xref: /dflybsd-src/contrib/gdb-7/gdb/varobj.c (revision aa2b9d0592ca18547c1a0158a8df009ad3074562)
1 /* Implementation of the GDB variable objects API.
2 
3    Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
4    2009, 2010 Free Software Foundation, Inc.
5 
6    This program is free software; you can redistribute it and/or modify
7    it under the terms of the GNU General Public License as published by
8    the Free Software Foundation; either version 3 of the License, or
9    (at your option) any later version.
10 
11    This program is distributed in the hope that it will be useful,
12    but WITHOUT ANY WARRANTY; without even the implied warranty of
13    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14    GNU General Public License for more details.
15 
16    You should have received a copy of the GNU General Public License
17    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
18 
19 #include "defs.h"
20 #include "exceptions.h"
21 #include "value.h"
22 #include "expression.h"
23 #include "frame.h"
24 #include "language.h"
25 #include "wrapper.h"
26 #include "gdbcmd.h"
27 #include "block.h"
28 #include "valprint.h"
29 
30 #include "gdb_assert.h"
31 #include "gdb_string.h"
32 #include "gdb_regex.h"
33 
34 #include "varobj.h"
35 #include "vec.h"
36 #include "gdbthread.h"
37 #include "inferior.h"
38 
39 #if HAVE_PYTHON
40 #include "python/python.h"
41 #include "python/python-internal.h"
42 #else
43 typedef int PyObject;
44 #endif
45 
46 /* Non-zero if we want to see trace of varobj level stuff.  */
47 
48 int varobjdebug = 0;
49 static void
50 show_varobjdebug (struct ui_file *file, int from_tty,
51 		  struct cmd_list_element *c, const char *value)
52 {
53   fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
54 }
55 
56 /* String representations of gdb's format codes */
57 char *varobj_format_string[] =
58   { "natural", "binary", "decimal", "hexadecimal", "octal" };
59 
60 /* String representations of gdb's known languages */
61 char *varobj_language_string[] = { "unknown", "C", "C++", "Java" };
62 
63 /* True if we want to allow Python-based pretty-printing.  */
64 static int pretty_printing = 0;
65 
66 void
67 varobj_enable_pretty_printing (void)
68 {
69   pretty_printing = 1;
70 }
71 
72 /* Data structures */
73 
74 /* Every root variable has one of these structures saved in its
75    varobj. Members which must be free'd are noted. */
76 struct varobj_root
77 {
78 
79   /* Alloc'd expression for this parent. */
80   struct expression *exp;
81 
82   /* Block for which this expression is valid */
83   struct block *valid_block;
84 
85   /* The frame for this expression.  This field is set iff valid_block is
86      not NULL.  */
87   struct frame_id frame;
88 
89   /* The thread ID that this varobj_root belong to.  This field
90      is only valid if valid_block is not NULL.
91      When not 0, indicates which thread 'frame' belongs to.
92      When 0, indicates that the thread list was empty when the varobj_root
93      was created.  */
94   int thread_id;
95 
96   /* If 1, the -var-update always recomputes the value in the
97      current thread and frame.  Otherwise, variable object is
98      always updated in the specific scope/thread/frame  */
99   int floating;
100 
101   /* Flag that indicates validity: set to 0 when this varobj_root refers
102      to symbols that do not exist anymore.  */
103   int is_valid;
104 
105   /* Language info for this variable and its children */
106   struct language_specific *lang;
107 
108   /* The varobj for this root node. */
109   struct varobj *rootvar;
110 
111   /* Next root variable */
112   struct varobj_root *next;
113 };
114 
115 /* Every variable in the system has a structure of this type defined
116    for it. This structure holds all information necessary to manipulate
117    a particular object variable. Members which must be freed are noted. */
118 struct varobj
119 {
120 
121   /* Alloc'd name of the variable for this object.. If this variable is a
122      child, then this name will be the child's source name.
123      (bar, not foo.bar) */
124   /* NOTE: This is the "expression" */
125   char *name;
126 
127   /* Alloc'd expression for this child.  Can be used to create a
128      root variable corresponding to this child.  */
129   char *path_expr;
130 
131   /* The alloc'd name for this variable's object. This is here for
132      convenience when constructing this object's children. */
133   char *obj_name;
134 
135   /* Index of this variable in its parent or -1 */
136   int index;
137 
138   /* The type of this variable.  This can be NULL
139      for artifial variable objects -- currently, the "accessibility"
140      variable objects in C++.  */
141   struct type *type;
142 
143   /* The value of this expression or subexpression.  A NULL value
144      indicates there was an error getting this value.
145      Invariant: if varobj_value_is_changeable_p (this) is non-zero,
146      the value is either NULL, or not lazy.  */
147   struct value *value;
148 
149   /* The number of (immediate) children this variable has */
150   int num_children;
151 
152   /* If this object is a child, this points to its immediate parent. */
153   struct varobj *parent;
154 
155   /* Children of this object.  */
156   VEC (varobj_p) *children;
157 
158   /* Whether the children of this varobj were requested.  This field is
159      used to decide if dynamic varobj should recompute their children.
160      In the event that the frontend never asked for the children, we
161      can avoid that.  */
162   int children_requested;
163 
164   /* Description of the root variable. Points to root variable for children. */
165   struct varobj_root *root;
166 
167   /* The format of the output for this object */
168   enum varobj_display_formats format;
169 
170   /* Was this variable updated via a varobj_set_value operation */
171   int updated;
172 
173   /* Last print value.  */
174   char *print_value;
175 
176   /* Is this variable frozen.  Frozen variables are never implicitly
177      updated by -var-update *
178      or -var-update <direct-or-indirect-parent>.  */
179   int frozen;
180 
181   /* Is the value of this variable intentionally not fetched?  It is
182      not fetched if either the variable is frozen, or any parents is
183      frozen.  */
184   int not_fetched;
185 
186   /* Sub-range of children which the MI consumer has requested.  If
187      FROM < 0 or TO < 0, means that all children have been
188      requested.  */
189   int from;
190   int to;
191 
192   /* The pretty-printer constructor.  If NULL, then the default
193      pretty-printer will be looked up.  If None, then no
194      pretty-printer will be installed.  */
195   PyObject *constructor;
196 
197   /* The pretty-printer that has been constructed.  If NULL, then a
198      new printer object is needed, and one will be constructed.  */
199   PyObject *pretty_printer;
200 
201   /* The iterator returned by the printer's 'children' method, or NULL
202      if not available.  */
203   PyObject *child_iter;
204 
205   /* We request one extra item from the iterator, so that we can
206      report to the caller whether there are more items than we have
207      already reported.  However, we don't want to install this value
208      when we read it, because that will mess up future updates.  So,
209      we stash it here instead.  */
210   PyObject *saved_item;
211 };
212 
213 struct cpstack
214 {
215   char *name;
216   struct cpstack *next;
217 };
218 
219 /* A list of varobjs */
220 
221 struct vlist
222 {
223   struct varobj *var;
224   struct vlist *next;
225 };
226 
227 /* Private function prototypes */
228 
229 /* Helper functions for the above subcommands. */
230 
231 static int delete_variable (struct cpstack **, struct varobj *, int);
232 
233 static void delete_variable_1 (struct cpstack **, int *,
234 			       struct varobj *, int, int);
235 
236 static int install_variable (struct varobj *);
237 
238 static void uninstall_variable (struct varobj *);
239 
240 static struct varobj *create_child (struct varobj *, int, char *);
241 
242 static struct varobj *
243 create_child_with_value (struct varobj *parent, int index, const char *name,
244 			 struct value *value);
245 
246 /* Utility routines */
247 
248 static struct varobj *new_variable (void);
249 
250 static struct varobj *new_root_variable (void);
251 
252 static void free_variable (struct varobj *var);
253 
254 static struct cleanup *make_cleanup_free_variable (struct varobj *var);
255 
256 static struct type *get_type (struct varobj *var);
257 
258 static struct type *get_value_type (struct varobj *var);
259 
260 static struct type *get_target_type (struct type *);
261 
262 static enum varobj_display_formats variable_default_display (struct varobj *);
263 
264 static void cppush (struct cpstack **pstack, char *name);
265 
266 static char *cppop (struct cpstack **pstack);
267 
268 static int install_new_value (struct varobj *var, struct value *value,
269 			      int initial);
270 
271 /* Language-specific routines. */
272 
273 static enum varobj_languages variable_language (struct varobj *var);
274 
275 static int number_of_children (struct varobj *);
276 
277 static char *name_of_variable (struct varobj *);
278 
279 static char *name_of_child (struct varobj *, int);
280 
281 static struct value *value_of_root (struct varobj **var_handle, int *);
282 
283 static struct value *value_of_child (struct varobj *parent, int index);
284 
285 static char *my_value_of_variable (struct varobj *var,
286 				   enum varobj_display_formats format);
287 
288 static char *value_get_print_value (struct value *value,
289 				    enum varobj_display_formats format,
290 				    struct varobj *var);
291 
292 static int varobj_value_is_changeable_p (struct varobj *var);
293 
294 static int is_root_p (struct varobj *var);
295 
296 #if HAVE_PYTHON
297 
298 static struct varobj *
299 varobj_add_child (struct varobj *var, const char *name, struct value *value);
300 
301 #endif /* HAVE_PYTHON */
302 
303 /* C implementation */
304 
305 static int c_number_of_children (struct varobj *var);
306 
307 static char *c_name_of_variable (struct varobj *parent);
308 
309 static char *c_name_of_child (struct varobj *parent, int index);
310 
311 static char *c_path_expr_of_child (struct varobj *child);
312 
313 static struct value *c_value_of_root (struct varobj **var_handle);
314 
315 static struct value *c_value_of_child (struct varobj *parent, int index);
316 
317 static struct type *c_type_of_child (struct varobj *parent, int index);
318 
319 static char *c_value_of_variable (struct varobj *var,
320 				  enum varobj_display_formats format);
321 
322 /* C++ implementation */
323 
324 static int cplus_number_of_children (struct varobj *var);
325 
326 static void cplus_class_num_children (struct type *type, int children[3]);
327 
328 static char *cplus_name_of_variable (struct varobj *parent);
329 
330 static char *cplus_name_of_child (struct varobj *parent, int index);
331 
332 static char *cplus_path_expr_of_child (struct varobj *child);
333 
334 static struct value *cplus_value_of_root (struct varobj **var_handle);
335 
336 static struct value *cplus_value_of_child (struct varobj *parent, int index);
337 
338 static struct type *cplus_type_of_child (struct varobj *parent, int index);
339 
340 static char *cplus_value_of_variable (struct varobj *var,
341 				      enum varobj_display_formats format);
342 
343 /* Java implementation */
344 
345 static int java_number_of_children (struct varobj *var);
346 
347 static char *java_name_of_variable (struct varobj *parent);
348 
349 static char *java_name_of_child (struct varobj *parent, int index);
350 
351 static char *java_path_expr_of_child (struct varobj *child);
352 
353 static struct value *java_value_of_root (struct varobj **var_handle);
354 
355 static struct value *java_value_of_child (struct varobj *parent, int index);
356 
357 static struct type *java_type_of_child (struct varobj *parent, int index);
358 
359 static char *java_value_of_variable (struct varobj *var,
360 				     enum varobj_display_formats format);
361 
362 /* The language specific vector */
363 
364 struct language_specific
365 {
366 
367   /* The language of this variable */
368   enum varobj_languages language;
369 
370   /* The number of children of PARENT. */
371   int (*number_of_children) (struct varobj * parent);
372 
373   /* The name (expression) of a root varobj. */
374   char *(*name_of_variable) (struct varobj * parent);
375 
376   /* The name of the INDEX'th child of PARENT. */
377   char *(*name_of_child) (struct varobj * parent, int index);
378 
379   /* Returns the rooted expression of CHILD, which is a variable
380      obtain that has some parent.  */
381   char *(*path_expr_of_child) (struct varobj * child);
382 
383   /* The ``struct value *'' of the root variable ROOT. */
384   struct value *(*value_of_root) (struct varobj ** root_handle);
385 
386   /* The ``struct value *'' of the INDEX'th child of PARENT. */
387   struct value *(*value_of_child) (struct varobj * parent, int index);
388 
389   /* The type of the INDEX'th child of PARENT. */
390   struct type *(*type_of_child) (struct varobj * parent, int index);
391 
392   /* The current value of VAR. */
393   char *(*value_of_variable) (struct varobj * var,
394 			      enum varobj_display_formats format);
395 };
396 
397 /* Array of known source language routines. */
398 static struct language_specific languages[vlang_end] = {
399   /* Unknown (try treating as C */
400   {
401    vlang_unknown,
402    c_number_of_children,
403    c_name_of_variable,
404    c_name_of_child,
405    c_path_expr_of_child,
406    c_value_of_root,
407    c_value_of_child,
408    c_type_of_child,
409    c_value_of_variable}
410   ,
411   /* C */
412   {
413    vlang_c,
414    c_number_of_children,
415    c_name_of_variable,
416    c_name_of_child,
417    c_path_expr_of_child,
418    c_value_of_root,
419    c_value_of_child,
420    c_type_of_child,
421    c_value_of_variable}
422   ,
423   /* C++ */
424   {
425    vlang_cplus,
426    cplus_number_of_children,
427    cplus_name_of_variable,
428    cplus_name_of_child,
429    cplus_path_expr_of_child,
430    cplus_value_of_root,
431    cplus_value_of_child,
432    cplus_type_of_child,
433    cplus_value_of_variable}
434   ,
435   /* Java */
436   {
437    vlang_java,
438    java_number_of_children,
439    java_name_of_variable,
440    java_name_of_child,
441    java_path_expr_of_child,
442    java_value_of_root,
443    java_value_of_child,
444    java_type_of_child,
445    java_value_of_variable}
446 };
447 
448 /* A little convenience enum for dealing with C++/Java */
449 enum vsections
450 {
451   v_public = 0, v_private, v_protected
452 };
453 
454 /* Private data */
455 
456 /* Mappings of varobj_display_formats enums to gdb's format codes */
457 static int format_code[] = { 0, 't', 'd', 'x', 'o' };
458 
459 /* Header of the list of root variable objects */
460 static struct varobj_root *rootlist;
461 
462 /* Prime number indicating the number of buckets in the hash table */
463 /* A prime large enough to avoid too many colisions */
464 #define VAROBJ_TABLE_SIZE 227
465 
466 /* Pointer to the varobj hash table (built at run time) */
467 static struct vlist **varobj_table;
468 
469 /* Is the variable X one of our "fake" children? */
470 #define CPLUS_FAKE_CHILD(x) \
471 ((x) != NULL && (x)->type == NULL && (x)->value == NULL)
472 
473 
474 /* API Implementation */
475 static int
476 is_root_p (struct varobj *var)
477 {
478   return (var->root->rootvar == var);
479 }
480 
481 #ifdef HAVE_PYTHON
482 /* Helper function to install a Python environment suitable for
483    use during operations on VAR.  */
484 struct cleanup *
485 varobj_ensure_python_env (struct varobj *var)
486 {
487   return ensure_python_env (var->root->exp->gdbarch,
488 			    var->root->exp->language_defn);
489 }
490 #endif
491 
492 /* Creates a varobj (not its children) */
493 
494 /* Return the full FRAME which corresponds to the given CORE_ADDR
495    or NULL if no FRAME on the chain corresponds to CORE_ADDR.  */
496 
497 static struct frame_info *
498 find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
499 {
500   struct frame_info *frame = NULL;
501 
502   if (frame_addr == (CORE_ADDR) 0)
503     return NULL;
504 
505   for (frame = get_current_frame ();
506        frame != NULL;
507        frame = get_prev_frame (frame))
508     {
509       /* The CORE_ADDR we get as argument was parsed from a string GDB
510 	 output as $fp.  This output got truncated to gdbarch_addr_bit.
