xref: /dflybsd-src/contrib/gdb-7/gdb/symtab.c (revision c0d274d062fd959993bf623f25f7cb6a8a676c4e)
1 /* Symbol table lookup for the GNU debugger, GDB.
2 
3    Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4    1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007, 2008, 2009,
5    2010 Free Software Foundation, Inc.
6 
7    This file is part of GDB.
8 
9    This program is free software; you can redistribute it and/or modify
10    it under the terms of the GNU General Public License as published by
11    the Free Software Foundation; either version 3 of the License, or
12    (at your option) any later version.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
21 
22 #include "defs.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "gdbcore.h"
26 #include "frame.h"
27 #include "target.h"
28 #include "value.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "gdbcmd.h"
32 #include "call-cmds.h"
33 #include "gdb_regex.h"
34 #include "expression.h"
35 #include "language.h"
36 #include "demangle.h"
37 #include "inferior.h"
38 #include "linespec.h"
39 #include "source.h"
40 #include "filenames.h"		/* for FILENAME_CMP */
41 #include "objc-lang.h"
42 #include "d-lang.h"
43 #include "ada-lang.h"
44 #include "p-lang.h"
45 #include "addrmap.h"
46 
47 #include "hashtab.h"
48 
49 #include "gdb_obstack.h"
50 #include "block.h"
51 #include "dictionary.h"
52 
53 #include <sys/types.h>
54 #include <fcntl.h>
55 #include "gdb_string.h"
56 #include "gdb_stat.h"
57 #include <ctype.h>
58 #include "cp-abi.h"
59 #include "cp-support.h"
60 #include "observer.h"
61 #include "gdb_assert.h"
62 #include "solist.h"
63 #include "macrotab.h"
64 #include "macroscope.h"
65 
66 #include "psymtab.h"
67 
68 /* Prototypes for local functions */
69 
70 static void completion_list_add_name (char *, char *, int, char *, char *);
71 
72 static void rbreak_command (char *, int);
73 
74 static void types_info (char *, int);
75 
76 static void functions_info (char *, int);
77 
78 static void variables_info (char *, int);
79 
80 static void sources_info (char *, int);
81 
82 static void output_source_filename (const char *, int *);
83 
84 static int find_line_common (struct linetable *, int, int *);
85 
86 /* This one is used by linespec.c */
87 
88 char *operator_chars (char *p, char **end);
89 
90 static struct symbol *lookup_symbol_aux (const char *name,
91 					 const struct block *block,
92 					 const domain_enum domain,
93 					 enum language language,
94 					 int *is_a_field_of_this);
95 
96 static
97 struct symbol *lookup_symbol_aux_local (const char *name,
98 					const struct block *block,
99 					const domain_enum domain,
100 					enum language language);
101 
102 static
103 struct symbol *lookup_symbol_aux_symtabs (int block_index,
104 					  const char *name,
105 					  const domain_enum domain);
106 
107 static
108 struct symbol *lookup_symbol_aux_quick (struct objfile *objfile,
109 					int block_index,
110 					const char *name,
111 					const domain_enum domain);
112 
113 static void print_symbol_info (domain_enum,
114 			       struct symtab *, struct symbol *, int, char *);
115 
116 static void print_msymbol_info (struct minimal_symbol *);
117 
118 static void symtab_symbol_info (char *, domain_enum, int);
119 
120 void _initialize_symtab (void);
121 
122 /* */
123 
124 /* Allow the user to configure the debugger behavior with respect
125    to multiple-choice menus when more than one symbol matches during
126    a symbol lookup.  */
127 
128 const char multiple_symbols_ask[] = "ask";
129 const char multiple_symbols_all[] = "all";
130 const char multiple_symbols_cancel[] = "cancel";
131 static const char *multiple_symbols_modes[] =
132 {
133   multiple_symbols_ask,
134   multiple_symbols_all,
135   multiple_symbols_cancel,
136   NULL
137 };
138 static const char *multiple_symbols_mode = multiple_symbols_all;
139 
140 /* Read-only accessor to AUTO_SELECT_MODE.  */
141 
142 const char *
143 multiple_symbols_select_mode (void)
144 {
145   return multiple_symbols_mode;
146 }
147 
148 /* Block in which the most recently searched-for symbol was found.
149    Might be better to make this a parameter to lookup_symbol and
150    value_of_this. */
151 
152 const struct block *block_found;
153 
154 /* Check for a symtab of a specific name; first in symtabs, then in
155    psymtabs.  *If* there is no '/' in the name, a match after a '/'
156    in the symtab filename will also work.  */
157 
158 struct symtab *
159 lookup_symtab (const char *name)
160 {
161   int found;
162   struct symtab *s = NULL;
163   struct objfile *objfile;
164   char *real_path = NULL;
165   char *full_path = NULL;
166 
167   /* Here we are interested in canonicalizing an absolute path, not
168      absolutizing a relative path.  */
169   if (IS_ABSOLUTE_PATH (name))
170     {
171       full_path = xfullpath (name);
172       make_cleanup (xfree, full_path);
173       real_path = gdb_realpath (name);
174       make_cleanup (xfree, real_path);
175     }
176 
177 got_symtab:
178 
179   /* First, search for an exact match */
180 
181   ALL_SYMTABS (objfile, s)
182   {
183     if (FILENAME_CMP (name, s->filename) == 0)
184       {
185 	return s;
186       }
187 
188     /* If the user gave us an absolute path, try to find the file in
189        this symtab and use its absolute path.  */
190 
191     if (full_path != NULL)
192       {
193         const char *fp = symtab_to_fullname (s);
194 
195         if (fp != NULL && FILENAME_CMP (full_path, fp) == 0)
196           {
197             return s;
198           }
199       }
200 
201     if (real_path != NULL)
202       {
203         char *fullname = symtab_to_fullname (s);
204 
205         if (fullname != NULL)
206           {
207             char *rp = gdb_realpath (fullname);
208 
209             make_cleanup (xfree, rp);
210             if (FILENAME_CMP (real_path, rp) == 0)
211               {
212                 return s;
213               }
214           }
215       }
216   }
217 
218   /* Now, search for a matching tail (only if name doesn't have any dirs) */
219 
220   if (lbasename (name) == name)
221     ALL_SYMTABS (objfile, s)
222     {
223       if (FILENAME_CMP (lbasename (s->filename), name) == 0)
224 	return s;
225     }
226 
227   /* Same search rules as above apply here, but now we look thru the
228      psymtabs.  */
229 
230   found = 0;
231   ALL_OBJFILES (objfile)
232   {
233     if (objfile->sf
234 	&& objfile->sf->qf->lookup_symtab (objfile, name, full_path, real_path,
235 					   &s))
236       {
237 	found = 1;
238 	break;
239       }
240   }
241 
242   if (s != NULL)
243     return s;
244   if (!found)
245     return NULL;
246 
247   /* At this point, we have located the psymtab for this file, but
248      the conversion to a symtab has failed.  This usually happens
249      when we are looking up an include file.  In this case,
250      PSYMTAB_TO_SYMTAB doesn't return a symtab, even though one has
251      been created.  So, we need to run through the symtabs again in
252      order to find the file.
253      XXX - This is a crock, and should be fixed inside of the the
254      symbol parsing routines. */
255   goto got_symtab;
256 }
257 
258 /* Mangle a GDB method stub type.  This actually reassembles the pieces of the
259    full method name, which consist of the class name (from T), the unadorned
260    method name from METHOD_ID, and the signature for the specific overload,
261    specified by SIGNATURE_ID.  Note that this function is g++ specific. */
262 
263 char *
264 gdb_mangle_name (struct type *type, int method_id, int signature_id)
265 {
266   int mangled_name_len;
267   char *mangled_name;
268   struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
269   struct fn_field *method = &f[signature_id];
270   char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
271   char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
272   char *newname = type_name_no_tag (type);
273 
274   /* Does the form of physname indicate that it is the full mangled name
275      of a constructor (not just the args)?  */
276   int is_full_physname_constructor;
277 
278   int is_constructor;
279   int is_destructor = is_destructor_name (physname);
280   /* Need a new type prefix.  */
281   char *const_prefix = method->is_const ? "C" : "";
282   char *volatile_prefix = method->is_volatile ? "V" : "";
283   char buf[20];
284   int len = (newname == NULL ? 0 : strlen (newname));
285 
286   /* Nothing to do if physname already contains a fully mangled v3 abi name
287      or an operator name.  */
288   if ((physname[0] == '_' && physname[1] == 'Z')
289       || is_operator_name (field_name))
290     return xstrdup (physname);
291 
292   is_full_physname_constructor = is_constructor_name (physname);
293 
294   is_constructor =
295     is_full_physname_constructor || (newname && strcmp (field_name, newname) == 0);
296 
297   if (!is_destructor)
298     is_destructor = (strncmp (physname, "__dt", 4) == 0);
299 
300   if (is_destructor || is_full_physname_constructor)
301     {
302       mangled_name = (char *) xmalloc (strlen (physname) + 1);
303       strcpy (mangled_name, physname);
304       return mangled_name;
305     }
306 
307   if (len == 0)
308     {
309       sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
310     }
311   else if (physname[0] == 't' || physname[0] == 'Q')
312     {
313       /* The physname for template and qualified methods already includes
314          the class name.  */
315       sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
316       newname = NULL;
317       len = 0;
318     }
319   else
320     {
321       sprintf (buf, "__%s%s%d", const_prefix, volatile_prefix, len);
322     }
323   mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
324 		      + strlen (buf) + len + strlen (physname) + 1);
325 
326   mangled_name = (char *) xmalloc (mangled_name_len);
327   if (is_constructor)
328     mangled_name[0] = '\0';
329   else
330     strcpy (mangled_name, field_name);
331 
332   strcat (mangled_name, buf);
333   /* If the class doesn't have a name, i.e. newname NULL, then we just
334      mangle it using 0 for the length of the class.  Thus it gets mangled
335      as something starting with `::' rather than `classname::'. */
336   if (newname != NULL)
337     strcat (mangled_name, newname);
338 
339   strcat (mangled_name, physname);
340   return (mangled_name);
341 }
342 
343 
344 /* Initialize the language dependent portion of a symbol
345    depending upon the language for the symbol. */
346 void
347 symbol_init_language_specific (struct general_symbol_info *gsymbol,
348 			       enum language language)
349 {
350   gsymbol->language = language;
351   if (gsymbol->language == language_cplus
352       || gsymbol->language == language_d
353       || gsymbol->language == language_java
354       || gsymbol->language == language_objc
355       || gsymbol->language == language_fortran)
356     {
357       gsymbol->language_specific.cplus_specific.demangled_name = NULL;
358     }
359   else
360     {
361       memset (&gsymbol->language_specific, 0,
362 	      sizeof (gsymbol->language_specific));
363     }
364 }
365 
366 /* Functions to initialize a symbol's mangled name.  */
367 
368 /* Objects of this type are stored in the demangled name hash table.  */
369 struct demangled_name_entry
370 {
371   char *mangled;
372   char demangled[1];
373 };
374 
375 /* Hash function for the demangled name hash.  */
376 static hashval_t
377 hash_demangled_name_entry (const void *data)
378 {
379   const struct demangled_name_entry *e = data;
380 
381   return htab_hash_string (e->mangled);
382 }
383 
384 /* Equality function for the demangled name hash.  */
385 static int
386 eq_demangled_name_entry (const void *a, const void *b)
387 {
388   const struct demangled_name_entry *da = a;
389   const struct demangled_name_entry *db = b;
390 
391   return strcmp (da->mangled, db->mangled) == 0;
392 }
393 
394 /* Create the hash table used for demangled names.  Each hash entry is
395    a pair of strings; one for the mangled name and one for the demangled
396    name.  The entry is hashed via just the mangled name.  */
397 
398 static void
399 create_demangled_names_hash (struct objfile *objfile)
400 {
401   /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
402      The hash table code will round this up to the next prime number.
403      Choosing a much larger table size wastes memory, and saves only about
404      1% in symbol reading.  */
405 
406   objfile->demangled_names_hash = htab_create_alloc
407     (256, hash_demangled_name_entry, eq_demangled_name_entry,
408      NULL, xcalloc, xfree);
409 }
410 
411 /* Try to determine the demangled name for a symbol, based on the
412    language of that symbol.  If the language is set to language_auto,
413    it will attempt to find any demangling algorithm that works and
414    then set the language appropriately.  The returned name is allocated
415    by the demangler and should be xfree'd.  */
416 
417 static char *
418 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
419 			    const char *mangled)
420 {
421   char *demangled = NULL;
422 
423   if (gsymbol->language == language_unknown)
424     gsymbol->language = language_auto;
425 
426   if (gsymbol->language == language_objc
427       || gsymbol->language == language_auto)
428     {
429       demangled =
430 	objc_demangle (mangled, 0);
431       if (demangled != NULL)
432 	{
433 	  gsymbol->language = language_objc;
434 	  return demangled;
435 	}
436     }
437   if (gsymbol->language == language_cplus
438       || gsymbol->language == language_auto)
439     {
440       demangled =
441         cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI | DMGL_VERBOSE);
442       if (demangled != NULL)
443 	{
444 	  gsymbol->language = language_cplus;
445 	  return demangled;
446 	}
447     }
448   if (gsymbol->language == language_java)
449     {
450       demangled =
451         cplus_demangle (mangled,
452                         DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
453       if (demangled != NULL)
454 	{
455 	  gsymbol->language = language_java;
456 	  return demangled;
457 	}
458     }
459   if (gsymbol->language == language_d
460       || gsymbol->language == language_auto)
461     {
462       demangled = d_demangle(mangled, 0);
463       if (demangled != NULL)
464 	{
465 	  gsymbol->language = language_d;
466 	  return demangled;
467 	}
468     }
469   /* We could support `gsymbol->language == language_fortran' here to provide
470      module namespaces also for inferiors with only minimal symbol table (ELF
471      symbols).  Just the mangling standard is not standardized across compilers
472      and there is no DW_AT_producer available for inferiors with only the ELF
473      symbols to check the mangling kind.  */
474   return NULL;
475 }
476 
477 /* Set both the mangled and demangled (if any) names for GSYMBOL based
478    on LINKAGE_NAME and LEN.  Ordinarily, NAME is copied onto the
479    objfile's obstack; but if COPY_NAME is 0 and if NAME is
480    NUL-terminated, then this function assumes that NAME is already
481    correctly saved (either permanently or with a lifetime tied to the
482    objfile), and it will not be copied.
483 
484    The hash table corresponding to OBJFILE is used, and the memory
485    comes from that objfile's objfile_obstack.  LINKAGE_NAME is copied,
486    so the pointer can be discarded after calling this function.  */
487 
488 /* We have to be careful when dealing with Java names: when we run
489    into a Java minimal symbol, we don't know it's a Java symbol, so it
490    gets demangled as a C++ name.  This is unfortunate, but there's not
491    much we can do about it: but when demangling partial symbols and
492    regular symbols, we'd better not reuse the wrong demangled name.
493    (See PR gdb/1039.)  We solve this by putting a distinctive prefix
494    on Java names when storing them in the hash table.  */
495 
496 /* FIXME: carlton/2003-03-13: This is an unfortunate situation.  I
497    don't mind the Java prefix so much: different languages have
498    different demangling requirements, so it's only natural that we
499    need to keep language data around in our demangling cache.  But
500    it's not good that the minimal symbol has the wrong demangled name.
501    Unfortunately, I can't think of any easy solution to that
502    problem.  */
503 
504 #define JAVA_PREFIX "##JAVA$$"
505 #define JAVA_PREFIX_LEN 8
506 
507 void
508 symbol_set_names (struct general_symbol_info *gsymbol,
509 		  const char *linkage_name, int len, int copy_name,
510 		  struct objfile *objfile)
511 {
512   struct demangled_name_entry **slot;
513   /* A 0-terminated copy of the linkage name.  */
514   const char *linkage_name_copy;
515   /* A copy of the linkage name that might have a special Java prefix
516      added to it, for use when looking names up in the hash table.  */
517   const char *lookup_name;
518   /* The length of lookup_name.  */
519   int lookup_len;
520   struct demangled_name_entry entry;
521 
522   if (gsymbol->language == language_ada)
523     {
524       /* In Ada, we do the symbol lookups using the mangled name, so
525          we can save some space by not storing the demangled name.
526 
527          As a side note, we have also observed some overlap between
528          the C++ mangling and Ada mangling, similarly to what has
529          been observed with Java.  Because we don't store the demangled
530          name with the symbol, we don't need to use the same trick
531          as Java.  */
532       if (!copy_name)
533 	gsymbol->name = (char *) linkage_name;
534       else
535 	{
536 	  gsymbol->name = obstack_alloc (&objfile->objfile_obstack, len + 1);
537 	  memcpy (gsymbol->name, linkage_name, len);
538 	  gsymbol->name[len] = '\0';
539 	}
540       gsymbol->language_specific.cplus_specific.demangled_name = NULL;
541 
542       return;
543     }
544 
545   if (objfile->demangled_names_hash == NULL)
546     create_demangled_names_hash (objfile);
547 
548   /* The stabs reader generally provides names that are not
549      NUL-terminated; most of the other readers don't do this, so we
550      can just use the given copy, unless we're in the Java case.  */
551   if (gsymbol->language == language_java)
552     {
553       char *alloc_name;
554 
555       lookup_len = len + JAVA_PREFIX_LEN;
556       alloc_name = alloca (lookup_len + 1);
557       memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
558       memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
559       alloc_name[lookup_len] = '\0';
560 
561       lookup_name = alloc_name;
562       linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
563     }
564   else if (linkage_name[len] != '\0')
565     {
566       char *alloc_name;
567 
568       lookup_len = len;
569       alloc_name = alloca (lookup_len + 1);
570       memcpy (alloc_name, linkage_name, len);
571       alloc_name[lookup_len] = '\0';
572 
573       lookup_name = alloc_name;
574       linkage_name_copy = alloc_name;
575     }
576   else
577     {
578       lookup_len = len;
579       lookup_name = linkage_name;
580       linkage_name_copy = linkage_name;
581     }
582 
583   entry.mangled = (char *) lookup_name;
584   slot = ((struct demangled_name_entry **)
585 	  htab_find_slot (objfile->demangled_names_hash,
586 			  &entry, INSERT));
587 
588   /* If this name is not in the hash table, add it.  */
589   if (*slot == NULL)
590     {
591       char *demangled_name = symbol_find_demangled_name (gsymbol,
592 							 linkage_name_copy);
593       int demangled_len = demangled_name ? strlen (demangled_name) : 0;
594 
595       /* Suppose we have demangled_name==NULL, copy_name==0, and
596 	 lookup_name==linkage_name.  In this case, we already have the
597 	 mangled name saved, and we don't have a demangled name.  So,
598 	 you might think we could save a little space by not recording
599 	 this in the hash table at all.
