1 /* Interface between GDB and target environments, including files and processes 2 3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 5 Free Software Foundation, Inc. 6 7 Contributed by Cygnus Support. Written by John Gilmore. 8 9 This file is part of GDB. 10 11 This program is free software; you can redistribute it and/or modify 12 it under the terms of the GNU General Public License as published by 13 the Free Software Foundation; either version 3 of the License, or 14 (at your option) any later version. 15 16 This program is distributed in the hope that it will be useful, 17 but WITHOUT ANY WARRANTY; without even the implied warranty of 18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 19 GNU General Public License for more details. 20 21 You should have received a copy of the GNU General Public License 22 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 23 24 #if !defined (TARGET_H) 25 #define TARGET_H 26 27 struct objfile; 28 struct ui_file; 29 struct mem_attrib; 30 struct target_ops; 31 struct bp_target_info; 32 struct regcache; 33 struct target_section_table; 34 struct trace_state_variable; 35 struct trace_status; 36 struct uploaded_tsv; 37 struct uploaded_tp; 38 struct static_tracepoint_marker; 39 40 struct expression; 41 42 /* This include file defines the interface between the main part 43 of the debugger, and the part which is target-specific, or 44 specific to the communications interface between us and the 45 target. 46 47 A TARGET is an interface between the debugger and a particular 48 kind of file or process. Targets can be STACKED in STRATA, 49 so that more than one target can potentially respond to a request. 50 In particular, memory accesses will walk down the stack of targets 51 until they find a target that is interested in handling that particular 52 address. STRATA are artificial boundaries on the stack, within 53 which particular kinds of targets live. Strata exist so that 54 people don't get confused by pushing e.g. a process target and then 55 a file target, and wondering why they can't see the current values 56 of variables any more (the file target is handling them and they 57 never get to the process target). So when you push a file target, 58 it goes into the file stratum, which is always below the process 59 stratum. */ 60 61 #include "bfd.h" 62 #include "symtab.h" 63 #include "memattr.h" 64 #include "vec.h" 65 #include "gdb_signals.h" 66 67 enum strata 68 { 69 dummy_stratum, /* The lowest of the low */ 70 file_stratum, /* Executable files, etc */ 71 core_stratum, /* Core dump files */ 72 process_stratum, /* Executing processes */ 73 thread_stratum, /* Executing threads */ 74 record_stratum, /* Support record debugging */ 75 arch_stratum /* Architecture overrides */ 76 }; 77 78 enum thread_control_capabilities 79 { 80 tc_none = 0, /* Default: can't control thread execution. */ 81 tc_schedlock = 1, /* Can lock the thread scheduler. */ 82 }; 83 84 /* Stuff for target_wait. */ 85 86 /* Generally, what has the program done? */ 87 enum target_waitkind 88 { 89 /* The program has exited. The exit status is in value.integer. */ 90 TARGET_WAITKIND_EXITED, 91 92 /* The program has stopped with a signal. Which signal is in 93 value.sig. */ 94 TARGET_WAITKIND_STOPPED, 95 96 /* The program has terminated with a signal. Which signal is in 97 value.sig. */ 98 TARGET_WAITKIND_SIGNALLED, 99 100 /* The program is letting us know that it dynamically loaded something 101 (e.g. it called load(2) on AIX). */ 102 TARGET_WAITKIND_LOADED, 103 104 /* The program has forked. A "related" process' PTID is in 105 value.related_pid. I.e., if the child forks, value.related_pid 106 is the parent's ID. */ 107 108 TARGET_WAITKIND_FORKED, 109 110 /* The program has vforked. A "related" process's PTID is in 111 value.related_pid. */ 112 113 TARGET_WAITKIND_VFORKED, 114 115 /* The program has exec'ed a new executable file. The new file's 116 pathname is pointed to by value.execd_pathname. */ 117 118 TARGET_WAITKIND_EXECD, 119 120 /* The program had previously vforked, and now the child is done 121 with the shared memory region, because it exec'ed or exited. 122 Note that the event is reported to the vfork parent. This is 123 only used if GDB did not stay attached to the vfork child, 124 otherwise, a TARGET_WAITKIND_EXECD or 125 TARGET_WAITKIND_EXIT|SIGNALLED event associated with the child 126 has the same effect. */ 127 TARGET_WAITKIND_VFORK_DONE, 128 129 /* The program has entered or returned from a system call. On 130 HP-UX, this is used in the hardware watchpoint implementation. 131 The syscall's unique integer ID number is in value.syscall_id */ 132 133 TARGET_WAITKIND_SYSCALL_ENTRY, 134 TARGET_WAITKIND_SYSCALL_RETURN, 135 136 /* Nothing happened, but we stopped anyway. This perhaps should be handled 137 within target_wait, but I'm not sure target_wait should be resuming the 138 inferior. */ 139 TARGET_WAITKIND_SPURIOUS, 140 141 /* An event has occured, but we should wait again. 142 Remote_async_wait() returns this when there is an event 143 on the inferior, but the rest of the world is not interested in 144 it. The inferior has not stopped, but has just sent some output 145 to the console, for instance. In this case, we want to go back 146 to the event loop and wait there for another event from the 147 inferior, rather than being stuck in the remote_async_wait() 148 function. This way the event loop is responsive to other events, 149 like for instance the user typing. */ 150 TARGET_WAITKIND_IGNORE, 151 152 /* The target has run out of history information, 153 and cannot run backward any further. */ 154 TARGET_WAITKIND_NO_HISTORY 155 }; 156 157 struct target_waitstatus 158 { 159 enum target_waitkind kind; 160 161 /* Forked child pid, execd pathname, exit status, signal number or 162 syscall number. */ 163 union 164 { 165 int integer; 166 enum target_signal sig; 167 ptid_t related_pid; 168 char *execd_pathname; 169 int syscall_number; 170 } 171 value; 172 }; 173 174 /* Options that can be passed to target_wait. */ 175 176 /* Return immediately if there's no event already queued. If this 177 options is not requested, target_wait blocks waiting for an 178 event. */ 179 #define TARGET_WNOHANG 1 180 181 /* The structure below stores information about a system call. 182 It is basically used in the "catch syscall" command, and in 183 every function that gives information about a system call. 184 185 It's also good to mention that its fields represent everything 186 that we currently know about a syscall in GDB. */ 187 struct syscall 188 { 189 /* The syscall number. */ 190 int number; 191 192 /* The syscall name. */ 193 const char *name; 194 }; 195 196 /* Return a pretty printed form of target_waitstatus. 197 Space for the result is malloc'd, caller must free. */ 198 extern char *target_waitstatus_to_string (const struct target_waitstatus *); 199 200 /* Possible types of events that the inferior handler will have to 201 deal with. */ 202 enum inferior_event_type 203 { 204 /* There is a request to quit the inferior, abandon it. */ 205 INF_QUIT_REQ, 206 /* Process a normal inferior event which will result in target_wait 207 being called. */ 208 INF_REG_EVENT, 209 /* Deal with an error on the inferior. */ 210 INF_ERROR, 211 /* We are called because a timer went off. */ 212 INF_TIMER, 213 /* We are called to do stuff after the inferior stops. */ 214 INF_EXEC_COMPLETE, 215 /* We are called to do some stuff after the inferior stops, but we 216 are expected to reenter the proceed() and 217 handle_inferior_event() functions. This is used only in case of 218 'step n' like commands. */ 219 INF_EXEC_CONTINUE 220 }; 221 222 /* Target objects which can be transfered using target_read, 223 target_write, et cetera. */ 224 225 enum target_object 226 { 227 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */ 228 TARGET_OBJECT_AVR, 229 /* SPU target specific transfer. See "spu-tdep.c". */ 230 TARGET_OBJECT_SPU, 231 /* Transfer up-to LEN bytes of memory starting at OFFSET. */ 232 TARGET_OBJECT_MEMORY, 233 /* Memory, avoiding GDB's data cache and trusting the executable. 