511 	 Truncate the frame base address in the same manner before
512 	 comparing it against our argument.  */
513       CORE_ADDR frame_base = get_frame_base_address (frame);
514       int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
515 
516       if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
517 	frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
518 
519       if (frame_base == frame_addr)
520 	return frame;
521     }
522 
523   return NULL;
524 }
525 
526 struct varobj *
527 varobj_create (char *objname,
528 	       char *expression, CORE_ADDR frame, enum varobj_type type)
529 {
530   struct varobj *var;
531   struct frame_info *fi;
532   struct frame_info *old_fi = NULL;
533   struct block *block;
534   struct cleanup *old_chain;
535 
536   /* Fill out a varobj structure for the (root) variable being constructed. */
537   var = new_root_variable ();
538   old_chain = make_cleanup_free_variable (var);
539 
540   if (expression != NULL)
541     {
542       char *p;
543       enum varobj_languages lang;
544       struct value *value = NULL;
545 
546       /* Parse and evaluate the expression, filling in as much of the
547          variable's data as possible.  */
548 
549       if (has_stack_frames ())
550 	{
551 	  /* Allow creator to specify context of variable */
552 	  if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
553 	    fi = get_selected_frame (NULL);
554 	  else
555 	    /* FIXME: cagney/2002-11-23: This code should be doing a
556 	       lookup using the frame ID and not just the frame's
557 	       ``address''.  This, of course, means an interface
558 	       change.  However, with out that interface change ISAs,
559 	       such as the ia64 with its two stacks, won't work.
560 	       Similar goes for the case where there is a frameless
561 	       function.  */
562 	    fi = find_frame_addr_in_frame_chain (frame);
563 	}
564       else
565 	fi = NULL;
566 
567       /* frame = -2 means always use selected frame */
568       if (type == USE_SELECTED_FRAME)
569 	var->root->floating = 1;
570 
571       block = NULL;
572       if (fi != NULL)
573 	block = get_frame_block (fi, 0);
574 
575       p = expression;
576       innermost_block = NULL;
577       /* Wrap the call to parse expression, so we can
578          return a sensible error. */
579       if (!gdb_parse_exp_1 (&p, block, 0, &var->root->exp))
580 	{
581 	  return NULL;
582 	}
583 
584       /* Don't allow variables to be created for types. */
585       if (var->root->exp->elts[0].opcode == OP_TYPE)
586 	{
587 	  do_cleanups (old_chain);
588 	  fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
589 			      " as an expression.\n");
590 	  return NULL;
591 	}
592 
593       var->format = variable_default_display (var);
594       var->root->valid_block = innermost_block;
595       var->name = xstrdup (expression);
596       /* For a root var, the name and the expr are the same.  */
597       var->path_expr = xstrdup (expression);
598 
599       /* When the frame is different from the current frame,
600          we must select the appropriate frame before parsing
601          the expression, otherwise the value will not be current.
602          Since select_frame is so benign, just call it for all cases. */
603       if (innermost_block)
604 	{
605 	  /* User could specify explicit FRAME-ADDR which was not found but
606 	     EXPRESSION is frame specific and we would not be able to evaluate
607 	     it correctly next time.  With VALID_BLOCK set we must also set
608 	     FRAME and THREAD_ID.  */
609 	  if (fi == NULL)
610 	    error (_("Failed to find the specified frame"));
611 
612 	  var->root->frame = get_frame_id (fi);
613 	  var->root->thread_id = pid_to_thread_id (inferior_ptid);
614 	  old_fi = get_selected_frame (NULL);
615 	  select_frame (fi);
616 	}
617 
618       /* We definitely need to catch errors here.
619          If evaluate_expression succeeds we got the value we wanted.
620          But if it fails, we still go on with a call to evaluate_type()  */
621       if (!gdb_evaluate_expression (var->root->exp, &value))
622 	{
623 	  /* Error getting the value.  Try to at least get the
624 	     right type.  */
625 	  struct value *type_only_value = evaluate_type (var->root->exp);
626 
627 	  var->type = value_type (type_only_value);
628 	}
629       else
630 	var->type = value_type (value);
631 
632       install_new_value (var, value, 1 /* Initial assignment */);
633 
634       /* Set language info */
635       lang = variable_language (var);
636       var->root->lang = &languages[lang];
637 
638       /* Set ourselves as our root */
639       var->root->rootvar = var;
640 
641       /* Reset the selected frame */
642       if (old_fi != NULL)
643 	select_frame (old_fi);
644     }
645 
646   /* If the variable object name is null, that means this
647      is a temporary variable, so don't install it. */
648 
649   if ((var != NULL) && (objname != NULL))
650     {
651       var->obj_name = xstrdup (objname);
652 
653       /* If a varobj name is duplicated, the install will fail so
654          we must clenup */
655       if (!install_variable (var))
656 	{
657 	  do_cleanups (old_chain);
658 	  return NULL;
659 	}
660     }
661 
662   discard_cleanups (old_chain);
663   return var;
664 }
665 
666 /* Generates an unique name that can be used for a varobj */
667 
668 char *
669 varobj_gen_name (void)
670 {
671   static int id = 0;
672   char *obj_name;
673 
674   /* generate a name for this object */
675   id++;
676   obj_name = xstrprintf ("var%d", id);
677 
678   return obj_name;
679 }
680 
681 /* Given an OBJNAME, returns the pointer to the corresponding varobj.  Call
682    error if OBJNAME cannot be found.  */
683 
684 struct varobj *
685 varobj_get_handle (char *objname)
686 {
687   struct vlist *cv;
688   const char *chp;
689   unsigned int index = 0;
690   unsigned int i = 1;
691 
692   for (chp = objname; *chp; chp++)
693     {
694       index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
695     }
696 
697   cv = *(varobj_table + index);
698   while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
699     cv = cv->next;
700 
701   if (cv == NULL)
702     error (_("Variable object not found"));
703 
704   return cv->var;
705 }
706 
707 /* Given the handle, return the name of the object */
708 
709 char *
710 varobj_get_objname (struct varobj *var)
711 {
712   return var->obj_name;
713 }
714 
715 /* Given the handle, return the expression represented by the object */
716 
717 char *
718 varobj_get_expression (struct varobj *var)
719 {
720   return name_of_variable (var);
721 }
722 
723 /* Deletes a varobj and all its children if only_children == 0,
724    otherwise deletes only the children; returns a malloc'ed list of all the
725    (malloc'ed) names of the variables that have been deleted (NULL terminated) */
726 
727 int
728 varobj_delete (struct varobj *var, char ***dellist, int only_children)
729 {
730   int delcount;
731   int mycount;
732   struct cpstack *result = NULL;
733   char **cp;
734 
735   /* Initialize a stack for temporary results */
736   cppush (&result, NULL);
737 
738   if (only_children)
739     /* Delete only the variable children */
740     delcount = delete_variable (&result, var, 1 /* only the children */ );
741   else
742     /* Delete the variable and all its children */
743     delcount = delete_variable (&result, var, 0 /* parent+children */ );
744 
745   /* We may have been asked to return a list of what has been deleted */
746   if (dellist != NULL)
747     {
748       *dellist = xmalloc ((delcount + 1) * sizeof (char *));
749 
750       cp = *dellist;
751       mycount = delcount;
752       *cp = cppop (&result);
753       while ((*cp != NULL) && (mycount > 0))
754 	{
755 	  mycount--;
756 	  cp++;
757 	  *cp = cppop (&result);
758 	}
759 
760       if (mycount || (*cp != NULL))
761 	warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"),
762 		 mycount);
763     }
764 
765   return delcount;
766 }
767 
768 #if HAVE_PYTHON
769 
770 /* Convenience function for varobj_set_visualizer.  Instantiate a
771    pretty-printer for a given value.  */
772 static PyObject *
773 instantiate_pretty_printer (PyObject *constructor, struct value *value)
774 {
775   PyObject *val_obj = NULL;
776   PyObject *printer;
777 
778   val_obj = value_to_value_object (value);
779   if (! val_obj)
780     return NULL;
781 
782   printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
783   Py_DECREF (val_obj);
784   return printer;
785   return NULL;
786 }
787 
788 #endif
789 
790 /* Set/Get variable object display format */
791 
792 enum varobj_display_formats
793 varobj_set_display_format (struct varobj *var,
794 			   enum varobj_display_formats format)
795 {
796   switch (format)
797     {
798     case FORMAT_NATURAL:
799     case FORMAT_BINARY:
800     case FORMAT_DECIMAL:
801     case FORMAT_HEXADECIMAL:
802     case FORMAT_OCTAL:
803       var->format = format;
804       break;
805 
806     default:
807       var->format = variable_default_display (var);
808     }
809 
810   if (varobj_value_is_changeable_p (var)
811       && var->value && !value_lazy (var->value))
812     {
813       xfree (var->print_value);
814       var->print_value = value_get_print_value (var->value, var->format, var);
815     }
816 
817   return var->format;
818 }
819 
820 enum varobj_display_formats
821 varobj_get_display_format (struct varobj *var)
822 {
823   return var->format;
824 }
825 
826 char *
827 varobj_get_display_hint (struct varobj *var)
828 {
829   char *result = NULL;
830 
831 #if HAVE_PYTHON
832   struct cleanup *back_to = varobj_ensure_python_env (var);
833 
834   if (var->pretty_printer)
835     result = gdbpy_get_display_hint (var->pretty_printer);
836 
837   do_cleanups (back_to);
838 #endif
839 
840   return result;
841 }
842 
843 /* Return true if the varobj has items after TO, false otherwise.  */
844 
845 int
846 varobj_has_more (struct varobj *var, int to)
847 {
848   if (VEC_length (varobj_p, var->children) > to)
849     return 1;
850   return ((to == -1 || VEC_length (varobj_p, var->children) == to)
851 	  && var->saved_item != NULL);
852 }
853 
854 /* If the variable object is bound to a specific thread, that
855    is its evaluation can always be done in context of a frame
856    inside that thread, returns GDB id of the thread -- which
857    is always positive.  Otherwise, returns -1. */
858 int
859 varobj_get_thread_id (struct varobj *var)
860 {
861   if (var->root->valid_block && var->root->thread_id > 0)
862     return var->root->thread_id;
863   else
864     return -1;
865 }
866 
867 void
868 varobj_set_frozen (struct varobj *var, int frozen)
869 {
870   /* When a variable is unfrozen, we don't fetch its value.
871      The 'not_fetched' flag remains set, so next -var-update
872      won't complain.
