xref: /dflybsd-src/contrib/gdb-7/gdb/stabsread.c (revision f41d807a0c7c535d8f66f0593fb6e95fa20f82d4)
1 /* Support routines for decoding "stabs" debugging information format.
2 
3    Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4    1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
5    2008, 2009, 2010 Free Software Foundation, Inc.
6 
7    This file is part of GDB.
8 
9    This program is free software; you can redistribute it and/or modify
10    it under the terms of the GNU General Public License as published by
11    the Free Software Foundation; either version 3 of the License, or
12    (at your option) any later version.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
21 
22 /* Support routines for reading and decoding debugging information in
23    the "stabs" format.  This format is used with many systems that use
24    the a.out object file format, as well as some systems that use
25    COFF or ELF where the stabs data is placed in a special section.
26    Avoid placing any object file format specific code in this file. */
27 
28 #include "defs.h"
29 #include "gdb_string.h"
30 #include "bfd.h"
31 #include "gdb_obstack.h"
32 #include "symtab.h"
33 #include "gdbtypes.h"
34 #include "expression.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "aout/stab_gnu.h"	/* We always use GNU stabs, not native */
38 #include "libaout.h"
39 #include "aout/aout64.h"
40 #include "gdb-stabs.h"
41 #include "buildsym.h"
42 #include "complaints.h"
43 #include "demangle.h"
44 #include "language.h"
45 #include "doublest.h"
46 #include "cp-abi.h"
47 #include "cp-support.h"
48 #include "gdb_assert.h"
49 
50 #include <ctype.h>
51 
52 /* Ask stabsread.h to define the vars it normally declares `extern'.  */
53 #define	EXTERN
54 /**/
55 #include "stabsread.h"		/* Our own declarations */
56 #undef	EXTERN
57 
58 extern void _initialize_stabsread (void);
59 
60 /* The routines that read and process a complete stabs for a C struct or
61    C++ class pass lists of data member fields and lists of member function
62    fields in an instance of a field_info structure, as defined below.
63    This is part of some reorganization of low level C++ support and is
64    expected to eventually go away... (FIXME) */
65 
66 struct field_info
67   {
68     struct nextfield
69       {
70 	struct nextfield *next;
71 
72 	/* This is the raw visibility from the stab.  It is not checked
73 	   for being one of the visibilities we recognize, so code which
74 	   examines this field better be able to deal.  */
75 	int visibility;
76 
77 	struct field field;
78       }
79      *list;
80     struct next_fnfieldlist
81       {
82 	struct next_fnfieldlist *next;
83 	struct fn_fieldlist fn_fieldlist;
84       }
85      *fnlist;
86   };
87 
88 static void
89 read_one_struct_field (struct field_info *, char **, char *,
90 		       struct type *, struct objfile *);
91 
92 static struct type *dbx_alloc_type (int[2], struct objfile *);
93 
94 static long read_huge_number (char **, int, int *, int);
95 
96 static struct type *error_type (char **, struct objfile *);
97 
98 static void
99 patch_block_stabs (struct pending *, struct pending_stabs *,
100 		   struct objfile *);
101 
102 static void fix_common_block (struct symbol *, int);
103 
104 static int read_type_number (char **, int *);
105 
106 static struct type *read_type (char **, struct objfile *);
107 
108 static struct type *read_range_type (char **, int[2], int, struct objfile *);
109 
110 static struct type *read_sun_builtin_type (char **, int[2], struct objfile *);
111 
112 static struct type *read_sun_floating_type (char **, int[2],
113 					    struct objfile *);
114 
115 static struct type *read_enum_type (char **, struct type *, struct objfile *);
116 
117 static struct type *rs6000_builtin_type (int, struct objfile *);
118 
119 static int
120 read_member_functions (struct field_info *, char **, struct type *,
121 		       struct objfile *);
122 
123 static int
124 read_struct_fields (struct field_info *, char **, struct type *,
125 		    struct objfile *);
126 
127 static int
128 read_baseclasses (struct field_info *, char **, struct type *,
