1 /* Print values for GDB, the GNU debugger. 2 3 Copyright (C) 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 5 2009, 2010 Free Software Foundation, Inc. 6 7 This file is part of GDB. 8 9 This program is free software; you can redistribute it and/or modify 10 it under the terms of the GNU General Public License as published by 11 the Free Software Foundation; either version 3 of the License, or 12 (at your option) any later version. 13 14 This program is distributed in the hope that it will be useful, 15 but WITHOUT ANY WARRANTY; without even the implied warranty of 16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 GNU General Public License for more details. 18 19 You should have received a copy of the GNU General Public License 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 21 22 #include "defs.h" 23 #include "gdb_string.h" 24 #include "symtab.h" 25 #include "gdbtypes.h" 26 #include "value.h" 27 #include "gdbcore.h" 28 #include "gdbcmd.h" 29 #include "target.h" 30 #include "language.h" 31 #include "annotate.h" 32 #include "valprint.h" 33 #include "floatformat.h" 34 #include "doublest.h" 35 #include "exceptions.h" 36 #include "dfp.h" 37 #include "python/python.h" 38 #include "ada-lang.h" 39 40 #include <errno.h> 41 42 /* Prototypes for local functions */ 43 44 static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr, 45 int len, int *errnoptr); 46 47 static void show_print (char *, int); 48 49 static void set_print (char *, int); 50 51 static void set_radix (char *, int); 52 53 static void show_radix (char *, int); 54 55 static void set_input_radix (char *, int, struct cmd_list_element *); 56 57 static void set_input_radix_1 (int, unsigned); 58 59 static void set_output_radix (char *, int, struct cmd_list_element *); 60 61 static void set_output_radix_1 (int, unsigned); 62 63 void _initialize_valprint (void); 64 65 #define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */ 66 67 struct value_print_options user_print_options = 68 { 69 Val_pretty_default, /* pretty */ 70 0, /* prettyprint_arrays */ 71 0, /* prettyprint_structs */ 72 0, /* vtblprint */ 73 1, /* unionprint */ 74 1, /* addressprint */ 75 0, /* objectprint */ 76 PRINT_MAX_DEFAULT, /* print_max */ 77 10, /* repeat_count_threshold */ 78 0, /* output_format */ 79 0, /* format */ 80 0, /* stop_print_at_null */ 81 0, /* inspect_it */ 82 0, /* print_array_indexes */ 83 0, /* deref_ref */ 84 1, /* static_field_print */ 85 1, /* pascal_static_field_print */ 86 0, /* raw */ 87 0 /* summary */ 88 }; 89 90 /* Initialize *OPTS to be a copy of the user print options. */ 91 void 92 get_user_print_options (struct value_print_options *opts) 93 { 94 *opts = user_print_options; 95 } 96 97 /* Initialize *OPTS to be a copy of the user print options, but with 98 pretty-printing disabled. */ 99 void 100 get_raw_print_options (struct value_print_options *opts) 101 { 102 *opts = user_print_options; 103 opts->pretty = Val_no_prettyprint; 104 } 105 106 /* Initialize *OPTS to be a copy of the user print options, but using 107 FORMAT as the formatting option. */ 108 void 109 get_formatted_print_options (struct value_print_options *opts, 110 char format) 111 { 112 *opts = user_print_options; 113 opts->format = format; 114 } 115 116 static void 117 show_print_max (struct ui_file *file, int from_tty, 118 struct cmd_list_element *c, const char *value) 119 { 120 fprintf_filtered (file, _("\ 121 Limit on string chars or array elements to print is %s.\n"), 122 value); 123 } 124 125 126 /* Default input and output radixes, and output format letter. */ 127 128 unsigned input_radix = 10; 129 static void 130 show_input_radix (struct ui_file *file, int from_tty, 131 struct cmd_list_element *c, const char *value) 132 { 133 fprintf_filtered (file, _("\ 134 Default input radix for entering numbers is %s.\n"), 135 value); 136 } 137 138 unsigned output_radix = 10; 139 static void 140 show_output_radix (struct ui_file *file, int from_tty, 141 struct cmd_list_element *c, const char *value) 142 { 143 fprintf_filtered (file, _("\ 144 Default output radix for printing of values is %s.\n"), 145 value); 146 } 147 148 /* By default we print arrays without printing the index of each element in 149 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */ 150 151 static void 152 show_print_array_indexes (struct ui_file *file, int from_tty, 153 struct cmd_list_element *c, const char *value) 154 { 155 fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value); 156 } 157 158 /* Print repeat counts if there are more than this many repetitions of an 159 element in an array. Referenced by the low level language dependent 160 print routines. */ 161 162 static void 163 show_repeat_count_threshold (struct ui_file *file, int from_tty, 164 struct cmd_list_element *c, const char *value) 165 { 166 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"), 167 value); 168 } 169 170 /* If nonzero, stops printing of char arrays at first null. */ 171 172 static void 173 show_stop_print_at_null (struct ui_file *file, int from_tty, 174 struct cmd_list_element *c, const char *value) 175 { 176 fprintf_filtered (file, _("\ 177 Printing of char arrays to stop at first null char is %s.\n"), 178 value); 179 } 180 181 /* Controls pretty printing of structures. */ 182 183 static void 184 show_prettyprint_structs (struct ui_file *file, int from_tty, 185 struct cmd_list_element *c, const char *value) 186 { 187 fprintf_filtered (file, _("Prettyprinting of structures is %s.\n"), value); 188 } 189 190 /* Controls pretty printing of arrays. */ 191 192 static void 193 show_prettyprint_arrays (struct ui_file *file, int from_tty, 194 struct cmd_list_element *c, const char *value) 195 { 196 fprintf_filtered (file, _("Prettyprinting of arrays is %s.\n"), value); 197 } 198 199 /* If nonzero, causes unions inside structures or other unions to be 200 printed. */ 201 202 static void 203 show_unionprint (struct ui_file *file, int from_tty, 204 struct cmd_list_element *c, const char *value) 205 { 206 fprintf_filtered (file, _("\ 207 Printing of unions interior to structures is %s.\n"), 208 value); 209 } 210 211 /* If nonzero, causes machine addresses to be printed in certain contexts. */ 212 213 static void 214 show_addressprint (struct ui_file *file, int from_tty, 215 struct cmd_list_element *c, const char *value) 216 { 217 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value); 218 } 219 220 221 /* A helper function for val_print. When printing in "summary" mode, 222 we want to print scalar arguments, but not aggregate arguments. 