873 
874      We don't fetch the value, because for structures the client
875      should do -var-update anyway.  It would be bad to have different
876      client-size logic for structure and other types.  */
877   var->frozen = frozen;
878 }
879 
880 int
881 varobj_get_frozen (struct varobj *var)
882 {
883   return var->frozen;
884 }
885 
886 /* A helper function that restricts a range to what is actually
887    available in a VEC.  This follows the usual rules for the meaning
888    of FROM and TO -- if either is negative, the entire range is
889    used.  */
890 
891 static void
892 restrict_range (VEC (varobj_p) *children, int *from, int *to)
893 {
894   if (*from < 0 || *to < 0)
895     {
896       *from = 0;
897       *to = VEC_length (varobj_p, children);
898     }
899   else
900     {
901       if (*from > VEC_length (varobj_p, children))
902 	*from = VEC_length (varobj_p, children);
903       if (*to > VEC_length (varobj_p, children))
904 	*to = VEC_length (varobj_p, children);
905       if (*from > *to)
906 	*from = *to;
907     }
908 }
909 
910 #if HAVE_PYTHON
911 
912 /* A helper for update_dynamic_varobj_children that installs a new
913    child when needed.  */
914 
915 static void
916 install_dynamic_child (struct varobj *var,
917 		       VEC (varobj_p) **changed,
918 		       VEC (varobj_p) **new,
919 		       VEC (varobj_p) **unchanged,
920 		       int *cchanged,
921 		       int index,
922 		       const char *name,
923 		       struct value *value)
924 {
925   if (VEC_length (varobj_p, var->children) < index + 1)
926     {
927       /* There's no child yet.  */
928       struct varobj *child = varobj_add_child (var, name, value);
929 
930       if (new)
931 	{
932 	  VEC_safe_push (varobj_p, *new, child);
933 	  *cchanged = 1;
934 	}
935     }
936   else
937     {
938       varobj_p existing = VEC_index (varobj_p, var->children, index);
939 
940       if (install_new_value (existing, value, 0))
941 	{
942 	  if (changed)
943 	    VEC_safe_push (varobj_p, *changed, existing);
944 	}
945       else if (unchanged)
946 	VEC_safe_push (varobj_p, *unchanged, existing);
947     }
948 }
949 
950 static int
951 dynamic_varobj_has_child_method (struct varobj *var)
952 {
953   struct cleanup *back_to;
954   PyObject *printer = var->pretty_printer;
955   int result;
956 
957   back_to = varobj_ensure_python_env (var);
958   result = PyObject_HasAttr (printer, gdbpy_children_cst);
959   do_cleanups (back_to);
960   return result;
961 }
962 
963 #endif
964 
965 static int
966 update_dynamic_varobj_children (struct varobj *var,
967 				VEC (varobj_p) **changed,
968 				VEC (varobj_p) **new,
969 				VEC (varobj_p) **unchanged,
970 				int *cchanged,
971 				int update_children,
972 				int from,
973 				int to)
974 {
975 #if HAVE_PYTHON
976   struct cleanup *back_to;
977   PyObject *children;
978   int i;
979   PyObject *printer = var->pretty_printer;
980 
981   back_to = varobj_ensure_python_env (var);
982 
983   *cchanged = 0;
984   if (!PyObject_HasAttr (printer, gdbpy_children_cst))
985     {
986       do_cleanups (back_to);
987       return 0;
988     }
989 
990   if (update_children || !var->child_iter)
991     {
992       children = PyObject_CallMethodObjArgs (printer, gdbpy_children_cst,
993 					     NULL);
994 
995       if (!children)
996 	{
997 	  gdbpy_print_stack ();
998 	  error (_("Null value returned for children"));
999 	}
1000 
1001       make_cleanup_py_decref (children);
1002 
1003       if (!PyIter_Check (children))
1004 	error (_("Returned value is not iterable"));
1005 
1006       Py_XDECREF (var->child_iter);
1007       var->child_iter = PyObject_GetIter (children);
1008       if (!var->child_iter)
1009 	{
1010 	  gdbpy_print_stack ();
1011 	  error (_("Could not get children iterator"));
1012 	}
1013 
1014       Py_XDECREF (var->saved_item);
1015       var->saved_item = NULL;
1016 
1017       i = 0;
1018     }
1019   else
1020     i = VEC_length (varobj_p, var->children);
1021 
1022   /* We ask for one extra child, so that MI can report whether there
1023      are more children.  */
1024   for (; to < 0 || i < to + 1; ++i)
1025     {
1026       PyObject *item;
1027 
1028       /* See if there was a leftover from last time.  */
1029       if (var->saved_item)
1030 	{
1031 	  item = var->saved_item;
1032 	  var->saved_item = NULL;
1033 	}
1034       else
1035 	item = PyIter_Next (var->child_iter);
1036 
1037       if (!item)
1038 	break;
1039 
1040       /* We don't want to push the extra child on any report list.  */
1041       if (to < 0 || i < to)
1042 	{
1043 	  PyObject *py_v;
1044 	  char *name;
1045 	  struct value *v;
1046 	  struct cleanup *inner;
1047 	  int can_mention = from < 0 || i >= from;
1048 
1049 	  inner = make_cleanup_py_decref (item);
1050 
1051 	  if (!PyArg_ParseTuple (item, "sO", &name, &py_v))
1052 	    error (_("Invalid item from the child list"));
1053 
1054 	  v = convert_value_from_python (py_v);
1055 	  install_dynamic_child (var, can_mention ? changed : NULL,
1056 				 can_mention ? new : NULL,
1057 				 can_mention ? unchanged : NULL,
1058 				 can_mention ? cchanged : NULL, i, name, v);
1059 	  do_cleanups (inner);
1060 	}
1061       else
1062 	{
1063 	  Py_XDECREF (var->saved_item);
1064 	  var->saved_item = item;
1065 
1066 	  /* We want to truncate the child list just before this
1067 	     element.  */
1068 	  break;
1069 	}
1070     }
1071 
1072   if (i < VEC_length (varobj_p, var->children))
1073     {
1074       int j;
1075 
1076       *cchanged = 1;
1077       for (j = i; j < VEC_length (varobj_p, var->children); ++j)
1078 	varobj_delete (VEC_index (varobj_p, var->children, j), NULL, 0);
1079       VEC_truncate (varobj_p, var->children, i);
1080     }
1081 
1082   /* If there are fewer children than requested, note that the list of
1083      children changed.  */
1084   if (to >= 0 && VEC_length (varobj_p, var->children) < to)
1085     *cchanged = 1;
1086 
1087   var->num_children = VEC_length (varobj_p, var->children);
1088 
1089   do_cleanups (back_to);
1090 
1091   return 1;
1092 #else
1093   gdb_assert (0 && "should never be called if Python is not enabled");
1094 #endif
1095 }
1096 
1097 int
1098 varobj_get_num_children (struct varobj *var)
1099 {
1100   if (var->num_children == -1)
1101     {
1102       if (var->pretty_printer)
1103 	{
1104 	  int dummy;
1105 
1106 	  /* If we have a dynamic varobj, don't report -1 children.
1107 	     So, try to fetch some children first.  */
1108 	  update_dynamic_varobj_children (var, NULL, NULL, NULL, &dummy,
1109 					  0, 0, 0);
1110 	}
1111       else
1112 	var->num_children = number_of_children (var);
1113     }
1114 
1115   return var->num_children >= 0 ? var->num_children : 0;
1116 }
1117 
1118 /* Creates a list of the immediate children of a variable object;
1119    the return code is the number of such children or -1 on error */
1120 
1121 VEC (varobj_p)*
1122 varobj_list_children (struct varobj *var, int *from, int *to)
1123 {
1124   char *name;
1125   int i, children_changed;
1126 
1127   var->children_requested = 1;
1128 
1129   if (var->pretty_printer)
1130     {
1131       /* This, in theory, can result in the number of children changing without
1132 	 frontend noticing.  But well, calling -var-list-children on the same
1133 	 varobj twice is not something a sane frontend would do.  */
1134       update_dynamic_varobj_children (var, NULL, NULL, NULL, &children_changed,
1135 				      0, 0, *to);
1136       restrict_range (var->children, from, to);
1137       return var->children;
1138     }
1139 
1140   if (var->num_children == -1)
1141     var->num_children = number_of_children (var);
1142 
1143   /* If that failed, give up.  */
1144   if (var->num_children == -1)
1145     return var->children;
1146 
1147   /* If we're called when the list of children is not yet initialized,
1148      allocate enough elements in it.  */
1149   while (VEC_length (varobj_p, var->children) < var->num_children)
1150     VEC_safe_push (varobj_p, var->children, NULL);
1151 
1152   for (i = 0; i < var->num_children; i++)
1153     {
1154       varobj_p existing = VEC_index (varobj_p, var->children, i);
1155 
1156       if (existing == NULL)
1157 	{
1158 	  /* Either it's the first call to varobj_list_children for
1159 	     this variable object, and the child was never created,
1160 	     or it was explicitly deleted by the client.  */
1161 	  name = name_of_child (var, i);
1162 	  existing = create_child (var, i, name);
1163 	  VEC_replace (varobj_p, var->children, i, existing);
1164 	}
1165     }
1166 
1167   restrict_range (var->children, from, to);
1168   return var->children;
1169 }
1170 
1171 #if HAVE_PYTHON
1172 
1173 static struct varobj *
1174 varobj_add_child (struct varobj *var, const char *name, struct value *value)
1175 {
1176   varobj_p v = create_child_with_value (var,
1177 					VEC_length (varobj_p, var->children),
1178 					name, value);
1179 
1180   VEC_safe_push (varobj_p, var->children, v);
1181   return v;
1182 }
1183 
1184 #endif /* HAVE_PYTHON */
1185 
1186 /* Obtain the type of an object Variable as a string similar to the one gdb
1187    prints on the console */
1188 
1189 char *
1190 varobj_get_type (struct varobj *var)
1191 {
1192   /* For the "fake" variables, do not return a type. (It's type is
1193      NULL, too.)
1194      Do not return a type for invalid variables as well.  */
1195   if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
1196     return NULL;
1197 
1198   return type_to_string (var->type);
1199 }
1200 
1201 /* Obtain the type of an object variable.  */
1202 
1203 struct type *
1204 varobj_get_gdb_type (struct varobj *var)
1205 {
1206   return var->type;
1207 }
1208 
1209 /* Return a pointer to the full rooted expression of varobj VAR.
1210    If it has not been computed yet, compute it.  */
1211 char *
1212 varobj_get_path_expr (struct varobj *var)
1213 {
1214   if (var->path_expr != NULL)
1215     return var->path_expr;
1216   else
1217     {
1218       /* For root varobjs, we initialize path_expr
1219 	 when creating varobj, so here it should be
1220 	 child varobj.  */
1221       gdb_assert (!is_root_p (var));
1222       return (*var->root->lang->path_expr_of_child) (var);
1223     }
1224 }
1225 
1226 enum varobj_languages
1227 varobj_get_language (struct varobj *var)
1228 {
1229   return variable_language (var);
1230 }
1231 
1232 int
1233 varobj_get_attributes (struct varobj *var)
1234 {
1235   int attributes = 0;
1236 
1237   if (varobj_editable_p (var))
1238     /* FIXME: define masks for attributes */
1239     attributes |= 0x00000001;	/* Editable */
1240 
1241   return attributes;
1242 }
1243 
1244 int
1245 varobj_pretty_printed_p (struct varobj *var)
1246 {
1247   return var->pretty_printer != NULL;
1248 }
1249 
1250 char *
1251 varobj_get_formatted_value (struct varobj *var,
1252 			    enum varobj_display_formats format)
1253 {
1254   return my_value_of_variable (var, format);
1255 }
1256 
1257 char *
1258 varobj_get_value (struct varobj *var)
1259 {
1260   return my_value_of_variable (var, var->format);
1261 }
1262 
1263 /* Set the value of an object variable (if it is editable) to the
1264    value of the given expression */
1265 /* Note: Invokes functions that can call error() */
1266 
1267 int
1268 varobj_set_value (struct varobj *var, char *expression)
1269 {
1270   struct value *val;
1271 
1272   /* The argument "expression" contains the variable's new value.
1273      We need to first construct a legal expression for this -- ugh! */
1274   /* Does this cover all the bases? */
1275   struct expression *exp;
1276   struct value *value;
1277   int saved_input_radix = input_radix;
1278   char *s = expression;
1279 
1280   gdb_assert (varobj_editable_p (var));
1281 
1282   input_radix = 10;		/* ALWAYS reset to decimal temporarily */
1283   exp = parse_exp_1 (&s, 0, 0);
1284   if (!gdb_evaluate_expression (exp, &value))
1285     {
1286       /* We cannot proceed without a valid expression. */
1287       xfree (exp);
1288       return 0;
1289     }
1290 
1291   /* All types that are editable must also be changeable.  */
1292   gdb_assert (varobj_value_is_changeable_p (var));
1293 
1294   /* The value of a changeable variable object must not be lazy.  */
1295   gdb_assert (!value_lazy (var->value));
1296 
1297   /* Need to coerce the input.  We want to check if the
1298      value of the variable object will be different
1299      after assignment, and the first thing value_assign
1300      does is coerce the input.
1301      For example, if we are assigning an array to a pointer variable we
1302      should compare the pointer with the the array's address, not with the
1303      array's content.  */
1304   value = coerce_array (value);
1305 
1306   /* The new value may be lazy.  gdb_value_assign, or
1307      rather value_contents, will take care of this.
1308      If fetching of the new value will fail, gdb_value_assign
1309      with catch the exception.  */
1310   if (!gdb_value_assign (var->value, value, &val))
1311     return 0;
1312 
1313   /* If the value has changed, record it, so that next -var-update can
1314      report this change.  If a variable had a value of '1', we've set it
1315      to '333' and then set again to '1', when -var-update will report this
1316      variable as changed -- because the first assignment has set the
1317      'updated' flag.  There's no need to optimize that, because return value
1318      of -var-update should be considered an approximation.  */
1319   var->updated = install_new_value (var, val, 0 /* Compare values. */);
1320   input_radix = saved_input_radix;
1321   return 1;
1322 }
1323 
1324 #if HAVE_PYTHON
1325 
1326 /* A helper function to install a constructor function and visualizer
1327    in a varobj.  */
1328 
1329 static void
1330 install_visualizer (struct varobj *var, PyObject *constructor,
1331 		    PyObject *visualizer)
1332 {
1333   Py_XDECREF (var->constructor);
1334   var->constructor = constructor;
1335 
1336   Py_XDECREF (var->pretty_printer);
1337   var->pretty_printer = visualizer;
1338 
1339   Py_XDECREF (var->child_iter);
1340   var->child_iter = NULL;
1341 }
1342 
1343 /* Install the default visualizer for VAR.  */
1344 
1345 static void
1346 install_default_visualizer (struct varobj *var)
1347 {
1348   if (pretty_printing)
1349     {
1350       PyObject *pretty_printer = NULL;
1351 
1352       if (var->value)
1353 	{
1354 	  pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1355 	  if (! pretty_printer)
1356 	    {
1357 	      gdbpy_print_stack ();
1358 	      error (_("Cannot instantiate printer for default visualizer"));
1359 	    }
1360 	}
1361 
1362       if (pretty_printer == Py_None)
1363 	{
1364 	  Py_DECREF (pretty_printer);
1365 	  pretty_printer = NULL;
1366 	}
1367 
1368       install_visualizer (var, NULL, pretty_printer);
1369     }
1370 }
1371 
1372 /* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1373    make a new object.  */
1374 
1375 static void
1376 construct_visualizer (struct varobj *var, PyObject *constructor)
1377 {
1378   PyObject *pretty_printer;
1379 
1380   Py_INCREF (constructor);
1381   if (constructor == Py_None)
1382     pretty_printer = NULL;
1383   else
1384     {
1385       pretty_printer = instantiate_pretty_printer (constructor, var->value);
1386       if (! pretty_printer)
1387 	{
1388 	  gdbpy_print_stack ();
1389 	  Py_DECREF (constructor);
1390 	  constructor = Py_None;
1391 	  Py_INCREF (constructor);
1392 	}
1393 
1394       if (pretty_printer == Py_None)
1395 	{
1396 	  Py_DECREF (pretty_printer);
1397 	  pretty_printer = NULL;
1398 	}
1399     }
1400 
1401   install_visualizer (var, constructor, pretty_printer);
1402 }
1403 
1404 #endif /* HAVE_PYTHON */
1405 
1406 /* A helper function for install_new_value.  This creates and installs
1407    a visualizer for VAR, if appropriate.  */
1408 
1409 static void
1410 install_new_value_visualizer (struct varobj *var)
1411 {
1412 #if HAVE_PYTHON
1413   /* If the constructor is None, then we want the raw value.  If VAR
1414      does not have a value, just skip this.  */
1415   if (var->constructor != Py_None && var->value)
1416     {
1417       struct cleanup *cleanup;
1418 
1419       cleanup = varobj_ensure_python_env (var);
1420 
1421       if (!var->constructor)
1422 	install_default_visualizer (var);
1423       else
1424 	construct_visualizer (var, var->constructor);
1425 
1426       do_cleanups (cleanup);
1427     }
1428 #else
1429   /* Do nothing.  */
1430 #endif
1431 }
1432 
1433 /* Assign a new value to a variable object.  If INITIAL is non-zero,
1434    this is the first assignement after the variable object was just
1435    created, or changed type.  In that case, just assign the value
1436    and return 0.