129 		  struct objfile *);
130 
131 static int
132 read_tilde_fields (struct field_info *, char **, struct type *,
133 		   struct objfile *);
134 
135 static int attach_fn_fields_to_type (struct field_info *, struct type *);
136 
137 static int attach_fields_to_type (struct field_info *, struct type *,
138 				  struct objfile *);
139 
140 static struct type *read_struct_type (char **, struct type *,
141                                       enum type_code,
142 				      struct objfile *);
143 
144 static struct type *read_array_type (char **, struct type *,
145 				     struct objfile *);
146 
147 static struct field *read_args (char **, int, struct objfile *, int *, int *);
148 
149 static void add_undefined_type (struct type *, int[2]);
150 
151 static int
152 read_cpp_abbrev (struct field_info *, char **, struct type *,
153 		 struct objfile *);
154 
155 static char *find_name_end (char *name);
156 
157 static int process_reference (char **string);
158 
159 void stabsread_clear_cache (void);
160 
161 static const char vptr_name[] = "_vptr$";
162 static const char vb_name[] = "_vb$";
163 
164 static void
165 invalid_cpp_abbrev_complaint (const char *arg1)
166 {
167   complaint (&symfile_complaints, _("invalid C++ abbreviation `%s'"), arg1);
168 }
169 
170 static void
171 reg_value_complaint (int regnum, int num_regs, const char *sym)
172 {
173   complaint (&symfile_complaints,
174 	     _("register number %d too large (max %d) in symbol %s"),
175              regnum, num_regs - 1, sym);
176 }
177 
178 static void
179 stabs_general_complaint (const char *arg1)
180 {
181   complaint (&symfile_complaints, "%s", arg1);
182 }
183 
184 /* Make a list of forward references which haven't been defined.  */
185 
186 static struct type **undef_types;
187 static int undef_types_allocated;
188 static int undef_types_length;
189 static struct symbol *current_symbol = NULL;
190 
191 /* Make a list of nameless types that are undefined.
192    This happens when another type is referenced by its number
193    before this type is actually defined. For instance "t(0,1)=k(0,2)"
194    and type (0,2) is defined only later.  */
195 
196 struct nat
197 {
198   int typenums[2];
199   struct type *type;
200 };
201 static struct nat *noname_undefs;
202 static int noname_undefs_allocated;
203 static int noname_undefs_length;
204 
205 /* Check for and handle cretinous stabs symbol name continuation!  */
206 #define STABS_CONTINUE(pp,objfile)				\
207   do {							\
208     if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
209       *(pp) = next_symbol_text (objfile);	\
210   } while (0)
211 
212 
213 /* Look up a dbx type-number pair.  Return the address of the slot
214    where the type for that number-pair is stored.
215    The number-pair is in TYPENUMS.
216 
217    This can be used for finding the type associated with that pair
218    or for associating a new type with the pair.  */
219 
220 static struct type **
221 dbx_lookup_type (int typenums[2], struct objfile *objfile)
222 {
223   int filenum = typenums[0];
224   int index = typenums[1];
225   unsigned old_len;
226   int real_filenum;
227   struct header_file *f;
228   int f_orig_length;
229 
230   if (filenum == -1)		/* -1,-1 is for temporary types.  */
231     return 0;
232 
233   if (filenum < 0 || filenum >= n_this_object_header_files)
234     {
235       complaint (&symfile_complaints,
236 		 _("Invalid symbol data: type number (%d,%d) out of range at symtab pos %d."),
237 		 filenum, index, symnum);
238       goto error_return;
239     }
240 
241   if (filenum == 0)
242     {
243       if (index < 0)
244 	{
245 	  /* Caller wants address of address of type.  We think
246 	     that negative (rs6k builtin) types will never appear as
247 	     "lvalues", (nor should they), so we stuff the real type
248 	     pointer into a temp, and return its address.  If referenced,
249 	     this will do the right thing.  */
250 	  static struct type *temp_type;
251 
252 	  temp_type = rs6000_builtin_type (index, objfile);
253 	  return &temp_type;
254 	}
255 
256       /* Type is defined outside of header files.