600 
601 	 It turns out that it is actually important to still save such
602 	 an entry in the hash table, because storing this name gives
603 	 us better bcache hit rates for partial symbols.  */
604       if (!copy_name && lookup_name == linkage_name)
605 	{
606 	  *slot = obstack_alloc (&objfile->objfile_obstack,
607 				 offsetof (struct demangled_name_entry,
608 					   demangled)
609 				 + demangled_len + 1);
610 	  (*slot)->mangled = (char *) lookup_name;
611 	}
612       else
613 	{
614 	  /* If we must copy the mangled name, put it directly after
615 	     the demangled name so we can have a single
616 	     allocation.  */
617 	  *slot = obstack_alloc (&objfile->objfile_obstack,
618 				 offsetof (struct demangled_name_entry,
619 					   demangled)
620 				 + lookup_len + demangled_len + 2);
621 	  (*slot)->mangled = &((*slot)->demangled[demangled_len + 1]);
622 	  strcpy ((*slot)->mangled, lookup_name);
623 	}
624 
625       if (demangled_name != NULL)
626 	{
627 	  strcpy ((*slot)->demangled, demangled_name);
628 	  xfree (demangled_name);
629 	}
630       else
631 	(*slot)->demangled[0] = '\0';
632     }
633 
634   gsymbol->name = (*slot)->mangled + lookup_len - len;
635   if ((*slot)->demangled[0] != '\0')
636     gsymbol->language_specific.cplus_specific.demangled_name
637       = (*slot)->demangled;
638   else
639     gsymbol->language_specific.cplus_specific.demangled_name = NULL;
640 }
641 
642 /* Return the source code name of a symbol.  In languages where
643    demangling is necessary, this is the demangled name.  */
644 
645 char *
646 symbol_natural_name (const struct general_symbol_info *gsymbol)
647 {
648   switch (gsymbol->language)
649     {
650     case language_cplus:
651     case language_d:
652     case language_java:
653     case language_objc:
654     case language_fortran:
655       if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
656 	return gsymbol->language_specific.cplus_specific.demangled_name;
657       break;
658     case language_ada:
659       if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
660 	return gsymbol->language_specific.cplus_specific.demangled_name;
661       else
662 	return ada_decode_symbol (gsymbol);
663       break;
664     default:
665       break;
666     }
667   return gsymbol->name;
668 }
669 
670 /* Return the demangled name for a symbol based on the language for
671    that symbol.  If no demangled name exists, return NULL. */
672 char *
673 symbol_demangled_name (const struct general_symbol_info *gsymbol)
674 {
675   switch (gsymbol->language)
676     {
677     case language_cplus:
678     case language_d:
679     case language_java:
680     case language_objc:
681     case language_fortran:
682       if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
683 	return gsymbol->language_specific.cplus_specific.demangled_name;
684       break;
685     case language_ada:
686       if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
687 	return gsymbol->language_specific.cplus_specific.demangled_name;
688       else
689 	return ada_decode_symbol (gsymbol);
690       break;
691     default:
692       break;
693     }
694   return NULL;
695 }
696 
697 /* Return the search name of a symbol---generally the demangled or
698    linkage name of the symbol, depending on how it will be searched for.
699    If there is no distinct demangled name, then returns the same value
700    (same pointer) as SYMBOL_LINKAGE_NAME. */
701 char *
702 symbol_search_name (const struct general_symbol_info *gsymbol)
703 {
704   if (gsymbol->language == language_ada)
705     return gsymbol->name;
706   else
707     return symbol_natural_name (gsymbol);
708 }
709 
710 /* Initialize the structure fields to zero values.  */
711 void
712 init_sal (struct symtab_and_line *sal)
713 {
714   sal->pspace = NULL;
715   sal->symtab = 0;
716   sal->section = 0;
717   sal->line = 0;
718   sal->pc = 0;
719   sal->end = 0;
720   sal->explicit_pc = 0;
721   sal->explicit_line = 0;
722 }
723 
724 
725 /* Return 1 if the two sections are the same, or if they could
726    plausibly be copies of each other, one in an original object
727    file and another in a separated debug file.  */
728 
729 int
730 matching_obj_sections (struct obj_section *obj_first,
731 		       struct obj_section *obj_second)
732 {
733   asection *first = obj_first? obj_first->the_bfd_section : NULL;
734   asection *second = obj_second? obj_second->the_bfd_section : NULL;
735   struct objfile *obj;
736 
737   /* If they're the same section, then they match.  */
738   if (first == second)
739     return 1;
740 
741   /* If either is NULL, give up.  */
742   if (first == NULL || second == NULL)
743     return 0;
744 
745   /* This doesn't apply to absolute symbols.  */
746   if (first->owner == NULL || second->owner == NULL)
747     return 0;
748 
749   /* If they're in the same object file, they must be different sections.  */
750   if (first->owner == second->owner)
751     return 0;
752 
753   /* Check whether the two sections are potentially corresponding.  They must
754      have the same size, address, and name.  We can't compare section indexes,
755      which would be more reliable, because some sections may have been
756      stripped.  */
757   if (bfd_get_section_size (first) != bfd_get_section_size (second))
758     return 0;
759 
760   /* In-memory addresses may start at a different offset, relativize them.  */
761   if (bfd_get_section_vma (first->owner, first)
762       - bfd_get_start_address (first->owner)
763       != bfd_get_section_vma (second->owner, second)
764 	 - bfd_get_start_address (second->owner))
765     return 0;
766 
767   if (bfd_get_section_name (first->owner, first) == NULL
768       || bfd_get_section_name (second->owner, second) == NULL
769       || strcmp (bfd_get_section_name (first->owner, first),
770 		 bfd_get_section_name (second->owner, second)) != 0)
771     return 0;
772 
773   /* Otherwise check that they are in corresponding objfiles.  */
774 
775   ALL_OBJFILES (obj)
776     if (obj->obfd == first->owner)
777       break;
778   gdb_assert (obj != NULL);
779 
780   if (obj->separate_debug_objfile != NULL
781       && obj->separate_debug_objfile->obfd == second->owner)
782     return 1;
783   if (obj->separate_debug_objfile_backlink != NULL
784       && obj->separate_debug_objfile_backlink->obfd == second->owner)
785     return 1;
786 
787   return 0;
788 }
789 
790 struct symtab *
791 find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section)
792 {
793   struct objfile *objfile;
794   struct minimal_symbol *msymbol;
795 
796   /* If we know that this is not a text address, return failure.  This is
797      necessary because we loop based on texthigh and textlow, which do
798      not include the data ranges.  */
799   msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
800   if (msymbol
801       && (MSYMBOL_TYPE (msymbol) == mst_data
802 	  || MSYMBOL_TYPE (msymbol) == mst_bss
803 	  || MSYMBOL_TYPE (msymbol) == mst_abs
804 	  || MSYMBOL_TYPE (msymbol) == mst_file_data
805 	  || MSYMBOL_TYPE (msymbol) == mst_file_bss))
806     return NULL;
807 
808   ALL_OBJFILES (objfile)
809   {
810     struct symtab *result = NULL;
811 
812     if (objfile->sf)
813       result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol,
814 						     pc, section, 0);
815     if (result)
816       return result;
817   }
818 
819   return NULL;
820 }
821 
822 /* Debug symbols usually don't have section information.  We need to dig that
823    out of the minimal symbols and stash that in the debug symbol.  */
824 
825 void
826 fixup_section (struct general_symbol_info *ginfo,
827 	       CORE_ADDR addr, struct objfile *objfile)
828 {
829   struct minimal_symbol *msym;
830 
831   /* First, check whether a minimal symbol with the same name exists
832      and points to the same address.  The address check is required
833      e.g. on PowerPC64, where the minimal symbol for a function will
834      point to the function descriptor, while the debug symbol will
835      point to the actual function code.  */
836   msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
837   if (msym)
838     {
839       ginfo->obj_section = SYMBOL_OBJ_SECTION (msym);
840       ginfo->section = SYMBOL_SECTION (msym);
841     }
842   else
843     {
844       /* Static, function-local variables do appear in the linker
845 	 (minimal) symbols, but are frequently given names that won't
846 	 be found via lookup_minimal_symbol().  E.g., it has been
847 	 observed in frv-uclinux (ELF) executables that a static,
848 	 function-local variable named "foo" might appear in the
849 	 linker symbols as "foo.6" or "foo.3".  Thus, there is no
850 	 point in attempting to extend the lookup-by-name mechanism to
851 	 handle this case due to the fact that there can be multiple
852 	 names.
853 
854 	 So, instead, search the section table when lookup by name has
855 	 failed.  The ``addr'' and ``endaddr'' fields may have already
856 	 been relocated.  If so, the relocation offset (i.e. the
857 	 ANOFFSET value) needs to be subtracted from these values when
858 	 performing the comparison.  We unconditionally subtract it,
859 	 because, when no relocation has been performed, the ANOFFSET
860 	 value will simply be zero.
861 
862 	 The address of the symbol whose section we're fixing up HAS
863 	 NOT BEEN adjusted (relocated) yet.  It can't have been since
864 	 the section isn't yet known and knowing the section is
865 	 necessary in order to add the correct relocation value.  In
866 	 other words, we wouldn't even be in this function (attempting
867 	 to compute the section) if it were already known.
868 
869 	 Note that it is possible to search the minimal symbols
870 	 (subtracting the relocation value if necessary) to find the
871 	 matching minimal symbol, but this is overkill and much less
872 	 efficient.  It is not necessary to find the matching minimal
873 	 symbol, only its section.
874 
875 	 Note that this technique (of doing a section table search)
876 	 can fail when unrelocated section addresses overlap.  For
877 	 this reason, we still attempt a lookup by name prior to doing
878 	 a search of the section table.  */
879 
880       struct obj_section *s;
881 
882       ALL_OBJFILE_OSECTIONS (objfile, s)
883 	{
884 	  int idx = s->the_bfd_section->index;
885 	  CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
886 
887 	  if (obj_section_addr (s) - offset <= addr
888 	      && addr < obj_section_endaddr (s) - offset)
889 	    {
890 	      ginfo->obj_section = s;
891 	      ginfo->section = idx;
892 	      return;
893 	    }
894 	}
895     }
896 }
897 
898 struct symbol *
899 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
900 {
901   CORE_ADDR addr;
902 
903   if (!sym)
904     return NULL;
905 
906   if (SYMBOL_OBJ_SECTION (sym))
907     return sym;
908 
909   /* We either have an OBJFILE, or we can get at it from the sym's
910      symtab.  Anything else is a bug.  */
911   gdb_assert (objfile || SYMBOL_SYMTAB (sym));
912 
913   if (objfile == NULL)
914     objfile = SYMBOL_SYMTAB (sym)->objfile;
915 
916   /* We should have an objfile by now.  */
917   gdb_assert (objfile);
918 
919   switch (SYMBOL_CLASS (sym))
920     {
921     case LOC_STATIC:
922     case LOC_LABEL:
923       addr = SYMBOL_VALUE_ADDRESS (sym);
924       break;
925     case LOC_BLOCK:
926       addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
927       break;
928 
929     default:
930       /* Nothing else will be listed in the minsyms -- no use looking
931 	 it up.  */
932       return sym;
933     }
934 
935   fixup_section (&sym->ginfo, addr, objfile);
936 
937   return sym;
938 }
939 
940 /* Find the definition for a specified symbol name NAME
941    in domain DOMAIN, visible from lexical block BLOCK.
942    Returns the struct symbol pointer, or zero if no symbol is found.
943    C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
944    NAME is a field of the current implied argument `this'.  If so set
945    *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
946    BLOCK_FOUND is set to the block in which NAME is found (in the case of
947    a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
948 
949 /* This function has a bunch of loops in it and it would seem to be
950    attractive to put in some QUIT's (though I'm not really sure
951    whether it can run long enough to be really important).  But there
952    are a few calls for which it would appear to be bad news to quit
953    out of here: find_proc_desc in alpha-tdep.c and mips-tdep.c.  (Note
954    that there is C++ code below which can error(), but that probably
955    doesn't affect these calls since they are looking for a known
956    variable and thus can probably assume it will never hit the C++
957    code).  */
958 
959 struct symbol *
960 lookup_symbol_in_language (const char *name, const struct block *block,
961 			   const domain_enum domain, enum language lang,
962 			   int *is_a_field_of_this)
963 {
964   char *demangled_name = NULL;
965   const char *modified_name = NULL;
966   struct symbol *returnval;
967   struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
968 
969   modified_name = name;
970 
971   /* If we are using C++, D, or Java, demangle the name before doing a
972      lookup, so we can always binary search. */
973   if (lang == language_cplus)
974     {
975       demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
976       if (demangled_name)
977 	{
978 	  modified_name = demangled_name;
979 	  make_cleanup (xfree, demangled_name);
980 	}
981       else
982 	{
983 	  /* If we were given a non-mangled name, canonicalize it
984 	     according to the language (so far only for C++).  */
985 	  demangled_name = cp_canonicalize_string (name);
986 	  if (demangled_name)
987 	    {
988 	      modified_name = demangled_name;
989 	      make_cleanup (xfree, demangled_name);
990 	    }
991 	}
992     }
993   else if (lang == language_java)
994     {
995       demangled_name = cplus_demangle (name,
996 		      		       DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
997       if (demangled_name)
998 	{
999 	  modified_name = demangled_name;
1000 	  make_cleanup (xfree, demangled_name);
1001 	}
1002     }
1003   else if (lang == language_d)
1004     {
1005       demangled_name = d_demangle (name, 0);
1006       if (demangled_name)
1007 	{
1008 	  modified_name = demangled_name;
1009 	  make_cleanup (xfree, demangled_name);
1010 	}
1011     }
1012 
1013   if (case_sensitivity == case_sensitive_off)
1014     {
1015       char *copy;
1016       int len, i;
1017 
1018       len = strlen (name);
1019       copy = (char *) alloca (len + 1);
1020       for (i= 0; i < len; i++)
1021         copy[i] = tolower (name[i]);
1022       copy[len] = 0;
1023       modified_name = copy;
1024     }
1025 
1026   returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1027 				 is_a_field_of_this);
1028   do_cleanups (cleanup);
1029 
1030   return returnval;
1031 }
1032 
1033 /* Behave like lookup_symbol_in_language, but performed with the
1034    current language.  */
1035 
1036 struct symbol *
1037 lookup_symbol (const char *name, const struct block *block,
1038 	       domain_enum domain, int *is_a_field_of_this)
1039 {
1040   return lookup_symbol_in_language (name, block, domain,
1041 				    current_language->la_language,
1042 				    is_a_field_of_this);
1043 }
1044 
1045 /* Behave like lookup_symbol except that NAME is the natural name
1046    of the symbol that we're looking for and, if LINKAGE_NAME is
1047    non-NULL, ensure that the symbol's linkage name matches as
1048    well.  */
1049 
1050 static struct symbol *
1051 lookup_symbol_aux (const char *name, const struct block *block,
1052 		   const domain_enum domain, enum language language,
1053 		   int *is_a_field_of_this)
1054 {
1055   struct symbol *sym;
1056   const struct language_defn *langdef;
1057 
1058   /* Make sure we do something sensible with is_a_field_of_this, since
1059      the callers that set this parameter to some non-null value will
1060      certainly use it later and expect it to be either 0 or 1.
1061      If we don't set it, the contents of is_a_field_of_this are
1062      undefined.  */
1063   if (is_a_field_of_this != NULL)
1064     *is_a_field_of_this = 0;
1065 
1066   /* Search specified block and its superiors.  Don't search
1067      STATIC_BLOCK or GLOBAL_BLOCK.  */
1068 
1069   sym = lookup_symbol_aux_local (name, block, domain, language);
1070   if (sym != NULL)
1071     return sym;
1072 
1073   /* If requested to do so by the caller and if appropriate for LANGUAGE,
1074      check to see if NAME is a field of `this'.  */
1075 
1076   langdef = language_def (language);
1077 
1078   if (langdef->la_name_of_this != NULL && is_a_field_of_this != NULL
1079       && block != NULL)
1080     {
1081       struct symbol *sym = NULL;
1082       const struct block *function_block = block;
1083 
1084       /* 'this' is only defined in the function's block, so find the
1085 	 enclosing function block.  */
1086       for (; function_block && !BLOCK_FUNCTION (function_block);
1087 	   function_block = BLOCK_SUPERBLOCK (function_block));
1088 
1089       if (function_block && !dict_empty (BLOCK_DICT (function_block)))
1090 	sym = lookup_block_symbol (function_block, langdef->la_name_of_this,
1091 				   VAR_DOMAIN);
1092       if (sym)
1093 	{
1094 	  struct type *t = sym->type;
1095 
1096 	  /* I'm not really sure that type of this can ever
1097 	     be typedefed; just be safe.  */
1098 	  CHECK_TYPEDEF (t);
1099 	  if (TYPE_CODE (t) == TYPE_CODE_PTR
1100 	      || TYPE_CODE (t) == TYPE_CODE_REF)
1101 	    t = TYPE_TARGET_TYPE (t);
1102 
1103 	  if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1104 	      && TYPE_CODE (t) != TYPE_CODE_UNION)
1105 	    error (_("Internal error: `%s' is not an aggregate"),
1106 		   langdef->la_name_of_this);
1107 
1108 	  if (check_field (t, name))
1109 	    {
1110 	      *is_a_field_of_this = 1;
1111 	      return NULL;
1112 	    }
1113 	}
1114     }
1115 
1116   /* Now do whatever is appropriate for LANGUAGE to look
1117      up static and global variables.  */
1118 
1119   sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1120   if (sym != NULL)
1121     return sym;
1122 
1123   /* Now search all static file-level symbols.  Not strictly correct,
1124      but more useful than an error.  */
1125 
1126   return lookup_static_symbol_aux (name, domain);
1127 }
1128 
1129 /* Search all static file-level symbols for NAME from DOMAIN.  Do the symtabs
1130    first, then check the psymtabs.  If a psymtab indicates the existence of the
1131    desired name as a file-level static, then do psymtab-to-symtab conversion on
1132    the fly and return the found symbol. */
1133 
1134 struct symbol *
1135 lookup_static_symbol_aux (const char *name, const domain_enum domain)
1136 {
1137   struct objfile *objfile;
1138   struct symbol *sym;
1139 
1140   sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, domain);
1141   if (sym != NULL)
1142     return sym;
1143 
1144   ALL_OBJFILES (objfile)
1145   {
1146     sym = lookup_symbol_aux_quick (objfile, STATIC_BLOCK, name, domain);
1147     if (sym != NULL)
1148       return sym;
1149   }
1150 
1151   return NULL;
1152 }
1153 
1154 /* Check to see if the symbol is defined in BLOCK or its superiors.