234 Target implementations of to_xfer_partial never need to handle 235 this object, and most callers should not use it. */ 236 TARGET_OBJECT_RAW_MEMORY, 237 /* Memory known to be part of the target's stack. This is cached even 238 if it is not in a region marked as such, since it is known to be 239 "normal" RAM. */ 240 TARGET_OBJECT_STACK_MEMORY, 241 /* Kernel Unwind Table. See "ia64-tdep.c". */ 242 TARGET_OBJECT_UNWIND_TABLE, 243 /* Transfer auxilliary vector. */ 244 TARGET_OBJECT_AUXV, 245 /* StackGhost cookie. See "sparc-tdep.c". */ 246 TARGET_OBJECT_WCOOKIE, 247 /* Target memory map in XML format. */ 248 TARGET_OBJECT_MEMORY_MAP, 249 /* Flash memory. This object can be used to write contents to 250 a previously erased flash memory. Using it without erasing 251 flash can have unexpected results. Addresses are physical 252 address on target, and not relative to flash start. */ 253 TARGET_OBJECT_FLASH, 254 /* Available target-specific features, e.g. registers and coprocessors. 255 See "target-descriptions.c". ANNEX should never be empty. */ 256 TARGET_OBJECT_AVAILABLE_FEATURES, 257 /* Currently loaded libraries, in XML format. */ 258 TARGET_OBJECT_LIBRARIES, 259 /* Get OS specific data. The ANNEX specifies the type (running 260 processes, etc.). */ 261 TARGET_OBJECT_OSDATA, 262 /* Extra signal info. Usually the contents of `siginfo_t' on unix 263 platforms. */ 264 TARGET_OBJECT_SIGNAL_INFO, 265 /* The list of threads that are being debugged. */ 266 TARGET_OBJECT_THREADS, 267 /* Collected static trace data. */ 268 TARGET_OBJECT_STATIC_TRACE_DATA, 269 /* Possible future objects: TARGET_OBJECT_FILE, ... */ 270 }; 271 272 /* Enumeration of the kinds of traceframe searches that a target may 273 be able to perform. */ 274 275 enum trace_find_type 276 { 277 tfind_number, 278 tfind_pc, 279 tfind_tp, 280 tfind_range, 281 tfind_outside, 282 }; 283 284 typedef struct static_tracepoint_marker *static_tracepoint_marker_p; 285 DEF_VEC_P(static_tracepoint_marker_p); 286 287 /* Request that OPS transfer up to LEN 8-bit bytes of the target's 288 OBJECT. The OFFSET, for a seekable object, specifies the 289 starting point. The ANNEX can be used to provide additional 290 data-specific information to the target. 291 292 Return the number of bytes actually transfered, or -1 if the 293 transfer is not supported or otherwise fails. Return of a positive 294 value less than LEN indicates that no further transfer is possible. 295 Unlike the raw to_xfer_partial interface, callers of these 296 functions do not need to retry partial transfers. */ 297 298 extern LONGEST target_read (struct target_ops *ops, 299 enum target_object object, 300 const char *annex, gdb_byte *buf, 301 ULONGEST offset, LONGEST len); 302 303 extern LONGEST target_read_until_error (struct target_ops *ops, 304 enum target_object object, 305 const char *annex, gdb_byte *buf, 306 ULONGEST offset, LONGEST len); 307 308 extern LONGEST target_write (struct target_ops *ops, 309 enum target_object object, 310 const char *annex, const gdb_byte *buf, 311 ULONGEST offset, LONGEST len); 312 313 /* Similar to target_write, except that it also calls PROGRESS with 314 the number of bytes written and the opaque BATON after every 315 successful partial write (and before the first write). This is 316 useful for progress reporting and user interaction while writing 317 data. To abort the transfer, the progress callback can throw an 318 exception. */ 319 320 LONGEST target_write_with_progress (struct target_ops *ops, 321 enum target_object object, 322 const char *annex, const gdb_byte *buf, 323 ULONGEST offset, LONGEST len, 324 void (*progress) (ULONGEST, void *), 325 void *baton); 326 327 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will 328 be read using OPS. The return value will be -1 if the transfer 329 fails or is not supported; 0 if the object is empty; or the length 330 of the object otherwise. If a positive value is returned, a 331 sufficiently large buffer will be allocated using xmalloc and 332 returned in *BUF_P containing the contents of the object. 333 334 This method should be used for objects sufficiently small to store 335 in a single xmalloc'd buffer, when no fixed bound on the object's 336 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY 337 through this function. */ 338 339 extern LONGEST target_read_alloc (struct target_ops *ops, 340 enum target_object object, 341 const char *annex, gdb_byte **buf_p); 342 343 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and 344 returned as a string, allocated using xmalloc. If an error occurs 345 or the transfer is unsupported, NULL is returned. Empty objects 346 are returned as allocated but empty strings. A warning is issued 347 if the result contains any embedded NUL bytes. */ 348 349 extern char *target_read_stralloc (struct target_ops *ops, 350 enum target_object object, 351 const char *annex); 352 353 /* Wrappers to target read/write that perform memory transfers. They 354 throw an error if the memory transfer fails. 355 356 NOTE: cagney/2003-10-23: The naming schema is lifted from 357 "frame.h". The parameter order is lifted from get_frame_memory, 358 which in turn lifted it from read_memory. */ 359 360 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr, 361 gdb_byte *buf, LONGEST len); 362 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops, 363 CORE_ADDR addr, int len, 364 enum bfd_endian byte_order); 365 366 struct thread_info; /* fwd decl for parameter list below: */ 367 368 struct target_ops 369 { 370 struct target_ops *beneath; /* To the target under this one. */ 371 char *to_shortname; /* Name this target type */ 372 char *to_longname; /* Name for printing */ 373 char *to_doc; /* Documentation. Does not include trailing 374 newline, and starts with a one-line descrip- 375 tion (probably similar to to_longname). */ 376 /* Per-target scratch pad. */ 377 void *to_data; 378 /* The open routine takes the rest of the parameters from the 379 command, and (if successful) pushes a new target onto the 380 stack. Targets should supply this routine, if only to provide 381 an error message. */ 382 void (*to_open) (char *, int); 383 /* Old targets with a static target vector provide "to_close". 384 New re-entrant targets provide "to_xclose" and that is expected 385 to xfree everything (including the "struct target_ops"). */ 386 void (*to_xclose) (struct target_ops *targ, int quitting); 387 void (*to_close) (int); 388 void (*to_attach) (struct target_ops *ops, char *, int); 389 void (*to_post_attach) (int); 390 void (*to_detach) (struct target_ops *ops, char *, int); 391 void (*to_disconnect) (struct target_ops *, char *, int); 392 void (*to_resume) (struct target_ops *, ptid_t, int, enum target_signal); 393 ptid_t (*to_wait) (struct target_ops *, 394 ptid_t, struct target_waitstatus *, int); 395 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int); 396 void (*to_store_registers) (struct target_ops *, struct regcache *, int); 397 void (*to_prepare_to_store) (struct regcache *); 398 399 /* Transfer LEN bytes of memory between GDB address MYADDR and 400 target address MEMADDR. If WRITE, transfer them to the target, else 401 transfer them from the target. TARGET is the target from which we 402 get this function. 403 404 Return value, N, is one of the following: 405 406 0 means that we can't handle this. If errno has been set, it is the 407 error which prevented us from doing it (FIXME: What about bfd_error?). 408 409 positive (call it N) means that we have transferred N bytes 410 starting at MEMADDR. We might be able to handle more bytes 411 beyond this length, but no promises. 