *value) 2693 { 2694 int success = gdb_value_ind (*value, value); 2695 2696 if (!success) 2697 *value = NULL; 2698 } 2699 *type = target_type; 2700 if (was_ptr) 2701 *was_ptr = 1; 2702 } 2703 } 2704 2705 /* The 'get_target_type' function calls check_typedef on 2706 result, so we can immediately check type code. No 2707 need to call check_typedef here. */ 2708 } 2709 2710 /* C */ 2711 static int 2712 c_number_of_children (struct varobj *var) 2713 { 2714 struct type *type = get_value_type (var); 2715 int children = 0; 2716 struct type *target; 2717 2718 adjust_value_for_child_access (NULL, &type, NULL); 2719 target = get_target_type (type); 2720 2721 switch (TYPE_CODE (type)) 2722 { 2723 case TYPE_CODE_ARRAY: 2724 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (target) > 0 2725 && !TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type)) 2726 children = TYPE_LENGTH (type) / TYPE_LENGTH (target); 2727 else 2728 /* If we don't know how many elements there are, don't display 2729 any. */ 2730 children = 0; 2731 break; 2732 2733 case TYPE_CODE_STRUCT: 2734 case TYPE_CODE_UNION: 2735 children = TYPE_NFIELDS (type); 2736 break; 2737 2738 case TYPE_CODE_PTR: 2739 /* The type here is a pointer to non-struct. Typically, pointers 2740 have one child, except for function ptrs, which have no children, 2741 and except for void*, as we don't know what to show. 2742 2743 We can show char* so we allow it to be dereferenced. If you decide 2744 to test for it, please mind that a little magic is necessary to 2745 properly identify it: char* has TYPE_CODE == TYPE_CODE_INT and 2746 TYPE_NAME == "char" */ 2747 if (TYPE_CODE (target) == TYPE_CODE_FUNC 2748 || TYPE_CODE (target) == TYPE_CODE_VOID) 2749 children = 0; 2750 else 2751 children = 1; 2752 break; 2753 2754 default: 2755 /* Other types have no children */ 2756 break; 2757 } 2758 2759 return children; 2760 } 2761 2762 static char * 2763 c_name_of_variable (struct varobj *parent) 2764 { 2765 return xstrdup (parent->name); 2766 } 2767 2768 /* Return the value of element TYPE_INDEX of a structure 2769 value VALUE. VALUE's type should be a structure, 2770 or union, or a typedef to struct/union. 2771 2772 Returns NULL if getting the value fails. Never throws. */ 2773 static struct value * 2774 value_struct_element_index (struct value *value, int type_index) 2775 { 2776 struct value *result = NULL; 2777 volatile struct gdb_exception e; 2778 struct type *type = value_type (value); 2779 2780 type = check_typedef (type); 2781 2782 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT 2783 || TYPE_CODE (type) == TYPE_CODE_UNION); 2784 2785 TRY_CATCH (e, RETURN_MASK_ERROR) 2786 { 2787 if (field_is_static (&TYPE_FIELD (type, type_index))) 2788 result = value_static_field (type, type_index); 2789 else 2790 result = value_primitive_field (value, 0, type_index, type); 2791 } 2792 if (e.reason < 0) 2793 { 2794 return NULL; 2795 } 2796 else 2797 { 2798 return result; 2799 } 2800 } 2801 2802 /* Obtain the information about child INDEX of the variable 2803 object PARENT. 2804 If CNAME is not null, sets *CNAME to the name of the child relative 2805 to the parent. 2806 If CVALUE is not null, sets *CVALUE to the value of the child. 2807 If CTYPE is not null, sets *CTYPE to the type of the child. 