257          Find it in this object file's type vector.  */
258       if (index >= type_vector_length)
259 	{
260 	  old_len = type_vector_length;
261 	  if (old_len == 0)
262 	    {
263 	      type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
264 	      type_vector = (struct type **)
265 		xmalloc (type_vector_length * sizeof (struct type *));
266 	    }
267 	  while (index >= type_vector_length)
268 	    {
269 	      type_vector_length *= 2;
270 	    }
271 	  type_vector = (struct type **)
272 	    xrealloc ((char *) type_vector,
273 		      (type_vector_length * sizeof (struct type *)));
274 	  memset (&type_vector[old_len], 0,
275 		  (type_vector_length - old_len) * sizeof (struct type *));
276 	}
277       return (&type_vector[index]);
278     }
279   else
280     {
281       real_filenum = this_object_header_files[filenum];
282 
283       if (real_filenum >= N_HEADER_FILES (objfile))
284 	{
285 	  static struct type *temp_type;
286 
287 	  warning (_("GDB internal error: bad real_filenum"));
288 
289 	error_return:
290 	  temp_type = objfile_type (objfile)->builtin_error;
291 	  return &temp_type;
292 	}
293 
294       f = HEADER_FILES (objfile) + real_filenum;
295 
296       f_orig_length = f->length;
297       if (index >= f_orig_length)
298 	{
299 	  while (index >= f->length)
300 	    {
301 	      f->length *= 2;
302 	    }
303 	  f->vector = (struct type **)
304 	    xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
305 	  memset (&f->vector[f_orig_length], 0,
306 		  (f->length - f_orig_length) * sizeof (struct type *));
307 	}
308       return (&f->vector[index]);
309     }
310 }
311 
312 /* Make sure there is a type allocated for type numbers TYPENUMS
313    and return the type object.
314    This can create an empty (zeroed) type object.
315    TYPENUMS may be (-1, -1) to return a new type object that is not
316    put into the type vector, and so may not be referred to by number. */
317 
318 static struct type *
319 dbx_alloc_type (int typenums[2], struct objfile *objfile)
320 {
321   struct type **type_addr;
322 
323   if (typenums[0] == -1)
324     {
325       return (alloc_type (objfile));
326     }
327 
328   type_addr = dbx_lookup_type (typenums, objfile);
329 
330   /* If we are referring to a type not known at all yet,
331      allocate an empty type for it.
332      We will fill it in later if we find out how.  */
333   if (*type_addr == 0)
334     {
335       *type_addr = alloc_type (objfile);
336     }
337 
338   return (*type_addr);
339 }
340 
341 /* for all the stabs in a given stab vector, build appropriate types
342    and fix their symbols in given symbol vector. */
343 
344 static void
345 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
346 		   struct objfile *objfile)
347 {
348   int ii;
349   char *name;
350   char *pp;
351   struct symbol *sym;
352 
353   if (stabs)
354     {
355       /* for all the stab entries, find their corresponding symbols and
356          patch their types! */
357 
358       for (ii = 0; ii < stabs->count; ++ii)
359 	{
360 	  name = stabs->stab[ii];
361 	  pp = (char *) strchr (name, ':');
362 	  gdb_assert (pp);	/* Must find a ':' or game's over.  */
363 	  while (pp[1] == ':')
364 	    {
365 	      pp += 2;
366 	      pp = (char *) strchr (pp, ':');
367 	    }
368 	  sym = find_symbol_in_list (symbols, name, pp - name);
369 	  if (!sym)
370 	    {
371 	      /* FIXME-maybe: it would be nice if we noticed whether
372 	         the variable was defined *anywhere*, not just whether
373 	         it is defined in this compilation unit.  But neither
374 	         xlc or GCC seem to need such a definition, and until
375 	         we do psymtabs (so that the minimal symbols from all
376 	         compilation units are available now), I'm not sure
377 	         how to get the information.  */
378 
379 	      /* On xcoff, if a global is defined and never referenced,
380 	         ld will remove it from the executable.  There is then
381 	         a N_GSYM stab for it, but no regular (C_EXT) symbol.  */
382 	      sym = (struct symbol *)
383 		obstack_alloc (&objfile->objfile_obstack,
384 			       sizeof (struct symbol));
385 
386 	      memset (sym, 0, sizeof (struct symbol));
387 	      SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
388 	      SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
389 	      SYMBOL_SET_LINKAGE_NAME
390 		(sym, obsavestring (name, pp - name,
391 				    &objfile->objfile_obstack));
392 	      pp += 2;
393 	      if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
394 		{
395 		  /* I don't think the linker does this with functions,
396 		     so as far as I know this is never executed.