223 This function distinguishes between the two. */ 224 225 static int 226 scalar_type_p (struct type *type) 227 { 228 CHECK_TYPEDEF (type); 229 while (TYPE_CODE (type) == TYPE_CODE_REF) 230 { 231 type = TYPE_TARGET_TYPE (type); 232 CHECK_TYPEDEF (type); 233 } 234 switch (TYPE_CODE (type)) 235 { 236 case TYPE_CODE_ARRAY: 237 case TYPE_CODE_STRUCT: 238 case TYPE_CODE_UNION: 239 case TYPE_CODE_SET: 240 case TYPE_CODE_STRING: 241 case TYPE_CODE_BITSTRING: 242 return 0; 243 default: 244 return 1; 245 } 246 } 247 248 /* Helper function to check the validity of some bits of a value. 249 250 If TYPE represents some aggregate type (e.g., a structure), return 1. 251 252 Otherwise, any of the bytes starting at OFFSET and extending for 253 TYPE_LENGTH(TYPE) bytes are invalid, print a message to STREAM and 254 return 0. The checking is done using FUNCS. 255 256 Otherwise, return 1. */ 257 258 static int 259 valprint_check_validity (struct ui_file *stream, 260 struct type *type, 261 int offset, 262 const struct value *val) 263 { 264 CHECK_TYPEDEF (type); 265 266 if (TYPE_CODE (type) != TYPE_CODE_UNION 267 && TYPE_CODE (type) != TYPE_CODE_STRUCT 268 && TYPE_CODE (type) != TYPE_CODE_ARRAY) 269 { 270 if (! value_bits_valid (val, TARGET_CHAR_BIT * offset, 271 TARGET_CHAR_BIT * TYPE_LENGTH (type))) 272 { 273 fprintf_filtered (stream, _("<value optimized out>")); 274 return 0; 275 } 276 } 277 278 return 1; 279 } 280 281 /* Print using the given LANGUAGE the data of type TYPE located at VALADDR 282 (within GDB), which came from the inferior at address ADDRESS, onto 283 stdio stream STREAM according to OPTIONS. 284 285 If the data are a string pointer, returns the number of string characters 286 printed. 287 288 FIXME: The data at VALADDR is in target byte order. If gdb is ever 289 enhanced to be able to debug more than the single target it was compiled 290 for (specific CPU type and thus specific target byte ordering), then 291 either the print routines are going to have to take this into account, 292 or the data is going to have to be passed into here already converted 293 to the host byte ordering, whichever is more convenient. */ 294 295 296 int 297 val_print (struct type *type, const gdb_byte *valaddr, int embedded_offset, 298 CORE_ADDR address, struct ui_file *stream, int recurse, 299 const struct value *val, 300 const struct value_print_options *options, 301 const struct language_defn *language) 302 { 303 volatile struct gdb_exception except; 304 int ret = 0; 305 struct value_print_options local_opts = *options; 306 struct type *real_type = check_typedef (type); 307 308 if (local_opts.pretty == Val_pretty_default) 309 local_opts.pretty = (local_opts.prettyprint_structs 310 ? Val_prettyprint : Val_no_prettyprint); 311 312 QUIT; 313 314 /* Ensure that the type is complete and not just a stub. If the type is 315 only a stub and we can't find and substitute its complete type, then 316 print appropriate string and return. */ 317 318 if (TYPE_STUB (real_type)) 319 { 320 fprintf_filtered (stream, _("<incomplete type>")); 321 gdb_flush (stream); 322 return (0); 323 } 324 325 if (!valprint_check_validity (stream, real_type, embedded_offset, val)) 326 return 0; 327 328 if (!options->raw) 329 { 330 ret = apply_val_pretty_printer (type, valaddr, embedded_offset, 331 address, stream, recurse, 332 val, options, language); 333 if (ret) 334 return ret; 335 } 336 337 /* Handle summary mode. If the value is a scalar, print it; 338 otherwise, print an ellipsis. */ 339 if (options->summary && !scalar_type_p (type)) 340 { 341 fprintf_filtered (stream, "..."); 342 return 0; 343 } 344 345 TRY_CATCH (except, RETURN_MASK_ERROR) 346 { 347 ret = language->la_val_print (type, valaddr, embedded_offset, address, 348 stream, recurse, val, 349 &local_opts); 350 } 351 if (except.reason < 0) 352 fprintf_filtered (stream, _("<error reading variable>")); 353 354 return ret; 355 } 356 357 /* Check whether the value VAL is printable. Return 1 if it is; 358 return 0 and print an appropriate error message to STREAM if it 359 is not. */ 360 361 static int 362 value_check_printable (struct value *val, struct ui_file *stream) 363 { 364 if (val == 0) 365 { 366 fprintf_filtered (stream, _("<address of value unknown>")); 367 return 0; 368 } 369 370 if (value_entirely_optimized_out (val)) 371 { 372 fprintf_filtered (stream, _("<value optimized out>")); 373 return 0; 374 } 375 376 if (TYPE_CODE (value_type (val)) == TYPE_CODE_INTERNAL_FUNCTION) 377 { 378 fprintf_filtered (stream, _("<internal function %s>"), 379 value_internal_function_name (val)); 380 return 0; 381 } 382 383 return 1; 384 } 385 386 /* Print using the given LANGUAGE the value VAL onto stream STREAM according 387 to OPTIONS. 388 389 If the data are a string pointer, returns the number of string characters 390 printed. 391 392 This is a preferable interface to val_print, above, because it uses 393 GDB's value mechanism. */ 394 395 int 396 common_val_print (struct value *val, struct ui_file *stream, int recurse, 397 const struct value_print_options *options, 398 const struct language_defn *language) 399 { 400 if (!value_check_printable (val, stream)) 401 return 0; 402 403 if (language->la_language == language_ada) 404 /* The value might have a dynamic type, which would cause trouble 405 below when trying to extract the value contents (since the value 406 size is determined from the type size which is unknown). So 407 get a fixed representation of our value. */ 408 val = ada_to_fixed_value (val); 409 410 return val_print (value_type (val), value_contents_for_printing (val), 411 value_embedded_offset (val), value_address (val), 412 stream, recurse, 413 val, options, language); 414 } 415 416 /* Print on stream STREAM the value VAL according to OPTIONS. The value 417 is printed using the current_language syntax. 418 419 If the object printed is a string pointer, return the number of string 420 bytes printed. */ 421 422 int 423 value_print (struct value *val, struct ui_file *stream, 424 const struct value_print_options *options) 425 { 426 if (!value_check_printable (val, stream)) 427 return 0; 428 429 if (!options->raw) 430 { 431 int r = apply_val_pretty_printer (value_type (val), 432 value_contents_for_printing (val), 433 value_embedded_offset (val), 434 value_address (val), 435 stream, 0, 436 val, options, current_language); 437 438 if (r) 439 return r; 440 } 441 442 return LA_VALUE_PRINT (val, stream, options); 443 } 444 445 /* Called by various <lang>_val_print routines to print 446 TYPE_CODE_INT's. TYPE is the type. VALADDR is the address of the 447 value. STREAM is where to print the value. */ 448 449 void 450 val_print_type_code_int (struct type *type, const gdb_byte *valaddr, 451 struct ui_file *stream) 452 { 453 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type)); 454 455 if (TYPE_LENGTH (type) > sizeof (LONGEST)) 456 { 457 LONGEST val; 458 459 if (TYPE_UNSIGNED (type) 460 && extract_long_unsigned_integer (valaddr, TYPE_LENGTH (type), 461 byte_order, &val)) 462 { 463 print_longest (stream, 'u', 0, val); 464 } 465 else 466 { 467 /* Signed, or we couldn't turn an unsigned value into a 468 LONGEST. For signed values, one could assume two's 469 complement (a reasonable assumption, I think) and do 470 better than this. */ 471 print_hex_chars (stream, (unsigned char *) valaddr, 472 TYPE_LENGTH (type), byte_order); 473 } 474 } 475 else 476 { 477 print_longest (stream, TYPE_UNSIGNED (type) ? 