412 413 negative (call its absolute value N) means that we cannot 414 transfer right at MEMADDR, but we could transfer at least 415 something at MEMADDR + N. 416 417 NOTE: cagney/2004-10-01: This has been entirely superseeded by 418 to_xfer_partial and inferior inheritance. */ 419 420 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr, 421 int len, int write, 422 struct mem_attrib *attrib, 423 struct target_ops *target); 424 425 void (*to_files_info) (struct target_ops *); 426 int (*to_insert_breakpoint) (struct gdbarch *, struct bp_target_info *); 427 int (*to_remove_breakpoint) (struct gdbarch *, struct bp_target_info *); 428 int (*to_can_use_hw_breakpoint) (int, int, int); 429 int (*to_insert_hw_breakpoint) (struct gdbarch *, struct bp_target_info *); 430 int (*to_remove_hw_breakpoint) (struct gdbarch *, struct bp_target_info *); 431 432 /* Documentation of what the two routines below are expected to do is 433 provided with the corresponding target_* macros. */ 434 int (*to_remove_watchpoint) (CORE_ADDR, int, int, struct expression *); 435 int (*to_insert_watchpoint) (CORE_ADDR, int, int, struct expression *); 436 437 int (*to_stopped_by_watchpoint) (void); 438 int to_have_steppable_watchpoint; 439 int to_have_continuable_watchpoint; 440 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *); 441 int (*to_watchpoint_addr_within_range) (struct target_ops *, 442 CORE_ADDR, CORE_ADDR, int); 443 int (*to_region_ok_for_hw_watchpoint) (CORE_ADDR, int); 444 int (*to_can_accel_watchpoint_condition) (CORE_ADDR, int, int, 445 struct expression *); 446 void (*to_terminal_init) (void); 447 void (*to_terminal_inferior) (void); 448 void (*to_terminal_ours_for_output) (void); 449 void (*to_terminal_ours) (void); 450 void (*to_terminal_save_ours) (void); 451 void (*to_terminal_info) (char *, int); 452 void (*to_kill) (struct target_ops *); 453 void (*to_load) (char *, int); 454 int (*to_lookup_symbol) (char *, CORE_ADDR *); 455 void (*to_create_inferior) (struct target_ops *, 456 char *, char *, char **, int); 457 void (*to_post_startup_inferior) (ptid_t); 458 void (*to_acknowledge_created_inferior) (int); 459 void (*to_insert_fork_catchpoint) (int); 460 int (*to_remove_fork_catchpoint) (int); 461 void (*to_insert_vfork_catchpoint) (int); 462 int (*to_remove_vfork_catchpoint) (int); 463 int (*to_follow_fork) (struct target_ops *, int); 464 void (*to_insert_exec_catchpoint) (int); 465 int (*to_remove_exec_catchpoint) (int); 466 int (*to_set_syscall_catchpoint) (int, int, int, int, int *); 467 int (*to_has_exited) (int, int, int *); 468 void (*to_mourn_inferior) (struct target_ops *); 469 int (*to_can_run) (void); 470 void (*to_notice_signals) (ptid_t ptid); 471 int (*to_thread_alive) (struct target_ops *, ptid_t ptid); 472 void (*to_find_new_threads) (struct target_ops *); 473 char *(*to_pid_to_str) (struct target_ops *, ptid_t); 474 char *(*to_extra_thread_info) (struct thread_info *); 475 void (*to_stop) (ptid_t); 476 void (*to_rcmd) (char *command, struct ui_file *output); 477 char *(*to_pid_to_exec_file) (int pid); 478 void (*to_log_command) (const char *); 479 struct target_section_table *(*to_get_section_table) (struct target_ops *); 480 enum strata to_stratum; 481 int (*to_has_all_memory) (struct target_ops *); 482 int (*to_has_memory) (struct target_ops *); 483 int (*to_has_stack) (struct target_ops *); 484 int (*to_has_registers) (struct target_ops *); 485 int (*to_has_execution) (struct target_ops *); 486 int to_has_thread_control; /* control thread execution */ 487 int to_attach_no_wait; 488 /* ASYNC target controls */ 489 int (*to_can_async_p) (void); 490 int (*to_is_async_p) (void); 491 void (*to_async) (void (*) (enum inferior_event_type, void *), void *); 492 int (*to_async_mask) (int); 493 int (*to_supports_non_stop) (void); 494 /* find_memory_regions support method for gcore */ 495 int (*to_find_memory_regions) (int (*) (CORE_ADDR, 496 unsigned long, 497 int, int, int, 498 void *), 499 void *); 500 /* make_corefile_notes support method for gcore */ 501 char * (*to_make_corefile_notes) (bfd *, int *); 502 /* get_bookmark support method for bookmarks */ 503 gdb_byte * (*to_get_bookmark) (char *, int); 504 /* goto_bookmark support method for bookmarks */ 505 void (*to_goto_bookmark) (gdb_byte *, int); 506 /* Return the thread-local address at OFFSET in the 507 thread-local storage for the thread PTID and the shared library 508 or executable file given by OBJFILE. If that block of 509 thread-local storage hasn't been allocated yet, this function 510 may return an error. */ 511 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops, 512 ptid_t ptid, 513 CORE_ADDR load_module_addr, 514 CORE_ADDR offset); 515 516 /* Request that OPS transfer up to LEN 8-bit bytes of the target's 517 OBJECT. The OFFSET, for a seekable object, specifies the 518 starting point. The ANNEX can be used to provide additional 519 data-specific information to the target. 520 521 Return the number of bytes actually transfered, zero when no 522 further transfer is possible, and -1 when the transfer is not 523 supported. Return of a positive value smaller than LEN does 524 not indicate the end of the object, only the end of the 525 transfer; higher level code should continue transferring if 526 desired. This is handled in target.c. 527 528 The interface does not support a "retry" mechanism. Instead it 529 assumes that at least one byte will be transfered on each 530 successful call. 531 532 NOTE: cagney/2003-10-17: The current interface can lead to 533 fragmented transfers. Lower target levels should not implement 534 hacks, such as enlarging the transfer, in an attempt to 535 compensate for this. Instead, the target stack should be 536 extended so that it implements supply/collect methods and a 537 look-aside object cache. With that available, the lowest 538 target can safely and freely "push" data up the stack. 539 540 See target_read and target_write for more information. One, 541 and only one, of readbuf or writebuf must be non-NULL. */ 542 543 LONGEST (*to_xfer_partial) (struct target_ops *ops, 544 enum target_object object, const char *annex, 545 gdb_byte *readbuf, const gdb_byte *writebuf, 546 ULONGEST offset, LONGEST len); 547 548 /* Returns the memory map for the target. A return value of NULL 549 means that no memory map is available. If a memory address 550 does not fall within any returned regions, it's assumed to be 551 RAM. The returned memory regions should not overlap. 552 553 The order of regions does not matter; target_memory_map will 554 sort regions by starting address. For that reason, this 555 function should not be called directly except via 556 target_memory_map. 557 558 This method should not cache data; if the memory map could 559 change unexpectedly, it should be invalidated, and higher 560 layers will re-fetch it. */ 561 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *); 562 563 /* Erases the region of flash memory starting at ADDRESS, of 564 length LENGTH. 565 566 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned 567 on flash block boundaries, as reported by 'to_memory_map'. */ 568 void (*to_flash_erase) (struct target_ops *, 569 ULONGEST address, LONGEST length); 570 571 /* Finishes a flash memory write sequence. After this operation 572 all flash memory should be available for writing and the result 573 of reading from areas written by 'to_flash_write' should be 574 equal to what was written. */ 575 void (*to_flash_done) (struct target_ops *); 576 577 /* Describe the architecture-specific features of this target. 578 Returns the description found, or NULL if no description 579 was available. */ 580 const struct target_desc *(*to_read_description) (struct target_ops *ops); 581 582 /* Build the PTID of the thread on which a given task is running, 583 based on LWP and THREAD. These values are extracted from the 584 task Private_Data section of the Ada Task Control Block, and 585 their interpretation depends on the target. */ 586 ptid_t (*to_get_ada_task_ptid) (long lwp, long thread); 587 588 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR. 589 Return 0 if *READPTR is already at the end of the buffer. 590 Return -1 if there is insufficient buffer for a whole entry. 591 Return 1 if an entry was read into *TYPEP and *VALP. */ 592 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr, 593 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp); 594 595 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the 596 sequence of bytes in PATTERN with length PATTERN_LEN. 597 598 The result is 1 if found, 0 if not found, and -1 if there was an error 599 requiring halting of the search (e.g. memory read error). 