1437    Otherwise, assign the new value, and return 1 if the value is different
1438    from the current one, 0 otherwise. The comparison is done on textual
1439    representation of value. Therefore, some types need not be compared. E.g.
1440    for structures the reported value is always "{...}", so no comparison is
1441    necessary here. If the old value was NULL and new one is not, or vice versa,
1442    we always return 1.
1443 
1444    The VALUE parameter should not be released -- the function will
1445    take care of releasing it when needed.  */
1446 static int
1447 install_new_value (struct varobj *var, struct value *value, int initial)
1448 {
1449   int changeable;
1450   int need_to_fetch;
1451   int changed = 0;
1452   int intentionally_not_fetched = 0;
1453   char *print_value = NULL;
1454 
1455   /* We need to know the varobj's type to decide if the value should
1456      be fetched or not.  C++ fake children (public/protected/private) don't have
1457      a type. */
1458   gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
1459   changeable = varobj_value_is_changeable_p (var);
1460 
1461   /* If the type has custom visualizer, we consider it to be always
1462      changeable. FIXME: need to make sure this behaviour will not
1463      mess up read-sensitive values.  */
1464   if (var->pretty_printer)
1465     changeable = 1;
1466 
1467   need_to_fetch = changeable;
1468 
1469   /* We are not interested in the address of references, and given
1470      that in C++ a reference is not rebindable, it cannot
1471      meaningfully change.  So, get hold of the real value.  */
1472   if (value)
1473     value = coerce_ref (value);
1474 
1475   if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1476     /* For unions, we need to fetch the value implicitly because
1477        of implementation of union member fetch.  When gdb
1478        creates a value for a field and the value of the enclosing
1479        structure is not lazy,  it immediately copies the necessary
1480        bytes from the enclosing values.  If the enclosing value is
1481        lazy, the call to value_fetch_lazy on the field will read
1482        the data from memory.  For unions, that means we'll read the
1483        same memory more than once, which is not desirable.  So
1484        fetch now.  */
1485     need_to_fetch = 1;
1486 
1487   /* The new value might be lazy.  If the type is changeable,
1488      that is we'll be comparing values of this type, fetch the
1489      value now.  Otherwise, on the next update the old value
1490      will be lazy, which means we've lost that old value.  */
1491   if (need_to_fetch && value && value_lazy (value))
1492     {
1493       struct varobj *parent = var->parent;
1494       int frozen = var->frozen;
1495 
1496       for (; !frozen && parent; parent = parent->parent)
1497 	frozen |= parent->frozen;
1498 
1499       if (frozen && initial)
1500 	{
1501 	  /* For variables that are frozen, or are children of frozen
1502 	     variables, we don't do fetch on initial assignment.
1503 	     For non-initial assignemnt we do the fetch, since it means we're
1504 	     explicitly asked to compare the new value with the old one.  */
1505 	  intentionally_not_fetched = 1;
1506 	}
1507       else if (!gdb_value_fetch_lazy (value))
1508 	{
1509 	  /* Set the value to NULL, so that for the next -var-update,
1510 	     we don't try to compare the new value with this value,
1511 	     that we couldn't even read.  */
1512 	  value = NULL;
1513 	}
1514     }
1515 
1516 
1517   /* Below, we'll be comparing string rendering of old and new
1518      values.  Don't get string rendering if the value is
1519      lazy -- if it is, the code above has decided that the value
1520      should not be fetched.  */
1521   if (value && !value_lazy (value) && !var->pretty_printer)
1522     print_value = value_get_print_value (value, var->format, var);
1523 
1524   /* If the type is changeable, compare the old and the new values.
1525      If this is the initial assignment, we don't have any old value
1526      to compare with.  */
1527   if (!initial && changeable)
1528     {
1529       /* If the value of the varobj was changed by -var-set-value, then the
1530 	 value in the varobj and in the target is the same.  However, that value
1531 	 is different from the value that the varobj had after the previous
1532 	 -var-update. So need to the varobj as changed.  */
1533       if (var->updated)
1534 	{
1535 	  changed = 1;
1536 	}
1537       else if (! var->pretty_printer)
1538 	{
1539 	  /* Try to compare the values.  That requires that both
1540 	     values are non-lazy.  */
1541 	  if (var->not_fetched && value_lazy (var->value))
1542 	    {
1543 	      /* This is a frozen varobj and the value was never read.
1544 		 Presumably, UI shows some "never read" indicator.
1545 		 Now that we've fetched the real value, we need to report
1546 		 this varobj as changed so that UI can show the real
1547 		 value.  */
1548 	      changed = 1;
1549 	    }
1550           else  if (var->value == NULL && value == NULL)
1551 	    /* Equal. */
1552 	    ;
1553 	  else if (var->value == NULL || value == NULL)
1554 	    {
1555 	      changed = 1;
1556 	    }
1557 	  else
1558 	    {
1559 	      gdb_assert (!value_lazy (var->value));
1560 	      gdb_assert (!value_lazy (value));
1561 
1562 	      gdb_assert (var->print_value != NULL && print_value != NULL);
1563 	      if (strcmp (var->print_value, print_value) != 0)
1564 		changed = 1;
1565 	    }
1566 	}
1567     }
1568 
1569   if (!initial && !changeable)
1570     {
1571       /* For values that are not changeable, we don't compare the values.
1572 	 However, we want to notice if a value was not NULL and now is NULL,
1573 	 or vise versa, so that we report when top-level varobjs come in scope
1574 	 and leave the scope.  */
1575       changed = (var->value != NULL) != (value != NULL);
1576     }
1577 
1578   /* We must always keep the new value, since children depend on it.  */
1579   if (var->value != NULL && var->value != value)
1580     value_free (var->value);
1581   var->value = value;
1582   if (value != NULL)
1583     value_incref (value);
1584   if (value && value_lazy (value) && intentionally_not_fetched)
1585     var->not_fetched = 1;
1586   else
1587     var->not_fetched = 0;
1588   var->updated = 0;
1589 
1590   install_new_value_visualizer (var);
1591 
1592   /* If we installed a pretty-printer, re-compare the printed version
1593      to see if the variable changed.  */
1594   if (var->pretty_printer)
1595     {
1596       xfree (print_value);
1597       print_value = value_get_print_value (var->value, var->format, var);
1598       if ((var->print_value == NULL && print_value != NULL)
1599 	  || (var->print_value != NULL && print_value == NULL)
1600 	  || (var->print_value != NULL && print_value != NULL
1601 	      && strcmp (var->print_value, print_value) != 0))
1602 	changed = 1;
1603     }
1604   if (var->print_value)
1605     xfree (var->print_value);
1606   var->print_value = print_value;
1607 
1608   gdb_assert (!var->value || value_type (var->value));
1609 
1610   return changed;
1611 }
1612 
1613 /* Return the requested range for a varobj.  VAR is the varobj.  FROM
1614    and TO are out parameters; *FROM and *TO will be set to the
1615    selected sub-range of VAR.  If no range was selected using
1616    -var-set-update-range, then both will be -1.  */
1617 void
1618 varobj_get_child_range (struct varobj *var, int *from, int *to)
1619 {
1620   *from = var->from;
1621   *to = var->to;
1622 }
1623 
1624 /* Set the selected sub-range of children of VAR to start at index
1625    FROM and end at index TO.  If either FROM or TO is less than zero,
1626    this is interpreted as a request for all children.  */
1627 void
1628 varobj_set_child_range (struct varobj *var, int from, int to)
1629 {
1630   var->from = from;
1631   var->to = to;
1632 }
1633 
1634 void
1635 varobj_set_visualizer (struct varobj *var, const char *visualizer)
1636 {
1637 #if HAVE_PYTHON
1638   PyObject *mainmod, *globals, *constructor;
1639   struct cleanup *back_to;
1640 
1641   back_to = varobj_ensure_python_env (var);
1642 
1643   mainmod = PyImport_AddModule ("__main__");
1644   globals = PyModule_GetDict (mainmod);
1645   Py_INCREF (globals);
1646   make_cleanup_py_decref (globals);
1647 
1648   constructor = PyRun_String (visualizer, Py_eval_input, globals, globals);
1649 
1650   if (! constructor)
1651     {
1652       gdbpy_print_stack ();
1653       error (_("Could not evaluate visualizer expression: %s"), visualizer);
1654     }
1655 
1656   construct_visualizer (var, constructor);
1657   Py_XDECREF (constructor);
1658 
1659   /* If there are any children now, wipe them.  */
1660   varobj_delete (var, NULL, 1 /* children only */);
1661   var->num_children = -1;
1662 
1663   do_cleanups (back_to);
1664 #else
1665   error (_("Python support required"));
1666 #endif
1667 }
1668 
1669 /* Update the values for a variable and its children.  This is a
1670    two-pronged attack.  First, re-parse the value for the root's
1671    expression to see if it's changed.  Then go all the way
1672    through its children, reconstructing them and noting if they've
1673    changed.
1674 
1675    The EXPLICIT parameter specifies if this call is result
1676    of MI request to update this specific variable, or
1677    result of implicit -var-update *. For implicit request, we don't
1678    update frozen variables.
1679 
1680    NOTE: This function may delete the caller's varobj. If it
1681    returns TYPE_CHANGED, then it has done this and VARP will be modified
1682    to point to the new varobj.  */
1683 
1684 VEC(varobj_update_result) *varobj_update (struct varobj **varp, int explicit)
1685 {
1686   int changed = 0;
1687   int type_changed = 0;
1688   int i;
1689   struct value *new;
1690   VEC (varobj_update_result) *stack = NULL;
1691   VEC (varobj_update_result) *result = NULL;
1692 
1693   /* Frozen means frozen -- we don't check for any change in
1694      this varobj, including its going out of scope, or
1695      changing type.  One use case for frozen varobjs is
1696      retaining previously evaluated expressions, and we don't
1697      want them to be reevaluated at all.  */
1698   if (!explicit && (*varp)->frozen)
1699     return result;
1700 
1701   if (!(*varp)->root->is_valid)
1702     {
1703       varobj_update_result r = {0};
1704 
1705       r.varobj = *varp;
1706       r.status = VAROBJ_INVALID;
1707       VEC_safe_push (varobj_update_result, result, &r);
1708       return result;
1709     }
1710 
1711   if ((*varp)->root->rootvar == *varp)
1712     {
1713       varobj_update_result r = {0};
1714 
1715       r.varobj = *varp;
1716       r.status = VAROBJ_IN_SCOPE;
1717 
1718       /* Update the root variable. value_of_root can return NULL
1719 	 if the variable is no longer around, i.e. we stepped out of
1720 	 the frame in which a local existed. We are letting the
1721 	 value_of_root variable dispose of the varobj if the type
1722 	 has changed.  */
1723       new = value_of_root (varp, &type_changed);
1724       r.varobj = *varp;
1725 
1726       r.type_changed = type_changed;
1727       if (install_new_value ((*varp), new, type_changed))
1728 	r.changed = 1;
1729 
1730       if (new == NULL)
1731 	r.status = VAROBJ_NOT_IN_SCOPE;
1732       r.value_installed = 1;
1733 
1734       if (r.status == VAROBJ_NOT_IN_SCOPE)
1735 	{
1736 	  if (r.type_changed || r.changed)
1737 	    VEC_safe_push (varobj_update_result, result, &r);
1738 	  return result;
1739 	}
1740 
1741       VEC_safe_push (varobj_update_result, stack, &r);
1742     }
1743   else
1744     {
1745       varobj_update_result r = {0};
1746 
1747       r.varobj = *varp;
1748       VEC_safe_push (varobj_update_result, stack, &r);
1749     }
1750 
1751   /* Walk through the children, reconstructing them all.  */
1752   while (!VEC_empty (varobj_update_result, stack))
1753     {
1754       varobj_update_result r = *(VEC_last (varobj_update_result, stack));
1755       struct varobj *v = r.varobj;
1756 
1757       VEC_pop (varobj_update_result, stack);
1758 
1759       /* Update this variable, unless it's a root, which is already
1760 	 updated.  */
1761       if (!r.value_installed)
1762 	{
1763 	  new = value_of_child (v->parent, v->index);
1764 	  if (install_new_value (v, new, 0 /* type not changed */))
1765 	    {
1766 	      r.changed = 1;
1767 	      v->updated = 0;
1768 	    }
1769 	}
1770 
1771       /* We probably should not get children of a varobj that has a
1772 	 pretty-printer, but for which -var-list-children was never
1773 	 invoked.    */
1774       if (v->pretty_printer)
1775 	{
1776 	  VEC (varobj_p) *changed = 0, *new = 0, *unchanged = 0;
1777 	  int i, children_changed = 0;
1778 
1779 	  if (v->frozen)
1780 	    continue;
1781 
1782 	  if (!v->children_requested)
1783 	    {
1784 	      int dummy;
1785 
1786 	      /* If we initially did not have potential children, but
1787 		 now we do, consider the varobj as changed.