'u' : 'd', 0, 478 unpack_long (type, valaddr)); 479 } 480 } 481 482 void 483 val_print_type_code_flags (struct type *type, const gdb_byte *valaddr, 484 struct ui_file *stream) 485 { 486 ULONGEST val = unpack_long (type, valaddr); 487 int bitpos, nfields = TYPE_NFIELDS (type); 488 489 fputs_filtered ("[ ", stream); 490 for (bitpos = 0; bitpos < nfields; bitpos++) 491 { 492 if (TYPE_FIELD_BITPOS (type, bitpos) != -1 493 && (val & ((ULONGEST)1 << bitpos))) 494 { 495 if (TYPE_FIELD_NAME (type, bitpos)) 496 fprintf_filtered (stream, "%s ", TYPE_FIELD_NAME (type, bitpos)); 497 else 498 fprintf_filtered (stream, "#%d ", bitpos); 499 } 500 } 501 fputs_filtered ("]", stream); 502 } 503 504 /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g. 505 The raison d'etre of this function is to consolidate printing of 506 LONG_LONG's into this one function. The format chars b,h,w,g are 507 from print_scalar_formatted(). Numbers are printed using C 508 format. 509 510 USE_C_FORMAT means to use C format in all cases. Without it, 511 'o' and 'x' format do not include the standard C radix prefix 512 (leading 0 or 0x). 513 514 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL 515 and was intended to request formating according to the current 516 language and would be used for most integers that GDB prints. The 517 exceptional cases were things like protocols where the format of 518 the integer is a protocol thing, not a user-visible thing). The 519 parameter remains to preserve the information of what things might 520 be printed with language-specific format, should we ever resurrect 521 that capability. */ 522 523 void 524 print_longest (struct ui_file *stream, int format, int use_c_format, 525 LONGEST val_long) 526 { 527 const char *val; 528 529 switch (format) 530 { 531 case 'd': 532 val = int_string (val_long, 10, 1, 0, 1); break; 533 case 'u': 534 val = int_string (val_long, 10, 0, 0, 1); break; 535 case 'x': 536 val = int_string (val_long, 16, 0, 0, use_c_format); break; 537 case 'b': 538 val = int_string (val_long, 16, 0, 2, 1); break; 539 case 'h': 540 val = int_string (val_long, 16, 0, 4, 1); break; 541 case 'w': 542 val = int_string (val_long, 16, 0, 8, 1); break; 543 case 'g': 544 val = int_string (val_long, 16, 0, 16, 1); break; 545 break; 546 case 'o': 547 val = int_string (val_long, 8, 0, 0, use_c_format); break; 548 default: 549 internal_error (__FILE__, __LINE__, _("failed internal consistency check")); 550 } 551 fputs_filtered (val, stream); 552 } 553 554 /* This used to be a macro, but I don't think it is called often enough 555 to merit such treatment. */ 556 /* Convert a LONGEST to an int. This is used in contexts (e.g. number of 557 arguments to a function, number in a value history, register number, etc.) 558 where the value must not be larger than can fit in an int. */ 559 560 int 561 longest_to_int (LONGEST arg) 562 { 563 /* Let the compiler do the work */ 564 int rtnval = (int) arg; 565 566 /* Check for overflows or underflows */ 567 if (sizeof (LONGEST) > sizeof (int)) 568 { 569 if (rtnval != arg) 570 { 571 error (_("Value out of range.")); 572 } 573 } 574 return (rtnval); 575 } 576 577 /* Print a floating point value of type TYPE (not always a 578 TYPE_CODE_FLT), pointed to in GDB by VALADDR, on STREAM. */ 579 580 void 581 print_floating (const gdb_byte *valaddr, struct type *type, 582 struct ui_file *stream) 583 { 584 DOUBLEST doub; 585 int inv; 586 const struct floatformat *fmt = NULL; 587 unsigned len = TYPE_LENGTH (type); 588 enum float_kind kind; 589 590 /* If it is a floating-point, check for obvious problems. */ 591 if (TYPE_CODE (type) == TYPE_CODE_FLT) 592 fmt = floatformat_from_type (type); 593 if (fmt != NULL) 594 { 595 kind = floatformat_classify (fmt, valaddr); 596 if (kind == float_nan) 597 { 598 if (floatformat_is_negative (fmt, valaddr)) 599 fprintf_filtered (stream, "-"); 600 fprintf_filtered (stream, "nan("); 601 fputs_filtered ("0x", stream); 602 fputs_filtered (floatformat_mantissa (fmt, valaddr), stream); 603 fprintf_filtered (stream, ")"); 604 return; 605 } 606 else if (kind == float_infinite) 607 { 608 if (floatformat_is_negative (fmt, valaddr)) 609 fputs_filtered ("-", stream); 610 fputs_filtered ("inf", stream); 611 return; 612 } 613 } 614 615 /* NOTE: cagney/2002-01-15: The TYPE passed into print_floating() 616 isn't necessarily a TYPE_CODE_FLT. Consequently, unpack_double 617 needs to be used as that takes care of any necessary type 618 conversions. Such conversions are of course direct to DOUBLEST 619 and disregard any possible target floating point limitations. 620 For instance, a u64 would be converted and displayed exactly on a 621 host with 80 bit DOUBLEST but with loss of information on a host 622 with 64 bit DOUBLEST. */ 623 624 doub = unpack_double (type, valaddr, &inv); 625 if (inv) 626 { 627 fprintf_filtered (stream, "<invalid float value>"); 628 return; 629 } 630 631 /* FIXME: kettenis/2001-01-20: The following code makes too much 632 assumptions about the host and target floating point format. */ 633 634 /* NOTE: cagney/2002-02-03: Since the TYPE of what was passed in may 635 not necessarily be a TYPE_CODE_FLT, the below ignores that and 636 instead uses the type's length to determine the precision of the 637 floating-point value being printed. */ 638 639 if (len < sizeof (double)) 640 fprintf_filtered (stream, "%.9g", (double) doub); 641 else if (len == sizeof (double)) 642 fprintf_filtered (stream, "%.17g", (double) doub); 643 else 644 #ifdef PRINTF_HAS_LONG_DOUBLE 645 fprintf_filtered (stream, "%.35Lg", doub); 646 #else 647 /* This at least wins with values that are representable as 648 doubles. */ 649 fprintf_filtered (stream, "%.17g", (double) doub); 650 #endif 651 } 652 653 void 654 print_decimal_floating (const gdb_byte *valaddr, struct type *type, 655 struct ui_file *stream) 656 { 657 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type)); 658 char decstr[MAX_DECIMAL_STRING]; 659 unsigned len = TYPE_LENGTH (type); 660 661 decimal_to_string (valaddr, len, byte_order, decstr); 662 fputs_filtered (decstr, stream); 663 return; 664 } 665 666 void 667 print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr, 668 unsigned len, enum bfd_endian byte_order) 669 { 670 671 #define BITS_IN_BYTES 8 672 673 const gdb_byte *p; 674 unsigned int i; 675 int b; 676 677 /* Declared "int" so it will be signed. 