1155    Don't search STATIC_BLOCK or GLOBAL_BLOCK.  */
1156 
1157 static struct symbol *
1158 lookup_symbol_aux_local (const char *name, const struct block *block,
1159                          const domain_enum domain,
1160                          enum language language)
1161 {
1162   struct symbol *sym;
1163   const struct block *static_block = block_static_block (block);
1164   const char *scope = block_scope (block);
1165 
1166   /* Check if either no block is specified or it's a global block.  */
1167 
1168   if (static_block == NULL)
1169     return NULL;
1170 
1171   while (block != static_block)
1172     {
1173       sym = lookup_symbol_aux_block (name, block, domain);
1174       if (sym != NULL)
1175 	return sym;
1176 
1177       if (language == language_cplus || language == language_fortran)
1178         {
1179           sym = cp_lookup_symbol_imports (scope,
1180                                           name,
1181                                           block,
1182                                           domain,
1183                                           1,
1184                                           1);
1185           if (sym != NULL)
1186             return sym;
1187         }
1188 
1189       if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1190 	break;
1191       block = BLOCK_SUPERBLOCK (block);
1192     }
1193 
1194   /* We've reached the edge of the function without finding a result.  */
1195 
1196   return NULL;
1197 }
1198 
1199 /* Look up OBJFILE to BLOCK.  */
1200 
1201 struct objfile *
1202 lookup_objfile_from_block (const struct block *block)
1203 {
1204   struct objfile *obj;
1205   struct symtab *s;
1206 
1207   if (block == NULL)
1208     return NULL;
1209 
1210   block = block_global_block (block);
1211   /* Go through SYMTABS.  */
1212   ALL_SYMTABS (obj, s)
1213     if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1214       {
1215 	if (obj->separate_debug_objfile_backlink)
1216 	  obj = obj->separate_debug_objfile_backlink;
1217 
1218 	return obj;
1219       }
1220 
1221   return NULL;
1222 }
1223 
1224 /* Look up a symbol in a block; if found, fixup the symbol, and set
1225    block_found appropriately.  */
1226 
1227 struct symbol *
1228 lookup_symbol_aux_block (const char *name, const struct block *block,
1229 			 const domain_enum domain)
1230 {
1231   struct symbol *sym;
1232 
1233   sym = lookup_block_symbol (block, name, domain);
1234   if (sym)
1235     {
1236       block_found = block;
1237       return fixup_symbol_section (sym, NULL);
1238     }
1239 
1240   return NULL;
1241 }
1242 
1243 /* Check all global symbols in OBJFILE in symtabs and
1244    psymtabs.  */
1245 
1246 struct symbol *
1247 lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
1248 				   const char *name,
1249 				   const domain_enum domain)
1250 {
1251   const struct objfile *objfile;
1252   struct symbol *sym;
1253   struct blockvector *bv;
1254   const struct block *block;
1255   struct symtab *s;
1256 
1257   for (objfile = main_objfile;
1258        objfile;
1259        objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1260     {
1261       /* Go through symtabs.  */
1262       ALL_OBJFILE_SYMTABS (objfile, s)
1263         {
1264           bv = BLOCKVECTOR (s);
1265           block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1266           sym = lookup_block_symbol (block, name, domain);
1267           if (sym)
1268             {
1269               block_found = block;
1270               return fixup_symbol_section (sym, (struct objfile *)objfile);
1271             }
1272         }
1273 
1274       sym = lookup_symbol_aux_quick ((struct objfile *) objfile, GLOBAL_BLOCK,
1275 				     name, domain);
1276       if (sym)
1277 	return sym;
1278     }
1279 
1280   return NULL;
1281 }
1282 
1283 /* Check to see if the symbol is defined in one of the symtabs.
1284    BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1285    depending on whether or not we want to search global symbols or
1286    static symbols.  */
1287 
1288 static struct symbol *
1289 lookup_symbol_aux_symtabs (int block_index, const char *name,
1290 			   const domain_enum domain)
1291 {
1292   struct symbol *sym;
1293   struct objfile *objfile;
1294   struct blockvector *bv;
1295   const struct block *block;
1296   struct symtab *s;
1297 
1298   ALL_PRIMARY_SYMTABS (objfile, s)
1299   {
1300     bv = BLOCKVECTOR (s);
1301     block = BLOCKVECTOR_BLOCK (bv, block_index);
1302     sym = lookup_block_symbol (block, name, domain);
1303     if (sym)
1304       {
1305 	block_found = block;
1306 	return fixup_symbol_section (sym, objfile);
1307       }
1308   }
1309 
1310   return NULL;
1311 }
1312 
1313 /* A helper function for lookup_symbol_aux that interfaces with the
1314    "quick" symbol table functions.  */
1315 
1316 static struct symbol *
1317 lookup_symbol_aux_quick (struct objfile *objfile, int kind,
1318 			 const char *name, const domain_enum domain)
1319 {
1320   struct symtab *symtab;
1321   struct blockvector *bv;
1322   const struct block *block;
1323   struct symbol *sym;
1324 
1325   if (!objfile->sf)
1326     return NULL;
1327   symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, domain);
1328   if (!symtab)
1329     return NULL;
1330 
1331   bv = BLOCKVECTOR (symtab);
1332   block = BLOCKVECTOR_BLOCK (bv, kind);
1333   sym = lookup_block_symbol (block, name, domain);
1334   if (!sym)
1335     {
1336       /* This shouldn't be necessary, but as a last resort try
1337 	 looking in the statics even though the psymtab claimed
1338 	 the symbol was global, or vice-versa. It's possible
1339 	 that the psymtab gets it wrong in some cases.  */
1340 
1341       /* FIXME: carlton/2002-09-30: Should we really do that?
1342 	 If that happens, isn't it likely to be a GDB error, in
1343 	 which case we should fix the GDB error rather than
1344 	 silently dealing with it here?  So I'd vote for
1345 	 removing the check for the symbol in the other
1346 	 block.  */
1347       block = BLOCKVECTOR_BLOCK (bv,
1348 				 kind == GLOBAL_BLOCK ?
1349 				 STATIC_BLOCK : GLOBAL_BLOCK);
1350       sym = lookup_block_symbol (block, name, domain);
1351       if (!sym)
1352 	error (_("Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n%s may be an inlined function, or may be a template function\n(if a template, try specifying an instantiation: %s<type>)."),
1353 	       kind == GLOBAL_BLOCK ? "global" : "static",
1354 	       name, symtab->filename, name, name);
1355     }
1356   return fixup_symbol_section (sym, objfile);
1357 }
1358 
1359 /* A default version of lookup_symbol_nonlocal for use by languages
1360    that can't think of anything better to do.  This implements the C
1361    lookup rules.  */
1362 
1363 struct symbol *
1364 basic_lookup_symbol_nonlocal (const char *name,
1365 			      const struct block *block,
1366 			      const domain_enum domain)
1367 {
1368   struct symbol *sym;
1369 
1370   /* NOTE: carlton/2003-05-19: The comments below were written when
1371      this (or what turned into this) was part of lookup_symbol_aux;
1372      I'm much less worried about these questions now, since these
1373      decisions have turned out well, but I leave these comments here
1374      for posterity.  */
1375 
1376   /* NOTE: carlton/2002-12-05: There is a question as to whether or
1377      not it would be appropriate to search the current global block
1378      here as well.  (That's what this code used to do before the
1379      is_a_field_of_this check was moved up.)  On the one hand, it's
1380      redundant with the lookup_symbol_aux_symtabs search that happens
1381      next.  On the other hand, if decode_line_1 is passed an argument
1382      like filename:var, then the user presumably wants 'var' to be
1383      searched for in filename.  On the third hand, there shouldn't be
1384      multiple global variables all of which are named 'var', and it's
1385      not like decode_line_1 has ever restricted its search to only
1386      global variables in a single filename.  All in all, only
1387      searching the static block here seems best: it's correct and it's
1388      cleanest.  */
1389 
1390   /* NOTE: carlton/2002-12-05: There's also a possible performance
1391      issue here: if you usually search for global symbols in the
1392      current file, then it would be slightly better to search the
1393      current global block before searching all the symtabs.  But there
1394      are other factors that have a much greater effect on performance
1395      than that one, so I don't think we should worry about that for
1396      now.  */
1397 
1398   sym = lookup_symbol_static (name, block, domain);
1399   if (sym != NULL)
1400     return sym;
1401 
1402   return lookup_symbol_global (name, block, domain);
1403 }
1404 
1405 /* Lookup a symbol in the static block associated to BLOCK, if there
1406    is one; do nothing if BLOCK is NULL or a global block.  */
1407 
1408 struct symbol *
1409 lookup_symbol_static (const char *name,
1410 		      const struct block *block,
1411 		      const domain_enum domain)
1412 {
1413   const struct block *static_block = block_static_block (block);
1414 
1415   if (static_block != NULL)
1416     return lookup_symbol_aux_block (name, static_block, domain);
1417   else
1418     return NULL;
1419 }
1420 
1421 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1422    necessary).  */
1423 
1424 struct symbol *
1425 lookup_symbol_global (const char *name,
1426 		      const struct block *block,
1427 		      const domain_enum domain)
1428 {
1429   struct symbol *sym = NULL;
1430   struct objfile *objfile = NULL;
1431 
1432   /* Call library-specific lookup procedure.  */
1433   objfile = lookup_objfile_from_block (block);
1434   if (objfile != NULL)
1435     sym = solib_global_lookup (objfile, name, domain);
1436   if (sym != NULL)
1437     return sym;
1438 
1439   sym = lookup_symbol_aux_symtabs (GLOBAL_BLOCK, name, domain);
1440   if (sym != NULL)
1441     return sym;
1442 
1443   ALL_OBJFILES (objfile)
1444   {
1445     sym = lookup_symbol_aux_quick (objfile, GLOBAL_BLOCK, name, domain);
1446     if (sym)
1447       return sym;
1448   }
1449 
1450   return NULL;
1451 }
1452 
1453 int
1454 symbol_matches_domain (enum language symbol_language,
1455 		       domain_enum symbol_domain,
1456 		       domain_enum domain)
1457 {
1458   /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1459      A Java class declaration also defines a typedef for the class.
1460      Similarly, any Ada type declaration implicitly defines a typedef.  */
1461   if (symbol_language == language_cplus
1462       || symbol_language == language_d
1463       || symbol_language == language_java
1464       || symbol_language == language_ada)
1465     {
1466       if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1467 	  && symbol_domain == STRUCT_DOMAIN)
1468 	return 1;
1469     }
1470   /* For all other languages, strict match is required.  */
1471   return (symbol_domain == domain);
1472 }
1473 
1474 /* Look up a type named NAME in the struct_domain.  The type returned
1475    must not be opaque -- i.e., must have at least one field
1476    defined.  */
1477 
1478 struct type *
1479 lookup_transparent_type (const char *name)
1480 {
1481   return current_language->la_lookup_transparent_type (name);
1482 }
1483 
1484 /* A helper for basic_lookup_transparent_type that interfaces with the
1485    "quick" symbol table functions.  */
1486 
1487 static struct type *
1488 basic_lookup_transparent_type_quick (struct objfile *objfile, int kind,
1489 				     const char *name)
1490 {
1491   struct symtab *symtab;
1492   struct blockvector *bv;
1493   struct block *block;
1494   struct symbol *sym;
1495 
1496   if (!objfile->sf)
1497     return NULL;
1498   symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, STRUCT_DOMAIN);
1499   if (!symtab)
1500     return NULL;
1501 
1502   bv = BLOCKVECTOR (symtab);
1503   block = BLOCKVECTOR_BLOCK (bv, kind);
1504   sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1505   if (!sym)
1506     {
1507       int other_kind = kind == GLOBAL_BLOCK ? STATIC_BLOCK : GLOBAL_BLOCK;
1508 
1509       /* This shouldn't be necessary, but as a last resort
1510        * try looking in the 'other kind' even though the psymtab
1511        * claimed the symbol was one thing. It's possible that
1512        * the psymtab gets it wrong in some cases.
1513        */
1514       block = BLOCKVECTOR_BLOCK (bv, other_kind);
1515       sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1516       if (!sym)
1517 	/* FIXME; error is wrong in one case */
1518 	error (_("Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
1519 %s may be an inlined function, or may be a template function\n\
1520 (if a template, try specifying an instantiation: %s<type>)."),
1521 	       name, symtab->filename, name, name);
1522     }
1523   if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1524     return SYMBOL_TYPE (sym);
1525 
1526   return NULL;
1527 }
1528 
1529 /* The standard implementation of lookup_transparent_type.  This code
1530    was modeled on lookup_symbol -- the parts not relevant to looking
1531    up types were just left out.  In particular it's assumed here that
1532    types are available in struct_domain and only at file-static or
1533    global blocks.  */
1534 
1535 struct type *
1536 basic_lookup_transparent_type (const char *name)
1537 {
1538   struct symbol *sym;
1539   struct symtab *s = NULL;
1540   struct blockvector *bv;
1541   struct objfile *objfile;
1542   struct block *block;
1543   struct type *t;
1544 
1545   /* Now search all the global symbols.  Do the symtab's first, then
1546      check the psymtab's. If a psymtab indicates the existence
1547      of the desired name as a global, then do psymtab-to-symtab
1548      conversion on the fly and return the found symbol.  */
1549 
1550   ALL_PRIMARY_SYMTABS (objfile, s)
1551   {
1552     bv = BLOCKVECTOR (s);
1553     block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1554     sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1555     if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1556       {
1557 	return SYMBOL_TYPE (sym);
1558       }
1559   }
1560 
1561   ALL_OBJFILES (objfile)
1562   {
1563     t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
1564     if (t)
1565       return t;
1566   }
1567 
1568   /* Now search the static file-level symbols.
1569      Not strictly correct, but more useful than an error.
1570      Do the symtab's first, then
1571      check the psymtab's. If a psymtab indicates the existence
1572      of the desired name as a file-level static, then do psymtab-to-symtab
1573      conversion on the fly and return the found symbol.
1574    */
1575 
1576   ALL_PRIMARY_SYMTABS (objfile, s)
1577   {
1578     bv = BLOCKVECTOR (s);
1579     block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1580     sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1581     if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1582       {
1583 	return SYMBOL_TYPE (sym);
1584       }
1585   }
1586 
1587   ALL_OBJFILES (objfile)
1588   {
1589     t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
1590     if (t)
1591       return t;
1592   }
1593 
1594   return (struct type *) 0;
1595 }
1596 
1597 
1598 /* Find the name of the file containing main(). */
1599 /* FIXME:  What about languages without main() or specially linked
1600    executables that have no main() ? */
1601 
1602 char *
1603 find_main_filename (void)
1604 {
1605   struct objfile *objfile;
1606   char *result, *name = main_name ();
1607 
1608   ALL_OBJFILES (objfile)
1609   {
1610     if (!objfile->sf)
1611       continue;
1612     result = objfile->sf->qf->find_symbol_file (objfile, name);
1613     if (result)
1614       return result;
1615   }
1616   return (NULL);
1617 }
1618 
1619 /* Search BLOCK for symbol NAME in DOMAIN.
1620 
1621    Note that if NAME is the demangled form of a C++ symbol, we will fail
1622    to find a match during the binary search of the non-encoded names, but
1623    for now we don't worry about the slight inefficiency of looking for
1624    a match we'll never find, since it will go pretty quick.  Once the
1625    binary search terminates, we drop through and do a straight linear
1626    search on the symbols.  Each symbol which is marked as being a ObjC/C++
1627    symbol (language_cplus or language_objc set) has both the encoded and
1628    non-encoded names tested for a match.
1629 */
1630 
1631 struct symbol *
1632 lookup_block_symbol (const struct block *block, const char *name,
1633 		     const domain_enum domain)
1634 {
1635   struct dict_iterator iter;
1636   struct symbol *sym;
1637 
1638   if (!BLOCK_FUNCTION (block))
1639     {
1640       for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1641 	   sym != NULL;
1642 	   sym = dict_iter_name_next (name, &iter))
1643 	{
1644 	  if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1645 				     SYMBOL_DOMAIN (sym), domain))
1646 	    return sym;
1647 	}
1648       return NULL;
1649     }
1650   else
1651     {
1652       /* Note that parameter symbols do not always show up last in the
1653 	 list; this loop makes sure to take anything else other than
1654 	 parameter symbols first; it only uses parameter symbols as a
1655 	 last resort.  Note that this only takes up extra computation
1656 	 time on a match.  */
1657 
1658       struct symbol *sym_found = NULL;
1659 
1660       for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1661 	   sym != NULL;
1662 	   sym = dict_iter_name_next (name, &iter))
1663 	{
1664 	  if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1665 				     SYMBOL_DOMAIN (sym), domain))
1666 	    {
1667 	      sym_found = sym;
1668 	      if (!SYMBOL_IS_ARGUMENT (sym))
1669 		{
1670 		  break;
1671 		}
1672 	    }
1673 	}
1674       return (sym_found);	/* Will be NULL if not found. */
1675     }
1676 }
1677 
1678 /* Find the symtab associated with PC and SECTION.  Look through the
1679    psymtabs and read in another symtab if necessary. */
1680 
1681 struct symtab *
1682 find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
1683 {
1684   struct block *b;
1685   struct blockvector *bv;
1686   struct symtab *s = NULL;
1687   struct symtab *best_s = NULL;
1688   struct objfile *objfile;
1689   struct program_space *pspace;
1690   CORE_ADDR distance = 0;
1691   struct minimal_symbol *msymbol;
1692 
1693   pspace = current_program_space;
1694 
1695   /* If we know that this is not a text address, return failure.  This is
1696      necessary because we loop based on the block's high and low code
1697      addresses, which do not include the data ranges, and because
1698      we call find_pc_sect_psymtab which has a similar restriction based
1699      on the partial_symtab's texthigh and textlow.  */
1700   msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1701   if (msymbol
1702       && (MSYMBOL_TYPE (msymbol) == mst_data
1703 	  || MSYMBOL_TYPE (msymbol) == mst_bss
1704 	  || MSYMBOL_TYPE (msymbol) == mst_abs
1705 	  || MSYMBOL_TYPE (msymbol) == mst_file_data
1706 	  || MSYMBOL_TYPE (msymbol) == mst_file_bss))
1707     return NULL;
1708 
1709   /* Search all symtabs for the one whose file contains our address, and which
1710      is the smallest of all the ones containing the address.  This is designed
1711      to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
1712      and symtab b is at 0x2000-0x3000.  So the GLOBAL_BLOCK for a is from
1713      0x1000-0x4000, but for address 0x2345 we want to return symtab b.
1714 
1715      This happens for native ecoff format, where code from included files
1716      gets its own symtab. The symtab for the included file should have
1717      been read in already via the dependency mechanism.
1718      It might be swifter to create several symtabs with the same name
1719      like xcoff does (I'm not sure).
1720 
1721      It also happens for objfiles that have their functions reordered.
1722      For these, the symtab we are looking for is not necessarily read in.  */
1723 
1724   ALL_PRIMARY_SYMTABS (objfile, s)
1725   {
1726     bv = BLOCKVECTOR (s);
1727     b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1728 
1729     if (BLOCK_START (b) <= pc
1730 	&& BLOCK_END (b) > pc
1731 	&& (distance == 0
1732 	    || BLOCK_END (b) - BLOCK_START (b) < distance))
1733       {
1734 	/* For an objfile that has its functions reordered,
1735 	   find_pc_psymtab will find the proper partial symbol table
1736 	   and we simply return its corresponding symtab.  */
1737 	/* In order to better support objfiles that contain both
1738 	   stabs and coff debugging info, we continue on if a psymtab
1739 	   can't be found. */
1740 	if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
1741 	  {
1742 	    struct symtab *result;
1743 
1744 	    result
1745 	      = objfile->sf->qf->find_pc_sect_symtab (objfile,
1746 						      msymbol,
1747 						      pc, section,
1748 						      0);
1749 	    if (result)
1750 	      return result;
1751 	  }
1752 	if (section != 0)
1753 	  {
1754 	    struct dict_iterator iter;
1755 	    struct symbol *sym = NULL;
1756 
1757 	    ALL_BLOCK_SYMBOLS (b, iter, sym)
1758 	      {
1759 		fixup_symbol_section (sym, objfile);
1760 		if (matching_obj_sections (SYMBOL_OBJ_SECTION (sym), section))
1761 		  break;
1762 	      }
1763 	    if (sym == NULL)
1764 	      continue;		/* no symbol in this symtab matches section */
1765 	  }
1766 	distance = BLOCK_END (b) - BLOCK_START (b);
1767 	best_s = s;
1768       }
1769   }
1770 
1771   if (best_s != NULL)
1772     return (best_s);
1773 
1774   ALL_OBJFILES (objfile)
1775   {
1776     struct symtab *result;
1777 
1778     if (!objfile->sf)
1779       continue;
1780     result = objfile->sf->qf->find_pc_sect_symtab (objfile,
1781 						   msymbol,
1782 						   pc, section,
1783 						   1);
1784     if (result)
1785       return result;
1786   }
1787 
1788   return NULL;
1789 }
1790 
1791 /* Find the symtab associated with PC.  Look through the psymtabs and
1792    read in another symtab if necessary.  Backward compatibility, no section */
1793 
1794 struct symtab *
1795 find_pc_symtab (CORE_ADDR pc)
1796 {
1797   return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
1798 }
1799 
1800 
1801 /* Find the source file and line number for a given PC value and SECTION.