600 If the pattern is found the address is recorded in FOUND_ADDRP. */ 601 int (*to_search_memory) (struct target_ops *ops, 602 CORE_ADDR start_addr, ULONGEST search_space_len, 603 const gdb_byte *pattern, ULONGEST pattern_len, 604 CORE_ADDR *found_addrp); 605 606 /* Can target execute in reverse? */ 607 int (*to_can_execute_reverse) (void); 608 609 /* Does this target support debugging multiple processes 610 simultaneously? */ 611 int (*to_supports_multi_process) (void); 612 613 /* Determine current architecture of thread PTID. 614 615 The target is supposed to determine the architecture of the code where 616 the target is currently stopped at (on Cell, if a target is in spu_run, 617 to_thread_architecture would return SPU, otherwise PPC32 or PPC64). 618 This is architecture used to perform decr_pc_after_break adjustment, 619 and also determines the frame architecture of the innermost frame. 620 ptrace operations need to operate according to target_gdbarch. 621 622 The default implementation always returns target_gdbarch. */ 623 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t); 624 625 /* Determine current address space of thread PTID. 626 627 The default implementation always returns the inferior's 628 address space. */ 629 struct address_space *(*to_thread_address_space) (struct target_ops *, 630 ptid_t); 631 632 /* Tracepoint-related operations. */ 633 634 /* Prepare the target for a tracing run. */ 635 void (*to_trace_init) (void); 636 637 /* Send full details of a tracepoint to the target. */ 638 void (*to_download_tracepoint) (struct breakpoint *t); 639 640 /* Send full details of a trace state variable to the target. */ 641 void (*to_download_trace_state_variable) (struct trace_state_variable *tsv); 642 643 /* Inform the target info of memory regions that are readonly 644 (such as text sections), and so it should return data from 645 those rather than look in the trace buffer. */ 646 void (*to_trace_set_readonly_regions) (void); 647 648 /* Start a trace run. */ 649 void (*to_trace_start) (void); 650 651 /* Get the current status of a tracing run. */ 652 int (*to_get_trace_status) (struct trace_status *ts); 653 654 /* Stop a trace run. */ 655 void (*to_trace_stop) (void); 656 657 /* Ask the target to find a trace frame of the given type TYPE, 658 using NUM, ADDR1, and ADDR2 as search parameters. Returns the 659 number of the trace frame, and also the tracepoint number at 660 TPP. If no trace frame matches, return -1. May throw if the 661 operation fails. */ 662 int (*to_trace_find) (enum trace_find_type type, int num, 663 ULONGEST addr1, ULONGEST addr2, int *tpp); 664 665 /* Get the value of the trace state variable number TSV, returning 666 1 if the value is known and writing the value itself into the 667 location pointed to by VAL, else returning 0. */ 668 int (*to_get_trace_state_variable_value) (int tsv, LONGEST *val); 669 670 int (*to_save_trace_data) (const char *filename); 671 672 int (*to_upload_tracepoints) (struct uploaded_tp **utpp); 673 674 int (*to_upload_trace_state_variables) (struct uploaded_tsv **utsvp); 675 676 LONGEST (*to_get_raw_trace_data) (gdb_byte *buf, 677 ULONGEST offset, LONGEST len); 678 679 /* Set the target's tracing behavior in response to unexpected 680 disconnection - set VAL to 1 to keep tracing, 0 to stop. */ 681 void (*to_set_disconnected_tracing) (int val); 682 void (*to_set_circular_trace_buffer) (int val); 683 684 /* Return the processor core that thread PTID was last seen on. 685 This information is updated only when: 686 - update_thread_list is called 687 - thread stops 688 If the core cannot be determined -- either for the specified thread, or 689 right now, or in this debug session, or for this target -- return -1. */ 690 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid); 691 692 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range 693 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's 694 a match, 0 if there's a mismatch, and -1 if an error is 695 encountered while reading memory. */ 696 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data, 697 CORE_ADDR memaddr, ULONGEST size); 698 699 /* Return the address of the start of the Thread Information Block 700 a Windows OS specific feature. */ 701 int (*to_get_tib_address) (ptid_t ptid, CORE_ADDR *addr); 702 703 /* Send the new settings of write permission variables. */ 704 void (*to_set_permissions) (void); 705 706 /* Look for a static tracepoint marker at ADDR, and fill in MARKER 707 with its details. Return 1 on success, 0 on failure. */ 708 int (*to_static_tracepoint_marker_at) (CORE_ADDR, 709 struct static_tracepoint_marker *marker); 710 711 /* Return a vector of all tracepoints markers string id ID, or all 712 markers if ID is NULL. */ 713 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid) 714 (const char *id); 715 716 int to_magic; 717 /* Need sub-structure for target machine related rather than comm related? 718 */ 719 }; 720 721 /* Magic number for checking ops size. If a struct doesn't end with this 722 number, somebody changed the declaration but didn't change all the 723 places that initialize one. */ 724 725 #define OPS_MAGIC 3840 726 727 /* The ops structure for our "current" target process. This should 728 never be NULL. If there is no target, it points to the dummy_target. */ 729 730 extern struct target_ops current_target; 731 732 /* Define easy words for doing these operations on our current target. */ 733 734 #define target_shortname (current_target.to_shortname) 735 #define target_longname (current_target.to_longname) 736 737 /* Does whatever cleanup is required for a target that we are no 738 longer going to be calling. QUITTING indicates that GDB is exiting 739 and should not get hung on an error (otherwise it is important to 740 perform clean termination, even if it takes a while). This routine 741 is automatically always called when popping the target off the 742 target stack (to_beneath is undefined). Closing file descriptors 743 and freeing all memory allocated memory are typical things it 744 should do. */ 745 746 void target_close (struct target_ops *targ, int quitting); 747 748 /* Attaches to a process on the target side. Arguments are as passed 749 to the `attach' command by the user. This routine can be called 750 when the target is not on the target-stack, if the target_can_run 751 routine returns 1; in that case, it must push itself onto the stack. 752 Upon exit, the target should be ready for normal operations, and 753 should be ready to deliver the status of the process immediately 754 (without waiting) to an upcoming target_wait call. */ 755 756 void target_attach (char *, int); 757 758 /* Some targets don't generate traps when attaching to the inferior, 759 or their target_attach implementation takes care of the waiting. 760 These targets must set to_attach_no_wait. */ 761 762 #define target_attach_no_wait \ 763 (current_target.to_attach_no_wait) 764 765 /* The target_attach operation places a process under debugger control, 766 and stops the process. 767 768 This operation provides a target-specific hook that allows the 769 necessary bookkeeping to be performed after an attach completes. */ 770 #define target_post_attach(pid) \ 771 (*current_target.to_post_attach) (pid) 772 773 /* Takes a program previously attached to and detaches it. 774 The program may resume execution (some targets do, some don't) and will 775 no longer stop on signals, etc. We better not have left any breakpoints 776 in the program or it'll die when it hits one. ARGS is arguments 777 typed by the user (e.g. a signal to send the process). FROM_TTY 778 says whether to be verbose or not. */ 779 780 extern void target_detach (char *, int); 781 782 /* Disconnect from the current target without resuming it (leaving it 783 waiting for a debugger). */ 784 785 extern void target_disconnect (char *, int); 786 787 /* Resume execution of the target process PTID. STEP says whether to 788 single-step or to run free; SIGGNAL is the signal to be given to 789 the target, or TARGET_SIGNAL_0 for no signal. The caller may not 790 pass TARGET_SIGNAL_DEFAULT. */ 791 792 extern void target_resume (ptid_t ptid, int step, enum target_signal signal); 793 794 /* Wait for process pid to do something. PTID = -1 to wait for any 795 pid to do something. Return pid of child, or -1 in case of error; 796 store status through argument pointer STATUS. Note that it is 797 _NOT_ OK to throw_exception() out of target_wait() without popping 798 the debugging target from the stack; GDB isn't prepared to get back 799 to the prompt with a debugging target but without the frame cache, 800 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W* 801 options. */ 802 803 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status, 804 int options); 805 806 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */ 807 808 extern void target_fetch_registers (struct regcache *regcache, int regno); 809 810 /* Store at least register REGNO, or all regs if REGNO == -1. 