1788 		 Otherwise, if children were never requested, consider
1789 		 it as unchanged -- presumably, such varobj is not yet
1790 		 expanded in the UI, so we need not bother getting
1791 		 it.  */
1792 	      if (!varobj_has_more (v, 0))
1793 		{
1794 		  update_dynamic_varobj_children (v, NULL, NULL, NULL,
1795 						  &dummy, 0, 0, 0);
1796 		  if (varobj_has_more (v, 0))
1797 		    r.changed = 1;
1798 		}
1799 
1800 	      if (r.changed)
1801 		VEC_safe_push (varobj_update_result, result, &r);
1802 
1803 	      continue;
1804 	    }
1805 
1806 	  /* If update_dynamic_varobj_children returns 0, then we have
1807 	     a non-conforming pretty-printer, so we skip it.  */
1808 	  if (update_dynamic_varobj_children (v, &changed, &new, &unchanged,
1809 					      &children_changed, 1,
1810 					      v->from, v->to))
1811 	    {
1812 	      if (children_changed || new)
1813 		{
1814 		  r.children_changed = 1;
1815 		  r.new = new;
1816 		}
1817 	      /* Push in reverse order so that the first child is
1818 		 popped from the work stack first, and so will be
1819 		 added to result first.  This does not affect
1820 		 correctness, just "nicer".  */
1821 	      for (i = VEC_length (varobj_p, changed) - 1; i >= 0; --i)
1822 		{
1823 		  varobj_p tmp = VEC_index (varobj_p, changed, i);
1824 		  varobj_update_result r = {0};
1825 
1826 		  r.varobj = tmp;
1827 		  r.changed = 1;
1828 		  r.value_installed = 1;
1829 		  VEC_safe_push (varobj_update_result, stack, &r);
1830 		}
1831 	      for (i = VEC_length (varobj_p, unchanged) - 1; i >= 0; --i)
1832 	      	{
1833 		  varobj_p tmp = VEC_index (varobj_p, unchanged, i);
1834 
1835 	      	  if (!tmp->frozen)
1836 	      	    {
1837 	      	      varobj_update_result r = {0};
1838 
1839 		      r.varobj = tmp;
1840 	      	      r.value_installed = 1;
1841 	      	      VEC_safe_push (varobj_update_result, stack, &r);
1842 	      	    }
1843 	      	}
1844 	      if (r.changed || r.children_changed)
1845 		VEC_safe_push (varobj_update_result, result, &r);
1846 
1847 	      /* Free CHANGED and UNCHANGED, but not NEW, because NEW
1848 		 has been put into the result vector.  */
1849 	      VEC_free (varobj_p, changed);
1850 	      VEC_free (varobj_p, unchanged);
1851 
1852 	      continue;
1853 	    }
1854 	}
1855 
1856       /* Push any children.  Use reverse order so that the first
1857 	 child is popped from the work stack first, and so
1858 	 will be added to result first.  This does not
1859 	 affect correctness, just "nicer".  */
1860       for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
1861 	{
1862 	  varobj_p c = VEC_index (varobj_p, v->children, i);
1863 
1864 	  /* Child may be NULL if explicitly deleted by -var-delete.  */
1865 	  if (c != NULL && !c->frozen)
1866 	    {
1867 	      varobj_update_result r = {0};
1868 
1869 	      r.varobj = c;
1870 	      VEC_safe_push (varobj_update_result, stack, &r);
1871 	    }
1872 	}
1873 
1874       if (r.changed || r.type_changed)
1875 	VEC_safe_push (varobj_update_result, result, &r);
1876     }
1877 
1878   VEC_free (varobj_update_result, stack);
1879 
1880   return result;
1881 }
1882 
1883 
1884 /* Helper functions */
1885 
1886 /*
1887  * Variable object construction/destruction
1888  */
1889 
1890 static int
1891 delete_variable (struct cpstack **resultp, struct varobj *var,
1892 		 int only_children_p)
1893 {
1894   int delcount = 0;
1895 
1896   delete_variable_1 (resultp, &delcount, var,
1897 		     only_children_p, 1 /* remove_from_parent_p */ );
1898 
1899   return delcount;
1900 }
1901 
1902 /* Delete the variable object VAR and its children */
1903 /* IMPORTANT NOTE: If we delete a variable which is a child
1904    and the parent is not removed we dump core.  It must be always
1905    initially called with remove_from_parent_p set */
1906 static void
1907 delete_variable_1 (struct cpstack **resultp, int *delcountp,
1908 		   struct varobj *var, int only_children_p,
1909 		   int remove_from_parent_p)
1910 {
1911   int i;
1912 
1913   /* Delete any children of this variable, too. */
1914   for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
1915     {
1916       varobj_p child = VEC_index (varobj_p, var->children, i);
1917 
1918       if (!child)
1919 	continue;
1920       if (!remove_from_parent_p)
1921 	child->parent = NULL;
1922       delete_variable_1 (resultp, delcountp, child, 0, only_children_p);
1923     }
1924   VEC_free (varobj_p, var->children);
1925 
1926   /* if we were called to delete only the children we are done here */
1927   if (only_children_p)
1928     return;
1929 
1930   /* Otherwise, add it to the list of deleted ones and proceed to do so */
1931   /* If the name is null, this is a temporary variable, that has not
1932      yet been installed, don't report it, it belongs to the caller... */
1933   if (var->obj_name != NULL)
1934     {
1935       cppush (resultp, xstrdup (var->obj_name));
1936       *delcountp = *delcountp + 1;
1937     }
1938 
1939   /* If this variable has a parent, remove it from its parent's list */
1940   /* OPTIMIZATION: if the parent of this variable is also being deleted,
1941      (as indicated by remove_from_parent_p) we don't bother doing an
1942      expensive list search to find the element to remove when we are
1943      discarding the list afterwards */
1944   if ((remove_from_parent_p) && (var->parent != NULL))
1945     {
1946       VEC_replace (varobj_p, var->parent->children, var->index, NULL);
1947     }
1948 
1949   if (var->obj_name != NULL)
1950     uninstall_variable (var);
1951 
1952   /* Free memory associated with this variable */
1953   free_variable (var);
1954 }
1955 
1956 /* Install the given variable VAR with the object name VAR->OBJ_NAME. */
1957 static int
1958 install_variable (struct varobj *var)
1959 {
1960   struct vlist *cv;
1961   struct vlist *newvl;
1962   const char *chp;
1963   unsigned int index = 0;
1964   unsigned int i = 1;
1965 
1966   for (chp = var->obj_name; *chp; chp++)
1967     {
1968       index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1969     }
1970 
1971   cv = *(varobj_table + index);
1972   while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1973     cv = cv->next;
1974 
1975   if (cv != NULL)
1976     error (_("Duplicate variable object name"));
1977 
1978   /* Add varobj to hash table */
1979   newvl = xmalloc (sizeof (struct vlist));
1980   newvl->next = *(varobj_table + index);
1981   newvl->var = var;
1982   *(varobj_table + index) = newvl;
1983 
1984   /* If root, add varobj to root list */
1985   if (is_root_p (var))
1986     {
1987       /* Add to list of root variables */
1988       if (rootlist == NULL)
1989 	var->root->next = NULL;
1990       else
1991 	var->root->next = rootlist;
1992       rootlist = var->root;
1993     }
1994 
1995   return 1;			/* OK */
1996 }
1997 
1998 /* Unistall the object VAR. */
1999 static void
2000 uninstall_variable (struct varobj *var)
2001 {
2002   struct vlist *cv;
2003   struct vlist *prev;
2004   struct varobj_root *cr;
2005   struct varobj_root *prer;
2006   const char *chp;
2007   unsigned int index = 0;
2008   unsigned int i = 1;
2009 
2010   /* Remove varobj from hash table */
2011   for (chp = var->obj_name; *chp; chp++)
2012     {
2013       index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
2014     }
2015 
2016   cv = *(varobj_table + index);
2017   prev = NULL;
2018   while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
2019     {
2020       prev = cv;
2021       cv = cv->next;
2022     }
2023 
2024   if (varobjdebug)
2025     fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
2026 
2027   if (cv == NULL)
2028     {
2029       warning
2030 	("Assertion failed: Could not find variable object \"%s\" to delete",
2031 	 var->obj_name);
2032       return;
2033     }
2034 
2035   if (prev == NULL)
2036     *(varobj_table + index) = cv->next;
2037   else
2038     prev->next = cv->next;
2039 
2040   xfree (cv);
2041 
2042   /* If root, remove varobj from root list */
2043   if (is_root_p (var))
2044     {
2045       /* Remove from list of root variables */
2046       if (rootlist == var->root)
2047 	rootlist = var->root->next;
2048       else
2049 	{
2050 	  prer = NULL;
2051 	  cr = rootlist;
2052 	  while ((cr != NULL) && (cr->rootvar != var))
2053 	    {
2054 	      prer = cr;
2055 	      cr = cr->next;
2056 	    }
2057 	  if (cr == NULL)
2058 	    {
2059 	      warning
2060 		("Assertion failed: Could not find varobj \"%s\" in root list",
2061 		 var->obj_name);
2062 	      return;
2063 	    }
2064 	  if (prer == NULL)
2065 	    rootlist = NULL;
2066 	  else
2067 	    prer->next = cr->next;
2068 	}
2069     }
2070 
2071 }
2072 
2073 /* Create and install a child of the parent of the given name */
2074 static struct varobj *
2075 create_child (struct varobj *parent, int index, char *name)
2076 {
2077   return create_child_with_value (parent, index, name,
2078 				  value_of_child (parent, index));
2079 }
2080 
2081 static struct varobj *
2082 create_child_with_value (struct varobj *parent, int index, const char *name,
2083 			 struct value *value)
2084 {
2085   struct varobj *child;
2086   char *childs_name;
2087 
2088   child = new_variable ();
2089 
2090   /* name is allocated by name_of_child */
2091   /* FIXME: xstrdup should not be here.  */
2092   child->name = xstrdup (name);
2093   child->index = index;
2094   child->parent = parent;
2095   child->root = parent->root;
2096   childs_name = xstrprintf ("%s.%s", parent->obj_name, name);
2097   child->obj_name = childs_name;
2098   install_variable (child);
2099 
2100   /* Compute the type of the child.  Must do this before
2101      calling install_new_value.  */
2102   if (value != NULL)
2103     /* If the child had no evaluation errors, var->value
2104        will be non-NULL and contain a valid type. */
2105     child->type = value_type (value);
2106   else
2107     /* Otherwise, we must compute the type. */
2108     child->type = (*child->root->lang->type_of_child) (child->parent,
2109 						       child->index);
2110   install_new_value (child, value, 1);
2111 
2112   return child;
2113 }
2114 
2115 
2116 /*
2117  * Miscellaneous utility functions.
2118  */
2119 
2120 /* Allocate memory and initialize a new variable */
2121 static struct varobj *
2122 new_variable (void)
2123 {
2124   struct varobj *var;
2125 
2126   var = (struct varobj *) xmalloc (sizeof (struct varobj));
2127   var->name = NULL;
2128   var->path_expr = NULL;
2129   var->obj_name = NULL;
2130   var->index = -1;
2131   var->type = NULL;
2132   var->value = NULL;
2133   var->num_children = -1;
2134   var->parent = NULL;
2135   var->children = NULL;
2136   var->format = 0;
2137   var->root = NULL;
2138   var->updated = 0;
2139   var->print_value = NULL;
2140   var->frozen = 0;
2141   var->not_fetched = 0;
2142   var->children_requested = 0;
2143   var->from = -1;
2144   var->to = -1;
2145   var->constructor = 0;
2146   var->pretty_printer = 0;
2147   var->child_iter = 0;
2148   var->saved_item = 0;
2149 
2150   return var;
2151 }
2152 
2153 /* Allocate memory and initialize a new root variable */
2154 static struct varobj *
2155 new_root_variable (void)
2156 {
2157   struct varobj *var = new_variable ();
2158 
2159   var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));;
2160   var->root->lang = NULL;
2161   var->root->exp = NULL;
2162   var->root->valid_block = NULL;
2163   var->root->frame = null_frame_id;
2164   var->root->floating = 0;
2165   var->root->rootvar = NULL;
2166   var->root->is_valid = 1;
2167 
2168   return var;
2169 }
2170 
2171 /* Free any allocated memory associated with VAR. */
2172 static void
2173 free_variable (struct varobj *var)
2174 {
2175 #if HAVE_PYTHON
2176   if (var->pretty_printer)
2177     {
2178       struct cleanup *cleanup = varobj_ensure_python_env (var);
2179       Py_XDECREF (var->constructor);
2180       Py_XDECREF (var->pretty_printer);
2181       Py_XDECREF (var->child_iter);
2182       Py_XDECREF (var->saved_item);
2183       do_cleanups (cleanup);
2184     }
2185 #endif
2186 
2187   value_free (var->value);
2188 
2189   /* Free the expression if this is a root variable. */
2190   if (is_root_p (var))
2191     {
2192       xfree (var->root->exp);
2193       xfree (var->root);
2194     }
2195 
2196   xfree (var->name);
2197   xfree (var->obj_name);
2198   xfree (var->print_value);
2199   xfree (var->path_expr);
2200   xfree (var);
2201 }
2202 
2203 static void
2204 do_free_variable_cleanup (void *var)
2205 {
2206   free_variable (var);
2207 }
2208 
2209 static struct cleanup *
2210 make_cleanup_free_variable (struct varobj *var)
2211 {
2212   return make_cleanup (do_free_variable_cleanup, var);
2213 }
2214 
2215 /* This returns the type of the variable. It also skips past typedefs
2216    to return the real type of the variable.
2217 
2218    NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
2219    except within get_target_type and get_type. */
2220 static struct type *
2221 get_type (struct varobj *var)
2222 {
2223   struct type *type;
2224 
2225   type = var->type;
2226   if (type != NULL)
2227     type = check_typedef (type);
2228 
2229   return type;
2230 }
2231 
2232 /* Return the type of the value that's stored in VAR,
2233    or that would have being stored there if the
2234    value were accessible.