678 * This ensures that right shift will shift in zeros. 679 */ 680 const int mask = 0x080; 681 682 /* FIXME: We should be not printing leading zeroes in most cases. */ 683 684 if (byte_order == BFD_ENDIAN_BIG) 685 { 686 for (p = valaddr; 687 p < valaddr + len; 688 p++) 689 { 690 /* Every byte has 8 binary characters; peel off 691 * and print from the MSB end. 692 */ 693 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++) 694 { 695 if (*p & (mask >> i)) 696 b = 1; 697 else 698 b = 0; 699 700 fprintf_filtered (stream, "%1d", b); 701 } 702 } 703 } 704 else 705 { 706 for (p = valaddr + len - 1; 707 p >= valaddr; 708 p--) 709 { 710 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++) 711 { 712 if (*p & (mask >> i)) 713 b = 1; 714 else 715 b = 0; 716 717 fprintf_filtered (stream, "%1d", b); 718 } 719 } 720 } 721 } 722 723 /* VALADDR points to an integer of LEN bytes. 724 * Print it in octal on stream or format it in buf. 725 */ 726 void 727 print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr, 728 unsigned len, enum bfd_endian byte_order) 729 { 730 const gdb_byte *p; 731 unsigned char octa1, octa2, octa3, carry; 732 int cycle; 733 734 /* FIXME: We should be not printing leading zeroes in most cases. */ 735 736 737 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track 738 * the extra bits, which cycle every three bytes: 739 * 740 * Byte side: 0 1 2 3 741 * | | | | 742 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 | 743 * 744 * Octal side: 0 1 carry 3 4 carry ... 745 * 746 * Cycle number: 0 1 2 747 * 748 * But of course we are printing from the high side, so we have to 749 * figure out where in the cycle we are so that we end up with no 750 * left over bits at the end. 751 */ 752 #define BITS_IN_OCTAL 3 753 #define HIGH_ZERO 0340 754 #define LOW_ZERO 0016 755 #define CARRY_ZERO 0003 756 #define HIGH_ONE 0200 757 #define MID_ONE 0160 758 #define LOW_ONE 0016 759 #define CARRY_ONE 0001 760 #define HIGH_TWO 0300 761 #define MID_TWO 0070 762 #define LOW_TWO 0007 763 764 /* For 32 we start in cycle 2, with two bits and one bit carry; 765 * for 64 in cycle in cycle 1, with one bit and a two bit carry. 766 */ 767 cycle = (len * BITS_IN_BYTES) % BITS_IN_OCTAL; 768 carry = 0; 769 770 fputs_filtered ("0", stream); 771 if (byte_order == BFD_ENDIAN_BIG) 772 { 773 for (p = valaddr; 774 p < valaddr + len; 775 p++) 776 { 777 switch (cycle) 778 { 779 case 0: 780 /* No carry in, carry out two bits. 781 */ 782 octa1 = (HIGH_ZERO & *p) >> 5; 783 octa2 = (LOW_ZERO & *p) >> 2; 784 carry = (CARRY_ZERO & *p); 785 fprintf_filtered (stream, "%o", octa1); 786 fprintf_filtered (stream, "%o", octa2); 787 break; 788 789 case 1: 790 /* Carry in two bits, carry out one bit. 791 */ 792 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7); 793 octa2 = (MID_ONE & *p) >> 4; 794 octa3 = (LOW_ONE & *p) >> 1; 795 carry = (CARRY_ONE & *p); 796 fprintf_filtered (stream, "%o", octa1); 797 fprintf_filtered (stream, "%o", octa2); 798 fprintf_filtered (stream, "%o", octa3); 799 break; 800 801 case 2: 802 /* Carry in one bit, no carry out. 803 */ 804 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6); 805 octa2 = (MID_TWO & *p) >> 3; 806 octa3 = (LOW_TWO & *p); 807 carry = 0; 808 fprintf_filtered (stream, "%o", octa1); 809 fprintf_filtered (stream, "%o", octa2); 810 fprintf_filtered (stream, "%o", octa3); 811 break; 812 813 default: 814 error (_("Internal error in octal conversion;")); 815 } 816 817 cycle++; 818 cycle = cycle % BITS_IN_OCTAL; 819 } 820 } 821 else 822 { 823 for (p = valaddr + len - 1; 824 p >= valaddr; 825 p--) 826 { 827 switch (cycle) 828 { 829 case 0: 830 /* Carry out, no carry in */ 831 octa1 = (HIGH_ZERO & *p) >> 5; 832 octa2 = (LOW_ZERO & *p) >> 2; 833 carry = (CARRY_ZERO & *p); 834 fprintf_filtered (stream, "%o", octa1); 835 fprintf_filtered (stream, "%o", octa2); 836 break; 837 838 case 1: 839 /* Carry in, carry out */ 840 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7); 841 octa2 = (MID_ONE & *p) >> 4; 842 octa3 = (LOW_ONE & *p) >> 1; 843 carry = (CARRY_ONE & *p); 844 fprintf_filtered (stream, "%o", octa1); 845 fprintf_filtered (stream, "%o", octa2); 846 fprintf_filtered (stream, "%o", octa3); 847 break; 848 849 case 2: 850 /* Carry in, no carry out */ 851 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6); 852 octa2 = (MID_TWO & *p) >> 3; 853 octa3 = (LOW_TWO & *p); 854 carry = 0; 855 fprintf_filtered (stream, "%o", octa1); 856 fprintf_filtered (stream, "%o", octa2); 857 fprintf_filtered (stream, "%o", octa3); 858 break; 859 860 default: 861 error (_("Internal error in octal conversion;")); 862 } 863 864 cycle++; 865 cycle = cycle % BITS_IN_OCTAL; 866 } 867 } 868 869 } 870 871 /* VALADDR points to an integer of LEN bytes. 872 * Print it in decimal on stream or format it in buf. 873 */ 874 void 875 print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr, 876 unsigned len, enum bfd_endian byte_order) 877 { 878 #define TEN 10 879 #define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */ 880 #define CARRY_LEFT( x ) ((x) % TEN) 881 #define SHIFT( x ) ((x) << 4) 882 #define LOW_NIBBLE( x ) ( (x) & 0x00F) 883 #define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4) 884 885 const gdb_byte *p; 886 unsigned char *digits; 887 int carry; 888 int decimal_len; 889 int i, j, decimal_digits; 890 int dummy; 891 int flip; 892 893 /* Base-ten number is less than twice as many digits 894 * as the base 16 number, which is 2 digits per byte. 895 */ 896 decimal_len = len * 2 * 2; 897 digits = xmalloc (decimal_len); 898 899 for (i = 0; i < decimal_len; i++) 900 { 901 digits[i] = 0; 902 } 903 904 /* Ok, we have an unknown number of bytes of data to be printed in 905 * decimal. 906 * 907 * Given a hex number (in nibbles) as XYZ, we start by taking X and 908 * decemalizing it as "x1 x2" in two decimal nibbles. Then we multiply 909 * the nibbles by 16, add Y and re-decimalize. Repeat with Z. 910 * 911 * The trick is that "digits" holds a base-10 number, but sometimes 912 * the individual digits are > 10. 913 * 914 * Outer loop is per nibble (hex digit) of input, from MSD end to 915 * LSD end. 916 */ 917 decimal_digits = 0; /* Number of decimal digits so far */ 918 p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1; 919 flip = 0; 920 while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr)) 921 { 922 /* 923 * Multiply current base-ten number by 16 in place. 924 * Each digit was between 0 and 9, now is between 925 * 0 and 144. 926 */ 927 for (j = 0; j < decimal_digits; j++) 928 { 929 digits[j] = SHIFT (digits[j]); 930 } 931 932 /* Take the next nibble off the input and add it to what 933 * we've got in the LSB position. Bottom 'digit' is now 934 * between 0 and 159. 