811 It can store as many registers as it wants to, so target_prepare_to_store 812 must have been previously called. Calls error() if there are problems. */ 813 814 extern void target_store_registers (struct regcache *regcache, int regs); 815 816 /* Get ready to modify the registers array. On machines which store 817 individual registers, this doesn't need to do anything. On machines 818 which store all the registers in one fell swoop, this makes sure 819 that REGISTERS contains all the registers from the program being 820 debugged. */ 821 822 #define target_prepare_to_store(regcache) \ 823 (*current_target.to_prepare_to_store) (regcache) 824 825 /* Determine current address space of thread PTID. */ 826 827 struct address_space *target_thread_address_space (ptid_t); 828 829 /* Returns true if this target can debug multiple processes 830 simultaneously. */ 831 832 #define target_supports_multi_process() \ 833 (*current_target.to_supports_multi_process) () 834 835 /* Invalidate all target dcaches. */ 836 extern void target_dcache_invalidate (void); 837 838 extern int target_read_string (CORE_ADDR, char **, int, int *); 839 840 extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len); 841 842 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, int len); 843 844 extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, 845 int len); 846 847 /* Fetches the target's memory map. If one is found it is sorted 848 and returned, after some consistency checking. Otherwise, NULL 849 is returned. */ 850 VEC(mem_region_s) *target_memory_map (void); 851 852 /* Erase the specified flash region. */ 853 void target_flash_erase (ULONGEST address, LONGEST length); 854 855 /* Finish a sequence of flash operations. */ 856 void target_flash_done (void); 857 858 /* Describes a request for a memory write operation. */ 859 struct memory_write_request 860 { 861 /* Begining address that must be written. */ 862 ULONGEST begin; 863 /* Past-the-end address. */ 864 ULONGEST end; 865 /* The data to write. */ 866 gdb_byte *data; 867 /* A callback baton for progress reporting for this request. */ 868 void *baton; 869 }; 870 typedef struct memory_write_request memory_write_request_s; 871 DEF_VEC_O(memory_write_request_s); 872 873 /* Enumeration specifying different flash preservation behaviour. */ 874 enum flash_preserve_mode 875 { 876 flash_preserve, 877 flash_discard 878 }; 879 880 /* Write several memory blocks at once. This version can be more 881 efficient than making several calls to target_write_memory, in 882 particular because it can optimize accesses to flash memory. 883 884 Moreover, this is currently the only memory access function in gdb 885 that supports writing to flash memory, and it should be used for 886 all cases where access to flash memory is desirable. 887 888 REQUESTS is the vector (see vec.h) of memory_write_request. 889 PRESERVE_FLASH_P indicates what to do with blocks which must be 890 erased, but not completely rewritten. 891 PROGRESS_CB is a function that will be periodically called to provide 892 feedback to user. It will be called with the baton corresponding 893 to the request currently being written. It may also be called 894 with a NULL baton, when preserved flash sectors are being rewritten. 895 896 The function returns 0 on success, and error otherwise. */ 897 int target_write_memory_blocks (VEC(memory_write_request_s) *requests, 898 enum flash_preserve_mode preserve_flash_p, 899 void (*progress_cb) (ULONGEST, void *)); 900 901 /* From infrun.c. */ 902 903 extern int inferior_has_forked (ptid_t pid, ptid_t *child_pid); 904 905 extern int inferior_has_vforked (ptid_t pid, ptid_t *child_pid); 906 907 extern int inferior_has_execd (ptid_t pid, char **execd_pathname); 908 909 extern int inferior_has_called_syscall (ptid_t pid, int *syscall_number); 910 911 /* Print a line about the current target. */ 912 913 #define target_files_info() \ 914 (*current_target.to_files_info) (¤t_target) 915 916 /* Insert a breakpoint at address BP_TGT->placed_address in the target 917 machine. Result is 0 for success, or an errno value. */ 918 919 extern int target_insert_breakpoint (struct gdbarch *gdbarch, 920 struct bp_target_info *bp_tgt); 921 922 /* Remove a breakpoint at address BP_TGT->placed_address in the target 923 machine. Result is 0 for success, or an errno value. */ 924 925 extern int target_remove_breakpoint (struct gdbarch *gdbarch, 926 struct bp_target_info *bp_tgt); 927 928 /* Initialize the terminal settings we record for the inferior, 929 before we actually run the inferior. */ 930 931 #define target_terminal_init() \ 932 (*current_target.to_terminal_init) () 933 934 /* Put the inferior's terminal settings into effect. 935 This is preparation for starting or resuming the inferior. */ 936 937 extern void target_terminal_inferior (void); 938 939 /* Put some of our terminal settings into effect, 940 enough to get proper results from our output, 941 but do not change into or out of RAW mode 942 so that no input is discarded. 943 944 After doing this, either terminal_ours or terminal_inferior 945 should be called to get back to a normal state of affairs. */ 946 947 #define target_terminal_ours_for_output() \ 948 (*current_target.to_terminal_ours_for_output) () 949 950 /* Put our terminal settings into effect. 951 First record the inferior's terminal settings 952 so they can be restored properly later. */ 953 954 #define target_terminal_ours() \ 955 (*current_target.to_terminal_ours) () 956 957 /* Save our terminal settings. 958 This is called from TUI after entering or leaving the curses 959 mode. Since curses modifies our terminal this call is here 960 to take this change into account. */ 961 962 #define target_terminal_save_ours() \ 963 (*current_target.to_terminal_save_ours) () 964 965 /* Print useful information about our terminal status, if such a thing 966 exists. */ 967 968 #define target_terminal_info(arg, from_tty) \ 969 (*current_target.to_terminal_info) (arg, from_tty) 970 971 /* Kill the inferior process. Make it go away. */ 972 973 extern void target_kill (void); 974 975 /* Load an executable file into the target process. This is expected 976 to not only bring new code into the target process, but also to 977 update GDB's symbol tables to match. 978 979 ARG contains command-line arguments, to be broken down with 980 buildargv (). The first non-switch argument is the filename to 981 load, FILE; the second is a number (as parsed by strtoul (..., ..., 982 0)), which is an offset to apply to the load addresses of FILE's 983 sections. The target may define switches, or other non-switch 984 arguments, as it pleases. */ 985 986 extern void target_load (char *arg, int from_tty); 987 988 /* Look up a symbol in the target's symbol table. NAME is the symbol 989 name. ADDRP is a CORE_ADDR * pointing to where the value of the 990 symbol should be returned. The result is 0 if successful, nonzero 991 if the symbol does not exist in the target environment. This 992 function should not call error() if communication with the target 993 is interrupted, since it is called from symbol reading, but should 994 return nonzero, possibly doing a complain(). */ 995 996 #define target_lookup_symbol(name, addrp) \ 997 (*current_target.to_lookup_symbol) (name, addrp) 998 999 /* Start an inferior process and set inferior_ptid to its pid. 1000 EXEC_FILE is the file to run. 1001 ALLARGS is a string containing the arguments to the program. 