2235 
2236    This differs from VAR->type in that VAR->type is always
2237    the true type of the expession in the source language.
2238    The return value of this function is the type we're
2239    actually storing in varobj, and using for displaying
2240    the values and for comparing previous and new values.
2241 
2242    For example, top-level references are always stripped.  */
2243 static struct type *
2244 get_value_type (struct varobj *var)
2245 {
2246   struct type *type;
2247 
2248   if (var->value)
2249     type = value_type (var->value);
2250   else
2251     type = var->type;
2252 
2253   type = check_typedef (type);
2254 
2255   if (TYPE_CODE (type) == TYPE_CODE_REF)
2256     type = get_target_type (type);
2257 
2258   type = check_typedef (type);
2259 
2260   return type;
2261 }
2262 
2263 /* This returns the target type (or NULL) of TYPE, also skipping
2264    past typedefs, just like get_type ().
2265 
2266    NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
2267    except within get_target_type and get_type. */
2268 static struct type *
2269 get_target_type (struct type *type)
2270 {
2271   if (type != NULL)
2272     {
2273       type = TYPE_TARGET_TYPE (type);
2274       if (type != NULL)
2275 	type = check_typedef (type);
2276     }
2277 
2278   return type;
2279 }
2280 
2281 /* What is the default display for this variable? We assume that
2282    everything is "natural". Any exceptions? */
2283 static enum varobj_display_formats
2284 variable_default_display (struct varobj *var)
2285 {
2286   return FORMAT_NATURAL;
2287 }
2288 
2289 /* FIXME: The following should be generic for any pointer */
2290 static void
2291 cppush (struct cpstack **pstack, char *name)
2292 {
2293   struct cpstack *s;
2294 
2295   s = (struct cpstack *) xmalloc (sizeof (struct cpstack));
2296   s->name = name;
2297   s->next = *pstack;
2298   *pstack = s;
2299 }
2300 
2301 /* FIXME: The following should be generic for any pointer */
2302 static char *
2303 cppop (struct cpstack **pstack)
2304 {
2305   struct cpstack *s;
2306   char *v;
2307 
2308   if ((*pstack)->name == NULL && (*pstack)->next == NULL)
2309     return NULL;
2310 
2311   s = *pstack;
2312   v = s->name;
2313   *pstack = (*pstack)->next;
2314   xfree (s);
2315 
2316   return v;
2317 }
2318 
2319 /*
2320  * Language-dependencies
2321  */
2322 
2323 /* Common entry points */
2324 
2325 /* Get the language of variable VAR. */
2326 static enum varobj_languages
2327 variable_language (struct varobj *var)
2328 {
2329   enum varobj_languages lang;
2330 
2331   switch (var->root->exp->language_defn->la_language)
2332     {
2333     default:
2334     case language_c:
2335       lang = vlang_c;
2336       break;
2337     case language_cplus:
2338       lang = vlang_cplus;
2339       break;
2340     case language_java:
2341       lang = vlang_java;
2342       break;
2343     }
2344 
2345   return lang;
2346 }
2347 
2348 /* Return the number of children for a given variable.
2349    The result of this function is defined by the language
2350    implementation. The number of children returned by this function
2351    is the number of children that the user will see in the variable
2352    display. */
2353 static int
2354 number_of_children (struct varobj *var)
2355 {
2356   return (*var->root->lang->number_of_children) (var);;
2357 }
2358 
2359 /* What is the expression for the root varobj VAR? Returns a malloc'd string. */
2360 static char *
2361 name_of_variable (struct varobj *var)
2362 {
2363   return (*var->root->lang->name_of_variable) (var);
2364 }
2365 
2366 /* What is the name of the INDEX'th child of VAR? Returns a malloc'd string. */
2367 static char *
2368 name_of_child (struct varobj *var, int index)
2369 {
2370   return (*var->root->lang->name_of_child) (var, index);
2371 }
2372 
2373 /* What is the ``struct value *'' of the root variable VAR?
2374    For floating variable object, evaluation can get us a value
2375    of different type from what is stored in varobj already.  In
2376    that case:
2377    - *type_changed will be set to 1
2378    - old varobj will be freed, and new one will be
2379    created, with the same name.
2380    - *var_handle will be set to the new varobj
2381    Otherwise, *type_changed will be set to 0.  */
2382 static struct value *
2383 value_of_root (struct varobj **var_handle, int *type_changed)
2384 {
2385   struct varobj *var;
2386 
2387   if (var_handle == NULL)
2388     return NULL;
2389 
2390   var = *var_handle;
2391 
2392   /* This should really be an exception, since this should
2393      only get called with a root variable. */
2394 
2395   if (!is_root_p (var))
2396     return NULL;
2397 
2398   if (var->root->floating)
2399     {
2400       struct varobj *tmp_var;
2401       char *old_type, *new_type;
2402 
2403       tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2404 			       USE_SELECTED_FRAME);
2405       if (tmp_var == NULL)
2406 	{
2407 	  return NULL;
2408 	}
2409       old_type = varobj_get_type (var);
2410       new_type = varobj_get_type (tmp_var);
2411       if (strcmp (old_type, new_type) == 0)
2412 	{
2413 	  /* The expression presently stored inside var->root->exp
2414 	     remembers the locations of local variables relatively to
2415 	     the frame where the expression was created (in DWARF location
2416 	     button, for example).  Naturally, those locations are not
2417 	     correct in other frames, so update the expression.  */
2418 
2419          struct expression *tmp_exp = var->root->exp;
2420 
2421          var->root->exp = tmp_var->root->exp;
2422          tmp_var->root->exp = tmp_exp;
2423 
2424 	  varobj_delete (tmp_var, NULL, 0);
2425 	  *type_changed = 0;
2426 	}
2427       else
2428 	{
2429 	  tmp_var->obj_name = xstrdup (var->obj_name);
2430 	  tmp_var->from = var->from;
2431 	  tmp_var->to = var->to;
2432 	  varobj_delete (var, NULL, 0);
2433 
2434 	  install_variable (tmp_var);
2435 	  *var_handle = tmp_var;
2436 	  var = *var_handle;
2437 	  *type_changed = 1;
2438 	}
2439       xfree (old_type);
2440       xfree (new_type);
2441     }
2442   else
2443     {
2444       *type_changed = 0;
2445     }
2446 
2447   return (*var->root->lang->value_of_root) (var_handle);
2448 }
2449 
2450 /* What is the ``struct value *'' for the INDEX'th child of PARENT? */
2451 static struct value *
2452 value_of_child (struct varobj *parent, int index)
2453 {
2454   struct value *value;
2455 
2456   value = (*parent->root->lang->value_of_child) (parent, index);
2457 
2458   return value;
2459 }
2460 
2461 /* GDB already has a command called "value_of_variable". Sigh. */
2462 static char *
2463 my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
2464 {
2465   if (var->root->is_valid)
2466     {
2467       if (var->pretty_printer)
2468 	return value_get_print_value (var->value, var->format, var);
2469       return (*var->root->lang->value_of_variable) (var, format);
2470     }
2471   else
2472     return NULL;
2473 }
2474 
2475 static char *
2476 value_get_print_value (struct value *value, enum varobj_display_formats format,
2477 		       struct varobj *var)
2478 {
2479   struct ui_file *stb;
2480   struct cleanup *old_chain;
2481   gdb_byte *thevalue = NULL;
2482   struct value_print_options opts;
2483   struct type *type = NULL;
2484   long len = 0;
2485   char *encoding = NULL;
2486   struct gdbarch *gdbarch = NULL;
2487 
2488   if (value == NULL)
2489     return NULL;
2490 
2491   gdbarch = get_type_arch (value_type (value));
2492 #if HAVE_PYTHON
2493   {
2494     struct cleanup *back_to = varobj_ensure_python_env (var);
2495     PyObject *value_formatter = var->pretty_printer;
2496 
2497     if (value_formatter)
2498       {
2499 	/* First check to see if we have any children at all.  If so,
2500 	   we simply return {...}.  */
2501 	if (dynamic_varobj_has_child_method (var))
2502 	  return xstrdup ("{...}");
2503 
2504 	if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
2505 	  {
2506 	    char *hint;
2507 	    struct value *replacement;
2508 	    int string_print = 0;
2509 	    PyObject *output = NULL;
2510 
2511 	    hint = gdbpy_get_display_hint (value_formatter);
2512 	    if (hint)
2513 	      {
2514 		if (!strcmp (hint, "string"))
2515 		  string_print = 1;
2516 		xfree (hint);
2517 	      }
2518 
2519 	    output = apply_varobj_pretty_printer (value_formatter,
2520 						  &replacement);
2521 	    if (output)
2522 	      {
2523 		if (gdbpy_is_lazy_string (output))
2524 		  {
2525 		    thevalue = gdbpy_extract_lazy_string (output, &type,
2526 							  &len, &encoding);
2527 		    string_print = 1;
2528 		  }
2529 		else
2530 		  {
2531 		    PyObject *py_str
2532 		      = python_string_to_target_python_string (output);
2533 
2534 		    if (py_str)
2535 		      {
2536 			char *s = PyString_AsString (py_str);
2537 
2538 			len = PyString_Size (py_str);
2539 			thevalue = xmemdup (s, len + 1, len + 1);
2540 			type = builtin_type (gdbarch)->builtin_char;
2541 			Py_DECREF (py_str);
2542 		      }
2543 		  }
2544 		Py_DECREF (output);
2545 	      }
2546 	    if (thevalue && !string_print)
2547 	      {
2548 		do_cleanups (back_to);
2549 		xfree (encoding);
2550 		return thevalue;
2551 	      }
2552 	    if (replacement)
2553 	      value = replacement;
2554 	  }
2555       }
2556     do_cleanups (back_to);
2557   }
2558 #endif
2559 
2560   stb = mem_fileopen ();
2561   old_chain = make_cleanup_ui_file_delete (stb);
2562 
2563   get_formatted_print_options (&opts, format_code[(int) format]);
2564   opts.deref_ref = 0;
2565   opts.raw = 1;
2566   if (thevalue)
2567     {
2568       make_cleanup (xfree, thevalue);
2569       make_cleanup (xfree, encoding);
2570       LA_PRINT_STRING (stb, type, thevalue, len, encoding, 0, &opts);
2571     }
2572   else
2573     common_val_print (value, stb, 0, &opts, current_language);
2574   thevalue = ui_file_xstrdup (stb, NULL);
2575 
2576   do_cleanups (old_chain);
2577   return thevalue;
2578 }
2579 
2580 int
2581 varobj_editable_p (struct varobj *var)
2582 {
2583   struct type *type;
2584 
2585   if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
2586     return 0;
2587 
2588   type = get_value_type (var);
2589 
2590   switch (TYPE_CODE (type))
2591     {
2592     case TYPE_CODE_STRUCT:
2593     case TYPE_CODE_UNION:
2594     case TYPE_CODE_ARRAY:
2595     case TYPE_CODE_FUNC:
2596     case TYPE_CODE_METHOD:
2597       return 0;
2598       break;
2599 
2600     default:
2601       return 1;
2602       break;
2603     }
2604 }
2605 
2606 /* Return non-zero if changes in value of VAR
2607    must be detected and reported by -var-update.
2608    Return zero is -var-update should never report
2609    changes of such values.  This makes sense for structures
2610    (since the changes in children values will be reported separately),
2611    or for artifical objects (like 'public' pseudo-field in C++).
2612 
2613    Return value of 0 means that gdb need not call value_fetch_lazy
2614    for the value of this variable object.  */
2615 static int
2616 varobj_value_is_changeable_p (struct varobj *var)
2617 {
2618   int r;
2619   struct type *type;
2620 
2621   if (CPLUS_FAKE_CHILD (var))
2622     return 0;
2623 
2624   type = get_value_type (var);
2625 
2626   switch (TYPE_CODE (type))
2627     {
2628     case TYPE_CODE_STRUCT:
2629     case TYPE_CODE_UNION:
2630     case TYPE_CODE_ARRAY:
2631       r = 0;
2632       break;
2633 
2634     default:
2635       r = 1;
2636     }
2637 
2638   return r;
2639 }
2640 
2641 /* Return 1 if that varobj is floating, that is is always evaluated in the
2642    selected frame, and not bound to thread/frame.  Such variable objects
2643    are created using '@' as frame specifier to -var-create.  */
2644 int
2645 varobj_floating_p (struct varobj *var)
2646 {
2647   return var->root->floating;
2648 }
2649 
2650 /* Given the value and the type of a variable object,
2651    adjust the value and type to those necessary
2652    for getting children of the variable object.
2653    This includes dereferencing top-level references
2654    to all types and dereferencing pointers to
2655    structures.
2656 
2657    Both TYPE and *TYPE should be non-null. VALUE
2658    can be null if we want to only translate type.
2659    *VALUE can be null as well -- if the parent
2660    value is not known.