935 * 936 * "flip" is used to run this loop twice for each byte. 937 */ 938 if (flip == 0) 939 { 940 /* Take top nibble. 941 */ 942 digits[0] += HIGH_NIBBLE (*p); 943 flip = 1; 944 } 945 else 946 { 947 /* Take low nibble and bump our pointer "p". 948 */ 949 digits[0] += LOW_NIBBLE (*p); 950 if (byte_order == BFD_ENDIAN_BIG) 951 p++; 952 else 953 p--; 954 flip = 0; 955 } 956 957 /* Re-decimalize. We have to do this often enough 958 * that we don't overflow, but once per nibble is 959 * overkill. Easier this way, though. Note that the 960 * carry is often larger than 10 (e.g. max initial 961 * carry out of lowest nibble is 15, could bubble all 962 * the way up greater than 10). So we have to do 963 * the carrying beyond the last current digit. 964 */ 965 carry = 0; 966 for (j = 0; j < decimal_len - 1; j++) 967 { 968 digits[j] += carry; 969 970 /* "/" won't handle an unsigned char with 971 * a value that if signed would be negative. 972 * So extend to longword int via "dummy". 973 */ 974 dummy = digits[j]; 975 carry = CARRY_OUT (dummy); 976 digits[j] = CARRY_LEFT (dummy); 977 978 if (j >= decimal_digits && carry == 0) 979 { 980 /* 981 * All higher digits are 0 and we 982 * no longer have a carry. 983 * 984 * Note: "j" is 0-based, "decimal_digits" is 985 * 1-based. 986 */ 987 decimal_digits = j + 1; 988 break; 989 } 990 } 991 } 992 993 /* Ok, now "digits" is the decimal representation, with 994 * the "decimal_digits" actual digits. Print! 995 */ 996 for (i = decimal_digits - 1; i >= 0; i--) 997 { 998 fprintf_filtered (stream, "%1d", digits[i]); 999 } 1000 xfree (digits); 1001 } 1002 1003 /* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */ 1004 1005 void 1006 print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr, 1007 unsigned len, enum bfd_endian byte_order) 1008 { 1009 const gdb_byte *p; 1010 1011 /* FIXME: We should be not printing leading zeroes in most cases. */ 1012 1013 fputs_filtered ("0x", stream); 1014 if (byte_order == BFD_ENDIAN_BIG) 1015 { 1016 for (p = valaddr; 1017 p < valaddr + len; 1018 p++) 1019 { 1020 fprintf_filtered (stream, "%02x", *p); 1021 } 1022 } 1023 else 1024 { 1025 for (p = valaddr + len - 1; 1026 p >= valaddr; 1027 p--) 1028 { 1029 fprintf_filtered (stream, "%02x", *p); 1030 } 1031 } 1032 } 1033 1034 /* VALADDR points to a char integer of LEN bytes. Print it out in appropriate language form on stream. 1035 Omit any leading zero chars. */ 1036 1037 void 1038 print_char_chars (struct ui_file *stream, struct type *type, 1039 const gdb_byte *valaddr, 1040 unsigned len, enum bfd_endian byte_order) 1041 { 1042 const gdb_byte *p; 1043 1044 if (byte_order == BFD_ENDIAN_BIG) 1045 { 1046 p = valaddr; 1047 while (p < valaddr + len - 1 && *p == 0) 1048 ++p; 1049 1050 while (p < valaddr + len) 1051 { 1052 LA_EMIT_CHAR (*p, type, stream, '\''); 1053 ++p; 1054 } 1055 } 1056 else 1057 { 1058 p = valaddr + len - 1; 1059 while (p > valaddr && *p == 0) 1060 --p; 1061 1062 while (p >= valaddr) 1063 { 1064 LA_EMIT_CHAR (*p, type, stream, '\''); 1065 --p; 1066 } 1067 } 1068 } 1069 1070 /* Assuming TYPE is a simple, non-empty array type, compute its upper 1071 and lower bound. Save the low bound into LOW_BOUND if not NULL. 1072 Save the high bound into HIGH_BOUND if not NULL. 1073 1074 Return 1 if the operation was successful. Return zero otherwise, 1075 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified. 1076 1077 We now simply use get_discrete_bounds call to get the values 1078 of the low and high bounds. 1079 get_discrete_bounds can return three values: 1080 1, meaning that index is a range, 1081 0, meaning that index is a discrete type, 1082 or -1 for failure. */ 1083 1084 int 1085 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound) 1086 { 1087 struct type *index = TYPE_INDEX_TYPE (type); 1088 LONGEST low = 0; 1089 LONGEST high = 0; 1090 int res; 1091 1092 if (index == NULL) 1093 return 0; 1094 1095 res = get_discrete_bounds (index, &low, &high); 1096 if (res == -1) 1097 return 0; 1098 1099 if (low_bound) 1100 *low_bound = low; 1101 1102 if (high_bound) 1103 *high_bound = high; 1104 1105 return 1; 1106 } 1107 1108 /* Print on STREAM using the given OPTIONS the index for the element 1109 at INDEX of an array whose index type is INDEX_TYPE. */ 1110 1111 void 1112 maybe_print_array_index (struct type *index_type, LONGEST index, 1113 struct ui_file *stream, 1114 const struct value_print_options *options) 1115 { 1116 struct value *index_value; 1117 1118 if (!options->print_array_indexes) 1119 return; 1120 1121 index_value = value_from_longest (index_type, index); 1122 1123 LA_PRINT_ARRAY_INDEX (index_value, stream, options); 1124 } 1125 1126 /* Called by various <lang>_val_print routines to print elements of an 1127 array in the form "<elem1>, <elem2>, <elem3>, ...". 1128 1129 (FIXME?) Assumes array element separator is a comma, which is correct 1130 for all languages currently handled. 1131 (FIXME?) Some languages have a notation for repeated array elements, 1132 perhaps we should try to use that notation when appropriate. 1133 */ 1134 1135 void 1136 val_print_array_elements (struct type *type, const gdb_byte *valaddr, 1137 CORE_ADDR address, struct ui_file *stream, 1138 int recurse, 1139 const struct value *val, 1140 const struct value_print_options *options, 1141 unsigned int i) 1142 { 1143 unsigned int things_printed = 0; 1144 unsigned len; 1145 struct type *elttype, *index_type; 1146 unsigned eltlen; 1147 /* Position of the array element we are examining to see 1148 whether it is repeated. */ 1149 unsigned int rep1; 1150 /* Number of repetitions we have detected so far. */ 1151 unsigned int reps; 1152 LONGEST low_bound_index = 0; 1153 1154 elttype = TYPE_TARGET_TYPE (type); 1155 eltlen = TYPE_LENGTH (check_typedef (elttype)); 1156 index_type = TYPE_INDEX_TYPE (type); 1157 1158 /* Compute the number of elements in the array. On most arrays, 1159 the size of its elements is not zero, and so the number of elements 1160 is simply the size of the array divided by the size of the elements. 