2808 2809 If any of CNAME, CVALUE, or CTYPE is not null, but the corresponding 2810 information cannot be determined, set *CNAME, *CVALUE, or *CTYPE 2811 to NULL. */ 2812 static void 2813 c_describe_child (struct varobj *parent, int index, 2814 char **cname, struct value **cvalue, struct type **ctype, 2815 char **cfull_expression) 2816 { 2817 struct value *value = parent->value; 2818 struct type *type = get_value_type (parent); 2819 char *parent_expression = NULL; 2820 int was_ptr; 2821 2822 if (cname) 2823 *cname = NULL; 2824 if (cvalue) 2825 *cvalue = NULL; 2826 if (ctype) 2827 *ctype = NULL; 2828 if (cfull_expression) 2829 { 2830 *cfull_expression = NULL; 2831 parent_expression = varobj_get_path_expr (parent); 2832 } 2833 adjust_value_for_child_access (&value, &type, &was_ptr); 2834 2835 switch (TYPE_CODE (type)) 2836 { 2837 case TYPE_CODE_ARRAY: 2838 if (cname) 2839 *cname = xstrdup (int_string (index 2840 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)), 2841 10, 1, 0, 0)); 2842 2843 if (cvalue && value) 2844 { 2845 int real_index = index + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)); 2846 2847 gdb_value_subscript (value, real_index, cvalue); 2848 } 2849 2850 if (ctype) 2851 *ctype = get_target_type (type); 2852 2853 if (cfull_expression) 2854 *cfull_expression = 2855 xstrprintf ("(%s)[%s]", parent_expression, 2856 int_string (index 2857 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)), 2858 10, 1, 0, 0)); 2859 2860 2861 break; 2862 2863 case TYPE_CODE_STRUCT: 2864 case TYPE_CODE_UNION: 2865 if (cname) 2866 *cname = xstrdup (TYPE_FIELD_NAME (type, index)); 2867 2868 if (cvalue && value) 2869 { 2870 /* For C, varobj index is the same as type index. */ 2871 *cvalue = value_struct_element_index (value, index); 2872 } 2873 2874 if (ctype) 2875 *ctype = TYPE_FIELD_TYPE (type, index); 2876 2877 if (cfull_expression) 2878 { 2879 char *join = was_ptr ? "->" : "."; 2880 2881 *cfull_expression = xstrprintf ("(%s)%s%s", parent_expression, join, 2882 TYPE_FIELD_NAME (type, index)); 2883 } 2884 2885 break; 2886 2887 case TYPE_CODE_PTR: 2888 if (cname) 2889 *cname = xstrprintf ("*%s", parent->name); 2890 2891 if (cvalue && value) 2892 { 2893 int success = gdb_value_ind (value, cvalue); 2894 2895 if (!success) 2896 *cvalue = NULL; 2897 } 2898 2899 /* Don't use get_target_type because it calls 2900 check_typedef and here, we want to show the true 2901 declared type of the variable. */ 2902 if (ctype) 2903 *ctype = TYPE_TARGET_TYPE (type); 2904 2905 if (cfull_expression) 2906 *cfull_expression = xstrprintf ("*(%s)", parent_expression); 2907 2908 break; 2909 2910 default: 2911 /* This should not happen */ 2912 if (cname) 2913 *cname = xstrdup ("???"); 2914 if (cfull_expression) 2915 *cfull_expression = xstrdup ("???"); 2916 /* Don't set value and type, we don't know then. */ 2917 } 2918 } 2919 2920 static char * 2921 c_name_of_child (struct varobj *parent, int index) 2922 { 2923 char *name; 2924 2925 c_describe_child (parent, index, &name, NULL, NULL, NULL); 2926 return name; 2927 } 2928 2929 static char * 2930 c_path_expr_of_child (struct varobj *child) 2931 { 2932 c_describe_child (child->parent, child->index, NULL, NULL, NULL, 2933 &child->path_expr); 2934 return child->path_expr; 2935 } 2936 2937 /* If frame associated with VAR can be found, switch 2938 to it and return 1. Otherwise, return 0. */ 2939 static int 2940 check_scope (struct varobj *var) 2941 { 2942 struct frame_info *fi; 2943 int scope; 2944 2945 fi = frame_find_by_id (var->root->frame); 