2661 
2662    If WAS_PTR is not NULL, set *WAS_PTR to 0 or 1
2663    depending on whether pointer was dereferenced
2664    in this function.  */
2665 static void
2666 adjust_value_for_child_access (struct value **value,
2667 				  struct type **type,
2668 				  int *was_ptr)
2669 {
2670   gdb_assert (type && *type);
2671 
2672   if (was_ptr)
2673     *was_ptr = 0;
2674 
2675   *type = check_typedef (*type);
2676 
2677   /* The type of value stored in varobj, that is passed
2678      to us, is already supposed to be
2679      reference-stripped.  */
2680 
2681   gdb_assert (TYPE_CODE (*type) != TYPE_CODE_REF);
2682 
2683   /* Pointers to structures are treated just like
2684      structures when accessing children.  Don't
2685      dererences pointers to other types.  */
2686   if (TYPE_CODE (*type) == TYPE_CODE_PTR)
2687     {
2688       struct type *target_type = get_target_type (*type);
2689       if (TYPE_CODE (target_type) == TYPE_CODE_STRUCT
2690 	  || TYPE_CODE (target_type) == TYPE_CODE_UNION)
2691 	{
2692 	  if (value && *value)
2693 	    {
2694 	      int success = gdb_value_ind (*value, value);
2695 
2696 	      if (!success)
2697 		*value = NULL;
2698 	    }
2699 	  *type = target_type;
2700 	  if (was_ptr)
2701 	    *was_ptr = 1;
2702 	}
2703     }
2704 
2705   /* The 'get_target_type' function calls check_typedef on
2706      result, so we can immediately check type code.  No
2707      need to call check_typedef here.  */
2708 }
2709 
2710 /* C */
2711 static int
2712 c_number_of_children (struct varobj *var)
2713 {
2714   struct type *type = get_value_type (var);
2715   int children = 0;
2716   struct type *target;
2717 
2718   adjust_value_for_child_access (NULL, &type, NULL);
2719   target = get_target_type (type);
2720 
2721   switch (TYPE_CODE (type))
2722     {
2723     case TYPE_CODE_ARRAY:
2724       if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (target) > 0
2725 	  && !TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
2726 	children = TYPE_LENGTH (type) / TYPE_LENGTH (target);
2727       else
2728 	/* If we don't know how many elements there are, don't display
2729 	   any.  */
2730 	children = 0;
2731       break;
2732 
2733     case TYPE_CODE_STRUCT:
2734     case TYPE_CODE_UNION:
2735       children = TYPE_NFIELDS (type);
2736       break;
2737 
2738     case TYPE_CODE_PTR:
2739       /* The type here is a pointer to non-struct. Typically, pointers
2740 	 have one child, except for function ptrs, which have no children,
2741 	 and except for void*, as we don't know what to show.
2742 
2743          We can show char* so we allow it to be dereferenced.  If you decide
2744          to test for it, please mind that a little magic is necessary to
2745          properly identify it: char* has TYPE_CODE == TYPE_CODE_INT and
2746          TYPE_NAME == "char" */
2747       if (TYPE_CODE (target) == TYPE_CODE_FUNC
2748 	  || TYPE_CODE (target) == TYPE_CODE_VOID)
2749 	children = 0;
2750       else
2751 	children = 1;
2752       break;
2753 
2754     default:
2755       /* Other types have no children */
2756       break;
2757     }
2758 
2759   return children;
2760 }
2761 
2762 static char *
2763 c_name_of_variable (struct varobj *parent)
2764 {
2765   return xstrdup (parent->name);
2766 }
2767 
2768 /* Return the value of element TYPE_INDEX of a structure
2769    value VALUE.  VALUE's type should be a structure,
2770    or union, or a typedef to struct/union.
2771 
2772    Returns NULL if getting the value fails.  Never throws.  */
2773 static struct value *
2774 value_struct_element_index (struct value *value, int type_index)
2775 {
2776   struct value *result = NULL;
2777   volatile struct gdb_exception e;
2778   struct type *type = value_type (value);
2779 
2780   type = check_typedef (type);
2781 
2782   gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
2783 	      || TYPE_CODE (type) == TYPE_CODE_UNION);
2784 
2785   TRY_CATCH (e, RETURN_MASK_ERROR)
2786     {
2787       if (field_is_static (&TYPE_FIELD (type, type_index)))
2788 	result = value_static_field (type, type_index);
2789       else
2790 	result = value_primitive_field (value, 0, type_index, type);
2791     }
2792   if (e.reason < 0)
2793     {
2794       return NULL;
2795     }
2796   else
2797     {
2798       return result;
2799     }
2800 }
2801 
2802 /* Obtain the information about child INDEX of the variable
2803    object PARENT.
2804    If CNAME is not null, sets *CNAME to the name of the child relative
2805    to the parent.
2806    If CVALUE is not null, sets *CVALUE to the value of the child.
2807    If CTYPE is not null, sets *CTYPE to the type of the child.
2808 
2809    If any of CNAME, CVALUE, or CTYPE is not null, but the corresponding
2810    information cannot be determined, set *CNAME, *CVALUE, or *CTYPE
2811    to NULL.  */
2812 static void
2813 c_describe_child (struct varobj *parent, int index,
2814 		  char **cname, struct value **cvalue, struct type **ctype,
2815 		  char **cfull_expression)
2816 {
2817   struct value *value = parent->value;
2818   struct type *type = get_value_type (parent);
2819   char *parent_expression = NULL;
2820   int was_ptr;
2821 
2822   if (cname)
2823     *cname = NULL;
2824   if (cvalue)
2825     *cvalue = NULL;
2826   if (ctype)
2827     *ctype = NULL;
2828   if (cfull_expression)
2829     {
2830       *cfull_expression = NULL;
2831       parent_expression = varobj_get_path_expr (parent);
2832     }
2833   adjust_value_for_child_access (&value, &type, &was_ptr);
2834 
2835   switch (TYPE_CODE (type))
2836     {
2837     case TYPE_CODE_ARRAY:
2838       if (cname)
2839 	*cname = xstrdup (int_string (index
2840 				      + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)),
2841 				      10, 1, 0, 0));
2842 
2843       if (cvalue && value)
2844 	{
2845 	  int real_index = index + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type));
2846 
2847 	  gdb_value_subscript (value, real_index, cvalue);
2848 	}
2849 
2850       if (ctype)
2851 	*ctype = get_target_type (type);
2852 
2853       if (cfull_expression)
2854 	*cfull_expression =
2855 	  xstrprintf ("(%s)[%s]", parent_expression,
2856 		      int_string (index
2857 				  + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)),
2858 				  10, 1, 0, 0));
2859 
2860 
2861       break;
2862 
2863     case TYPE_CODE_STRUCT:
2864     case TYPE_CODE_UNION:
2865       if (cname)
2866 	*cname = xstrdup (TYPE_FIELD_NAME (type, index));
2867 
2868       if (cvalue && value)
2869 	{
2870 	  /* For C, varobj index is the same as type index.  */
2871 	  *cvalue = value_struct_element_index (value, index);
2872 	}
2873 
2874       if (ctype)
2875 	*ctype = TYPE_FIELD_TYPE (type, index);
2876 
2877       if (cfull_expression)
2878 	{
2879 	  char *join = was_ptr ? "->" : ".";
2880 
2881 	  *cfull_expression = xstrprintf ("(%s)%s%s", parent_expression, join,
2882 					  TYPE_FIELD_NAME (type, index));
2883 	}
2884 
2885       break;
2886 
2887     case TYPE_CODE_PTR:
2888       if (cname)
2889 	*cname = xstrprintf ("*%s", parent->name);
2890 
2891       if (cvalue && value)
2892 	{
2893 	  int success = gdb_value_ind (value, cvalue);
2894 
2895 	  if (!success)
2896 	    *cvalue = NULL;
2897 	}
2898 
2899       /* Don't use get_target_type because it calls
2900 	 check_typedef and here, we want to show the true
2901 	 declared type of the variable.  */
2902       if (ctype)
2903 	*ctype = TYPE_TARGET_TYPE (type);
2904 
2905       if (cfull_expression)
2906 	*cfull_expression = xstrprintf ("*(%s)", parent_expression);
2907 
2908       break;
2909 
2910     default:
2911       /* This should not happen */
2912       if (cname)
2913 	*cname = xstrdup ("???");
2914       if (cfull_expression)
2915 	*cfull_expression = xstrdup ("???");
2916       /* Don't set value and type, we don't know then. */
2917     }
2918 }
2919 
2920 static char *
2921 c_name_of_child (struct varobj *parent, int index)
2922 {
2923   char *name;
2924 
2925   c_describe_child (parent, index, &name, NULL, NULL, NULL);
2926   return name;
2927 }
2928 
2929 static char *
2930 c_path_expr_of_child (struct varobj *child)
2931 {
2932   c_describe_child (child->parent, child->index, NULL, NULL, NULL,
2933 		    &child->path_expr);
2934   return child->path_expr;
2935 }
2936 
2937 /* If frame associated with VAR can be found, switch
2938    to it and return 1.  Otherwise, return 0.  */
2939 static int
2940 check_scope (struct varobj *var)
2941 {
2942   struct frame_info *fi;
2943   int scope;
2944 
2945   fi = frame_find_by_id (var->root->frame);
2946   scope = fi != NULL;
2947 
2948   if (fi)
2949     {
2950       CORE_ADDR pc = get_frame_pc (fi);
2951 
2952       if (pc <  BLOCK_START (var->root->valid_block) ||
2953 	  pc >= BLOCK_END (var->root->valid_block))
2954 	scope = 0;
2955       else
2956 	select_frame (fi);
2957     }
2958   return scope;
2959 }
2960 
2961 static struct value *
2962 c_value_of_root (struct varobj **var_handle)
2963 {
2964   struct value *new_val = NULL;
2965   struct varobj *var = *var_handle;
2966   int within_scope = 0;
2967   struct cleanup *back_to;
2968 
2969   /*  Only root variables can be updated... */
2970   if (!is_root_p (var))
2971     /* Not a root var */
2972     return NULL;
2973 
2974   back_to = make_cleanup_restore_current_thread ();
2975 
2976   /* Determine whether the variable is still around. */
2977   if (var->root->valid_block == NULL || var->root->floating)
2978     within_scope = 1;
2979   else if (var->root->thread_id == 0)
2980     {
2981       /* The program was single-threaded when the variable object was
2982 	 created.  Technically, it's possible that the program became
2983 	 multi-threaded since then, but we don't support such
2984 	 scenario yet.  */
2985       within_scope = check_scope (var);
2986     }
2987   else
2988     {
2989       ptid_t ptid = thread_id_to_pid (var->root->thread_id);
2990       if (in_thread_list (ptid))
2991 	{
2992 	  switch_to_thread (ptid);
2993 	  within_scope = check_scope (var);
2994 	}
2995     }
2996 
2997   if (within_scope)
2998     {
2999       /* We need to catch errors here, because if evaluate
3000          expression fails we want to just return NULL.  */
3001       gdb_evaluate_expression (var->root->exp, &new_val);
3002       return new_val;
3003     }
3004 
3005   do_cleanups (back_to);
3006 
3007   return NULL;
3008 }
3009 
3010 static struct value *
3011 c_value_of_child (struct varobj *parent, int index)
3012 {
3013   struct value *value = NULL;
3014 
3015   c_describe_child (parent, index, NULL, &value, NULL, NULL);
3016   return value;
3017 }
3018 
3019 static struct type *
3020 c_type_of_child (struct varobj *parent, int index)
3021 {
3022   struct type *type = NULL;
3023 
3024   c_describe_child (parent, index, NULL, NULL, &type, NULL);
3025   return type;
3026 }
3027 
3028 static char *
3029 c_value_of_variable (struct varobj *var, enum varobj_display_formats format)
3030 {
3031   /* BOGUS: if val_print sees a struct/class, or a reference to one,
3032      it will print out its children instead of "{...}".  So we need to
3033      catch that case explicitly.  */
3034   struct type *type = get_type (var);
3035 
3036   /* If we have a custom formatter, return whatever string it has
3037      produced.  */
3038   if (var->pretty_printer && var->print_value)
3039     return xstrdup (var->print_value);
3040 
3041   /* Strip top-level references. */
3042   while (TYPE_CODE (type) == TYPE_CODE_REF)
3043     type = check_typedef (TYPE_TARGET_TYPE (type));
3044 
3045   switch (TYPE_CODE (type))
3046     {
3047     case TYPE_CODE_STRUCT:
3048     case TYPE_CODE_UNION:
3049       return xstrdup ("{...}");
3050       /* break; */
3051 
3052     case TYPE_CODE_ARRAY:
3053       {
3054 	char *number;
3055 
3056 	number = xstrprintf ("[%d]", var->num_children);
3057 	return (number);
3058       }
3059       /* break; */
3060 
3061     default:
3062       {
3063 	if (var->value == NULL)
3064 	  {
3065 	    /* This can happen if we attempt to get the value of a struct
3066 	       member when the parent is an invalid pointer. This is an
3067 	       error condition, so we should tell the caller. */
3068 	    return NULL;
3069 	  }
3070 	else
3071 	  {
3072 	    if (var->not_fetched && value_lazy (var->value))
3073 	      /* Frozen variable and no value yet.  We don't
3074 		 implicitly fetch the value.  MI response will
3075 		 use empty string for the value, which is OK.  */
3076 	      return NULL;
3077 
3078 	    gdb_assert (varobj_value_is_changeable_p (var));
3079 	    gdb_assert (!value_lazy (var->value));
3080 
3081 	    /* If the specified format is the current one,
3082 	       we can reuse print_value */
3083 	    if (format == var->format)
3084 	      return xstrdup (var->print_value);
3085 	    else
3086 	      return value_get_print_value (var->value, format, var);
3087 	  }
3088       }
3089     }
3090 }
3091 
3092 
3093 /* C++ */
3094 
3095 static int
3096 cplus_number_of_children (struct varobj *var)
3097 {
3098   struct type *type;
3099   int children, dont_know;
3100 
3101   dont_know = 1;
3102   children = 0;
3103 
3104   if (!CPLUS_FAKE_CHILD (var))
3105     {
3106       type = get_value_type (var);
3107       adjust_value_for_child_access (NULL, &type, NULL);
3108 
3109       if (((TYPE_CODE (type)) == TYPE_CODE_STRUCT) ||
3110 	  ((TYPE_CODE (type)) == TYPE_CODE_UNION))
3111 	{
3112 	  int kids[3];
3113 
3114 	  cplus_class_num_children (type, kids);
3115 	  if (kids[v_public] != 0)
3116 	    children++;
3117 	  if (kids[v_private] != 0)
3118 	    children++;
3119 	  if (kids[v_protected] != 0)
3120 	    children++;
3121 
3122 	  /* Add any baseclasses */
3123 	  children += TYPE_N_BASECLASSES (type);
3124 	  dont_know = 0;
3125 
3126 	  /* FIXME: save children in var */
3127 	}
3128     }
3129   else
3130     {
3131       int kids[3];
3132 
3133       type = get_value_type (var->parent);
3134       adjust_value_for_child_access (NULL, &type, NULL);
3135 
3136       cplus_class_num_children (type, kids);
3137       if (strcmp (var->name, "public") == 0)
3138 	children = kids[v_public];
3139       else if (strcmp (var->name, "private") == 0)
3140 	children = kids[v_private];
3141       else
3142 	children = kids[v_protected];
3143       dont_know = 0;
3144     }
3145 
3146   if (dont_know)
3147     children = c_number_of_children (var);
3148 
3149   return children;
3150 }
3151 
3152 /* Compute # of public, private, and protected variables in this class.