1161 But for arrays of elements whose size is zero, we need to look at 1162 the bounds. */ 1163 if (eltlen != 0) 1164 len = TYPE_LENGTH (type) / eltlen; 1165 else 1166 { 1167 LONGEST low, hi; 1168 1169 if (get_array_bounds (type, &low, &hi)) 1170 len = hi - low + 1; 1171 else 1172 { 1173 warning (_("unable to get bounds of array, assuming null array")); 1174 len = 0; 1175 } 1176 } 1177 1178 /* Get the array low bound. This only makes sense if the array 1179 has one or more element in it. */ 1180 if (len > 0 && !get_array_bounds (type, &low_bound_index, NULL)) 1181 { 1182 warning (_("unable to get low bound of array, using zero as default")); 1183 low_bound_index = 0; 1184 } 1185 1186 annotate_array_section_begin (i, elttype); 1187 1188 for (; i < len && things_printed < options->print_max; i++) 1189 { 1190 if (i != 0) 1191 { 1192 if (options->prettyprint_arrays) 1193 { 1194 fprintf_filtered (stream, ",\n"); 1195 print_spaces_filtered (2 + 2 * recurse, stream); 1196 } 1197 else 1198 { 1199 fprintf_filtered (stream, ", "); 1200 } 1201 } 1202 wrap_here (n_spaces (2 + 2 * recurse)); 1203 maybe_print_array_index (index_type, i + low_bound_index, 1204 stream, options); 1205 1206 rep1 = i + 1; 1207 reps = 1; 1208 while ((rep1 < len) && 1209 !memcmp (valaddr + i * eltlen, valaddr + rep1 * eltlen, eltlen)) 1210 { 1211 ++reps; 1212 ++rep1; 1213 } 1214 1215 if (reps > options->repeat_count_threshold) 1216 { 1217 val_print (elttype, valaddr + i * eltlen, 0, address + i * eltlen, 1218 stream, recurse + 1, val, options, current_language); 1219 annotate_elt_rep (reps); 1220 fprintf_filtered (stream, " <repeats %u times>", reps); 1221 annotate_elt_rep_end (); 1222 1223 i = rep1 - 1; 1224 things_printed += options->repeat_count_threshold; 1225 } 1226 else 1227 { 1228 val_print (elttype, valaddr + i * eltlen, 0, address + i * eltlen, 1229 stream, recurse + 1, val, options, current_language); 1230 annotate_elt (); 1231 things_printed++; 1232 } 1233 } 1234 annotate_array_section_end (); 1235 if (i < len) 1236 { 1237 fprintf_filtered (stream, "..."); 1238 } 1239 } 1240 1241 /* Read LEN bytes of target memory at address MEMADDR, placing the 1242 results in GDB's memory at MYADDR. Returns a count of the bytes 1243 actually read, and optionally an errno value in the location 1244 pointed to by ERRNOPTR if ERRNOPTR is non-null. */ 1245 1246 /* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this 1247 function be eliminated. */ 1248 1249 static int 1250 partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr, int len, int *errnoptr) 1251 { 1252 int nread; /* Number of bytes actually read. */ 1253 int errcode; /* Error from last read. */ 1254 1255 /* First try a complete read. */ 1256 errcode = target_read_memory (memaddr, myaddr, len); 1257 if (errcode == 0) 1258 { 1259 /* Got it all. */ 1260 nread = len; 1261 } 1262 else 1263 { 1264 /* Loop, reading one byte at a time until we get as much as we can. */ 1265 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--) 1266 { 1267 errcode = target_read_memory (memaddr++, myaddr++, 1); 1268 } 1269 /* If an error, the last read was unsuccessful, so adjust count. */ 1270 if (errcode != 0) 1271 { 1272 nread--; 1273 } 1274 } 1275 if (errnoptr != NULL) 1276 { 1277 *errnoptr = errcode; 1278 } 1279 return (nread); 1280 } 1281 1282 /* Read a string from the inferior, at ADDR, with LEN characters of WIDTH bytes 1283 each. Fetch at most FETCHLIMIT characters. BUFFER will be set to a newly 1284 allocated buffer containing the string, which the caller is responsible to 1285 free, and BYTES_READ will be set to the number of bytes read. Returns 0 on 1286 success, or errno on failure. 1287 1288 If LEN > 0, reads exactly LEN characters (including eventual NULs in 1289 the middle or end of the string). If LEN is -1, stops at the first 1290 null character (not necessarily the first null byte) up to a maximum 1291 of FETCHLIMIT characters. Set FETCHLIMIT to UINT_MAX to read as many 1292 characters as possible from the string. 1293 1294 Unless an exception is thrown, BUFFER will always be allocated, even on 1295 failure. In this case, some characters might have been read before the 1296 failure happened. Check BYTES_READ to recognize this situation. 1297 1298 Note: There was a FIXME asking to make this code use target_read_string, 1299 but this function is more general (can read past null characters, up to 1300 given LEN). Besides, it is used much more often than target_read_string 1301 so it is more tested. Perhaps callers of target_read_string should use 1302 this function instead? */ 1303 1304 int 1305 read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit, 1306 enum bfd_endian byte_order, gdb_byte **buffer, int *bytes_read) 1307 { 1308 int found_nul; /* Non-zero if we found the nul char. */ 1309 int errcode; /* Errno returned from bad reads. */ 1310 unsigned int nfetch; /* Chars to fetch / chars fetched. */ 1311 unsigned int chunksize; /* Size of each fetch, in chars. */ 1312 gdb_byte *bufptr; /* Pointer to next available byte in buffer. */ 1313 gdb_byte *limit; /* First location past end of fetch buffer. */ 1314 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */ 1315 1316 /* Decide how large of chunks to try to read in one operation. This 1317 is also pretty simple. If LEN >= zero, then we want fetchlimit chars, 1318 so we might as well read them all in one operation. If LEN is -1, we 1319 are looking for a NUL terminator to end the fetching, so we might as 1320 well read in blocks that are large enough to be efficient, but not so 1321 large as to be slow if fetchlimit happens to be large. So we choose the 1322 minimum of 8 and fetchlimit. We used to use 200 instead of 8 but 1323 200 is way too big for remote debugging over a serial line. */ 1324 1325 chunksize = (len == -1 ? min (8, fetchlimit) : fetchlimit); 1326 1327 /* Loop until we either have all the characters, or we encounter 1328 some error, such as bumping into the end of the address space. */ 1329 1330 found_nul = 0; 1331 *buffer = NULL; 1332 1333 old_chain = make_cleanup (free_current_contents, buffer); 1334 1335 if (len > 0) 1336 { 1337 *buffer = (gdb_byte *) xmalloc (len * width); 1338 bufptr = *buffer; 1339 1340 nfetch = partial_memory_read (addr, bufptr, len * width, &errcode) 1341 / width; 1342 addr += nfetch * width; 1343 bufptr += nfetch * width; 1344 } 1345 else if (len == -1) 1346 { 1347 unsigned long bufsize = 0; 1348 1349 do 1350 { 1351 QUIT; 1352 nfetch = min (chunksize, fetchlimit - bufsize); 1353 1354 if (*buffer == NULL) 1355 *buffer = (gdb_byte *) xmalloc (nfetch * width); 1356 else 1357 *buffer = (gdb_byte *) xrealloc (*buffer, 1358 (nfetch + bufsize) * width); 1359 1360 bufptr = *buffer + bufsize * width; 1361 bufsize += nfetch; 1362 1363 /* Read as much as we can. */ 1364 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode) 1365 / width; 1366 1367 /* Scan this chunk for the null character that terminates the string 1368 to print. If found, we don't need to fetch any more. Note 1369 that bufptr is explicitly left pointing at the next character 1370 after the null character, or at the next character after the end 1371 of the buffer. */ 1372 1373 limit = bufptr + nfetch * width; 1374 while (bufptr < limit) 1375 { 1376 unsigned long c; 1377 1378 c = extract_unsigned_integer (bufptr, width, byte_order); 1379 addr += width; 1380 bufptr += width; 1381 if (c == 0) 1382 { 1383 /* We don't care about any error which happened after 1384 the NUL terminator. */ 1385 errcode = 0; 1386 found_nul = 1; 1387 break; 1388 } 1389 } 1390 } 1391 