2946 scope = fi != NULL; 2947 2948 if (fi) 2949 { 2950 CORE_ADDR pc = get_frame_pc (fi); 2951 2952 if (pc < BLOCK_START (var->root->valid_block) || 2953 pc >= BLOCK_END (var->root->valid_block)) 2954 scope = 0; 2955 else 2956 select_frame (fi); 2957 } 2958 return scope; 2959 } 2960 2961 static struct value * 2962 c_value_of_root (struct varobj **var_handle) 2963 { 2964 struct value *new_val = NULL; 2965 struct varobj *var = *var_handle; 2966 int within_scope = 0; 2967 struct cleanup *back_to; 2968 2969 /* Only root variables can be updated... */ 2970 if (!is_root_p (var)) 2971 /* Not a root var */ 2972 return NULL; 2973 2974 back_to = make_cleanup_restore_current_thread (); 2975 2976 /* Determine whether the variable is still around. */ 2977 if (var->root->valid_block == NULL || var->root->floating) 2978 within_scope = 1; 2979 else if (var->root->thread_id == 0) 2980 { 2981 /* The program was single-threaded when the variable object was 2982 created. Technically, it's possible that the program became 2983 multi-threaded since then, but we don't support such 2984 scenario yet. */ 2985 within_scope = check_scope (var); 2986 } 2987 else 2988 { 2989 ptid_t ptid = thread_id_to_pid (var->root->thread_id); 2990 if (in_thread_list (ptid)) 2991 { 2992 switch_to_thread (ptid); 2993 within_scope = check_scope (var); 2994 } 2995 } 2996 2997 if (within_scope) 2998 { 2999 /* We need to catch errors here, because if evaluate 3000 expression fails we want to just return NULL. */ 3001 gdb_evaluate_expression (var->root->exp, &new_val); 3002 return new_val; 3003 } 3004 3005 do_cleanups (back_to); 3006 3007 return NULL; 3008 } 3009 3010 static struct value * 3011 c_value_of_child (struct varobj *parent, int index) 3012 { 3013 struct value *value = NULL; 3014 3015 c_describe_child (parent, index, NULL, &value, NULL, NULL); 3016 return value; 3017 } 3018 3019 static struct type * 3020 c_type_of_child (struct varobj *parent, int index) 3021 { 3022 struct type *type = NULL; 3023 3024 c_describe_child (parent, index, NULL, NULL, &type, NULL); 3025 return type; 3026 } 3027 3028 static char * 3029 c_value_of_variable (struct varobj *var, enum varobj_display_formats format) 3030 { 3031 /* BOGUS: if val_print sees a struct/class, or a reference to one, 3032 it will print out its children instead of "{...}". So we need to 3033 catch that case explicitly. */ 3034 struct type *type = get_type (var); 3035 3036 /* If we have a custom formatter, return whatever string it has 3037 produced. */ 3038 if (var->pretty_printer && var->print_value) 3039 return xstrdup (var->print_value); 3040 3041 /* Strip top-level references. */ 3042 while (TYPE_CODE (type) == TYPE_CODE_REF) 3043 type = check_typedef (TYPE_TARGET_TYPE (type)); 3044 3045 switch (TYPE_CODE (type)) 3046 { 3047 case TYPE_CODE_STRUCT: 3048 case TYPE_CODE_UNION: 3049 return xstrdup ("{...}"); 3050 /* break; */ 3051 3052 case TYPE_CODE_ARRAY: 3053 { 3054 char *number; 3055 3056 number = xstrprintf ("[%d]", var->num_children); 3057 return (number); 3058 } 3059 /* break; */ 3060 3061 default: 3062 { 3063 if (var->value == NULL) 3064 { 3065 /* This can happen if we attempt to get the value of a struct 3066 member when the parent is an invalid pointer. This is an 3067 error condition, so we should tell the caller. */ 3068 return NULL; 3069 } 3070 else 3071 { 3072 if (var->not_fetched && value_lazy (var->value)) 3073 /* Frozen variable and no value yet. We don't 3074 implicitly fetch the value. MI response will 3075 use empty string for the value, which is OK. */ 3076 return NULL; 3077 3078 gdb_assert (varobj_value_is_changeable_p (var)); 3079 gdb_assert (!value_lazy (var->value)); 3080 3081 /* If the specified format is the current one, 3082 we can reuse print_value */ 3083 if (format == var->format) 3084 return xstrdup (var->print_value); 3085 else 3086 return value_get_print_value (var->value, format, var); 3087 } 3088 } 3089 } 3090 } 3091 3092 3093 /* C++ */ 3094 3095 static int 3096 cplus_number_of_children (struct varobj *var) 3097 { 3098 struct type *type; 3099 int children, dont_know; 3100 3101 dont_know = 1; 3102 children = 0; 3103 3104 if (!CPLUS_FAKE_CHILD (var)) 3105 { 3106 type = get_value_type (var); 3107 adjust_value_for_child_access (NULL, &type, NULL); 3108 3109 if (((TYPE_CODE (type)) == TYPE_CODE_STRUCT) || 3110 ((TYPE_CODE (type)) == TYPE_CODE_UNION)) 3111 { 3112 int kids[3]; 3113 3114 cplus_class_num_children (type, kids); 3115 if (kids[v_public] != 0) 3116 children++; 3117 if (kids[v_private] != 0) 3118 children++; 3119 if (kids[v_protected] != 0) 3120 children++; 3121 3122 /* Add any baseclasses */ 3123 children += TYPE_N_BASECLASSES (type); 3124 dont_know = 0; 3125 3126 /* FIXME: save children in var */ 3127 } 3128 } 3129 else 3130 { 3131 int kids[3]; 3132 3133 type = get_value_type (var->parent); 3134 adjust_value_for_child_access (NULL, &type, NULL); 3135 3136 cplus_class_num_children (type, kids); 3137 if (strcmp (var->name, "public") == 0) 3138 children = kids[v_public]; 3139 else if (strcmp (var->name, "private") == 0) 3140 children = kids[v_private]; 3141 else 3142 children = kids[v_protected]; 3143 dont_know = 0; 3144 } 3145 3146 if (dont_know) 3147 children = c_number_of_children (var); 3148 3149 return children; 3150 } 3151 3152 /* Compute # of public, private, and protected variables in this class. 3153 That means we need to descend into all baseclasses and find out 3154 how many are there, too. */ 3155 static void 3156 cplus_class_num_children (struct type *type, int children[3]) 3157 { 3158 int i, vptr_fieldno; 3159 struct type *basetype = NULL; 3160 3161 children[v_public] = 0; 3162 children[v_private] = 0; 3163 children[v_protected] = 0; 3164 3165 vptr_fieldno = get_vptr_fieldno (type, &basetype); 3166 for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); i++) 3167 { 3168 /* If we have a virtual table pointer, omit it. Even if virtual 3169 table pointers are not specifically marked in the debug info, 3170 they should be artificial. */ 3171 if ((type == basetype && i == vptr_fieldno) 3172 || TYPE_FIELD_ARTIFICIAL (type, i)) 3173 continue; 3174 3175 if (TYPE_FIELD_PROTECTED (type, i)) 3176 children[v_protected]++; 3177 else if (TYPE_FIELD_PRIVATE (type, i)) 3178 children[v_private]++; 3179 else 3180 children[v_public]++; 3181 } 3182 } 3183 3184 static char * 3185 cplus_name_of_variable (struct varobj *parent) 3186 { 3187 return c_name_of_variable (parent); 3188 } 3189 3190 enum accessibility { private_field, protected_field, public_field }; 3191 3192 /* Check if field INDEX of TYPE has the specified accessibility. 