1802    Return a structure containing a symtab pointer, a line number,
1803    and a pc range for the entire source line.
1804    The value's .pc field is NOT the specified pc.
1805    NOTCURRENT nonzero means, if specified pc is on a line boundary,
1806    use the line that ends there.  Otherwise, in that case, the line
1807    that begins there is used.  */
1808 
1809 /* The big complication here is that a line may start in one file, and end just
1810    before the start of another file.  This usually occurs when you #include
1811    code in the middle of a subroutine.  To properly find the end of a line's PC
1812    range, we must search all symtabs associated with this compilation unit, and
1813    find the one whose first PC is closer than that of the next line in this
1814    symtab.  */
1815 
1816 /* If it's worth the effort, we could be using a binary search.  */
1817 
1818 struct symtab_and_line
1819 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
1820 {
1821   struct symtab *s;
1822   struct linetable *l;
1823   int len;
1824   int i;
1825   struct linetable_entry *item;
1826   struct symtab_and_line val;
1827   struct blockvector *bv;
1828   struct minimal_symbol *msymbol;
1829   struct minimal_symbol *mfunsym;
1830 
1831   /* Info on best line seen so far, and where it starts, and its file.  */
1832 
1833   struct linetable_entry *best = NULL;
1834   CORE_ADDR best_end = 0;
1835   struct symtab *best_symtab = 0;
1836 
1837   /* Store here the first line number
1838      of a file which contains the line at the smallest pc after PC.
1839      If we don't find a line whose range contains PC,
1840      we will use a line one less than this,
1841      with a range from the start of that file to the first line's pc.  */
1842   struct linetable_entry *alt = NULL;
1843   struct symtab *alt_symtab = 0;
1844 
1845   /* Info on best line seen in this file.  */
1846 
1847   struct linetable_entry *prev;
1848 
1849   /* If this pc is not from the current frame,
1850      it is the address of the end of a call instruction.
1851      Quite likely that is the start of the following statement.
1852      But what we want is the statement containing the instruction.
1853      Fudge the pc to make sure we get that.  */
1854 
1855   init_sal (&val);		/* initialize to zeroes */
1856 
1857   val.pspace = current_program_space;
1858 
1859   /* It's tempting to assume that, if we can't find debugging info for
1860      any function enclosing PC, that we shouldn't search for line
1861      number info, either.  However, GAS can emit line number info for
1862      assembly files --- very helpful when debugging hand-written
1863      assembly code.  In such a case, we'd have no debug info for the
1864      function, but we would have line info.  */
1865 
1866   if (notcurrent)
1867     pc -= 1;
1868 
1869   /* elz: added this because this function returned the wrong
1870      information if the pc belongs to a stub (import/export)
1871      to call a shlib function. This stub would be anywhere between
1872      two functions in the target, and the line info was erroneously
1873      taken to be the one of the line before the pc.
1874    */
1875   /* RT: Further explanation:
1876 
1877    * We have stubs (trampolines) inserted between procedures.
1878    *
1879    * Example: "shr1" exists in a shared library, and a "shr1" stub also
1880    * exists in the main image.
1881    *
1882    * In the minimal symbol table, we have a bunch of symbols
1883    * sorted by start address. The stubs are marked as "trampoline",
1884    * the others appear as text. E.g.:
1885    *
1886    *  Minimal symbol table for main image
1887    *     main:  code for main (text symbol)
1888    *     shr1: stub  (trampoline symbol)
1889    *     foo:   code for foo (text symbol)
1890    *     ...
1891    *  Minimal symbol table for "shr1" image:
1892    *     ...
1893    *     shr1: code for shr1 (text symbol)
1894    *     ...
1895    *
1896    * So the code below is trying to detect if we are in the stub
1897    * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
1898    * and if found,  do the symbolization from the real-code address
1899    * rather than the stub address.
1900    *
1901    * Assumptions being made about the minimal symbol table:
1902    *   1. lookup_minimal_symbol_by_pc() will return a trampoline only
1903    *      if we're really in the trampoline. If we're beyond it (say
1904    *      we're in "foo" in the above example), it'll have a closer
1905    *      symbol (the "foo" text symbol for example) and will not
1906    *      return the trampoline.
1907    *   2. lookup_minimal_symbol_text() will find a real text symbol
1908    *      corresponding to the trampoline, and whose address will
1909    *      be different than the trampoline address. I put in a sanity
1910    *      check for the address being the same, to avoid an
1911    *      infinite recursion.
1912    */
1913   msymbol = lookup_minimal_symbol_by_pc (pc);
1914   if (msymbol != NULL)
1915     if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
1916       {
1917 	mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol),
1918 					      NULL);
1919 	if (mfunsym == NULL)
1920 	  /* I eliminated this warning since it is coming out
1921 	   * in the following situation:
1922 	   * gdb shmain // test program with shared libraries
1923 	   * (gdb) break shr1  // function in shared lib
1924 	   * Warning: In stub for ...
1925 	   * In the above situation, the shared lib is not loaded yet,
1926 	   * so of course we can't find the real func/line info,
1927 	   * but the "break" still works, and the warning is annoying.
1928 	   * So I commented out the warning. RT */
1929 	  /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
1930 	/* fall through */
1931 	else if (SYMBOL_VALUE_ADDRESS (mfunsym) == SYMBOL_VALUE_ADDRESS (msymbol))
1932 	  /* Avoid infinite recursion */
1933 	  /* See above comment about why warning is commented out */
1934 	  /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
1935 	/* fall through */
1936 	else
1937 	  return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
1938       }
1939 
1940 
1941   s = find_pc_sect_symtab (pc, section);
1942   if (!s)
1943     {
1944       /* if no symbol information, return previous pc */
1945       if (notcurrent)
1946 	pc++;
1947       val.pc = pc;
1948       return val;
1949     }
1950 
1951   bv = BLOCKVECTOR (s);
1952 
1953   /* Look at all the symtabs that share this blockvector.
1954      They all have the same apriori range, that we found was right;
1955      but they have different line tables.  */
1956 
1957   for (; s && BLOCKVECTOR (s) == bv; s = s->next)
1958     {
1959       /* Find the best line in this symtab.  */
1960       l = LINETABLE (s);
1961       if (!l)
1962 	continue;
1963       len = l->nitems;
1964       if (len <= 0)
1965 	{
1966 	  /* I think len can be zero if the symtab lacks line numbers
1967 	     (e.g. gcc -g1).  (Either that or the LINETABLE is NULL;
1968 	     I'm not sure which, and maybe it depends on the symbol
1969 	     reader).  */
1970 	  continue;
1971 	}
1972 
1973       prev = NULL;
1974       item = l->item;		/* Get first line info */
1975 
1976       /* Is this file's first line closer than the first lines of other files?
1977          If so, record this file, and its first line, as best alternate.  */
1978       if (item->pc > pc && (!alt || item->pc < alt->pc))
1979 	{
1980 	  alt = item;
1981 	  alt_symtab = s;
1982 	}
1983 
1984       for (i = 0; i < len; i++, item++)
1985 	{
1986 	  /* Leave prev pointing to the linetable entry for the last line
1987 	     that started at or before PC.  */
1988 	  if (item->pc > pc)
1989 	    break;
1990 
1991 	  prev = item;
1992 	}
1993 
1994       /* At this point, prev points at the line whose start addr is <= pc, and
1995          item points at the next line.  If we ran off the end of the linetable
1996          (pc >= start of the last line), then prev == item.  If pc < start of
1997          the first line, prev will not be set.  */
1998 
1999       /* Is this file's best line closer than the best in the other files?
2000          If so, record this file, and its best line, as best so far.  Don't
2001          save prev if it represents the end of a function (i.e. line number
2002          0) instead of a real line.  */
2003 
2004       if (prev && prev->line && (!best || prev->pc > best->pc))
2005 	{
2006 	  best = prev;
2007 	  best_symtab = s;
2008 
2009 	  /* Discard BEST_END if it's before the PC of the current BEST.  */
2010 	  if (best_end <= best->pc)
2011 	    best_end = 0;
2012 	}
2013 
2014       /* If another line (denoted by ITEM) is in the linetable and its
2015          PC is after BEST's PC, but before the current BEST_END, then
2016 	 use ITEM's PC as the new best_end.  */
2017       if (best && i < len && item->pc > best->pc
2018           && (best_end == 0 || best_end > item->pc))
2019 	best_end = item->pc;
2020     }
2021 
2022   if (!best_symtab)
2023     {
2024       /* If we didn't find any line number info, just return zeros.
2025 	 We used to return alt->line - 1 here, but that could be
2026 	 anywhere; if we don't have line number info for this PC,
2027 	 don't make some up.  */
2028       val.pc = pc;
2029     }
2030   else if (best->line == 0)
2031     {
2032       /* If our best fit is in a range of PC's for which no line
2033 	 number info is available (line number is zero) then we didn't
2034 	 find any valid line information. */
2035       val.pc = pc;
2036     }
2037   else
2038     {
2039       val.symtab = best_symtab;
2040       val.line = best->line;
2041       val.pc = best->pc;
2042       if (best_end && (!alt || best_end < alt->pc))
2043 	val.end = best_end;
2044       else if (alt)
2045 	val.end = alt->pc;
2046       else
2047 	val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2048     }
2049   val.section = section;
2050   return val;
2051 }
2052 
2053 /* Backward compatibility (no section) */
2054 
2055 struct symtab_and_line
2056 find_pc_line (CORE_ADDR pc, int notcurrent)
2057 {
2058   struct obj_section *section;
2059 
2060   section = find_pc_overlay (pc);
2061   if (pc_in_unmapped_range (pc, section))
2062     pc = overlay_mapped_address (pc, section);
2063   return find_pc_sect_line (pc, section, notcurrent);
2064 }
2065 
2066 /* Find line number LINE in any symtab whose name is the same as
2067    SYMTAB.
2068 
2069    If found, return the symtab that contains the linetable in which it was
2070    found, set *INDEX to the index in the linetable of the best entry
2071    found, and set *EXACT_MATCH nonzero if the value returned is an
2072    exact match.
2073 
2074    If not found, return NULL.  */
2075 
2076 struct symtab *
2077 find_line_symtab (struct symtab *symtab, int line,
2078 		  int *index, int *exact_match)
2079 {
2080   int exact = 0;  /* Initialized here to avoid a compiler warning.  */
2081 
2082   /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2083      so far seen.  */
2084 
2085   int best_index;
2086   struct linetable *best_linetable;
2087   struct symtab *best_symtab;
2088 
2089   /* First try looking it up in the given symtab.  */
2090   best_linetable = LINETABLE (symtab);
2091   best_symtab = symtab;
2092   best_index = find_line_common (best_linetable, line, &exact);
2093   if (best_index < 0 || !exact)
2094     {
2095       /* Didn't find an exact match.  So we better keep looking for
2096          another symtab with the same name.  In the case of xcoff,
2097          multiple csects for one source file (produced by IBM's FORTRAN
2098          compiler) produce multiple symtabs (this is unavoidable
2099          assuming csects can be at arbitrary places in memory and that
2100          the GLOBAL_BLOCK of a symtab has a begin and end address).  */
2101 
2102       /* BEST is the smallest linenumber > LINE so far seen,
2103          or 0 if none has been seen so far.
2104          BEST_INDEX and BEST_LINETABLE identify the item for it.  */
2105       int best;
2106 
2107       struct objfile *objfile;
2108       struct symtab *s;
2109 
2110       if (best_index >= 0)
2111 	best = best_linetable->item[best_index].line;
2112       else
2113 	best = 0;
2114 
2115       ALL_OBJFILES (objfile)
2116       {
2117 	if (objfile->sf)
2118 	  objfile->sf->qf->expand_symtabs_with_filename (objfile,
2119 							 symtab->filename);
2120       }
2121 
2122       /* Get symbol full file name if possible.  */
2123       symtab_to_fullname (symtab);
2124 
2125       ALL_SYMTABS (objfile, s)
2126       {
2127 	struct linetable *l;
2128 	int ind;
2129 
2130 	if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2131 	  continue;
2132 	if (symtab->fullname != NULL
2133 	    && symtab_to_fullname (s) != NULL
2134 	    && FILENAME_CMP (symtab->fullname, s->fullname) != 0)
2135 	  continue;
2136 	l = LINETABLE (s);
2137 	ind = find_line_common (l, line, &exact);
2138 	if (ind >= 0)
2139 	  {
2140 	    if (exact)
2141 	      {
2142 		best_index = ind;
2143 		best_linetable = l;
2144 		best_symtab = s;
2145 		goto done;
2146 	      }
2147 	    if (best == 0 || l->item[ind].line < best)
2148 	      {
2149 		best = l->item[ind].line;
2150 		best_index = ind;
2151 		best_linetable = l;
2152 		best_symtab = s;
2153 	      }
2154 	  }
2155       }
2156     }
2157 done:
2158   if (best_index < 0)
2159     return NULL;
2160 
2161   if (index)
2162     *index = best_index;
2163   if (exact_match)
2164     *exact_match = exact;
2165 
2166   return best_symtab;
2167 }
2168 
2169 /* Set the PC value for a given source file and line number and return true.
2170    Returns zero for invalid line number (and sets the PC to 0).
2171    The source file is specified with a struct symtab.  */
2172 
2173 int
2174 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2175 {
2176   struct linetable *l;
2177   int ind;
2178 
2179   *pc = 0;
2180   if (symtab == 0)
2181     return 0;
2182 
2183   symtab = find_line_symtab (symtab, line, &ind, NULL);
2184   if (symtab != NULL)
2185     {
2186       l = LINETABLE (symtab);
2187       *pc = l->item[ind].pc;
2188       return 1;
2189     }
2190   else
2191     return 0;
2192 }
2193 
2194 /* Find the range of pc values in a line.
2195    Store the starting pc of the line into *STARTPTR
2196    and the ending pc (start of next line) into *ENDPTR.
2197    Returns 1 to indicate success.
2198    Returns 0 if could not find the specified line.  */
2199 
2200 int
2201 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2202 		    CORE_ADDR *endptr)
2203 {
2204   CORE_ADDR startaddr;
2205   struct symtab_and_line found_sal;
2206 
2207   startaddr = sal.pc;
2208   if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2209     return 0;
2210 
2211   /* This whole function is based on address.  For example, if line 10 has
2212      two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2213      "info line *0x123" should say the line goes from 0x100 to 0x200
2214      and "info line *0x355" should say the line goes from 0x300 to 0x400.
2215      This also insures that we never give a range like "starts at 0x134
2216      and ends at 0x12c".  */
2217 
2218   found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2219   if (found_sal.line != sal.line)
2220     {
2221       /* The specified line (sal) has zero bytes.  */
2222       *startptr = found_sal.pc;
2223       *endptr = found_sal.pc;
2224     }
2225   else
2226     {
2227       *startptr = found_sal.pc;
2228       *endptr = found_sal.end;
2229     }
2230   return 1;
2231 }
2232 
2233 /* Given a line table and a line number, return the index into the line
2234    table for the pc of the nearest line whose number is >= the specified one.
2235    Return -1 if none is found.  The value is >= 0 if it is an index.
2236 
2237    Set *EXACT_MATCH nonzero if the value returned is an exact match.  */
2238 
2239 static int
2240 find_line_common (struct linetable *l, int lineno,
2241 		  int *exact_match)
2242 {
2243   int i;
2244   int len;
2245 
2246   /* BEST is the smallest linenumber > LINENO so far seen,
2247      or 0 if none has been seen so far.
2248      BEST_INDEX identifies the item for it.  */
2249 
2250   int best_index = -1;
2251   int best = 0;
2252 
2253   *exact_match = 0;
2254 
2255   if (lineno <= 0)
2256     return -1;
2257   if (l == 0)
2258     return -1;
2259 
2260   len = l->nitems;
2261   for (i = 0; i < len; i++)
2262     {
2263       struct linetable_entry *item = &(l->item[i]);
2264 
2265       if (item->line == lineno)
2266 	{
2267 	  /* Return the first (lowest address) entry which matches.  */
2268 	  *exact_match = 1;
2269 	  return i;
2270 	}
2271 
2272       if (item->line > lineno && (best == 0 || item->line < best))
2273 	{
2274 	  best = item->line;
2275 	  best_index = i;
2276 	}
2277     }
2278 
2279   /* If we got here, we didn't get an exact match.  */
2280   return best_index;
2281 }
2282 
2283 int
2284 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2285 {
2286   struct symtab_and_line sal;
2287 
2288   sal = find_pc_line (pc, 0);
2289   *startptr = sal.pc;
2290   *endptr = sal.end;
2291   return sal.symtab != 0;
2292 }
2293 
2294 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2295    address for that function that has an entry in SYMTAB's line info
2296    table.  If such an entry cannot be found, return FUNC_ADDR
2297    unaltered.  */
2298 CORE_ADDR
2299 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2300 {
2301   CORE_ADDR func_start, func_end;
2302   struct linetable *l;
2303   int i;
2304 
2305   /* Give up if this symbol has no lineinfo table.  */
2306   l = LINETABLE (symtab);
2307   if (l == NULL)
2308     return func_addr;
2309 
2310   /* Get the range for the function's PC values, or give up if we
2311      cannot, for some reason.  */
2312   if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2313     return func_addr;
2314 
2315   /* Linetable entries are ordered by PC values, see the commentary in
2316      symtab.h where `struct linetable' is defined.  Thus, the first
2317      entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2318      address we are looking for.  */
2319   for (i = 0; i < l->nitems; i++)
2320     {
2321       struct linetable_entry *item = &(l->item[i]);
2322 
2323       /* Don't use line numbers of zero, they mark special entries in
2324 	 the table.  See the commentary on symtab.h before the
2325 	 definition of struct linetable.  */
2326       if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2327 	return item->pc;
2328     }
2329 
2330   return func_addr;
2331 }
2332 
2333 /* Given a function symbol SYM, find the symtab and line for the start
2334    of the function.
2335    If the argument FUNFIRSTLINE is nonzero, we want the first line
2336    of real code inside the function.  */
2337 
2338 struct symtab_and_line
2339 find_function_start_sal (struct symbol *sym, int funfirstline)
2340 {
2341   struct symtab_and_line sal;
2342 
2343   fixup_symbol_section (sym, NULL);
2344   sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2345 			   SYMBOL_OBJ_SECTION (sym), 0);
2346 
2347   /* We always should have a line for the function start address.
2348      If we don't, something is odd.  Create a plain SAL refering
2349      just the PC and hope that skip_prologue_sal (if requested)
2350      can find a line number for after the prologue.  */
2351   if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2352     {
2353       init_sal (&sal);
2354       sal.pspace = current_program_space;
2355       sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2356       sal.section = SYMBOL_OBJ_SECTION (sym);
2357     }
2358 
2359   if (funfirstline)
2360     skip_prologue_sal (&sal);
2361 
2362   return sal;
2363 }
2364 
2365 /* Adjust SAL to the first instruction past the function prologue.