3153    That means we need to descend into all baseclasses and find out
3154    how many are there, too. */
3155 static void
3156 cplus_class_num_children (struct type *type, int children[3])
3157 {
3158   int i, vptr_fieldno;
3159   struct type *basetype = NULL;
3160 
3161   children[v_public] = 0;
3162   children[v_private] = 0;
3163   children[v_protected] = 0;
3164 
3165   vptr_fieldno = get_vptr_fieldno (type, &basetype);
3166   for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); i++)
3167     {
3168       /* If we have a virtual table pointer, omit it.  Even if virtual
3169 	 table pointers are not specifically marked in the debug info,
3170 	 they should be artificial.  */
3171       if ((type == basetype && i == vptr_fieldno)
3172 	  || TYPE_FIELD_ARTIFICIAL (type, i))
3173 	continue;
3174 
3175       if (TYPE_FIELD_PROTECTED (type, i))
3176 	children[v_protected]++;
3177       else if (TYPE_FIELD_PRIVATE (type, i))
3178 	children[v_private]++;
3179       else
3180 	children[v_public]++;
3181     }
3182 }
3183 
3184 static char *
3185 cplus_name_of_variable (struct varobj *parent)
3186 {
3187   return c_name_of_variable (parent);
3188 }
3189 
3190 enum accessibility { private_field, protected_field, public_field };
3191 
3192 /* Check if field INDEX of TYPE has the specified accessibility.
3193    Return 0 if so and 1 otherwise.  */
3194 static int
3195 match_accessibility (struct type *type, int index, enum accessibility acc)
3196 {
3197   if (acc == private_field && TYPE_FIELD_PRIVATE (type, index))
3198     return 1;
3199   else if (acc == protected_field && TYPE_FIELD_PROTECTED (type, index))
3200     return 1;
3201   else if (acc == public_field && !TYPE_FIELD_PRIVATE (type, index)
3202 	   && !TYPE_FIELD_PROTECTED (type, index))
3203     return 1;
3204   else
3205     return 0;
3206 }
3207 
3208 static void
3209 cplus_describe_child (struct varobj *parent, int index,
3210 		      char **cname, struct value **cvalue, struct type **ctype,
3211 		      char **cfull_expression)
3212 {
3213   struct value *value;
3214   struct type *type;
3215   int was_ptr;
3216   char *parent_expression = NULL;
3217 
3218   if (cname)
3219     *cname = NULL;
3220   if (cvalue)
3221     *cvalue = NULL;
3222   if (ctype)
3223     *ctype = NULL;
3224   if (cfull_expression)
3225     *cfull_expression = NULL;
3226 
3227   if (CPLUS_FAKE_CHILD (parent))
3228     {
3229       value = parent->parent->value;
3230       type = get_value_type (parent->parent);
3231       if (cfull_expression)
3232 	parent_expression = varobj_get_path_expr (parent->parent);
3233     }
3234   else
3235     {
3236       value = parent->value;
3237       type = get_value_type (parent);
3238       if (cfull_expression)
3239 	parent_expression = varobj_get_path_expr (parent);
3240     }
3241 
3242   adjust_value_for_child_access (&value, &type, &was_ptr);
3243 
3244   if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3245       || TYPE_CODE (type) == TYPE_CODE_UNION)
3246     {
3247       char *join = was_ptr ? "->" : ".";
3248 
3249       if (CPLUS_FAKE_CHILD (parent))
3250 	{
3251 	  /* The fields of the class type are ordered as they
3252 	     appear in the class.  We are given an index for a
3253 	     particular access control type ("public","protected",
3254 	     or "private").  We must skip over fields that don't
3255 	     have the access control we are looking for to properly
3256 	     find the indexed field. */
3257 	  int type_index = TYPE_N_BASECLASSES (type);
3258 	  enum accessibility acc = public_field;
3259 	  int vptr_fieldno;
3260 	  struct type *basetype = NULL;
3261 
3262 	  vptr_fieldno = get_vptr_fieldno (type, &basetype);
3263 	  if (strcmp (parent->name, "private") == 0)
3264 	    acc = private_field;
3265 	  else if (strcmp (parent->name, "protected") == 0)
3266 	    acc = protected_field;
3267 
3268 	  while (index >= 0)
3269 	    {
3270 	      if ((type == basetype && type_index == vptr_fieldno)
3271 		  || TYPE_FIELD_ARTIFICIAL (type, type_index))
3272 		; /* ignore vptr */
3273 	      else if (match_accessibility (type, type_index, acc))
3274 		    --index;
3275 		  ++type_index;
3276 	    }
3277 	  --type_index;
3278 
3279 	  if (cname)
3280 	    *cname = xstrdup (TYPE_FIELD_NAME (type, type_index));
3281 
3282 	  if (cvalue && value)
3283 	    *cvalue = value_struct_element_index (value, type_index);
3284 
3285 	  if (ctype)
3286 	    *ctype = TYPE_FIELD_TYPE (type, type_index);
3287 
3288 	  if (cfull_expression)
3289 	    *cfull_expression = xstrprintf ("((%s)%s%s)", parent_expression,
3290 					    join,
3291 					    TYPE_FIELD_NAME (type, type_index));
3292 	}
3293       else if (index < TYPE_N_BASECLASSES (type))
3294 	{
3295 	  /* This is a baseclass.  */
3296 	  if (cname)
3297 	    *cname = xstrdup (TYPE_FIELD_NAME (type, index));
3298 
3299 	  if (cvalue && value)
3300 	    *cvalue = value_cast (TYPE_FIELD_TYPE (type, index), value);
3301 
3302 	  if (ctype)
3303 	    {
3304 	      *ctype = TYPE_FIELD_TYPE (type, index);
3305 	    }
3306 
3307 	  if (cfull_expression)
3308 	    {
3309 	      char *ptr = was_ptr ? "*" : "";
3310 
3311 	      /* Cast the parent to the base' type. Note that in gdb,
3312 		 expression like
3313 		         (Base1)d
3314 		 will create an lvalue, for all appearences, so we don't
3315 		 need to use more fancy:
3316 		         *(Base1*)(&d)
3317 		 construct.  */
3318 	      *cfull_expression = xstrprintf ("(%s(%s%s) %s)",
3319 					      ptr,
3320 					      TYPE_FIELD_NAME (type, index),
3321 					      ptr,
3322 					      parent_expression);
3323 	    }
3324 	}
3325       else
3326 	{
3327 	  char *access = NULL;
3328 	  int children[3];
3329 
3330 	  cplus_class_num_children (type, children);
3331 
3332 	  /* Everything beyond the baseclasses can
3333 	     only be "public", "private", or "protected"
3334 
3335 	     The special "fake" children are always output by varobj in
3336 	     this order. So if INDEX == 2, it MUST be "protected". */
3337 	  index -= TYPE_N_BASECLASSES (type);
3338 	  switch (index)
3339 	    {
3340 	    case 0:
3341 	      if (children[v_public] > 0)
3342 	 	access = "public";
3343 	      else if (children[v_private] > 0)
3344 	 	access = "private";
3345 	      else
3346 	 	access = "protected";
3347 	      break;
3348 	    case 1:
3349 	      if (children[v_public] > 0)
3350 		{
3351 		  if (children[v_private] > 0)
3352 		    access = "private";
3353 		  else
3354 		    access = "protected";
3355 		}
3356 	      else if (children[v_private] > 0)
3357 	 	access = "protected";
3358 	      break;
3359 	    case 2:
3360 	      /* Must be protected */
3361 	      access = "protected";
3362 	      break;
3363 	    default:
3364 	      /* error! */
3365 	      break;
3366 	    }
3367 
3368 	  gdb_assert (access);
3369 	  if (cname)
3370 	    *cname = xstrdup (access);
3371 
3372 	  /* Value and type and full expression are null here.  */
3373 	}
3374     }
3375   else
3376     {
3377       c_describe_child (parent, index, cname, cvalue, ctype, cfull_expression);
3378     }
3379 }
3380 
3381 static char *
3382 cplus_name_of_child (struct varobj *parent, int index)
3383 {
3384   char *name = NULL;
3385 
3386   cplus_describe_child (parent, index, &name, NULL, NULL, NULL);
3387   return name;
3388 }
3389 
3390 static char *
3391 cplus_path_expr_of_child (struct varobj *child)
3392 {
3393   cplus_describe_child (child->parent, child->index, NULL, NULL, NULL,
3394 			&child->path_expr);
3395   return child->path_expr;
3396 }
3397 
3398 static struct value *
3399 cplus_value_of_root (struct varobj **var_handle)
3400 {
3401   return c_value_of_root (var_handle);
3402 }
3403 
3404 static struct value *
3405 cplus_value_of_child (struct varobj *parent, int index)
3406 {
3407   struct value *value = NULL;
3408 
3409   cplus_describe_child (parent, index, NULL, &value, NULL, NULL);
3410   return value;
3411 }
3412 
3413 static struct type *
3414 cplus_type_of_child (struct varobj *parent, int index)
3415 {
3416   struct type *type = NULL;
3417 
3418   cplus_describe_child (parent, index, NULL, NULL, &type, NULL);
3419   return type;
3420 }
3421 
3422 static char *
3423 cplus_value_of_variable (struct varobj *var,
3424 			 enum varobj_display_formats format)
3425 {
3426 
3427   /* If we have one of our special types, don't print out
3428      any value. */
3429   if (CPLUS_FAKE_CHILD (var))
3430     return xstrdup ("");
3431 
3432   return c_value_of_variable (var, format);
3433 }
3434 
3435 /* Java */
3436 
3437 static int
3438 java_number_of_children (struct varobj *var)
3439 {
3440   return cplus_number_of_children (var);
3441 }
3442 
3443 static char *
3444 java_name_of_variable (struct varobj *parent)
3445 {
3446   char *p, *name;
3447 
3448   name = cplus_name_of_variable (parent);
3449   /* If  the name has "-" in it, it is because we
3450      needed to escape periods in the name... */
3451   p = name;
3452 
3453   while (*p != '\000')
3454     {
3455       if (*p == '-')
3456 	*p = '.';
3457       p++;
3458     }
3459 
3460   return name;
3461 }
3462 
3463 static char *
3464 java_name_of_child (struct varobj *parent, int index)
3465 {
3466   char *name, *p;
3467 
3468   name = cplus_name_of_child (parent, index);
3469   /* Escape any periods in the name... */
3470   p = name;
3471 
3472   while (*p != '\000')
3473     {
3474       if (*p == '.')
3475 	*p = '-';
3476       p++;
3477     }
3478 
3479   return name;
3480 }
3481 
3482 static char *
3483 java_path_expr_of_child (struct varobj *child)
3484 {
3485   return NULL;
3486 }
3487 
3488 static struct value *
3489 java_value_of_root (struct varobj **var_handle)
3490 {
3491   return cplus_value_of_root (var_handle);
3492 }
3493 
3494 static struct value *
3495 java_value_of_child (struct varobj *parent, int index)
3496 {
3497   return cplus_value_of_child (parent, index);
3498 }
3499 
3500 static struct type *
3501 java_type_of_child (struct varobj *parent, int index)
3502 {
3503   return cplus_type_of_child (parent, index);
3504 }
3505 
3506 static char *
3507 java_value_of_variable (struct varobj *var, enum varobj_display_formats format)
3508 {
3509   return cplus_value_of_variable (var, format);
3510 }
3511 
3512 /* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
3513    with an arbitrary caller supplied DATA pointer.  */
3514 
3515 void
3516 all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
3517 {
3518   struct varobj_root *var_root, *var_root_next;
3519 
3520   /* Iterate "safely" - handle if the callee deletes its passed VAROBJ.  */
3521 
3522   for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
3523     {
3524       var_root_next = var_root->next;
3525 
3526       (*func) (var_root->rootvar, data);
3527     }
3528 }
3529 
3530 extern void _initialize_varobj (void);
3531 void
3532 _initialize_varobj (void)
3533 {
3534   int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE;
3535 
3536   varobj_table = xmalloc (sizeof_table);
3537   memset (varobj_table, 0, sizeof_table);
3538 
3539   add_setshow_zinteger_cmd ("debugvarobj", class_maintenance,
3540 			    &varobjdebug, _("\
3541 Set varobj debugging."), _("\
3542 Show varobj debugging."), _("\
3543 When non-zero, varobj debugging is enabled."),
3544 			    NULL,
3545 			    show_varobjdebug,
3546 			    &setlist, &showlist);
3547 }
3548 
3549 /* Invalidate varobj VAR if it is tied to locals and re-create it if it is
3550    defined on globals.  It is a helper for varobj_invalidate.  */
3551 
3552 static void
3553 varobj_invalidate_iter (struct varobj *var, void *unused)
3554 {
3555   /* Floating varobjs are reparsed on each stop, so we don't care if the
3556      presently parsed expression refers to something that's gone.  */
3557   if (var->root->floating)
3558     return;
3559 
3560   /* global var must be re-evaluated.  */
3561   if (var->root->valid_block == NULL)
3562     {
3563       struct varobj *tmp_var;
3564 
3565       /* Try to create a varobj with same expression.  If we succeed
3566 	 replace the old varobj, otherwise invalidate it.  */
3567       tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
3568 			       USE_CURRENT_FRAME);
3569       if (tmp_var != NULL)
3570 	{
3571 	  tmp_var->obj_name = xstrdup (var->obj_name);
3572 	  varobj_delete (var, NULL, 0);
3573 	  install_variable (tmp_var);
3574 	}
3575       else
3576 	var->root->is_valid = 0;
3577     }
3578   else /* locals must be invalidated.  */
3579     var->root->is_valid = 0;
3580 }
3581 
3582 /* Invalidate the varobjs that are tied to locals and re-create the ones that
3583    are defined on globals.
3584    Invalidated varobjs will be always printed in_scope="invalid".  */
3585 
3586 void
3587 varobj_invalidate (void)
3588 {
3589   all_root_varobjs (varobj_invalidate_iter, NULL);
3590 }
3591