3193 Return 0 if so and 1 otherwise. */ 3194 static int 3195 match_accessibility (struct type *type, int index, enum accessibility acc) 3196 { 3197 if (acc == private_field && TYPE_FIELD_PRIVATE (type, index)) 3198 return 1; 3199 else if (acc == protected_field && TYPE_FIELD_PROTECTED (type, index)) 3200 return 1; 3201 else if (acc == public_field && !TYPE_FIELD_PRIVATE (type, index) 3202 && !TYPE_FIELD_PROTECTED (type, index)) 3203 return 1; 3204 else 3205 return 0; 3206 } 3207 3208 static void 3209 cplus_describe_child (struct varobj *parent, int index, 3210 char **cname, struct value **cvalue, struct type **ctype, 3211 char **cfull_expression) 3212 { 3213 struct value *value; 3214 struct type *type; 3215 int was_ptr; 3216 char *parent_expression = NULL; 3217 3218 if (cname) 3219 *cname = NULL; 3220 if (cvalue) 3221 *cvalue = NULL; 3222 if (ctype) 3223 *ctype = NULL; 3224 if (cfull_expression) 3225 *cfull_expression = NULL; 3226 3227 if (CPLUS_FAKE_CHILD (parent)) 3228 { 3229 value = parent->parent->value; 3230 type = get_value_type (parent->parent); 3231 if (cfull_expression) 3232 parent_expression = varobj_get_path_expr (parent->parent); 3233 } 3234 else 3235 { 3236 value = parent->value; 3237 type = get_value_type (parent); 3238 if (cfull_expression) 3239 parent_expression = varobj_get_path_expr (parent); 3240 } 3241 3242 adjust_value_for_child_access (&value, &type, &was_ptr); 3243 3244 if (TYPE_CODE (type) == TYPE_CODE_STRUCT 3245 || TYPE_CODE (type) == TYPE_CODE_UNION) 3246 { 3247 char *join = was_ptr ? "->" : "."; 3248 3249 if (CPLUS_FAKE_CHILD (parent)) 3250 { 3251 /* The fields of the class type are ordered as they 3252 appear in the class. We are given an index for a 3253 particular access control type ("public","protected", 3254 or "private"). We must skip over fields that don't 3255 have the access control we are looking for to properly 3256 find the indexed field. */ 3257 int type_index = TYPE_N_BASECLASSES (type); 3258 enum accessibility acc = public_field; 3259 int vptr_fieldno; 3260 struct type *basetype = NULL; 3261 3262 vptr_fieldno = get_vptr_fieldno (type, &basetype); 3263 if (strcmp (parent->name, "private") == 0) 3264 acc = private_field; 3265 else if (strcmp (parent->name, "protected") == 0) 3266 acc = protected_field; 3267 3268 while (index >= 0) 3269 { 3270 if ((type == basetype && type_index == vptr_fieldno) 3271 || TYPE_FIELD_ARTIFICIAL (type, type_index)) 3272 ; /* ignore vptr */ 3273 else if (match_accessibility (type, type_index, acc)) 3274 --index; 3275 ++type_index; 3276 } 3277 --type_index; 3278 3279 if (cname) 3280 *cname = xstrdup (TYPE_FIELD_NAME (type, type_index)); 3281 3282 if (cvalue && value) 3283 *cvalue = value_struct_element_index (value, type_index); 3284 3285 if (ctype) 3286 *ctype = TYPE_FIELD_TYPE (type, type_index); 3287 3288 if (cfull_expression) 3289 *cfull_expression = xstrprintf ("((%s)%s%s)", parent_expression, 3290 join, 3291 TYPE_FIELD_NAME (type, type_index)); 3292 } 3293 else if (index < TYPE_N_BASECLASSES (type)) 3294 { 3295 /* This is a baseclass. */ 3296 if (cname) 3297 *cname = xstrdup (TYPE_FIELD_NAME (type, index)); 3298 3299 if (cvalue && value) 3300 *cvalue = value_cast (TYPE_FIELD_TYPE (type, index), value); 3301 3302 if (ctype) 3303 { 3304 *ctype = TYPE_FIELD_TYPE (type, index); 3305 } 3306 3307 if (cfull_expression) 3308 { 3309 char *ptr = was_ptr ? "*" : ""; 3310 3311 /* Cast the parent to the base' type. Note that in gdb, 3312 expression like 3313 (Base1)d 3314 will create an lvalue, for all appearences, so we don't 3315 need to use more fancy: 3316 *(Base1*)(&d) 