2366    If the PC was explicitly specified, the SAL is not changed.
2367    If the line number was explicitly specified, at most the SAL's PC
2368    is updated.  If SAL is already past the prologue, then do nothing.  */
2369 void
2370 skip_prologue_sal (struct symtab_and_line *sal)
2371 {
2372   struct symbol *sym;
2373   struct symtab_and_line start_sal;
2374   struct cleanup *old_chain;
2375   CORE_ADDR pc;
2376   struct obj_section *section;
2377   const char *name;
2378   struct objfile *objfile;
2379   struct gdbarch *gdbarch;
2380   struct block *b, *function_block;
2381 
2382   /* Do not change the SAL is PC was specified explicitly.  */
2383   if (sal->explicit_pc)
2384     return;
2385 
2386   old_chain = save_current_space_and_thread ();
2387   switch_to_program_space_and_thread (sal->pspace);
2388 
2389   sym = find_pc_sect_function (sal->pc, sal->section);
2390   if (sym != NULL)
2391     {
2392       fixup_symbol_section (sym, NULL);
2393 
2394       pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2395       section = SYMBOL_OBJ_SECTION (sym);
2396       name = SYMBOL_LINKAGE_NAME (sym);
2397       objfile = SYMBOL_SYMTAB (sym)->objfile;
2398     }
2399   else
2400     {
2401       struct minimal_symbol *msymbol
2402         = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
2403 
2404       if (msymbol == NULL)
2405 	{
2406 	  do_cleanups (old_chain);
2407 	  return;
2408 	}
2409 
2410       pc = SYMBOL_VALUE_ADDRESS (msymbol);
2411       section = SYMBOL_OBJ_SECTION (msymbol);
2412       name = SYMBOL_LINKAGE_NAME (msymbol);
2413       objfile = msymbol_objfile (msymbol);
2414     }
2415 
2416   gdbarch = get_objfile_arch (objfile);
2417 
2418   /* If the function is in an unmapped overlay, use its unmapped LMA address,
2419      so that gdbarch_skip_prologue has something unique to work on.  */
2420   if (section_is_overlay (section) && !section_is_mapped (section))
2421     pc = overlay_unmapped_address (pc, section);
2422 
2423   /* Skip "first line" of function (which is actually its prologue).  */
2424   pc += gdbarch_deprecated_function_start_offset (gdbarch);
2425   pc = gdbarch_skip_prologue (gdbarch, pc);
2426 
2427   /* For overlays, map pc back into its mapped VMA range.  */
2428   pc = overlay_mapped_address (pc, section);
2429 
2430   /* Calculate line number.  */
2431   start_sal = find_pc_sect_line (pc, section, 0);
2432 
2433   /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2434      line is still part of the same function.  */
2435   if (start_sal.pc != pc
2436       && (sym? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2437 	        && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2438           : (lookup_minimal_symbol_by_pc_section (start_sal.end, section)
2439              == lookup_minimal_symbol_by_pc_section (pc, section))))
2440     {
2441       /* First pc of next line */
2442       pc = start_sal.end;
2443       /* Recalculate the line number (might not be N+1).  */
2444       start_sal = find_pc_sect_line (pc, section, 0);
2445     }
2446 
2447   /* On targets with executable formats that don't have a concept of
2448      constructors (ELF with .init has, PE doesn't), gcc emits a call
2449      to `__main' in `main' between the prologue and before user
2450      code.  */
2451   if (gdbarch_skip_main_prologue_p (gdbarch)
2452       && name && strcmp (name, "main") == 0)
2453     {
2454       pc = gdbarch_skip_main_prologue (gdbarch, pc);
2455       /* Recalculate the line number (might not be N+1).  */
2456       start_sal = find_pc_sect_line (pc, section, 0);
2457     }
2458 
2459   /* If we still don't have a valid source line, try to find the first
2460      PC in the lineinfo table that belongs to the same function.  This
2461      happens with COFF debug info, which does not seem to have an
2462      entry in lineinfo table for the code after the prologue which has
2463      no direct relation to source.  For example, this was found to be
2464      the case with the DJGPP target using "gcc -gcoff" when the
2465      compiler inserted code after the prologue to make sure the stack
2466      is aligned.  */
2467   if (sym && start_sal.symtab == NULL)
2468     {
2469       pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2470       /* Recalculate the line number.  */
2471       start_sal = find_pc_sect_line (pc, section, 0);
2472     }
2473 
2474   do_cleanups (old_chain);
2475 
2476   /* If we're already past the prologue, leave SAL unchanged.  Otherwise
2477      forward SAL to the end of the prologue.  */
2478   if (sal->pc >= pc)
2479     return;
2480 
2481   sal->pc = pc;
2482   sal->section = section;
2483 
2484   /* Unless the explicit_line flag was set, update the SAL line
2485      and symtab to correspond to the modified PC location.  */
2486   if (sal->explicit_line)
2487     return;
2488 
2489   sal->symtab = start_sal.symtab;
2490   sal->line = start_sal.line;
2491   sal->end = start_sal.end;
2492 
2493   /* Check if we are now inside an inlined function.  If we can,
2494      use the call site of the function instead.  */
2495   b = block_for_pc_sect (sal->pc, sal->section);
2496   function_block = NULL;
2497   while (b != NULL)
2498     {
2499       if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
2500 	function_block = b;
2501       else if (BLOCK_FUNCTION (b) != NULL)
2502 	break;
2503       b = BLOCK_SUPERBLOCK (b);
2504     }
2505   if (function_block != NULL
2506       && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
2507     {
2508       sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
2509       sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
2510     }
2511 }
2512 
2513 /* If P is of the form "operator[ \t]+..." where `...' is
2514    some legitimate operator text, return a pointer to the
2515    beginning of the substring of the operator text.
2516    Otherwise, return "".  */
2517 char *
2518 operator_chars (char *p, char **end)
2519 {
2520   *end = "";
2521   if (strncmp (p, "operator", 8))
2522     return *end;
2523   p += 8;
2524 
2525   /* Don't get faked out by `operator' being part of a longer
2526      identifier.  */
2527   if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
2528     return *end;
2529 
2530   /* Allow some whitespace between `operator' and the operator symbol.  */
2531   while (*p == ' ' || *p == '\t')
2532     p++;
2533 
2534   /* Recognize 'operator TYPENAME'. */
2535 
2536   if (isalpha (*p) || *p == '_' || *p == '$')
2537     {
2538       char *q = p + 1;
2539 
2540       while (isalnum (*q) || *q == '_' || *q == '$')
2541 	q++;
2542       *end = q;
2543       return p;
2544     }
2545 
2546   while (*p)
2547     switch (*p)
2548       {
2549       case '\\':			/* regexp quoting */
2550 	if (p[1] == '*')
2551 	  {
2552 	    if (p[2] == '=')	/* 'operator\*=' */
2553 	      *end = p + 3;
2554 	    else			/* 'operator\*'  */
2555 	      *end = p + 2;
2556 	    return p;
2557 	  }
2558 	else if (p[1] == '[')
2559 	  {
2560 	    if (p[2] == ']')
2561 	      error (_("mismatched quoting on brackets, try 'operator\\[\\]'"));
2562 	    else if (p[2] == '\\' && p[3] == ']')
2563 	      {
2564 		*end = p + 4;	/* 'operator\[\]' */
2565 		return p;
2566 	      }
2567 	    else
2568 	      error (_("nothing is allowed between '[' and ']'"));
2569 	  }
2570 	else
2571 	  {
2572 	    /* Gratuitous qoute: skip it and move on. */
2573 	    p++;
2574 	    continue;
2575 	  }
2576 	break;
2577       case '!':
2578       case '=':
2579       case '*':
2580       case '/':
2581       case '%':
2582       case '^':
2583 	if (p[1] == '=')
2584 	  *end = p + 2;
2585 	else
2586 	  *end = p + 1;
2587 	return p;
2588       case '<':
2589       case '>':
2590       case '+':
2591       case '-':
2592       case '&':
2593       case '|':
2594 	if (p[0] == '-' && p[1] == '>')
2595 	  {
2596 	    /* Struct pointer member operator 'operator->'. */
2597 	    if (p[2] == '*')
2598 	      {
2599 		*end = p + 3;	/* 'operator->*' */
2600 		return p;
2601 	      }
2602 	    else if (p[2] == '\\')
2603 	      {
2604 		*end = p + 4;	/* Hopefully 'operator->\*' */
2605 		return p;
2606 	      }
2607 	    else
2608 	      {
2609 		*end = p + 2;	/* 'operator->' */
2610 		return p;
2611 	      }
2612 	  }
2613 	if (p[1] == '=' || p[1] == p[0])
2614 	  *end = p + 2;
2615 	else
2616 	  *end = p + 1;
2617 	return p;
2618       case '~':
2619       case ',':
2620 	*end = p + 1;
2621 	return p;
2622       case '(':
2623 	if (p[1] != ')')
2624 	  error (_("`operator ()' must be specified without whitespace in `()'"));
2625 	*end = p + 2;
2626 	return p;
2627       case '?':
2628 	if (p[1] != ':')
2629 	  error (_("`operator ?:' must be specified without whitespace in `?:'"));
2630 	*end = p + 2;
2631 	return p;
2632       case '[':
2633 	if (p[1] != ']')
2634 	  error (_("`operator []' must be specified without whitespace in `[]'"));
2635 	*end = p + 2;
2636 	return p;
2637       default:
2638 	error (_("`operator %s' not supported"), p);
2639 	break;
2640       }
2641 
2642   *end = "";
2643   return *end;
2644 }
2645 
2646 
2647 /* If FILE is not already in the table of files, return zero;
2648    otherwise return non-zero.  Optionally add FILE to the table if ADD
2649    is non-zero.  If *FIRST is non-zero, forget the old table
2650    contents.  */
2651 static int
2652 filename_seen (const char *file, int add, int *first)
2653 {
2654   /* Table of files seen so far.  */
2655   static const char **tab = NULL;
2656   /* Allocated size of tab in elements.
2657      Start with one 256-byte block (when using GNU malloc.c).
2658      24 is the malloc overhead when range checking is in effect.  */
2659   static int tab_alloc_size = (256 - 24) / sizeof (char *);
2660   /* Current size of tab in elements.  */
2661   static int tab_cur_size;
2662   const char **p;
2663 
2664   if (*first)
2665     {
2666       if (tab == NULL)
2667 	tab = (const char **) xmalloc (tab_alloc_size * sizeof (*tab));
2668       tab_cur_size = 0;
2669     }
2670 
2671   /* Is FILE in tab?  */
2672   for (p = tab; p < tab + tab_cur_size; p++)
2673     if (strcmp (*p, file) == 0)
2674       return 1;
2675 
2676   /* No; maybe add it to tab.  */
2677   if (add)
2678     {
2679       if (tab_cur_size == tab_alloc_size)
2680 	{
2681 	  tab_alloc_size *= 2;
2682 	  tab = (const char **) xrealloc ((char *) tab,
2683 					  tab_alloc_size * sizeof (*tab));
2684 	}
2685       tab[tab_cur_size++] = file;
2686     }
2687 
2688   return 0;
2689 }
2690 
2691 /* Slave routine for sources_info.  Force line breaks at ,'s.
2692    NAME is the name to print and *FIRST is nonzero if this is the first
2693    name printed.  Set *FIRST to zero.  */
2694 static void
2695 output_source_filename (const char *name, int *first)
2696 {
2697   /* Since a single source file can result in several partial symbol
2698      tables, we need to avoid printing it more than once.  Note: if
2699      some of the psymtabs are read in and some are not, it gets
2700      printed both under "Source files for which symbols have been
2701      read" and "Source files for which symbols will be read in on
2702      demand".  I consider this a reasonable way to deal with the
2703      situation.  I'm not sure whether this can also happen for
2704      symtabs; it doesn't hurt to check.  */
2705 
2706   /* Was NAME already seen?  */
2707   if (filename_seen (name, 1, first))
2708     {
2709       /* Yes; don't print it again.  */
2710       return;
2711     }
2712   /* No; print it and reset *FIRST.  */
2713   if (*first)
2714     {
2715       *first = 0;
2716     }
2717   else
2718     {
2719       printf_filtered (", ");
2720     }
2721 
2722   wrap_here ("");
2723   fputs_filtered (name, gdb_stdout);
2724 }
2725 
2726 /* A callback for map_partial_symbol_filenames.  */
2727 static void
2728 output_partial_symbol_filename (const char *fullname, const char *filename,
2729 				void *data)
2730 {
2731   output_source_filename (fullname ? fullname : filename, data);
2732 }
2733 
2734 static void
2735 sources_info (char *ignore, int from_tty)
2736 {
2737   struct symtab *s;
2738   struct objfile *objfile;
2739   int first;
2740 
2741   if (!have_full_symbols () && !have_partial_symbols ())
2742     {
2743       error (_("No symbol table is loaded.  Use the \"file\" command."));
2744     }
2745 
2746   printf_filtered ("Source files for which symbols have been read in:\n\n");
2747 
2748   first = 1;
2749   ALL_SYMTABS (objfile, s)
2750   {
2751     const char *fullname = symtab_to_fullname (s);
2752 
2753     output_source_filename (fullname ? fullname : s->filename, &first);
2754   }
2755   printf_filtered ("\n\n");
2756 
2757   printf_filtered ("Source files for which symbols will be read in on demand:\n\n");
2758 
2759   first = 1;
2760   map_partial_symbol_filenames (output_partial_symbol_filename, &first);
2761   printf_filtered ("\n");
2762 }
2763 
2764 static int
2765 file_matches (const char *file, char *files[], int nfiles)
2766 {
2767   int i;
2768 
2769   if (file != NULL && nfiles != 0)
2770     {
2771       for (i = 0; i < nfiles; i++)
2772 	{
2773 	  if (strcmp (files[i], lbasename (file)) == 0)
2774 	    return 1;
2775 	}
2776     }
2777   else if (nfiles == 0)
2778     return 1;
2779   return 0;
2780 }
2781 
2782 /* Free any memory associated with a search. */
2783 void
2784 free_search_symbols (struct symbol_search *symbols)
2785 {
2786   struct symbol_search *p;
2787   struct symbol_search *next;
2788 
2789   for (p = symbols; p != NULL; p = next)
2790     {
2791       next = p->next;
2792       xfree (p);
2793     }
2794 }
2795 
2796 static void
2797 do_free_search_symbols_cleanup (void *symbols)
2798 {
2799   free_search_symbols (symbols);
2800 }
2801 
2802 struct cleanup *
2803 make_cleanup_free_search_symbols (struct symbol_search *symbols)
2804 {
2805   return make_cleanup (do_free_search_symbols_cleanup, symbols);
2806 }
2807 
2808 /* Helper function for sort_search_symbols and qsort.  Can only
2809    sort symbols, not minimal symbols.  */
2810 static int
2811 compare_search_syms (const void *sa, const void *sb)
2812 {
2813   struct symbol_search **sym_a = (struct symbol_search **) sa;
2814   struct symbol_search **sym_b = (struct symbol_search **) sb;
2815 
2816   return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
2817 		 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
2818 }
2819 
2820 /* Sort the ``nfound'' symbols in the list after prevtail.  Leave
2821    prevtail where it is, but update its next pointer to point to
2822    the first of the sorted symbols.  */
2823 static struct symbol_search *
2824 sort_search_symbols (struct symbol_search *prevtail, int nfound)
2825 {
2826   struct symbol_search **symbols, *symp, *old_next;
2827   int i;
2828 
2829   symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
2830 					       * nfound);
2831   symp = prevtail->next;
2832   for (i = 0; i < nfound; i++)
2833     {
2834       symbols[i] = symp;
2835       symp = symp->next;
2836     }
2837   /* Generally NULL.  */
2838   old_next = symp;
2839 
2840   qsort (symbols, nfound, sizeof (struct symbol_search *),
2841 	 compare_search_syms);
2842 
2843   symp = prevtail;
2844   for (i = 0; i < nfound; i++)
2845     {
2846       symp->next = symbols[i];
2847       symp = symp->next;
2848     }
2849   symp->next = old_next;
2850 
2851   xfree (symbols);
2852   return symp;
2853 }
2854 
2855 /* An object of this type is passed as the user_data to the
2856    expand_symtabs_matching method.  */
2857 struct search_symbols_data
2858 {
2859   int nfiles;
2860   char **files;
2861   char *regexp;
2862 };
2863 
2864 /* A callback for expand_symtabs_matching.  */
2865 static int
2866 search_symbols_file_matches (const char *filename, void *user_data)
2867 {
2868   struct search_symbols_data *data = user_data;
2869 
2870   return file_matches (filename, data->files, data->nfiles);
2871 }
2872 
2873 /* A callback for expand_symtabs_matching.  */
2874 static int
2875 search_symbols_name_matches (const char *symname, void *user_data)
2876 {
2877   struct search_symbols_data *data = user_data;
2878 
2879   return data->regexp == NULL || re_exec (symname);
2880 }
2881 
2882 /* Search the symbol table for matches to the regular expression REGEXP,
2883    returning the results in *MATCHES.
2884 
2885    Only symbols of KIND are searched:
2886    FUNCTIONS_DOMAIN - search all functions
2887    TYPES_DOMAIN     - search all type names
2888    VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
2889    and constants (enums)
2890 
2891    free_search_symbols should be called when *MATCHES is no longer needed.
2892 
2893    The results are sorted locally; each symtab's global and static blocks are
2894    separately alphabetized.
2895  */
2896 void
2897 search_symbols (char *regexp, domain_enum kind, int nfiles, char *files[],
2898 		struct symbol_search **matches)
2899 {
2900   struct symtab *s;
2901   struct blockvector *bv;
2902   struct block *b;
2903   int i = 0;
2904   struct dict_iterator iter;
2905   struct symbol *sym;
2906   struct objfile *objfile;
2907   struct minimal_symbol *msymbol;
2908   char *val;
2909   int found_misc = 0;
2910   static enum minimal_symbol_type types[]
2911     = {mst_data, mst_text, mst_abs, mst_unknown};
2912   static enum minimal_symbol_type types2[]
2913     = {mst_bss, mst_file_text, mst_abs, mst_unknown};
2914   static enum minimal_symbol_type types3[]
2915     = {mst_file_data, mst_solib_trampoline, mst_abs, mst_unknown};
2916   static enum minimal_symbol_type types4[]
2917     = {mst_file_bss, mst_text, mst_abs, mst_unknown};
2918   enum minimal_symbol_type ourtype;
2919   enum minimal_symbol_type ourtype2;
2920   enum minimal_symbol_type ourtype3;
2921   enum minimal_symbol_type ourtype4;
2922   struct symbol_search *sr;
2923   struct symbol_search *psr;
2924   struct symbol_search *tail;
2925   struct cleanup *old_chain = NULL;
2926   struct search_symbols_data datum;
2927 
2928   if (kind < VARIABLES_DOMAIN)
2929     error (_("must search on specific domain"));
2930 
2931   ourtype = types[(int) (kind - VARIABLES_DOMAIN)];
2932   ourtype2 = types2[(int) (kind - VARIABLES_DOMAIN)];
2933   ourtype3 = types3[(int) (kind - VARIABLES_DOMAIN)];
2934   ourtype4 = types4[(int) (kind - VARIABLES_DOMAIN)];
2935 
2936   sr = *matches = NULL;
2937   tail = NULL;
2938 
2939   if (regexp != NULL)
2940     {
2941       /* Make sure spacing is right for C++ operators.