1002 ENV is the environment vector to pass. Errors reported with error(). 1003 On VxWorks and various standalone systems, we ignore exec_file. */ 1004 1005 void target_create_inferior (char *exec_file, char *args, 1006 char **env, int from_tty); 1007 1008 /* Some targets (such as ttrace-based HPUX) don't allow us to request 1009 notification of inferior events such as fork and vork immediately 1010 after the inferior is created. (This because of how gdb gets an 1011 inferior created via invoking a shell to do it. In such a scenario, 1012 if the shell init file has commands in it, the shell will fork and 1013 exec for each of those commands, and we will see each such fork 1014 event. Very bad.) 1015 1016 Such targets will supply an appropriate definition for this function. */ 1017 1018 #define target_post_startup_inferior(ptid) \ 1019 (*current_target.to_post_startup_inferior) (ptid) 1020 1021 /* On some targets, the sequence of starting up an inferior requires 1022 some synchronization between gdb and the new inferior process, PID. */ 1023 1024 #define target_acknowledge_created_inferior(pid) \ 1025 (*current_target.to_acknowledge_created_inferior) (pid) 1026 1027 /* On some targets, we can catch an inferior fork or vfork event when 1028 it occurs. These functions insert/remove an already-created 1029 catchpoint for such events. */ 1030 1031 #define target_insert_fork_catchpoint(pid) \ 1032 (*current_target.to_insert_fork_catchpoint) (pid) 1033 1034 #define target_remove_fork_catchpoint(pid) \ 1035 (*current_target.to_remove_fork_catchpoint) (pid) 1036 1037 #define target_insert_vfork_catchpoint(pid) \ 1038 (*current_target.to_insert_vfork_catchpoint) (pid) 1039 1040 #define target_remove_vfork_catchpoint(pid) \ 1041 (*current_target.to_remove_vfork_catchpoint) (pid) 1042 1043 /* If the inferior forks or vforks, this function will be called at 1044 the next resume in order to perform any bookkeeping and fiddling 1045 necessary to continue debugging either the parent or child, as 1046 requested, and releasing the other. Information about the fork 1047 or vfork event is available via get_last_target_status (). 1048 This function returns 1 if the inferior should not be resumed 1049 (i.e. there is another event pending). */ 1050 1051 int target_follow_fork (int follow_child); 1052 1053 /* On some targets, we can catch an inferior exec event when it 1054 occurs. These functions insert/remove an already-created 1055 catchpoint for such events. */ 1056 1057 #define target_insert_exec_catchpoint(pid) \ 1058 (*current_target.to_insert_exec_catchpoint) (pid) 1059 1060 #define target_remove_exec_catchpoint(pid) \ 1061 (*current_target.to_remove_exec_catchpoint) (pid) 1062 1063 /* Syscall catch. 1064 1065 NEEDED is nonzero if any syscall catch (of any kind) is requested. 1066 If NEEDED is zero, it means the target can disable the mechanism to 1067 catch system calls because there are no more catchpoints of this type. 1068 1069 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is 1070 being requested. In this case, both TABLE_SIZE and TABLE should 1071 be ignored. 1072 1073 TABLE_SIZE is the number of elements in TABLE. It only matters if 1074 ANY_COUNT is zero. 1075 1076 TABLE is an array of ints, indexed by syscall number. An element in 1077 this array is nonzero if that syscall should be caught. This argument 1078 only matters if ANY_COUNT is zero. */ 1079 1080 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \ 1081 (*current_target.to_set_syscall_catchpoint) (pid, needed, any_count, \ 1082 table_size, table) 1083 1084 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the 1085 exit code of PID, if any. */ 1086 1087 #define target_has_exited(pid,wait_status,exit_status) \ 1088 (*current_target.to_has_exited) (pid,wait_status,exit_status) 1089 1090 /* The debugger has completed a blocking wait() call. There is now 1091 some process event that must be processed. This function should 1092 be defined by those targets that require the debugger to perform 1093 cleanup or internal state changes in response to the process event. */ 1094 1095 /* The inferior process has died. Do what is right. */ 1096 1097 void target_mourn_inferior (void); 1098 1099 /* Does target have enough data to do a run or attach command? */ 1100 1101 #define target_can_run(t) \ 1102 ((t)->to_can_run) () 1103 1104 /* post process changes to signal handling in the inferior. */ 1105 1106 #define target_notice_signals(ptid) \ 1107 (*current_target.to_notice_signals) (ptid) 1108 1109 /* Check to see if a thread is still alive. */ 1110 1111 extern int target_thread_alive (ptid_t ptid); 1112 1113 /* Query for new threads and add them to the thread list. */ 1114 1115 extern void target_find_new_threads (void); 1116 1117 /* Make target stop in a continuable fashion. (For instance, under 1118 Unix, this should act like SIGSTOP). This function is normally 1119 used by GUIs to implement a stop button. */ 1120 1121 extern void target_stop (ptid_t ptid); 1122 1123 /* Send the specified COMMAND to the target's monitor 1124 (shell,interpreter) for execution. The result of the query is 1125 placed in OUTBUF. */ 1126 1127 #define target_rcmd(command, outbuf) \ 1128 (*current_target.to_rcmd) (command, outbuf) 1129 1130 1131 /* Does the target include all of memory, or only part of it? This 1132 determines whether we look up the target chain for other parts of 1133 memory if this target can't satisfy a request. */ 1134 1135 extern int target_has_all_memory_1 (void); 1136 #define target_has_all_memory target_has_all_memory_1 () 1137 1138 /* Does the target include memory? (Dummy targets don't.) */ 1139 1140 extern int target_has_memory_1 (void); 1141 #define target_has_memory target_has_memory_1 () 1142 1143 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until 1144 we start a process.) */ 1145 1146 extern int target_has_stack_1 (void); 1147 #define target_has_stack target_has_stack_1 () 1148 1149 /* Does the target have registers? (Exec files don't.) */ 1150 1151 extern int target_has_registers_1 (void); 1152 #define target_has_registers target_has_registers_1 () 1153 1154 /* Does the target have execution? Can we make it jump (through 1155 hoops), or pop its stack a few times? This means that the current 1156 target is currently executing; for some targets, that's the same as 1157 whether or not the target is capable of execution, but there are 1158 also targets which can be current while not executing. In that 1159 case this will become true after target_create_inferior or 1160 target_attach. */ 1161 1162 extern int target_has_execution_1 (void); 1163 #define target_has_execution target_has_execution_1 () 1164 1165 /* Default implementations for process_stratum targets. Return true 1166 if there's a selected inferior, false otherwise. */ 1167 1168 extern int default_child_has_all_memory (struct target_ops *ops); 1169 extern int default_child_has_memory (struct target_ops *ops); 1170 extern int default_child_has_stack (struct target_ops *ops); 1171 extern int default_child_has_registers (struct target_ops *ops); 1172 extern int default_child_has_execution (struct target_ops *ops); 1173 1174 /* Can the target support the debugger control of thread execution? 