3317 construct. */ 3318 *cfull_expression = xstrprintf ("(%s(%s%s) %s)", 3319 ptr, 3320 TYPE_FIELD_NAME (type, index), 3321 ptr, 3322 parent_expression); 3323 } 3324 } 3325 else 3326 { 3327 char *access = NULL; 3328 int children[3]; 3329 3330 cplus_class_num_children (type, children); 3331 3332 /* Everything beyond the baseclasses can 3333 only be "public", "private", or "protected" 3334 3335 The special "fake" children are always output by varobj in 3336 this order. So if INDEX == 2, it MUST be "protected". */ 3337 index -= TYPE_N_BASECLASSES (type); 3338 switch (index) 3339 { 3340 case 0: 3341 if (children[v_public] > 0) 3342 access = "public"; 3343 else if (children[v_private] > 0) 3344 access = "private"; 3345 else 3346 access = "protected"; 3347 break; 3348 case 1: 3349 if (children[v_public] > 0) 3350 { 3351 if (children[v_private] > 0) 3352 access = "private"; 3353 else 3354 access = "protected"; 3355 } 3356 else if (children[v_private] > 0) 3357 access = "protected"; 3358 break; 3359 case 2: 3360 /* Must be protected */ 3361 access = "protected"; 3362 break; 3363 default: 3364 /* error! */ 3365 break; 3366 } 3367 3368 gdb_assert (access); 3369 if (cname) 3370 *cname = xstrdup (access); 3371 3372 /* Value and type and full expression are null here. */ 3373 } 3374 } 3375 else 3376 { 3377 c_describe_child (parent, index, cname, cvalue, ctype, cfull_expression); 3378 } 3379 } 3380 3381 static char * 3382 cplus_name_of_child (struct varobj *parent, int index) 3383 { 3384 char *name = NULL; 3385 3386 cplus_describe_child (parent, index, &name, NULL, NULL, NULL); 3387 return name; 3388 } 3389 3390 static char * 3391 cplus_path_expr_of_child (struct varobj *child) 3392 { 3393 cplus_describe_child (child->parent, child->index, NULL, NULL, NULL, 3394 &child->path_expr); 3395 return child->path_expr; 3396 } 3397 3398 static struct value * 3399 cplus_value_of_root (struct varobj **var_handle) 3400 { 3401 return c_value_of_root (var_handle); 3402 } 3403 3404 static struct value * 3405 cplus_value_of_child (struct varobj *parent, int index) 3406 { 3407 struct value *value = NULL; 3408 3409 cplus_describe_child (parent, index, NULL, &value, NULL, NULL); 3410 return value; 3411 } 3412 3413 static struct type * 3414 cplus_type_of_child (struct varobj *parent, int index) 3415 { 3416 struct type *type = NULL; 3417 3418 cplus_describe_child (parent, index, NULL, NULL, &type, NULL); 3419 return type; 3420 } 3421 3422 static char * 3423 cplus_value_of_variable (struct varobj *var, 3424 enum varobj_display_formats format) 3425 { 3426 3427 /* If we have one of our special types, don't print out 3428 any value. */ 3429 if (CPLUS_FAKE_CHILD (var)) 3430 return xstrdup (""); 3431 3432 return c_value_of_variable (var, format); 3433 } 3434 3435 /* Java */ 3436 3437 static int 3438 java_number_of_children (struct varobj *var) 3439 { 3440 return cplus_number_of_children (var); 3441 } 3442 3443 static char * 3444 java_name_of_variable (struct varobj *parent) 3445 { 3446 char *p, *name; 3447 3448 name = cplus_name_of_variable (parent); 3449 /* If the name has "-" in it, it is because we 3450 needed to escape periods in the name... */ 3451 p = name; 3452 3453 while (*p != '\000') 3454 { 3455 if (*p == '-') 3456 *p = '.'; 3457 p++; 3458 } 3459 3460 return name; 3461 } 3462 3463 static char * 3464 java_name_of_child (struct varobj *parent, int index) 3465 { 3466 char *name, *p; 3467 3468 name = cplus_name_of_child (parent, index); 3469 /* Escape any periods in the name... */ 3470 p = name; 3471 3472 while (*p != '\000') 3473 { 3474 if (*p == '.') 