397 		     But it doesn't hurt to check.  */
398 		  SYMBOL_TYPE (sym) =
399 		    lookup_function_type (read_type (&pp, objfile));
400 		}
401 	      else
402 		{
403 		  SYMBOL_TYPE (sym) = read_type (&pp, objfile);
404 		}
405 	      add_symbol_to_list (sym, &global_symbols);
406 	    }
407 	  else
408 	    {
409 	      pp += 2;
410 	      if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
411 		{
412 		  SYMBOL_TYPE (sym) =
413 		    lookup_function_type (read_type (&pp, objfile));
414 		}
415 	      else
416 		{
417 		  SYMBOL_TYPE (sym) = read_type (&pp, objfile);
418 		}
419 	    }
420 	}
421     }
422 }
423 
424 
425 /* Read a number by which a type is referred to in dbx data,
426    or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
427    Just a single number N is equivalent to (0,N).
428    Return the two numbers by storing them in the vector TYPENUMS.
429    TYPENUMS will then be used as an argument to dbx_lookup_type.
430 
431    Returns 0 for success, -1 for error.  */
432 
433 static int
434 read_type_number (char **pp, int *typenums)
435 {
436   int nbits;
437 
438   if (**pp == '(')
439     {
440       (*pp)++;
441       typenums[0] = read_huge_number (pp, ',', &nbits, 0);
442       if (nbits != 0)
443 	return -1;
444       typenums[1] = read_huge_number (pp, ')', &nbits, 0);
445       if (nbits != 0)
446 	return -1;
447     }
448   else
449     {
450       typenums[0] = 0;
451       typenums[1] = read_huge_number (pp, 0, &nbits, 0);
452       if (nbits != 0)
453 	return -1;
454     }
455   return 0;
456 }
457 
458 
459 #define VISIBILITY_PRIVATE	'0'	/* Stabs character for private field */
460 #define VISIBILITY_PROTECTED	'1'	/* Stabs character for protected fld */
461 #define VISIBILITY_PUBLIC	'2'	/* Stabs character for public field */
462 #define VISIBILITY_IGNORE	'9'	/* Optimized out or zero length */
463 
464 /* Structure for storing pointers to reference definitions for fast lookup
465    during "process_later". */
466 
467 struct ref_map
468 {
469   char *stabs;
470   CORE_ADDR value;
471   struct symbol *sym;
472 };
473 
474 #define MAX_CHUNK_REFS 100
475 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
476 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
477 
478 static struct ref_map *ref_map;
479 
480 /* Ptr to free cell in chunk's linked list. */
481 static int ref_count = 0;
482 
483 /* Number of chunks malloced. */
484 static int ref_chunk = 0;
485 
486 /* This file maintains a cache of stabs aliases found in the symbol
487    table. If the symbol table changes, this cache must be cleared
488    or we are left holding onto data in invalid obstacks. */
489 void
490 stabsread_clear_cache (void)
491 {
492   ref_count = 0;
493   ref_chunk = 0;
494 }
495 
496 /* Create array of pointers mapping refids to symbols and stab strings.
497    Add pointers to reference definition symbols and/or their values as we
498    find them, using their reference numbers as our index.
499    These will be used later when we resolve references. */
500 void
501 ref_add (int refnum, struct symbol *sym, char *stabs, CORE_ADDR value)
502 {
503   if (ref_count == 0)
504     ref_chunk = 0;
505   if (refnum >= ref_count)
506     ref_count = refnum + 1;
507   if (ref_count > ref_chunk * MAX_CHUNK_REFS)
508     {
509       int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
510       int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
511 
512       ref_map = (struct ref_map *)
513 	xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
514       memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0,
515 	      new_chunks * REF_CHUNK_SIZE);
516       ref_chunk += new_chunks;
517     }
518   ref_map[refnum].stabs = stabs;
519   ref_map[refnum].sym = sym;
520   ref_map[refnum].value = value;
521 }
522 
523 /* Return defined sym for the reference REFNUM.  */
524 struct symbol *
525 ref_search (int refnum)
526 {
527   if (refnum < 0 || refnum > ref_count)
528     return 0;
529   return ref_map[refnum].sym;
530 }
531 
532 /* Parse a reference id in STRING and return the resulting
533    reference number.  Move STRING beyond the reference id.  */
534 
535 static int
536 process_reference (char **string)
537 {
538   char *p;
539   int refnum = 0;
540 
541   if (**string != '#')
542     return 0;
543 