2942          This is just a courtesy to make the matching less sensitive
2943          to how many spaces the user leaves between 'operator'
2944          and <TYPENAME> or <OPERATOR>. */
2945       char *opend;
2946       char *opname = operator_chars (regexp, &opend);
2947 
2948       if (*opname)
2949 	{
2950 	  int fix = -1;		/* -1 means ok; otherwise number of spaces needed. */
2951 
2952 	  if (isalpha (*opname) || *opname == '_' || *opname == '$')
2953 	    {
2954 	      /* There should 1 space between 'operator' and 'TYPENAME'. */
2955 	      if (opname[-1] != ' ' || opname[-2] == ' ')
2956 		fix = 1;
2957 	    }
2958 	  else
2959 	    {
2960 	      /* There should 0 spaces between 'operator' and 'OPERATOR'. */
2961 	      if (opname[-1] == ' ')
2962 		fix = 0;
2963 	    }
2964 	  /* If wrong number of spaces, fix it. */
2965 	  if (fix >= 0)
2966 	    {
2967 	      char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
2968 
2969 	      sprintf (tmp, "operator%.*s%s", fix, " ", opname);
2970 	      regexp = tmp;
2971 	    }
2972 	}
2973 
2974       if (0 != (val = re_comp (regexp)))
2975 	error (_("Invalid regexp (%s): %s"), val, regexp);
2976     }
2977 
2978   /* Search through the partial symtabs *first* for all symbols
2979      matching the regexp.  That way we don't have to reproduce all of
2980      the machinery below. */
2981 
2982   datum.nfiles = nfiles;
2983   datum.files = files;
2984   datum.regexp = regexp;
2985   ALL_OBJFILES (objfile)
2986   {
2987     if (objfile->sf)
2988       objfile->sf->qf->expand_symtabs_matching (objfile,
2989 						search_symbols_file_matches,
2990 						search_symbols_name_matches,
2991 						kind,
2992 						&datum);
2993   }
2994 
2995   /* Here, we search through the minimal symbol tables for functions
2996      and variables that match, and force their symbols to be read.
2997      This is in particular necessary for demangled variable names,
2998      which are no longer put into the partial symbol tables.
2999      The symbol will then be found during the scan of symtabs below.
3000 
3001      For functions, find_pc_symtab should succeed if we have debug info
3002      for the function, for variables we have to call lookup_symbol
3003      to determine if the variable has debug info.
3004      If the lookup fails, set found_misc so that we will rescan to print
3005      any matching symbols without debug info.
3006    */
3007 
3008   if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3009     {
3010       ALL_MSYMBOLS (objfile, msymbol)
3011       {
3012         QUIT;
3013 
3014 	if (MSYMBOL_TYPE (msymbol) == ourtype ||
3015 	    MSYMBOL_TYPE (msymbol) == ourtype2 ||
3016 	    MSYMBOL_TYPE (msymbol) == ourtype3 ||
3017 	    MSYMBOL_TYPE (msymbol) == ourtype4)
3018 	  {
3019 	    if (regexp == NULL
3020 		|| re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
3021 	      {
3022 		if (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)))
3023 		  {
3024 		    /* FIXME: carlton/2003-02-04: Given that the
3025 		       semantics of lookup_symbol keeps on changing
3026 		       slightly, it would be a nice idea if we had a
3027 		       function lookup_symbol_minsym that found the
3028 		       symbol associated to a given minimal symbol (if
3029 		       any).  */
3030 		    if (kind == FUNCTIONS_DOMAIN
3031 			|| lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3032 					  (struct block *) NULL,
3033 					  VAR_DOMAIN, 0)
3034 			== NULL)
3035 		      found_misc = 1;
3036 		  }
3037 	      }
3038 	  }
3039       }
3040     }
3041 
3042   ALL_PRIMARY_SYMTABS (objfile, s)
3043   {
3044     bv = BLOCKVECTOR (s);
3045       for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3046 	{
3047 	  struct symbol_search *prevtail = tail;
3048 	  int nfound = 0;
3049 
3050 	  b = BLOCKVECTOR_BLOCK (bv, i);
3051 	  ALL_BLOCK_SYMBOLS (b, iter, sym)
3052 	    {
3053 	      struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3054 
3055 	      QUIT;
3056 
3057 	      if (file_matches (real_symtab->filename, files, nfiles)
3058 		  && ((regexp == NULL
3059 		       || re_exec (SYMBOL_NATURAL_NAME (sym)) != 0)
3060 		      && ((kind == VARIABLES_DOMAIN
3061 			   && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3062 			   && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3063 			   && SYMBOL_CLASS (sym) != LOC_BLOCK
3064 			   /* LOC_CONST can be used for more than just enums,
3065 			      e.g., c++ static const members.
3066 			      We only want to skip enums here.  */
3067 			   && !(SYMBOL_CLASS (sym) == LOC_CONST
3068 				&& TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_ENUM))
3069 			  || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (sym) == LOC_BLOCK)
3070 			  || (kind == TYPES_DOMAIN && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3071 		{
3072 		  /* match */
3073 		  psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
3074 		  psr->block = i;
3075 		  psr->symtab = real_symtab;
3076 		  psr->symbol = sym;
3077 		  psr->msymbol = NULL;
3078 		  psr->next = NULL;
3079 		  if (tail == NULL)
3080 		    sr = psr;
3081 		  else
3082 		    tail->next = psr;
3083 		  tail = psr;
3084 		  nfound ++;
3085 		}
3086 	    }
3087 	  if (nfound > 0)
3088 	    {
3089 	      if (prevtail == NULL)
3090 		{
3091 		  struct symbol_search dummy;
3092 
3093 		  dummy.next = sr;
3094 		  tail = sort_search_symbols (&dummy, nfound);
3095 		  sr = dummy.next;
3096 
3097 		  old_chain = make_cleanup_free_search_symbols (sr);
3098 		}
3099 	      else
3100 		tail = sort_search_symbols (prevtail, nfound);
3101 	    }
3102 	}
3103   }
3104 
3105   /* If there are no eyes, avoid all contact.  I mean, if there are
3106      no debug symbols, then print directly from the msymbol_vector.  */
3107 
3108   if (found_misc || kind != FUNCTIONS_DOMAIN)
3109     {
3110       ALL_MSYMBOLS (objfile, msymbol)
3111       {
3112         QUIT;
3113 
3114 	if (MSYMBOL_TYPE (msymbol) == ourtype ||
3115 	    MSYMBOL_TYPE (msymbol) == ourtype2 ||
3116 	    MSYMBOL_TYPE (msymbol) == ourtype3 ||
3117 	    MSYMBOL_TYPE (msymbol) == ourtype4)
3118 	  {
3119 	    if (regexp == NULL
3120 		|| re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
3121 	      {
3122 		/* Functions:  Look up by address. */
3123 		if (kind != FUNCTIONS_DOMAIN ||
3124 		    (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol))))
3125 		  {
3126 		    /* Variables/Absolutes:  Look up by name */
3127 		    if (lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3128 				       (struct block *) NULL, VAR_DOMAIN, 0)
3129 			 == NULL)
3130 		      {
3131 			/* match */
3132 			psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
3133 			psr->block = i;
3134 			psr->msymbol = msymbol;
3135 			psr->symtab = NULL;
3136 			psr->symbol = NULL;
3137 			psr->next = NULL;
3138 			if (tail == NULL)
3139 			  {
3140 			    sr = psr;
3141 			    old_chain = make_cleanup_free_search_symbols (sr);
3142 			  }
3143 			else
3144 			  tail->next = psr;
3145 			tail = psr;
3146 		      }
3147 		  }
3148 	      }
3149 	  }
3150       }
3151     }
3152 
3153   *matches = sr;
3154   if (sr != NULL)
3155     discard_cleanups (old_chain);
3156 }
3157 
3158 /* Helper function for symtab_symbol_info, this function uses
3159    the data returned from search_symbols() to print information
3160    regarding the match to gdb_stdout.
3161  */
3162 static void
3163 print_symbol_info (domain_enum kind, struct symtab *s, struct symbol *sym,
3164 		   int block, char *last)
3165 {
3166   if (last == NULL || strcmp (last, s->filename) != 0)
3167     {
3168       fputs_filtered ("\nFile ", gdb_stdout);
3169       fputs_filtered (s->filename, gdb_stdout);
3170       fputs_filtered (":\n", gdb_stdout);
3171     }
3172 
3173   if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3174     printf_filtered ("static ");
3175 
3176   /* Typedef that is not a C++ class */
3177   if (kind == TYPES_DOMAIN
3178       && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3179     typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3180   /* variable, func, or typedef-that-is-c++-class */
3181   else if (kind < TYPES_DOMAIN ||
3182 	   (kind == TYPES_DOMAIN &&
3183 	    SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3184     {
3185       type_print (SYMBOL_TYPE (sym),
3186 		  (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3187 		   ? "" : SYMBOL_PRINT_NAME (sym)),
3188 		  gdb_stdout, 0);
3189 
3190       printf_filtered (";\n");
3191     }
3192 }
3193 
3194 /* This help function for symtab_symbol_info() prints information
3195    for non-debugging symbols to gdb_stdout.
3196  */
3197 static void
3198 print_msymbol_info (struct minimal_symbol *msymbol)
3199 {
3200   struct gdbarch *gdbarch = get_objfile_arch (msymbol_objfile (msymbol));
3201   char *tmp;
3202 
3203   if (gdbarch_addr_bit (gdbarch) <= 32)
3204     tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3205 			     & (CORE_ADDR) 0xffffffff,
3206 			     8);
3207   else
3208     tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3209 			     16);
3210   printf_filtered ("%s  %s\n",
3211 		   tmp, SYMBOL_PRINT_NAME (msymbol));
3212 }
3213 
3214 /* This is the guts of the commands "info functions", "info types", and
3215    "info variables". It calls search_symbols to find all matches and then
3216    print_[m]symbol_info to print out some useful information about the
3217    matches.
3218  */
3219 static void
3220 symtab_symbol_info (char *regexp, domain_enum kind, int from_tty)
3221 {
3222   static char *classnames[] = {"variable", "function", "type", "method"};
3223   struct symbol_search *symbols;
3224   struct symbol_search *p;
3225   struct cleanup *old_chain;
3226   char *last_filename = NULL;
3227   int first = 1;
3228 
3229   /* must make sure that if we're interrupted, symbols gets freed */
3230   search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3231   old_chain = make_cleanup_free_search_symbols (symbols);
3232 
3233   printf_filtered (regexp
3234 		   ? "All %ss matching regular expression \"%s\":\n"
3235 		   : "All defined %ss:\n",
3236 		   classnames[(int) (kind - VARIABLES_DOMAIN)], regexp);
3237 
3238   for (p = symbols; p != NULL; p = p->next)
3239     {
3240       QUIT;
3241 
3242       if (p->msymbol != NULL)
3243 	{
3244 	  if (first)
3245 	    {
3246 	      printf_filtered ("\nNon-debugging symbols:\n");
3247 	      first = 0;
3248 	    }
3249 	  print_msymbol_info (p->msymbol);
3250 	}
3251       else
3252 	{
3253 	  print_symbol_info (kind,
3254 			     p->symtab,
3255 			     p->symbol,
3256 			     p->block,
3257 			     last_filename);
3258 	  last_filename = p->symtab->filename;
3259 	}
3260     }
3261 
3262   do_cleanups (old_chain);
3263 }
3264 
3265 static void
3266 variables_info (char *regexp, int from_tty)
3267 {
3268   symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3269 }
3270 
3271 static void
3272 functions_info (char *regexp, int from_tty)
3273 {
3274   symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3275 }
3276 
3277 
3278 static void
3279 types_info (char *regexp, int from_tty)
3280 {
3281   symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3282 }
3283 
3284 /* Breakpoint all functions matching regular expression. */
3285 
3286 void
3287 rbreak_command_wrapper (char *regexp, int from_tty)
3288 {
3289   rbreak_command (regexp, from_tty);
3290 }
3291 
3292 /* A cleanup function that calls end_rbreak_breakpoints.  */
3293 
3294 static void
3295 do_end_rbreak_breakpoints (void *ignore)
3296 {
3297   end_rbreak_breakpoints ();
3298 }
3299 
3300 static void
3301 rbreak_command (char *regexp, int from_tty)
3302 {
3303   struct symbol_search *ss;
3304   struct symbol_search *p;
3305   struct cleanup *old_chain;
3306   char *string = NULL;
3307   int len = 0;
3308   char **files = NULL;
3309   int nfiles = 0;
3310 
3311   if (regexp)
3312     {
3313       char *colon = strchr (regexp, ':');
3314 
3315       if (colon && *(colon + 1) != ':')
3316 	{
3317 	  int colon_index;
3318 	  char * file_name;
3319 
3320 	  colon_index = colon - regexp;
3321 	  file_name = alloca (colon_index + 1);
3322 	  memcpy (file_name, regexp, colon_index);
3323 	  file_name[colon_index--] = 0;
3324 	  while (isspace (file_name[colon_index]))
3325 	    file_name[colon_index--] = 0;
3326 	  files = &file_name;
3327 	  nfiles = 1;
3328 	  regexp = colon + 1;
3329 	  while (isspace (*regexp))  regexp++;
3330 	}
3331     }
3332 
3333   search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
3334   old_chain = make_cleanup_free_search_symbols (ss);
3335   make_cleanup (free_current_contents, &string);
3336 
3337   start_rbreak_breakpoints ();
3338   make_cleanup (do_end_rbreak_breakpoints, NULL);
3339   for (p = ss; p != NULL; p = p->next)
3340     {
3341       if (p->msymbol == NULL)
3342 	{
3343 	  int newlen = (strlen (p->symtab->filename)
3344 			+ strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3345 			+ 4);
3346 
3347 	  if (newlen > len)
3348 	    {
3349 	      string = xrealloc (string, newlen);
3350 	      len = newlen;
3351 	    }
3352 	  strcpy (string, p->symtab->filename);
3353 	  strcat (string, ":'");
3354 	  strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3355 	  strcat (string, "'");
3356 	  break_command (string, from_tty);
3357 	  print_symbol_info (FUNCTIONS_DOMAIN,
3358 			     p->symtab,
3359 			     p->symbol,
3360 			     p->block,
3361 			     p->symtab->filename);
3362 	}
3363       else
3364 	{
3365 	  int newlen = (strlen (SYMBOL_LINKAGE_NAME (p->msymbol)) + 3);
3366 
3367 	  if (newlen > len)
3368 	    {
3369 	      string = xrealloc (string, newlen);
3370 	      len = newlen;
3371 	    }
3372 	  strcpy (string, "'");
3373 	  strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol));
3374 	  strcat (string, "'");
3375 
3376 	  break_command (string, from_tty);
3377 	  printf_filtered ("<function, no debug info> %s;\n",
3378 			   SYMBOL_PRINT_NAME (p->msymbol));
3379 	}
3380     }
3381 
3382   do_cleanups (old_chain);
3383 }
3384 
3385 
3386 /* Helper routine for make_symbol_completion_list.  */
3387 
3388 static int return_val_size;
3389 static int return_val_index;
3390 static char **return_val;
3391 
3392 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
3393       completion_list_add_name \
3394 	(SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
3395 
3396 /*  Test to see if the symbol specified by SYMNAME (which is already
3397    demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
3398    characters.  If so, add it to the current completion list. */
3399 
3400 static void
3401 completion_list_add_name (char *symname, char *sym_text, int sym_text_len,
3402 			  char *text, char *word)
3403 {
3404   int newsize;
3405 
3406   /* clip symbols that cannot match */
3407 
3408   if (strncmp (symname, sym_text, sym_text_len) != 0)
3409     {
3410       return;
3411     }
3412 
3413   /* We have a match for a completion, so add SYMNAME to the current list
3414      of matches. Note that the name is moved to freshly malloc'd space. */
3415 
3416   {
3417     char *new;
3418 
3419     if (word == sym_text)
3420       {
3421 	new = xmalloc (strlen (symname) + 5);
3422 	strcpy (new, symname);
3423       }
3424     else if (word > sym_text)
3425       {
3426 	/* Return some portion of symname.  */
3427 	new = xmalloc (strlen (symname) + 5);
3428 	strcpy (new, symname + (word - sym_text));
3429       }
3430     else
3431       {
3432 	/* Return some of SYM_TEXT plus symname.  */
3433 	new = xmalloc (strlen (symname) + (sym_text - word) + 5);
3434 	strncpy (new, word, sym_text - word);
3435 	new[sym_text - word] = '\0';
3436 	strcat (new, symname);
3437       }
3438 
3439     if (return_val_index + 3 > return_val_size)
3440       {
3441 	newsize = (return_val_size *= 2) * sizeof (char *);
3442 	return_val = (char **) xrealloc ((char *) return_val, newsize);
3443       }
3444     return_val[return_val_index++] = new;
3445     return_val[return_val_index] = NULL;
3446   }
3447 }
3448 
3449 /* ObjC: In case we are completing on a selector, look as the msymbol
3450    again and feed all the selectors into the mill.  */
3451 
3452 static void
3453 completion_list_objc_symbol (struct minimal_symbol *msymbol, char *sym_text,
3454 			     int sym_text_len, char *text, char *word)
3455 {
3456   static char *tmp = NULL;
3457   static unsigned int tmplen = 0;
3458 
3459   char *method, *category, *selector;
3460   char *tmp2 = NULL;
3461 
3462   method = SYMBOL_NATURAL_NAME (msymbol);
3463 
3464   /* Is it a method?  */
3465   if ((method[0] != '-') && (method[0] != '+'))
3466     return;
3467 
3468   if (sym_text[0] == '[')
3469     /* Complete on shortened method method.  */
3470     completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
3471 
3472   while ((strlen (method) + 1) >= tmplen)
3473     {
3474       if (tmplen == 0)
3475 	tmplen = 1024;
3476       else
3477 	tmplen *= 2;
3478       tmp = xrealloc (tmp, tmplen);
3479     }
3480   selector = strchr (method, ' ');
3481   if (selector != NULL)
3482     selector++;
3483 
3484   category = strchr (method, '(');
3485 
3486   if ((category != NULL) && (selector != NULL))
3487     {
3488       memcpy (tmp, method, (category - method));
3489       tmp[category - method] = ' ';
3490       memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
3491       completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3492       if (sym_text[0] == '[')
3493 	completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
3494     }
3495 
3496   if (selector != NULL)
3497     {
3498       /* Complete on selector only.  */
3499       strcpy (tmp, selector);
3500       tmp2 = strchr (tmp, ']');
3501       if (tmp2 != NULL)
3502 	*tmp2 = '\0';
3503 
3504       completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3505     }
3506 }
3507 
3508 /* Break the non-quoted text based on the characters which are in
3509    symbols. FIXME: This should probably be language-specific. */
3510 
3511 static char *
3512 language_search_unquoted_string (char *text, char *p)
3513 {
3514   for (; p > text; --p)
3515     {
3516       if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
3517 	continue;
3518       else
3519 	{
3520 	  if ((current_language->la_language == language_objc))
3521 	    {
3522 	      if (p[-1] == ':')     /* might be part of a method name */
3523 		continue;
3524 	      else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
3525 		p -= 2;             /* beginning of a method name */
3526 	      else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
3527 		{                   /* might be part of a method name */
3528 		  char *t = p;
3529 
3530 		  /* Seeing a ' ' or a '(' is not conclusive evidence
3531 		     that we are in the middle of a method name.  However,
3532 		     finding "-[" or "+[" should be pretty un-ambiguous.