3475 *p = '-'; 3476 p++; 3477 } 3478 3479 return name; 3480 } 3481 3482 static char * 3483 java_path_expr_of_child (struct varobj *child) 3484 { 3485 return NULL; 3486 } 3487 3488 static struct value * 3489 java_value_of_root (struct varobj **var_handle) 3490 { 3491 return cplus_value_of_root (var_handle); 3492 } 3493 3494 static struct value * 3495 java_value_of_child (struct varobj *parent, int index) 3496 { 3497 return cplus_value_of_child (parent, index); 3498 } 3499 3500 static struct type * 3501 java_type_of_child (struct varobj *parent, int index) 3502 { 3503 return cplus_type_of_child (parent, index); 3504 } 3505 3506 static char * 3507 java_value_of_variable (struct varobj *var, enum varobj_display_formats format) 3508 { 3509 return cplus_value_of_variable (var, format); 3510 } 3511 3512 /* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them 3513 with an arbitrary caller supplied DATA pointer. */ 3514 3515 void 3516 all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data) 3517 { 3518 struct varobj_root *var_root, *var_root_next; 3519 3520 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */ 3521 3522 for (var_root = rootlist; var_root != NULL; var_root = var_root_next) 3523 { 3524 var_root_next = var_root->next; 3525 3526 (*func) (var_root->rootvar, data); 3527 } 3528 } 3529 3530 extern void _initialize_varobj (void); 3531 void 3532 _initialize_varobj (void) 3533 { 3534 int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE; 3535 3536 varobj_table = xmalloc (sizeof_table); 3537 memset (varobj_table, 0, sizeof_table); 3538 3539 add_setshow_zinteger_cmd ("debugvarobj", class_maintenance, 3540 &varobjdebug, _("\ 3541 Set varobj debugging."), _("\ 3542 Show varobj debugging."), _("\ 3543 When non-zero, varobj debugging is enabled."), 3544 NULL, 3545 show_varobjdebug, 3546 &setlist, &showlist); 3547 } 3548 3549 /* Invalidate varobj VAR if it is tied to locals and re-create it if it is 3550 defined on globals. It is a helper for varobj_invalidate. */ 3551 3552 static void 3553 varobj_invalidate_iter (struct varobj *var, void *unused) 3554 { 3555 /* Floating varobjs are reparsed on each stop, so we don't care if the 3556 presently parsed expression refers to something that's gone. */ 3557 if (var->root->floating) 3558 return; 3559 3560 /* global var must be re-evaluated. */ 3561 if (var->root->valid_block == NULL) 3562 { 3563 struct varobj *tmp_var; 3564 3565 /* Try to create a varobj with same expression. If we succeed 3566 replace the old varobj, otherwise invalidate it. */ 3567 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0, 3568 USE_CURRENT_FRAME); 3569 if (tmp_var != NULL) 3570 { 3571 tmp_var->obj_name = xstrdup (var->obj_name); 3572 varobj_delete (var, NULL, 0); 3573 install_variable (tmp_var); 3574 } 3575 else 3576 var->root->is_valid = 0; 3577 } 3578 else /* locals must be invalidated. */ 3579 var->root->is_valid = 0; 3580 } 3581 3582 /* Invalidate the varobjs that are tied to locals and re-create the ones that 3583 are defined on globals. 3584 Invalidated varobjs will be always printed in_scope="invalid". */ 3585 3586 void 3587 varobj_invalidate (void) 3588 { 3589 all_root_varobjs (varobj_invalidate_iter, NULL); 3590 } 3591