while (errcode == 0 /* no error */ 1392 && bufptr - *buffer < fetchlimit * width /* no overrun */ 1393 && !found_nul); /* haven't found NUL yet */ 1394 } 1395 else 1396 { /* Length of string is really 0! */ 1397 /* We always allocate *buffer. */ 1398 *buffer = bufptr = xmalloc (1); 1399 errcode = 0; 1400 } 1401 1402 /* bufptr and addr now point immediately beyond the last byte which we 1403 consider part of the string (including a '\0' which ends the string). */ 1404 *bytes_read = bufptr - *buffer; 1405 1406 QUIT; 1407 1408 discard_cleanups (old_chain); 1409 1410 return errcode; 1411 } 1412 1413 /* Print a string from the inferior, starting at ADDR and printing up to LEN 1414 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing 1415 stops at the first null byte, otherwise printing proceeds (including null 1416 bytes) until either print_max or LEN characters have been printed, 1417 whichever is smaller. */ 1418 1419 int 1420 val_print_string (struct type *elttype, CORE_ADDR addr, int len, 1421 struct ui_file *stream, 1422 const struct value_print_options *options) 1423 { 1424 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */ 1425 int errcode; /* Errno returned from bad reads. */ 1426 int found_nul; /* Non-zero if we found the nul char */ 1427 unsigned int fetchlimit; /* Maximum number of chars to print. */ 1428 int bytes_read; 1429 gdb_byte *buffer = NULL; /* Dynamically growable fetch buffer. */ 1430 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */ 1431 struct gdbarch *gdbarch = get_type_arch (elttype); 1432 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 1433 int width = TYPE_LENGTH (elttype); 1434 1435 /* First we need to figure out the limit on the number of characters we are 1436 going to attempt to fetch and print. This is actually pretty simple. If 1437 LEN >= zero, then the limit is the minimum of LEN and print_max. If 1438 LEN is -1, then the limit is print_max. This is true regardless of 1439 whether print_max is zero, UINT_MAX (unlimited), or something in between, 1440 because finding the null byte (or available memory) is what actually 1441 limits the fetch. */ 1442 1443 fetchlimit = (len == -1 ? options->print_max : min (len, options->print_max)); 1444 1445 errcode = read_string (addr, len, width, fetchlimit, byte_order, 1446 &buffer, &bytes_read); 1447 old_chain = make_cleanup (xfree, buffer); 1448 1449 addr += bytes_read; 1450 1451 /* We now have either successfully filled the buffer to fetchlimit, or 1452 terminated early due to an error or finding a null char when LEN is -1. */ 1453 1454 /* Determine found_nul by looking at the last character read. */ 1455 found_nul = extract_unsigned_integer (buffer + bytes_read - width, width, 1456 byte_order) == 0; 1457 if (len == -1 && !found_nul) 1458 { 1459 gdb_byte *peekbuf; 1460 1461 /* We didn't find a NUL terminator we were looking for. Attempt 1462 to peek at the next character. If not successful, or it is not 1463 a null byte, then force ellipsis to be printed. */ 1464 1465 peekbuf = (gdb_byte *) alloca (width); 1466 1467 if (target_read_memory (addr, peekbuf, width) == 0 1468 && extract_unsigned_integer (peekbuf, width, byte_order) != 0) 1469 force_ellipsis = 1; 1470 } 1471 else if ((len >= 0 && errcode != 0) || (len > bytes_read / width)) 1472 { 1473 /* Getting an error when we have a requested length, or fetching less 1474 than the number of characters actually requested, always make us 1475 print ellipsis. */ 1476 force_ellipsis = 1; 1477 } 1478 1479 /* If we get an error before fetching anything, don't print a string. 1480 But if we fetch something and then get an error, print the string 1481 and then the error message. */ 1482 if (errcode == 0 || bytes_read > 0) 1483 { 1484 if (options->addressprint) 1485 { 1486 fputs_filtered (" ", stream); 1487 } 1488 LA_PRINT_STRING (stream, elttype, buffer, bytes_read / width, 1489 NULL, force_ellipsis, options); 1490 } 1491 1492 if (errcode != 0) 1493 { 1494 if (errcode == EIO) 1495 { 1496 fprintf_filtered (stream, " <Address "); 1497 fputs_filtered (paddress (gdbarch, addr), stream); 1498 fprintf_filtered (stream, " out of bounds>"); 1499 } 1500 else 1501 { 1502 fprintf_filtered (stream, " <Error reading address "); 1503 fputs_filtered (paddress (gdbarch, addr), stream); 1504 fprintf_filtered (stream, ": %s>", safe_strerror (errcode)); 1505 } 1506 } 1507 1508 gdb_flush (stream); 1509 do_cleanups (old_chain); 1510 1511 return (bytes_read / width); 1512 } 1513 1514 1515 /* The 'set input-radix' command writes to this auxiliary variable. 1516 If the requested radix is valid, INPUT_RADIX is updated; otherwise, 1517 it is left unchanged. */ 1518 1519 static unsigned input_radix_1 = 10; 1520 1521 /* Validate an input or output radix setting, and make sure the user 1522 knows what they really did here. Radix setting is confusing, e.g. 1523 setting the input radix to "10" never changes it! */ 1524 1525 static void 1526 set_input_radix (char *args, int from_tty, struct cmd_list_element *c) 1527 { 1528 set_input_radix_1 (from_tty, input_radix_1); 1529 } 1530 1531 static void 1532 set_input_radix_1 (int from_tty, unsigned radix) 1533 { 1534 /* We don't currently disallow any input radix except 0 or 1, which don't 1535 make any mathematical sense. In theory, we can deal with any input 1536 radix greater than 1, even if we don't have unique digits for every 1537 value from 0 to radix-1, but in practice we lose on large radix values. 1538 We should either fix the lossage or restrict the radix range more. 1539 (FIXME). */ 1540 1541 if (radix < 2) 1542 { 1543 input_radix_1 = input_radix; 1544 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."), 1545 radix); 1546 } 1547 input_radix_1 = input_radix = radix; 1548 if (from_tty) 1549 { 1550 printf_filtered (_("Input radix now set to decimal %u, hex %x, octal %o.\n"), 1551 radix, radix, radix); 1552 } 1553 } 1554 1555 /* The 'set output-radix' command writes to this auxiliary variable. 1556 If the requested radix is valid, OUTPUT_RADIX is updated, 1557 otherwise, it is left unchanged. */ 1558 1559 static unsigned output_radix_1 = 10; 1560 1561 static void 1562 set_output_radix (char *args, int from_tty, struct cmd_list_element *c) 1563 { 1564 set_output_radix_1 (from_tty, output_radix_1); 1565 } 1566 1567 static void 1568 set_output_radix_1 (int from_tty, unsigned radix) 1569 { 1570 /* Validate the radix and disallow ones that we aren't prepared to 1571 handle correctly, leaving the radix unchanged. */ 1572 switch (radix) 1573 { 1574 case 16: 1575 user_print_options.output_format = 'x'; /* hex */ 1576 break; 1577 case 10: 1578 user_print_options.output_format = 0; /* decimal */ 1579 break; 1580 case 8: 1581 user_print_options.output_format = 'o'; /* octal */ 1582 break; 1583 default: 1584 output_radix_1 = output_radix; 1585 error (_("Unsupported output radix ``decimal %u''; output radix unchanged."), 1586 radix); 1587 } 1588 output_radix_1 = output_radix = radix; 1589 if (from_tty) 1590 { 1591 printf_filtered (_("Output radix now set to decimal %u, hex %x, octal %o.