3533 		     Unfortunately we have to find it now to decide.  */
3534 
3535 		  while (t > text)
3536 		    if (isalnum (t[-1]) || t[-1] == '_' ||
3537 			t[-1] == ' '    || t[-1] == ':' ||
3538 			t[-1] == '('    || t[-1] == ')')
3539 		      --t;
3540 		    else
3541 		      break;
3542 
3543 		  if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
3544 		    p = t - 2;      /* method name detected */
3545 		  /* else we leave with p unchanged */
3546 		}
3547 	    }
3548 	  break;
3549 	}
3550     }
3551   return p;
3552 }
3553 
3554 static void
3555 completion_list_add_fields (struct symbol *sym, char *sym_text,
3556 			    int sym_text_len, char *text, char *word)
3557 {
3558   if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
3559     {
3560       struct type *t = SYMBOL_TYPE (sym);
3561       enum type_code c = TYPE_CODE (t);
3562       int j;
3563 
3564       if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
3565 	for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
3566 	  if (TYPE_FIELD_NAME (t, j))
3567 	    completion_list_add_name (TYPE_FIELD_NAME (t, j),
3568 				      sym_text, sym_text_len, text, word);
3569     }
3570 }
3571 
3572 /* Type of the user_data argument passed to add_macro_name or
3573    add_partial_symbol_name.  The contents are simply whatever is
3574    needed by completion_list_add_name.  */
3575 struct add_name_data
3576 {
3577   char *sym_text;
3578   int sym_text_len;
3579   char *text;
3580   char *word;
3581 };
3582 
3583 /* A callback used with macro_for_each and macro_for_each_in_scope.
3584    This adds a macro's name to the current completion list.  */
3585 static void
3586 add_macro_name (const char *name, const struct macro_definition *ignore,
3587 		void *user_data)
3588 {
3589   struct add_name_data *datum = (struct add_name_data *) user_data;
3590 
3591   completion_list_add_name ((char *) name,
3592 			    datum->sym_text, datum->sym_text_len,
3593 			    datum->text, datum->word);
3594 }
3595 
3596 /* A callback for map_partial_symbol_names.  */
3597 static void
3598 add_partial_symbol_name (const char *name, void *user_data)
3599 {
3600   struct add_name_data *datum = (struct add_name_data *) user_data;
3601 
3602   completion_list_add_name ((char *) name,
3603 			    datum->sym_text, datum->sym_text_len,
3604 			    datum->text, datum->word);
3605 }
3606 
3607 char **
3608 default_make_symbol_completion_list_break_on (char *text, char *word,
3609 					      const char *break_on)
3610 {
3611   /* Problem: All of the symbols have to be copied because readline
3612      frees them.  I'm not going to worry about this; hopefully there
3613      won't be that many.  */
3614 
3615   struct symbol *sym;
3616   struct symtab *s;
3617   struct minimal_symbol *msymbol;
3618   struct objfile *objfile;
3619   struct block *b;
3620   const struct block *surrounding_static_block, *surrounding_global_block;
3621   struct dict_iterator iter;
3622   /* The symbol we are completing on.  Points in same buffer as text.  */
3623   char *sym_text;
3624   /* Length of sym_text.  */
3625   int sym_text_len;
3626   struct add_name_data datum;
3627 
3628   /* Now look for the symbol we are supposed to complete on.  */
3629   {
3630     char *p;
3631     char quote_found;
3632     char *quote_pos = NULL;
3633 
3634     /* First see if this is a quoted string.  */
3635     quote_found = '\0';
3636     for (p = text; *p != '\0'; ++p)
3637       {
3638 	if (quote_found != '\0')
3639 	  {
3640 	    if (*p == quote_found)
3641 	      /* Found close quote.  */
3642 	      quote_found = '\0';
3643 	    else if (*p == '\\' && p[1] == quote_found)
3644 	      /* A backslash followed by the quote character
3645 	         doesn't end the string.  */
3646 	      ++p;
3647 	  }
3648 	else if (*p == '\'' || *p == '"')
3649 	  {
3650 	    quote_found = *p;
3651 	    quote_pos = p;
3652 	  }
3653       }
3654     if (quote_found == '\'')
3655       /* A string within single quotes can be a symbol, so complete on it.  */
3656       sym_text = quote_pos + 1;
3657     else if (quote_found == '"')
3658       /* A double-quoted string is never a symbol, nor does it make sense
3659          to complete it any other way.  */
3660       {
3661 	return_val = (char **) xmalloc (sizeof (char *));
3662 	return_val[0] = NULL;
3663 	return return_val;
3664       }
3665     else
3666       {
3667 	/* It is not a quoted string.  Break it based on the characters
3668 	   which are in symbols.  */
3669 	while (p > text)
3670 	  {
3671 	    if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
3672 		|| p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
3673 	      --p;
3674 	    else
3675 	      break;
3676 	  }
3677 	sym_text = p;
3678       }
3679   }
3680 
3681   sym_text_len = strlen (sym_text);
3682 
3683   return_val_size = 100;
3684   return_val_index = 0;
3685   return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3686   return_val[0] = NULL;
3687 
3688   datum.sym_text = sym_text;
3689   datum.sym_text_len = sym_text_len;
3690   datum.text = text;
3691   datum.word = word;
3692 
3693   /* Look through the partial symtabs for all symbols which begin
3694      by matching SYM_TEXT.  Add each one that you find to the list.  */
3695   map_partial_symbol_names (add_partial_symbol_name, &datum);
3696 
3697   /* At this point scan through the misc symbol vectors and add each
3698      symbol you find to the list.  Eventually we want to ignore
3699      anything that isn't a text symbol (everything else will be
3700      handled by the psymtab code above).  */
3701 
3702   ALL_MSYMBOLS (objfile, msymbol)
3703   {
3704     QUIT;
3705     COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word);
3706 
3707     completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text, word);
3708   }
3709 
3710   /* Search upwards from currently selected frame (so that we can
3711      complete on local vars).  Also catch fields of types defined in
3712      this places which match our text string.  Only complete on types
3713      visible from current context. */
3714 
3715   b = get_selected_block (0);
3716   surrounding_static_block = block_static_block (b);
3717   surrounding_global_block = block_global_block (b);
3718   if (surrounding_static_block != NULL)
3719     while (b != surrounding_static_block)
3720       {
3721 	QUIT;
3722 
3723 	ALL_BLOCK_SYMBOLS (b, iter, sym)
3724 	  {
3725 	    COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
3726 					word);
3727 	    completion_list_add_fields (sym, sym_text, sym_text_len, text,
3728 					word);
3729 	  }
3730 
3731 	/* Stop when we encounter an enclosing function.  Do not stop for
3732 	   non-inlined functions - the locals of the enclosing function
3733 	   are in scope for a nested function.  */
3734 	if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3735 	  break;
3736 	b = BLOCK_SUPERBLOCK (b);
3737       }
3738 
3739   /* Add fields from the file's types; symbols will be added below.  */
3740 
3741   if (surrounding_static_block != NULL)
3742     ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
3743       completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
3744 
3745   if (surrounding_global_block != NULL)
3746       ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
3747 	completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
3748 
3749   /* Go through the symtabs and check the externs and statics for
3750      symbols which match.  */
3751 
3752   ALL_PRIMARY_SYMTABS (objfile, s)
3753   {
3754     QUIT;
3755     b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3756     ALL_BLOCK_SYMBOLS (b, iter, sym)
3757       {
3758 	COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3759       }
3760   }
3761 
3762   ALL_PRIMARY_SYMTABS (objfile, s)
3763   {
3764     QUIT;
3765     b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3766     ALL_BLOCK_SYMBOLS (b, iter, sym)
3767       {
3768 	COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3769       }
3770   }
3771 
3772   if (current_language->la_macro_expansion == macro_expansion_c)
3773     {
3774       struct macro_scope *scope;
3775 
3776       /* Add any macros visible in the default scope.  Note that this
3777 	 may yield the occasional wrong result, because an expression
3778 	 might be evaluated in a scope other than the default.  For
3779 	 example, if the user types "break file:line if <TAB>", the
3780 	 resulting expression will be evaluated at "file:line" -- but
3781 	 at there does not seem to be a way to detect this at
3782 	 completion time.  */
3783       scope = default_macro_scope ();
3784       if (scope)
3785 	{
3786 	  macro_for_each_in_scope (scope->file, scope->line,
3787 				   add_macro_name, &datum);
3788 	  xfree (scope);
3789 	}
3790 
3791       /* User-defined macros are always visible.  */
3792       macro_for_each (macro_user_macros, add_macro_name, &datum);
3793     }
3794 
3795   return (return_val);
3796 }
3797 
3798 char **
3799 default_make_symbol_completion_list (char *text, char *word)
3800 {
3801   return default_make_symbol_completion_list_break_on (text, word, "");
3802 }
3803 
3804 /* Return a NULL terminated array of all symbols (regardless of class)
3805    which begin by matching TEXT.  If the answer is no symbols, then
3806    the return value is an array which contains only a NULL pointer.  */
3807 
3808 char **
3809 make_symbol_completion_list (char *text, char *word)
3810 {
3811   return current_language->la_make_symbol_completion_list (text, word);
3812 }
3813 
3814 /* Like make_symbol_completion_list, but suitable for use as a
3815    completion function.  */
3816 
3817 char **
3818 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
3819 				char *text, char *word)
3820 {
3821   return make_symbol_completion_list (text, word);
3822 }
3823 
3824 /* Like make_symbol_completion_list, but returns a list of symbols
3825    defined in a source file FILE.  */
3826 
3827 char **
3828 make_file_symbol_completion_list (char *text, char *word, char *srcfile)
3829 {
3830   struct symbol *sym;
3831   struct symtab *s;
3832   struct block *b;
3833   struct dict_iterator iter;
3834   /* The symbol we are completing on.  Points in same buffer as text.  */
3835   char *sym_text;
3836   /* Length of sym_text.  */
3837   int sym_text_len;
3838 
3839   /* Now look for the symbol we are supposed to complete on.
3840      FIXME: This should be language-specific.  */
3841   {
3842     char *p;
3843     char quote_found;
3844     char *quote_pos = NULL;
3845 
3846     /* First see if this is a quoted string.  */
3847     quote_found = '\0';
3848     for (p = text; *p != '\0'; ++p)
3849       {
3850 	if (quote_found != '\0')
3851 	  {
3852 	    if (*p == quote_found)
3853 	      /* Found close quote.  */
3854 	      quote_found = '\0';
3855 	    else if (*p == '\\' && p[1] == quote_found)
3856 	      /* A backslash followed by the quote character
3857 	         doesn't end the string.  */
3858 	      ++p;
3859 	  }
3860 	else if (*p == '\'' || *p == '"')
3861 	  {
3862 	    quote_found = *p;
3863 	    quote_pos = p;
3864 	  }
3865       }
3866     if (quote_found == '\'')
3867       /* A string within single quotes can be a symbol, so complete on it.  */
3868       sym_text = quote_pos + 1;
3869     else if (quote_found == '"')
3870       /* A double-quoted string is never a symbol, nor does it make sense
3871          to complete it any other way.  */
3872       {
3873 	return_val = (char **) xmalloc (sizeof (char *));
3874 	return_val[0] = NULL;
3875 	return return_val;
3876       }
3877     else
3878       {
3879 	/* Not a quoted string.  */
3880 	sym_text = language_search_unquoted_string (text, p);
3881       }
3882   }
3883 
3884   sym_text_len = strlen (sym_text);
3885 
3886   return_val_size = 10;
3887   return_val_index = 0;
3888   return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3889   return_val[0] = NULL;
3890 
3891   /* Find the symtab for SRCFILE (this loads it if it was not yet read
3892      in).  */
3893   s = lookup_symtab (srcfile);
3894   if (s == NULL)
3895     {
3896       /* Maybe they typed the file with leading directories, while the
3897 	 symbol tables record only its basename.  */
3898       const char *tail = lbasename (srcfile);
3899 
3900       if (tail > srcfile)
3901 	s = lookup_symtab (tail);
3902     }
3903 
3904   /* If we have no symtab for that file, return an empty list.  */
3905   if (s == NULL)
3906     return (return_val);
3907 
3908   /* Go through this symtab and check the externs and statics for
3909      symbols which match.  */
3910 
3911   b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3912   ALL_BLOCK_SYMBOLS (b, iter, sym)
3913     {
3914       COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3915     }
3916 
3917   b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3918   ALL_BLOCK_SYMBOLS (b, iter, sym)
3919     {
3920       COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3921     }
3922 
3923   return (return_val);
3924 }
3925 
3926 /* A helper function for make_source_files_completion_list.  It adds
3927    another file name to a list of possible completions, growing the
3928    list as necessary.  */
3929 
3930 static void
3931 add_filename_to_list (const char *fname, char *text, char *word,
3932 		      char ***list, int *list_used, int *list_alloced)
3933 {
3934   char *new;
3935   size_t fnlen = strlen (fname);
3936 
3937   if (*list_used + 1 >= *list_alloced)
3938     {
3939       *list_alloced *= 2;
3940       *list = (char **) xrealloc ((char *) *list,
3941 				  *list_alloced * sizeof (char *));
3942     }
3943 
3944   if (word == text)
3945     {
3946       /* Return exactly fname.  */
3947       new = xmalloc (fnlen + 5);
3948       strcpy (new, fname);
3949     }
3950   else if (word > text)
3951     {
3952       /* Return some portion of fname.  */
3953       new = xmalloc (fnlen + 5);
3954       strcpy (new, fname + (word - text));
3955     }
3956   else
3957     {
3958       /* Return some of TEXT plus fname.  */
3959       new = xmalloc (fnlen + (text - word) + 5);
3960       strncpy (new, word, text - word);
3961       new[text - word] = '\0';
3962       strcat (new, fname);
3963     }
3964   (*list)[*list_used] = new;
3965   (*list)[++*list_used] = NULL;
3966 }
3967 
3968 static int
3969 not_interesting_fname (const char *fname)
3970 {
3971   static const char *illegal_aliens[] = {
3972     "_globals_",	/* inserted by coff_symtab_read */
3973     NULL
3974   };
3975   int i;
3976 
3977   for (i = 0; illegal_aliens[i]; i++)
3978     {
3979       if (strcmp (fname, illegal_aliens[i]) == 0)
3980 	return 1;
3981     }
3982   return 0;
3983 }
3984 
3985 /* An object of this type is passed as the user_data argument to
3986    map_partial_symbol_filenames.  */
3987 struct add_partial_filename_data
3988 {
3989   int *first;
3990   char *text;
3991   char *word;
3992   int text_len;
3993   char ***list;
3994   int *list_used;
3995   int *list_alloced;
3996 };
3997 
3998 /* A callback for map_partial_symbol_filenames.  */
3999 static void
4000 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
4001 				   void *user_data)
4002 {
4003   struct add_partial_filename_data *data = user_data;
4004 
4005   if (not_interesting_fname (filename))
4006     return;
4007   if (!filename_seen (filename, 1, data->first)
4008 #if HAVE_DOS_BASED_FILE_SYSTEM
4009       && strncasecmp (filename, data->text, data->text_len) == 0
4010 #else
4011       && strncmp (filename, data->text, data->text_len) == 0
4012 #endif
4013       )
4014     {
4015       /* This file matches for a completion; add it to the
4016 	 current list of matches.  */
4017       add_filename_to_list (filename, data->text, data->word,
4018 			    data->list, data->list_used, data->list_alloced);
4019     }
4020   else
4021     {
4022       const char *base_name = lbasename (filename);
4023 
4024       if (base_name != filename
4025 	  && !filename_seen (base_name, 1, data->first)
4026 #if HAVE_DOS_BASED_FILE_SYSTEM
4027 	  && strncasecmp (base_name, data->text, data->text_len) == 0
4028 #else
4029 	  && strncmp (base_name, data->text, data->text_len) == 0
4030 #endif
4031 	  )
4032 	add_filename_to_list (base_name, data->text, data->word,
4033 			      data->list, data->list_used, data->list_alloced);
4034     }
4035 }
4036 
4037 /* Return a NULL terminated array of all source files whose names
4038    begin with matching TEXT.  The file names are looked up in the
4039    symbol tables of this program.  If the answer is no matchess, then
4040    the return value is an array which contains only a NULL pointer.  */
4041 
4042 char **
4043 make_source_files_completion_list (char *text, char *word)
4044 {
4045   struct symtab *s;
4046   struct objfile *objfile;
4047   int first = 1;
4048   int list_alloced = 1;
4049   int list_used = 0;
4050   size_t text_len = strlen (text);
4051   char **list = (char **) xmalloc (list_alloced * sizeof (char *));
4052   const char *base_name;
4053   struct add_partial_filename_data datum;
4054 
4055   list[0] = NULL;
4056 
4057   if (!have_full_symbols () && !have_partial_symbols ())
4058     return list;
4059 
4060   ALL_SYMTABS (objfile, s)
4061     {
4062       if (not_interesting_fname (s->filename))
4063 	continue;
4064       if (!filename_seen (s->filename, 1, &first)
4065 #if HAVE_DOS_BASED_FILE_SYSTEM
4066 	  && strncasecmp (s->filename, text, text_len) == 0
4067 #else
4068 	  && strncmp (s->filename, text, text_len) == 0
4069 #endif
4070 	  )
4071 	{
4072 	  /* This file matches for a completion; add it to the current
4073 	     list of matches.  */
4074 	  add_filename_to_list (s->filename, text, word,
4075 				&list, &list_used, &list_alloced);
4076 	}
4077       else
4078 	{
4079 	  /* NOTE: We allow the user to type a base name when the
4080 	     debug info records leading directories, but not the other
4081 	     way around.  This is what subroutines of breakpoint
4082 	     command do when they parse file names.  */
4083 	  base_name = lbasename (s->filename);
4084 	  if (base_name != s->filename
4085 	      && !filename_seen (base_name, 1, &first)
4086 #if HAVE_DOS_BASED_FILE_SYSTEM
4087 	      && strncasecmp (base_name, text, text_len) == 0
4088 #else
4089 	      && strncmp (base_name, text, text_len) == 0
4090 #endif
4091 	      )
4092 	    add_filename_to_list (base_name, text, word,
4093 				  &list, &list_used, &list_alloced);
4094 	}
4095     }
4096 
4097   datum.first = &first;
4098   datum.text = text;
4099   datum.word = word;
4100   datum.text_len = text_len;
4101   datum.list = &list;
4102   datum.list_used = &list_used;
4103   datum.list_alloced = &list_alloced;
4104   map_partial_symbol_filenames (maybe_add_partial_symtab_filename, &datum);
4105 
4106   return list;
4107 }
4108 
4109 /* Determine if PC is in the prologue of a function.  The prologue is the area
4110    between the first instruction of a function, and the first executable line.
4111    Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4112 
4113    If non-zero, func_start is where we think the prologue starts, possibly
4114    by previous examination of symbol table information.
4115  */
4116 
4117 int
4118 in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
4119 {
4120   struct symtab_and_line sal;
4121   CORE_ADDR func_addr, func_end;
4122 
4123   /* We have several sources of information we can consult to figure
4124      this out.
4125      - Compilers usually emit line number info that marks the prologue
4126        as its own "source line".  So the ending address of that "line"
4127        is the end of the prologue.  If available, this is the most
4128        reliable method.
4129      - The minimal symbols and partial symbols, which can usually tell
4130        us the starting and ending addresses of a function.
4131      - If we know the function's start address, we can call the
4132        architecture-defined gdbarch_skip_prologue function to analyze the
4133        instruction stream and guess where the prologue ends.