1175 Can it lock the thread scheduler? */ 1176 1177 #define target_can_lock_scheduler \ 1178 (current_target.to_has_thread_control & tc_schedlock) 1179 1180 /* Should the target enable async mode if it is supported? Temporary 1181 cludge until async mode is a strict superset of sync mode. */ 1182 extern int target_async_permitted; 1183 1184 /* Can the target support asynchronous execution? */ 1185 #define target_can_async_p() (current_target.to_can_async_p ()) 1186 1187 /* Is the target in asynchronous execution mode? */ 1188 #define target_is_async_p() (current_target.to_is_async_p ()) 1189 1190 int target_supports_non_stop (void); 1191 1192 /* Put the target in async mode with the specified callback function. */ 1193 #define target_async(CALLBACK,CONTEXT) \ 1194 (current_target.to_async ((CALLBACK), (CONTEXT))) 1195 1196 /* This is to be used ONLY within call_function_by_hand(). It provides 1197 a workaround, to have inferior function calls done in sychronous 1198 mode, even though the target is asynchronous. After 1199 target_async_mask(0) is called, calls to target_can_async_p() will 1200 return FALSE , so that target_resume() will not try to start the 1201 target asynchronously. After the inferior stops, we IMMEDIATELY 1202 restore the previous nature of the target, by calling 1203 target_async_mask(1). After that, target_can_async_p() will return 1204 TRUE. ANY OTHER USE OF THIS FEATURE IS DEPRECATED. 1205 1206 FIXME ezannoni 1999-12-13: we won't need this once we move 1207 the turning async on and off to the single execution commands, 1208 from where it is done currently, in remote_resume(). */ 1209 1210 #define target_async_mask(MASK) \ 1211 (current_target.to_async_mask (MASK)) 1212 1213 /* Converts a process id to a string. Usually, the string just contains 1214 `process xyz', but on some systems it may contain 1215 `process xyz thread abc'. */ 1216 1217 extern char *target_pid_to_str (ptid_t ptid); 1218 1219 extern char *normal_pid_to_str (ptid_t ptid); 1220 1221 /* Return a short string describing extra information about PID, 1222 e.g. "sleeping", "runnable", "running on LWP 3". Null return value 1223 is okay. */ 1224 1225 #define target_extra_thread_info(TP) \ 1226 (current_target.to_extra_thread_info (TP)) 1227 1228 /* Attempts to find the pathname of the executable file 1229 that was run to create a specified process. 1230 1231 The process PID must be stopped when this operation is used. 1232 1233 If the executable file cannot be determined, NULL is returned. 1234 1235 Else, a pointer to a character string containing the pathname 1236 is returned. This string should be copied into a buffer by 1237 the client if the string will not be immediately used, or if 1238 it must persist. */ 1239 1240 #define target_pid_to_exec_file(pid) \ 1241 (current_target.to_pid_to_exec_file) (pid) 1242 1243 /* See the to_thread_architecture description in struct target_ops. */ 1244 1245 #define target_thread_architecture(ptid) \ 1246 (current_target.to_thread_architecture (¤t_target, ptid)) 1247 1248 /* 1249 * Iterator function for target memory regions. 1250 * Calls a callback function once for each memory region 'mapped' 1251 * in the child process. Defined as a simple macro rather than 1252 * as a function macro so that it can be tested for nullity. 1253 */ 1254 1255 #define target_find_memory_regions(FUNC, DATA) \ 1256 (current_target.to_find_memory_regions) (FUNC, DATA) 1257 1258 /* 1259 * Compose corefile .note section. 1260 */ 1261 1262 #define target_make_corefile_notes(BFD, SIZE_P) \ 1263 (current_target.to_make_corefile_notes) (BFD, SIZE_P) 1264 1265 /* Bookmark interfaces. */ 1266 #define target_get_bookmark(ARGS, FROM_TTY) \ 1267 (current_target.to_get_bookmark) (ARGS, FROM_TTY) 1268 1269 #define target_goto_bookmark(ARG, FROM_TTY) \ 1270 (current_target.to_goto_bookmark) (ARG, FROM_TTY) 1271 1272 /* Hardware watchpoint interfaces. */ 1273 1274 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or 1275 write). Only the INFERIOR_PTID task is being queried. */ 1276 1277 #define target_stopped_by_watchpoint \ 1278 (*current_target.to_stopped_by_watchpoint) 1279 1280 /* Non-zero if we have steppable watchpoints */ 1281 1282 #define target_have_steppable_watchpoint \ 1283 (current_target.to_have_steppable_watchpoint) 1284 1285 /* Non-zero if we have continuable watchpoints */ 1286 1287 #define target_have_continuable_watchpoint \ 1288 (current_target.to_have_continuable_watchpoint) 1289 1290 /* Provide defaults for hardware watchpoint functions. */ 1291 1292 /* If the *_hw_beakpoint functions have not been defined 1293 elsewhere use the definitions in the target vector. */ 1294 1295 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is 1296 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or 1297 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far 1298 (including this one?). OTHERTYPE is who knows what... */ 1299 1300 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \ 1301 (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE); 1302 1303 #define target_region_ok_for_hw_watchpoint(addr, len) \ 1304 (*current_target.to_region_ok_for_hw_watchpoint) (addr, len) 1305 1306 1307 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes. 1308 TYPE is 0 for write, 1 for read, and 2 for read/write accesses. 1309 COND is the expression for its condition, or NULL if there's none. 1310 Returns 0 for success, 1 if the watchpoint type is not supported, 1311 -1 for failure. */ 1312 1313 #define target_insert_watchpoint(addr, len, type, cond) \ 1314 (*current_target.to_insert_watchpoint) (addr, len, type, cond) 1315 1316 #define target_remove_watchpoint(addr, len, type, cond) \ 1317 (*current_target.to_remove_watchpoint) (addr, len, type, cond) 1318 1319 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \ 1320 (*current_target.to_insert_hw_breakpoint) (gdbarch, bp_tgt) 1321 1322 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \ 1323 (*current_target.to_remove_hw_breakpoint) (gdbarch, bp_tgt) 1324 1325 /* Return non-zero if target knows the data address which triggered this 1326 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the 1327 INFERIOR_PTID task is being queried. */ 1328 #define target_stopped_data_address(target, addr_p) \ 1329 (*target.to_stopped_data_address) (target, addr_p) 1330 1331 #define target_watchpoint_addr_within_range(target, addr, start, length) \ 1332 (*target.to_watchpoint_addr_within_range) (target, addr, start, length) 1333 1334 /* Return non-zero if the target is capable of using hardware to evaluate 1335 the condition expression. In this case, if the condition is false when 1336 the watched memory location changes, execution may continue without the 1337 debugger being notified. 1338 1339 Due to limitations in the hardware implementation, it may be capable of 1340 avoiding triggering the watchpoint in some cases where the condition 1341 expression is false, but may report some false positives as well. 1342 For this reason, GDB will still evaluate the condition expression when 1343 the watchpoint triggers. */ 1344 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \ 1345 (*current_target.to_can_accel_watchpoint_condition) (addr, len, type, cond) 1346 1347 /* Target can execute in reverse? */ 1348 #define target_can_execute_reverse \ 1349 (current_target.to_can_execute_reverse ? \ 1350 current_target.to_can_execute_reverse () : 0) 1351 1352 extern const struct target_desc *target_read_description (struct target_ops *); 1353 1354 #define target_get_ada_task_ptid(lwp, tid) \ 1355 (*current_target.to_get_ada_task_ptid) (lwp,tid) 1356 1357 /* Utility implementation of searching memory. */ 1358 extern int simple_search_memory (struct target_ops* ops, 1359 CORE_ADDR start_addr, 1360 ULONGEST search_space_len, 1361 const gdb_byte *pattern, 1362 ULONGEST pattern_len, 1363 CORE_ADDR *found_addrp); 1364 1365 /* Main entry point for searching memory. */ 1366 extern int target_search_memory (CORE_ADDR start_addr, 1367 ULONGEST search_space_len, 1368 const gdb_byte *pattern, 1369 ULONGEST pattern_len, 1370 CORE_ADDR *found_addrp); 1371 1372 /* Tracepoint-related operations. */ 1373 1374 #define target_trace_init() \ 1375 (*current_target.to_trace_init) () 1376 1377 #define target_download_tracepoint(t) \ 1378 (*current_target.to_download_tracepoint) (t) 1379 1380 #define target_download_trace_state_variable(tsv) \ 1381 (*current_target.to_download_trace_state_variable) (tsv) 1382 1383 #define target_trace_start() \ 1384 (*current_target.to_trace_start) () 1385 1386 #define target_trace_set_readonly_regions() \ 1387 (*current_target.to_trace_set_readonly_regions) () 1388 1389 #define target_get_trace_status(ts) \ 1390 (*current_target.to_get_trace_status) (ts) 1391 1392 #define target_trace_stop() \ 1393 (*current_target.to_trace_stop) () 1394 1395 #define target_trace_find(type,num,addr1,addr2,tpp) \ 1396 (*current_target.to_trace_find) ((type), (num), (addr1), (addr2), (tpp)) 1397 1398 #define target_get_trace_state_variable_value(tsv,val) \ 1399 (*current_target.to_get_trace_state_variable_value) ((tsv), (val)) 1400 1401 #define target_save_trace_data(filename) \ 1402 (*current_target.to_save_trace_data) (filename) 1403 1404 #define target_upload_tracepoints(utpp) \ 1405 (*current_target.to_upload_tracepoints) (utpp) 1406 1407 #define target_upload_trace_state_variables(utsvp) \ 1408 (*current_target.to_upload_trace_state_variables) (utsvp) 1409 1410 #define target_get_raw_trace_data(buf,offset,len) \ 1411 (*current_target.to_get_raw_trace_data) ((buf), (offset), (len)) 1412 1413 #define target_set_disconnected_tracing(val) \ 1414 (*current_target.to_set_disconnected_tracing) (val) 1415 1416 #define target_set_circular_trace_buffer(val) \ 1417 (*current_target.to_set_circular_trace_buffer) (val) 1418 1419 #define target_get_tib_address(ptid, addr) \ 1420 (*current_target.to_get_tib_address) ((ptid), (addr)) 1421 1422 #define target_set_permissions() \ 1423 (*current_target.to_set_permissions) () 1424 1425 #define target_static_tracepoint_marker_at(addr, marker) \ 1426 (*current_target.to_static_tracepoint_marker_at) (addr, marker) 1427 1428 #define target_static_tracepoint_markers_by_strid(marker_id) \ 1429 (*current_target.to_static_tracepoint_markers_by_strid) (marker_id) 1430 1431 /* Command logging facility. */ 1432 1433 #define target_log_command(p) \ 1434 do \ 1435 if (current_target.to_log_command) \ 1436 (*current_target.to_log_command) (p); \ 1437 while (0) 1438 1439 1440 extern int target_core_of_thread (ptid_t ptid); 1441 1442 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches 1443 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0 1444 if there's a mismatch, and -1 if an error is encountered while 1445 reading memory. Throws an error if the functionality is found not 1446 to be supported by the current target. */ 1447 int target_verify_memory (const gdb_byte *data, 1448 CORE_ADDR memaddr, ULONGEST size); 1449 1450 /* Routines for maintenance of the target structures... 1451 1452 add_target: Add a target to the list of all possible targets. 1453 1454 push_target: Make this target the top of the stack of currently used 1455 targets, within its particular stratum of the stack. Result 1456 is 0 if now atop the stack, nonzero if not on top (maybe 1457 should warn user). 1458 1459 unpush_target: Remove this from the stack of currently used targets, 1460 no matter where it is on the list. Returns 0 if no 1461 change, 1 if removed from stack. 1462 1463 pop_target: Remove the top thing on the stack of current targets. */ 1464 1465 extern void add_target (struct target_ops *); 1466 1467 extern void push_target (struct target_ops *); 1468 1469 extern int unpush_target (struct target_ops *); 1470 1471 extern void target_pre_inferior (int); 1472 1473 extern void target_preopen (int); 1474 1475 extern void pop_target (void); 1476 1477 /* Does whatever cleanup is required to get rid of all pushed targets. 1478 QUITTING is propagated to target_close; it indicates that GDB is 1479 exiting and should not get hung on an error (otherwise it is 1480 important to perform clean termination, even if it takes a 1481 while). */ 1482 extern void pop_all_targets (int quitting); 1483 1484 /* Like pop_all_targets, but pops only targets whose stratum is 1485 strictly above ABOVE_STRATUM. */ 1486 extern void pop_all_targets_above (enum strata above_stratum, int quitting); 1487 1488 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile, 1489 CORE_ADDR offset); 1490 1491 /* Struct target_section maps address ranges to file sections. It is 1492 mostly used with BFD files, but can be used without (e.g. for handling 1493 raw disks, or files not in formats handled by BFD). */ 1494 1495 struct target_section 1496 { 1497 CORE_ADDR addr; /* Lowest address in section */ 1498 CORE_ADDR endaddr; /* 1+highest address in section */ 1499 1500 struct bfd_section *the_bfd_section; 1501 1502 bfd *bfd; /* BFD file pointer */ 1503 }; 1504 1505 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */ 1506 1507 struct target_section_table 1508 { 1509 struct target_section *sections; 1510 struct target_section *sections_end; 1511 }; 1512 1513 /* Return the "section" containing the specified address. */ 1514 struct target_section *target_section_by_addr (struct target_ops *target, 1515 CORE_ADDR addr); 1516 1517 /* Return the target section table this target (or the targets 1518 beneath) currently manipulate. */ 1519 1520 extern struct target_section_table *target_get_section_table 1521 (struct target_ops *target); 1522 1523 /* From mem-break.c */ 1524 1525 extern int memory_remove_breakpoint (struct gdbarch *, struct bp_target_info *); 1526 1527 extern int memory_insert_breakpoint (struct gdbarch *, struct bp_target_info *); 1528 1529 extern int default_memory_remove_breakpoint (struct gdbarch *, struct bp_target_info *); 1530 1531 extern int default_memory_insert_breakpoint (struct gdbarch *, struct bp_target_info *); 1532 1533 1534 /* From target.c */ 1535 1536 extern void initialize_targets (void); 1537 1538 extern void noprocess (void) ATTRIBUTE_NORETURN; 1539 1540 extern void target_require_runnable (void); 1541 1542 extern void find_default_attach (struct target_ops *, char *, int); 1543 1544 extern void find_default_create_inferior (struct target_ops *, 1545 char *, char *, char **, int); 1546 1547 extern struct target_ops *find_run_target (void); 1548 1549 extern struct target_ops *find_core_target (void); 1550 1551 extern struct target_ops *find_target_beneath (struct target_ops *); 1552 1553 /* Read OS data object of type TYPE from the target, and return it in 1554 XML format. The result is NUL-terminated and returned as a string, 1555 allocated using xmalloc. If an error occurs or the transfer is 1556 unsupported, NULL is returned. Empty objects are returned as 1557 allocated but empty strings. */ 1558 1559 extern char *target_get_osdata (const char *type); 1560 1561 1562 /* Stuff that should be shared among the various remote targets. */ 1563 1564 /* Debugging level. 0 is off, and non-zero values mean to print some debug 1565 information (higher values, more information). */ 1566 extern int remote_debug; 1567 1568 /* Speed in bits per second, or -1 which means don't mess with the speed. */ 1569 extern int baud_rate; 1570 /* Timeout limit for response from target. */ 1571 extern int remote_timeout; 1572 1573 1574 /* Functions for helping to write a native target. */ 1575 1576 /* This is for native targets which use a unix/POSIX-style waitstatus. */ 1577 extern void store_waitstatus (struct target_waitstatus *, int); 1578 1579 /* These are in common/signals.c, but they're only used by gdb. */ 1580 extern enum target_signal default_target_signal_from_host (struct gdbarch *, 1581 int); 1582 extern int default_target_signal_to_host (struct gdbarch *, 1583 enum target_signal); 1584 1585 /* Convert from a number used in a GDB command to an enum target_signal. */ 1586 extern enum target_signal target_signal_from_command (int); 1587 /* End of files in common/signals.c. */ 1588 1589 /* Set the show memory breakpoints mode to show, and installs a cleanup 1590 to restore it back to the current value. */ 1591 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show); 1592 1593 extern int may_write_registers; 1594 extern int may_write_memory; 1595 extern int may_insert_breakpoints; 1596 extern int may_insert_tracepoints; 1597 extern int may_insert_fast_tracepoints; 1598 extern int may_stop; 1599 1600 extern void update_target_permissions (void); 1601 1602 1603 /* Imported from machine dependent code */ 1604 1605 /* Blank target vector entries are initialized to target_ignore. */ 1606 void target_ignore (void); 1607 1608 extern struct target_ops deprecated_child_ops; 1609 1610 #endif /* !defined (TARGET_H) */ 1611