\n"), 1592 radix, radix, radix); 1593 } 1594 } 1595 1596 /* Set both the input and output radix at once. Try to set the output radix 1597 first, since it has the most restrictive range. An radix that is valid as 1598 an output radix is also valid as an input radix. 1599 1600 It may be useful to have an unusual input radix. If the user wishes to 1601 set an input radix that is not valid as an output radix, he needs to use 1602 the 'set input-radix' command. */ 1603 1604 static void 1605 set_radix (char *arg, int from_tty) 1606 { 1607 unsigned radix; 1608 1609 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg); 1610 set_output_radix_1 (0, radix); 1611 set_input_radix_1 (0, radix); 1612 if (from_tty) 1613 { 1614 printf_filtered (_("Input and output radices now set to decimal %u, hex %x, octal %o.\n"), 1615 radix, radix, radix); 1616 } 1617 } 1618 1619 /* Show both the input and output radices. */ 1620 1621 static void 1622 show_radix (char *arg, int from_tty) 1623 { 1624 if (from_tty) 1625 { 1626 if (input_radix == output_radix) 1627 { 1628 printf_filtered (_("Input and output radices set to decimal %u, hex %x, octal %o.\n"), 1629 input_radix, input_radix, input_radix); 1630 } 1631 else 1632 { 1633 printf_filtered (_("Input radix set to decimal %u, hex %x, octal %o.\n"), 1634 input_radix, input_radix, input_radix); 1635 printf_filtered (_("Output radix set to decimal %u, hex %x, octal %o.\n"), 1636 output_radix, output_radix, output_radix); 1637 } 1638 } 1639 } 1640 1641 1642 static void 1643 set_print (char *arg, int from_tty) 1644 { 1645 printf_unfiltered ( 1646 "\"set print\" must be followed by the name of a print subcommand.\n"); 1647 help_list (setprintlist, "set print ", -1, gdb_stdout); 1648 } 1649 1650 static void 1651 show_print (char *args, int from_tty) 1652 { 1653 cmd_show_list (showprintlist, from_tty, ""); 1654 } 1655 1656 void 1657 _initialize_valprint (void) 1658 { 1659 add_prefix_cmd ("print", no_class, set_print, 1660 _("Generic command for setting how things print."), 1661 &setprintlist, "set print ", 0, &setlist); 1662 add_alias_cmd ("p", "print", no_class, 1, &setlist); 1663 /* prefer set print to set prompt */ 1664 add_alias_cmd ("pr", "print", no_class, 1, &setlist); 1665 1666 add_prefix_cmd ("print", no_class, show_print, 1667 _("Generic command for showing print settings."), 1668 &showprintlist, "show print ", 0, &showlist); 1669 add_alias_cmd ("p", "print", no_class, 1, &showlist); 1670 add_alias_cmd ("pr", "print", no_class, 1, &showlist); 1671 1672 add_setshow_uinteger_cmd ("elements", no_class, 1673 &user_print_options.print_max, _("\ 1674 Set limit on string chars or array elements to print."), _("\ 1675 Show limit on string chars or array elements to print."), _("\ 1676 \"set print elements 0\" causes there to be no limit."), 1677 NULL, 1678 show_print_max, 1679 &setprintlist, &showprintlist); 1680 1681 add_setshow_boolean_cmd ("null-stop", no_class, 1682 &user_print_options.stop_print_at_null, _("\ 1683 Set printing of char arrays to stop at first null char."), _("\ 1684 Show printing of char arrays to stop at first null char."), NULL, 1685 NULL, 1686 show_stop_print_at_null, 1687 &setprintlist, &showprintlist); 1688 1689 add_setshow_uinteger_cmd ("repeats", no_class, 1690 &user_print_options.repeat_count_threshold, _("\ 1691 Set threshold for repeated print elements."), _("\ 1692 Show threshold for repeated print elements."), _("\ 1693 \"set print repeats 0\" causes all elements to be individually printed."), 1694 NULL, 1695 show_repeat_count_threshold, 1696 &setprintlist, &showprintlist); 1697 1698 add_setshow_boolean_cmd ("pretty", class_support, 1699 &user_print_options.prettyprint_structs, _("\ 1700 Set prettyprinting of structures."), _("\ 1701 Show prettyprinting of structures."), NULL, 1702 NULL, 1703 show_prettyprint_structs, 1704 &setprintlist, &showprintlist); 1705 1706 add_setshow_boolean_cmd ("union", class_support, 1707 &user_print_options.unionprint, _("\ 1708 Set printing of unions interior to structures."), _("\ 1709 Show printing of unions interior to structures."), NULL, 1710 NULL, 1711 show_unionprint, 1712 &setprintlist, &showprintlist); 1713 1714 add_setshow_boolean_cmd ("array", class_support, 1715 &user_print_options.prettyprint_arrays, _("\ 1716 Set prettyprinting of arrays."), _("\ 1717 Show prettyprinting of arrays."), NULL, 1718 NULL, 1719 show_prettyprint_arrays, 1720 &setprintlist, &showprintlist); 1721 1722 add_setshow_boolean_cmd ("address", class_support, 1723 &user_print_options.addressprint, _("\ 1724 Set printing of addresses."), _("\ 1725 Show printing of addresses."), NULL, 1726 NULL, 1727 show_addressprint, 1728 &setprintlist, &showprintlist); 1729 1730 add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1, 1731 _("\ 1732 Set default input radix for entering numbers."), _("\ 1733 Show default input radix for entering numbers."), NULL, 1734 set_input_radix, 1735 show_input_radix, 1736 &setlist, &showlist); 1737 1738 add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1, 1739 _("\ 1740 Set default output radix for printing of values."), _("\ 1741 Show default output radix for printing of values."), NULL, 1742 set_output_radix, 1743 show_output_radix, 1744 &setlist, &showlist); 1745 1746 /* The "set radix" and "show radix" commands are special in that 1747 they are like normal set and show commands but allow two normally 1748 independent variables to be either set or shown with a single 1749 command. So the usual deprecated_add_set_cmd() and [deleted] 1750 add_show_from_set() commands aren't really appropriate. */ 1751 /* FIXME: i18n: With the new add_setshow_integer command, that is no 1752 longer true - show can display anything. */ 1753 add_cmd ("radix", class_support, set_radix, _("\ 1754 Set default input and output number radices.\n\ 1755 Use 'set input-radix' or 'set output-radix' to independently set each.\n\ 1756 Without an argument, sets both radices back to the default value of 10."), 1757 &setlist); 1758 add_cmd ("radix", class_support, show_radix, _("\ 1759 Show the default input and output number radices.\n\ 1760 Use 'show input-radix' or 'show output-radix' to independently show each."), 1761 &showlist); 1762 1763 add_setshow_boolean_cmd ("array-indexes", class_support, 1764 &user_print_options.print_array_indexes, _("\ 1765 Set printing of array indexes."), _("\ 1766 Show printing of array indexes"), NULL, NULL, show_print_array_indexes, 1767 &setprintlist, &showprintlist); 1768 } 1769