4134      - Our `func_start' argument; if non-zero, this is the caller's
4135        best guess as to the function's entry point.  At the time of
4136        this writing, handle_inferior_event doesn't get this right, so
4137        it should be our last resort.  */
4138 
4139   /* Consult the partial symbol table, to find which function
4140      the PC is in.  */
4141   if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4142     {
4143       CORE_ADDR prologue_end;
4144 
4145       /* We don't even have minsym information, so fall back to using
4146          func_start, if given.  */
4147       if (! func_start)
4148 	return 1;		/* We *might* be in a prologue.  */
4149 
4150       prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
4151 
4152       return func_start <= pc && pc < prologue_end;
4153     }
4154 
4155   /* If we have line number information for the function, that's
4156      usually pretty reliable.  */
4157   sal = find_pc_line (func_addr, 0);
4158 
4159   /* Now sal describes the source line at the function's entry point,
4160      which (by convention) is the prologue.  The end of that "line",
4161      sal.end, is the end of the prologue.
4162 
4163      Note that, for functions whose source code is all on a single
4164      line, the line number information doesn't always end up this way.
4165      So we must verify that our purported end-of-prologue address is
4166      *within* the function, not at its start or end.  */
4167   if (sal.line == 0
4168       || sal.end <= func_addr
4169       || func_end <= sal.end)
4170     {
4171       /* We don't have any good line number info, so use the minsym
4172 	 information, together with the architecture-specific prologue
4173 	 scanning code.  */
4174       CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
4175 
4176       return func_addr <= pc && pc < prologue_end;
4177     }
4178 
4179   /* We have line number info, and it looks good.  */
4180   return func_addr <= pc && pc < sal.end;
4181 }
4182 
4183 /* Given PC at the function's start address, attempt to find the
4184    prologue end using SAL information.  Return zero if the skip fails.
4185 
4186    A non-optimized prologue traditionally has one SAL for the function
4187    and a second for the function body.  A single line function has
4188    them both pointing at the same line.
4189 
4190    An optimized prologue is similar but the prologue may contain
4191    instructions (SALs) from the instruction body.  Need to skip those
4192    while not getting into the function body.
4193 
4194    The functions end point and an increasing SAL line are used as
4195    indicators of the prologue's endpoint.
4196 
4197    This code is based on the function refine_prologue_limit (versions
4198    found in both ia64 and ppc).  */
4199 
4200 CORE_ADDR
4201 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
4202 {
4203   struct symtab_and_line prologue_sal;
4204   CORE_ADDR start_pc;
4205   CORE_ADDR end_pc;
4206   struct block *bl;
4207 
4208   /* Get an initial range for the function.  */
4209   find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4210   start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
4211 
4212   prologue_sal = find_pc_line (start_pc, 0);
4213   if (prologue_sal.line != 0)
4214     {
4215       /* For langauges other than assembly, treat two consecutive line
4216 	 entries at the same address as a zero-instruction prologue.
4217 	 The GNU assembler emits separate line notes for each instruction
4218 	 in a multi-instruction macro, but compilers generally will not
4219 	 do this.  */
4220       if (prologue_sal.symtab->language != language_asm)
4221 	{
4222 	  struct linetable *linetable = LINETABLE (prologue_sal.symtab);
4223 	  int idx = 0;
4224 
4225 	  /* Skip any earlier lines, and any end-of-sequence marker
4226 	     from a previous function.  */
4227 	  while (linetable->item[idx].pc != prologue_sal.pc
4228 		 || linetable->item[idx].line == 0)
4229 	    idx++;
4230 
4231 	  if (idx+1 < linetable->nitems
4232 	      && linetable->item[idx+1].line != 0
4233 	      && linetable->item[idx+1].pc == start_pc)
4234 	    return start_pc;
4235 	}
4236 
4237       /* If there is only one sal that covers the entire function,
4238 	 then it is probably a single line function, like
4239 	 "foo(){}". */
4240       if (prologue_sal.end >= end_pc)
4241 	return 0;
4242 
4243       while (prologue_sal.end < end_pc)
4244 	{
4245 	  struct symtab_and_line sal;
4246 
4247 	  sal = find_pc_line (prologue_sal.end, 0);
4248 	  if (sal.line == 0)
4249 	    break;
4250 	  /* Assume that a consecutive SAL for the same (or larger)
4251 	     line mark the prologue -> body transition.  */
4252 	  if (sal.line >= prologue_sal.line)
4253 	    break;
4254 
4255 	  /* The line number is smaller.  Check that it's from the
4256 	     same function, not something inlined.  If it's inlined,
4257 	     then there is no point comparing the line numbers.  */
4258 	  bl = block_for_pc (prologue_sal.end);
4259 	  while (bl)
4260 	    {
4261 	      if (block_inlined_p (bl))
4262 		break;
4263 	      if (BLOCK_FUNCTION (bl))
4264 		{
4265 		  bl = NULL;
4266 		  break;
4267 		}
4268 	      bl = BLOCK_SUPERBLOCK (bl);
4269 	    }
4270 	  if (bl != NULL)
4271 	    break;
4272 
4273 	  /* The case in which compiler's optimizer/scheduler has
4274 	     moved instructions into the prologue.  We look ahead in
4275 	     the function looking for address ranges whose
4276 	     corresponding line number is less the first one that we
4277 	     found for the function.  This is more conservative then
4278 	     refine_prologue_limit which scans a large number of SALs
4279 	     looking for any in the prologue */
4280 	  prologue_sal = sal;
4281 	}
4282     }
4283 
4284   if (prologue_sal.end < end_pc)
4285     /* Return the end of this line, or zero if we could not find a
4286        line.  */
4287     return prologue_sal.end;
4288   else
4289     /* Don't return END_PC, which is past the end of the function.  */
4290     return prologue_sal.pc;
4291 }
4292 
4293 struct symtabs_and_lines
4294 decode_line_spec (char *string, int funfirstline)
4295 {
4296   struct symtabs_and_lines sals;
4297   struct symtab_and_line cursal;
4298 
4299   if (string == 0)
4300     error (_("Empty line specification."));
4301 
4302   /* We use whatever is set as the current source line. We do not try
4303      and get a default  or it will recursively call us! */
4304   cursal = get_current_source_symtab_and_line ();
4305 
4306   sals = decode_line_1 (&string, funfirstline,
4307 			cursal.symtab, cursal.line,
4308 			(char ***) NULL, NULL);
4309 
4310   if (*string)
4311     error (_("Junk at end of line specification: %s"), string);
4312   return sals;
4313 }
4314 
4315 /* Track MAIN */
4316 static char *name_of_main;
4317 
4318 void
4319 set_main_name (const char *name)
4320 {
4321   if (name_of_main != NULL)
4322     {
4323       xfree (name_of_main);
4324       name_of_main = NULL;
4325     }
4326   if (name != NULL)
4327     {
4328       name_of_main = xstrdup (name);
4329     }
4330 }
4331 
4332 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4333    accordingly.  */
4334 
4335 static void
4336 find_main_name (void)
4337 {
4338   const char *new_main_name;
4339 
4340   /* Try to see if the main procedure is in Ada.  */
4341   /* FIXME: brobecker/2005-03-07: Another way of doing this would
4342      be to add a new method in the language vector, and call this
4343      method for each language until one of them returns a non-empty
4344      name.  This would allow us to remove this hard-coded call to
4345      an Ada function.  It is not clear that this is a better approach
4346      at this point, because all methods need to be written in a way
4347      such that false positives never be returned. For instance, it is
4348      important that a method does not return a wrong name for the main
4349      procedure if the main procedure is actually written in a different
4350      language.  It is easy to guaranty this with Ada, since we use a
4351      special symbol generated only when the main in Ada to find the name
4352      of the main procedure. It is difficult however to see how this can
4353      be guarantied for languages such as C, for instance.  This suggests
4354      that order of call for these methods becomes important, which means
4355      a more complicated approach.  */
4356   new_main_name = ada_main_name ();
4357   if (new_main_name != NULL)
4358     {
4359       set_main_name (new_main_name);
4360       return;
4361     }
4362 
4363   new_main_name = pascal_main_name ();
4364   if (new_main_name != NULL)
4365     {
4366       set_main_name (new_main_name);
4367       return;
4368     }
4369 
4370   /* The languages above didn't identify the name of the main procedure.
4371      Fallback to "main".  */
4372   set_main_name ("main");
4373 }
4374 
4375 char *
4376 main_name (void)
4377 {
4378   if (name_of_main == NULL)
4379     find_main_name ();
4380 
4381   return name_of_main;
4382 }
4383 
4384 /* Handle ``executable_changed'' events for the symtab module.  */
4385 
4386 static void
4387 symtab_observer_executable_changed (void)
4388 {
4389   /* NAME_OF_MAIN may no longer be the same, so reset it for now.  */
4390   set_main_name (NULL);
4391 }
4392 
4393 /* Helper to expand_line_sal below.  Appends new sal to SAL,
4394    initializing it from SYMTAB, LINENO and PC.  */
4395 static void
4396 append_expanded_sal (struct symtabs_and_lines *sal,
4397 		     struct program_space *pspace,
4398 		     struct symtab *symtab,
4399 		     int lineno, CORE_ADDR pc)
4400 {
4401   sal->sals = xrealloc (sal->sals,
4402 			sizeof (sal->sals[0])
4403 			* (sal->nelts + 1));
4404   init_sal (sal->sals + sal->nelts);
4405   sal->sals[sal->nelts].pspace = pspace;
4406   sal->sals[sal->nelts].symtab = symtab;
4407   sal->sals[sal->nelts].section = NULL;
4408   sal->sals[sal->nelts].end = 0;
4409   sal->sals[sal->nelts].line = lineno;
4410   sal->sals[sal->nelts].pc = pc;
4411   ++sal->nelts;
4412 }
4413 
4414 /* Helper to expand_line_sal below.  Search in the symtabs for any
4415    linetable entry that exactly matches FULLNAME and LINENO and append
4416    them to RET.  If FULLNAME is NULL or if a symtab has no full name,
4417    use FILENAME and LINENO instead.  If there is at least one match,
4418    return 1; otherwise, return 0, and return the best choice in BEST_ITEM
4419    and BEST_SYMTAB.  */
4420 
4421 static int
4422 append_exact_match_to_sals (char *filename, char *fullname, int lineno,
4423 			    struct symtabs_and_lines *ret,
4424 			    struct linetable_entry **best_item,
4425 			    struct symtab **best_symtab)
4426 {
4427   struct program_space *pspace;
4428   struct objfile *objfile;
4429   struct symtab *symtab;
4430   int exact = 0;
4431   int j;
4432   *best_item = 0;
4433   *best_symtab = 0;
4434 
4435   ALL_PSPACES (pspace)
4436     ALL_PSPACE_SYMTABS (pspace, objfile, symtab)
4437     {
4438       if (FILENAME_CMP (filename, symtab->filename) == 0)
4439 	{
4440 	  struct linetable *l;
4441 	  int len;
4442 
4443 	  if (fullname != NULL
4444 	      && symtab_to_fullname (symtab) != NULL
4445     	      && FILENAME_CMP (fullname, symtab->fullname) != 0)
4446     	    continue;
4447 	  l = LINETABLE (symtab);
4448 	  if (!l)
4449 	    continue;
4450 	  len = l->nitems;
4451 
4452 	  for (j = 0; j < len; j++)
4453 	    {
4454 	      struct linetable_entry *item = &(l->item[j]);
4455 
4456 	      if (item->line == lineno)
4457 		{
4458 		  exact = 1;
4459 		  append_expanded_sal (ret, objfile->pspace,
4460 				       symtab, lineno, item->pc);
4461 		}
4462 	      else if (!exact && item->line > lineno
4463 		       && (*best_item == NULL
4464 			   || item->line < (*best_item)->line))
4465 		{
4466 		  *best_item = item;
4467 		  *best_symtab = symtab;
4468 		}
4469 	    }
4470 	}
4471     }
4472   return exact;
4473 }
4474 
4475 /* Compute a set of all sals in all program spaces that correspond to
4476    same file and line as SAL and return those.  If there are several
4477    sals that belong to the same block, only one sal for the block is
4478    included in results.  */
4479 
4480 struct symtabs_and_lines
4481 expand_line_sal (struct symtab_and_line sal)
4482 {
4483   struct symtabs_and_lines ret;
4484   int i, j;
4485   struct objfile *objfile;
4486   int lineno;
4487   int deleted = 0;
4488   struct block **blocks = NULL;
4489   int *filter;
4490   struct cleanup *old_chain;
4491 
4492   ret.nelts = 0;
4493   ret.sals = NULL;
4494 
4495   /* Only expand sals that represent file.c:line.  */
4496   if (sal.symtab == NULL || sal.line == 0 || sal.pc != 0)
4497     {
4498       ret.sals = xmalloc (sizeof (struct symtab_and_line));
4499       ret.sals[0] = sal;
4500       ret.nelts = 1;
4501       return ret;
4502     }
4503   else
4504     {
4505       struct program_space *pspace;
4506       struct linetable_entry *best_item = 0;
4507       struct symtab *best_symtab = 0;
4508       int exact = 0;
4509       char *match_filename;
4510 
4511       lineno = sal.line;
4512       match_filename = sal.symtab->filename;
4513 
4514       /* We need to find all symtabs for a file which name
4515 	 is described by sal.  We cannot just directly
4516 	 iterate over symtabs, since a symtab might not be
4517 	 yet created.  We also cannot iterate over psymtabs,
4518 	 calling PSYMTAB_TO_SYMTAB and working on that symtab,
4519 	 since PSYMTAB_TO_SYMTAB will return NULL for psymtab
4520 	 corresponding to an included file.  Therefore, we do
4521 	 first pass over psymtabs, reading in those with
4522 	 the right name.  Then, we iterate over symtabs, knowing
4523 	 that all symtabs we're interested in are loaded.  */
4524 
4525       old_chain = save_current_program_space ();
4526       ALL_PSPACES (pspace)
4527       {
4528 	set_current_program_space (pspace);
4529 	ALL_PSPACE_OBJFILES (pspace, objfile)
4530 	{
4531 	  if (objfile->sf)
4532 	    objfile->sf->qf->expand_symtabs_with_filename (objfile,
4533 							   sal.symtab->filename);
4534 	}
4535       }
4536       do_cleanups (old_chain);
4537 
4538       /* Now search the symtab for exact matches and append them.  If
4539 	 none is found, append the best_item and all its exact
4540 	 matches.  */
4541       symtab_to_fullname (sal.symtab);
4542       exact = append_exact_match_to_sals (sal.symtab->filename,
4543 					  sal.symtab->fullname, lineno,
4544 					  &ret, &best_item, &best_symtab);
4545       if (!exact && best_item)
4546 	append_exact_match_to_sals (best_symtab->filename,
4547 				    best_symtab->fullname, best_item->line,
4548 				    &ret, &best_item, &best_symtab);
4549     }
4550 
4551   /* For optimized code, compiler can scatter one source line accross
4552      disjoint ranges of PC values, even when no duplicate functions
4553      or inline functions are involved.  For example, 'for (;;)' inside
4554      non-template non-inline non-ctor-or-dtor function can result
4555      in two PC ranges.  In this case, we don't want to set breakpoint
4556      on first PC of each range.  To filter such cases, we use containing
4557      blocks -- for each PC found above we see if there are other PCs
4558      that are in the same block.  If yes, the other PCs are filtered out.  */
4559 
4560   old_chain = save_current_program_space ();
4561   filter = alloca (ret.nelts * sizeof (int));
4562   blocks = alloca (ret.nelts * sizeof (struct block *));
4563   for (i = 0; i < ret.nelts; ++i)
4564     {
4565       set_current_program_space (ret.sals[i].pspace);
4566 
4567       filter[i] = 1;
4568       blocks[i] = block_for_pc_sect (ret.sals[i].pc, ret.sals[i].section);
4569 
4570     }
4571   do_cleanups (old_chain);
4572 
4573   for (i = 0; i < ret.nelts; ++i)
4574     if (blocks[i] != NULL)
4575       for (j = i+1; j < ret.nelts; ++j)
4576 	if (blocks[j] == blocks[i])
4577 	  {
4578 	    filter[j] = 0;
4579 	    ++deleted;
4580 	    break;
4581 	  }
4582 
4583   {
4584     struct symtab_and_line *final =
4585       xmalloc (sizeof (struct symtab_and_line) * (ret.nelts-deleted));
4586 
4587     for (i = 0, j = 0; i < ret.nelts; ++i)
4588       if (filter[i])
4589 	final[j++] = ret.sals[i];
4590 
4591     ret.nelts -= deleted;
4592     xfree (ret.sals);
4593     ret.sals = final;
4594   }
4595 
4596   return ret;
4597 }
4598 
4599 /* Return 1 if the supplied producer string matches the ARM RealView
4600    compiler (armcc).  */
4601 
4602 int
4603 producer_is_realview (const char *producer)
4604 {
4605   static const char *const arm_idents[] = {
4606     "ARM C Compiler, ADS",
4607     "Thumb C Compiler, ADS",
4608     "ARM C++ Compiler, ADS",
4609     "Thumb C++ Compiler, ADS",
4610     "ARM/Thumb C/C++ Compiler, RVCT",
4611     "ARM C/C++ Compiler, RVCT"
4612   };
4613   int i;
4614 
4615   if (producer == NULL)
4616     return 0;
4617 
4618   for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
4619     if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
4620       return 1;
4621 
4622   return 0;
4623 }
4624 
4625 void
4626 _initialize_symtab (void)
4627 {
4628   add_info ("variables", variables_info, _("\
4629 All global and static variable names, or those matching REGEXP."));
4630   if (dbx_commands)
4631     add_com ("whereis", class_info, variables_info, _("\
4632 All global and static variable names, or those matching REGEXP."));
4633 
4634   add_info ("functions", functions_info,
4635 	    _("All function names, or those matching REGEXP."));
4636 
4637   /* FIXME:  This command has at least the following problems:
4638      1.  It prints builtin types (in a very strange and confusing fashion).
4639      2.  It doesn't print right, e.g. with
4640      typedef struct foo *FOO
4641      type_print prints "FOO" when we want to make it (in this situation)
4642      print "struct foo *".
4643      I also think "ptype" or "whatis" is more likely to be useful (but if
4644      there is much disagreement "info types" can be fixed).  */
4645   add_info ("types", types_info,
4646 	    _("All type names, or those matching REGEXP."));
4647 
4648   add_info ("sources", sources_info,
4649 	    _("Source files in the program."));
4650 
4651   add_com ("rbreak", class_breakpoint, rbreak_command,
4652 	   _("Set a breakpoint for all functions matching REGEXP."));
4653 
4654   if (xdb_commands)
4655     {
4656       add_com ("lf", class_info, sources_info,
4657 	       _("Source files in the program"));
4658       add_com ("lg", class_info, variables_info, _("\
4659 All global and static variable names, or those matching REGEXP."));
4660     }
4661 
4662   add_setshow_enum_cmd ("multiple-symbols", no_class,
4663                         multiple_symbols_modes, &multiple_symbols_mode,
4664                         _("\
4665 Set the debugger behavior when more than one symbol are possible matches\n\
4666 in an expression."), _("\
4667 Show how the debugger handles ambiguities in expressions."), _("\
4668 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
4669                         NULL, NULL, &setlist, &showlist);
4670 
4671   observer_attach_executable_changed (symtab_observer_executable_changed);
4672 }
4673