544   /* Advance beyond the initial '#'.  */
545   p = *string + 1;
546 
547   /* Read number as reference id. */
548   while (*p && isdigit (*p))
549     {
550       refnum = refnum * 10 + *p - '0';
551       p++;
552     }
553   *string = p;
554   return refnum;
555 }
556 
557 /* If STRING defines a reference, store away a pointer to the reference
558    definition for later use.  Return the reference number.  */
559 
560 int
561 symbol_reference_defined (char **string)
562 {
563   char *p = *string;
564   int refnum = 0;
565 
566   refnum = process_reference (&p);
567 
568   /* Defining symbols end in '=' */
569   if (*p == '=')
570     {
571       /* Symbol is being defined here. */
572       *string = p + 1;
573       return refnum;
574     }
575   else
576     {
577       /* Must be a reference.   Either the symbol has already been defined,
578          or this is a forward reference to it.  */
579       *string = p;
580       return -1;
581     }
582 }
583 
584 static int
585 stab_reg_to_regnum (struct symbol *sym, struct gdbarch *gdbarch)
586 {
587   int regno = gdbarch_stab_reg_to_regnum (gdbarch, SYMBOL_VALUE (sym));
588 
589   if (regno >= gdbarch_num_regs (gdbarch)
590 		+ gdbarch_num_pseudo_regs (gdbarch))
591     {
592       reg_value_complaint (regno,
593 			   gdbarch_num_regs (gdbarch)
594 			     + gdbarch_num_pseudo_regs (gdbarch),
595 			   SYMBOL_PRINT_NAME (sym));
596 
597       regno = gdbarch_sp_regnum (gdbarch); /* Known safe, though useless */
598     }
599 
600   return regno;
601 }
602 
603 static const struct symbol_register_ops stab_register_funcs = {
604   stab_reg_to_regnum
605 };
606 
607 struct symbol *
608 define_symbol (CORE_ADDR valu, char *string, int desc, int type,
609 	       struct objfile *objfile)
610 {
611   struct gdbarch *gdbarch = get_objfile_arch (objfile);
612   struct symbol *sym;
613   char *p = (char *) find_name_end (string);
614   int deftype;
615   int synonym = 0;
616   int i;
617   char *new_name = NULL;
618 
619   /* We would like to eliminate nameless symbols, but keep their types.
620      E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
621      to type 2, but, should not create a symbol to address that type. Since
622      the symbol will be nameless, there is no way any user can refer to it. */
623 
624   int nameless;
625 
626   /* Ignore syms with empty names.  */
627   if (string[0] == 0)
628     return 0;
629 
630   /* Ignore old-style symbols from cc -go  */
631   if (p == 0)
632     return 0;
633 
634   while (p[1] == ':')
635     {
636       p += 2;
637       p = strchr (p, ':');
638     }
639 
640   /* If a nameless stab entry, all we need is the type, not the symbol.
641      e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
642   nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
643 
644   current_symbol = sym = (struct symbol *)
645     obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
646   memset (sym, 0, sizeof (struct symbol));
647 
648   switch (type & N_TYPE)
649     {
650     case N_TEXT:
651       SYMBOL_SECTION (sym) = SECT_OFF_TEXT (objfile);
652       break;
653     case N_DATA:
654       SYMBOL_SECTION (sym) = SECT_OFF_DATA (objfile);
655       break;
656     case N_BSS:
657       SYMBOL_SECTION (sym) = SECT_OFF_BSS (objfile);
658       break;
659     }
660 
661   if (processing_gcc_compilation)
662     {
663       /* GCC 2.x puts the line number in desc.  SunOS apparently puts in the
664          number of bytes occupied by a type or object, which we ignore.  */
665       SYMBOL_LINE (sym) = desc;
666     }
667   else
668     {
669       SYMBOL_LINE (sym) = 0;	/* unknown */
670     }
671 
672   if (is_cplus_marker (string[0]))
673     {
674       /* Special GNU C++ names.  */
675       switch (string[1])
676 	{
677 	case 't':
678 	  SYMBOL_SET_LINKAGE_NAME (sym, "this");
679 	  break;
680 
681 	case 'v':		/* $vtbl_ptr_type */
682 	  goto normal;
683 
684 	case 'e':
685 	  SYMBOL_SET_LINKAGE_NAME (sym, "eh_throw");
686 	  break;
687 
688 	case '_':
689 	  /* This was an anonymous type that was never fixed up.  */
690 	  goto normal;
691 
692 	case 'X':
693 	  /* SunPRO (3.0 at least) static variable encoding.  */
694 	  if (gdbarch_static_transform_name_p (gdbarch))
695 	    goto normal;
696 	  /* ... fall through ... */
697 
698 	default:
699 	  complaint (&symfile_complaints, _("Unknown C++ symbol name `%s'"),
700 		     string);
701 	  goto normal;		/* Do *something* with it */
702 	}
703     }
704   else
705     {
706     normal:
707       SYMBOL_LANGUAGE (sym) = current_subfile->language;
708       if (SYMBOL_LANGUAGE (sym) == language_cplus)
709 	{
710 	  char *name = alloca (p - string + 1);
711 
712 	  memcpy (name, string, p - string);
713 	  name[p - string] = '\0';
714 	  new_name = cp_canonicalize_string (name);
715 	  cp_scan_for_anonymous_namespaces (sym);
716 	}
717       if (new_name != NULL)
718 	{
719 	  SYMBOL_SET_NAMES (sym, new_name, strlen (new_name), 1, objfile);
720 	  xfree (new_name);
721 	}
722       else
723 	SYMBOL_SET_NAMES (sym, string, p - string, 1, objfile);
724     }
725   p++;
726 
727   /* Determine the type of name being defined.  */
728 #if 0
729   /* Getting GDB to correctly skip the symbol on an undefined symbol
730      descriptor and not ever dump core is a very dodgy proposition if
731      we do things this way.  I say the acorn RISC machine can just
732      fix their compiler.  */
733   /* The Acorn RISC machine's compiler can put out locals that don't
734      start with "234=" or "(3,4)=", so assume anything other than the
735      deftypes we know how to handle is a local.  */
736   if (!strchr ("cfFGpPrStTvVXCR", *p))
737 #else
738   if (isdigit (*p) || *p == '(' || *p == '-')
739 #endif
740     deftype = 'l';
741   else
742     deftype = *p++;
743 
744   switch (deftype)
745     {
746     case 'c':
747       /* c is a special case, not followed by a type-number.
748          SYMBOL:c=iVALUE for an integer constant symbol.
749          SYMBOL:c=rVALUE for a floating constant symbol.
750          SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
751          e.g. "b:c=e6,0" for "const b = blob1"
752          (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;").  */
753       if (*p != '=')
754 	{
755 	  SYMBOL_CLASS (sym) = LOC_CONST;
756 	  SYMBOL_TYPE (sym) = error_type (&p, objfile);
757 	  SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
758 	  add_symbol_to_list (sym, &file_symbols);
759 	  return sym;
760 	}
761       ++p;
762       switch (*p++)
763 	{
764 	case 'r':
765 	  {
766 	    double d = atof (p);
767 	    gdb_byte *dbl_valu;
768 	    struct type *dbl_type;
769 
770 	    /* FIXME-if-picky-about-floating-accuracy: Should be using
771 	       target arithmetic to get the value.  real.c in GCC
772 	       probably has the necessary code.  */
773 
774 	    dbl_type = objfile_type (objfile)->builtin_double;
775 	    dbl_valu =
776 	      obstack_alloc (&objfile->objfile_obstack,
777 			     TYPE_LENGTH (dbl_type));
778 	    store_typed_floating (dbl_valu, dbl_type, d);
779 
780 	    SYMBOL_TYPE (sym) = dbl_type;
781 	    SYMBOL_VALUE_BYTES (sym) = dbl_valu;
782 	    SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
783 	  }
784 	  break;
785 	case 'i':
786 	  {
787 	    /* Defining integer constants this way is kind of silly,
788 	       since 'e' constants allows the compiler to give not
789 	       only the value, but the type as well.  C has at least
790 	       int, long, unsigned int, and long long as constant
791 	       types; other languages probably should have at least
792 	       unsigned as well as signed constants.  */
793 
794 	    SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_long;
795 	    SYMBOL_VALUE (sym) = atoi (p);
796 	    SYMBOL_CLASS (sym) = LOC_CONST;
797 	  }
798 	  break;
799 
800 	case 'c':
801 	  {
802 	    SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_char;
803 	    SYMBOL_VALUE (sym) = atoi (p);
804 	    SYMBOL_CLASS (sym) = LOC_CONST;
805 	  }
806 	  break;
807 
808 	case 's':
809 	  {
810 	    struct type *range_type;
811 	    int ind = 0;
812 	    char quote = *p++;
813 	    gdb_byte *string_local = (gdb_byte *) alloca (strlen (p));
814 	    gdb_byte *string_value;
815 
816 	    if (quote != '\'' && quote != '"')
817 	      {
818 		SYMBOL_CLASS (sym) = LOC_CONST;
819 		SYMBOL_TYPE (sym) = error_type (&p, objfile);
820 		SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
821 		add_symbol_to_list (sym, &file_symbols);
822 		return sym;
823 	      }
824 
825 	    /* Find matching quote, rejecting escaped quotes.  */
826 	    while (*p && *p != quote)
827 	      {
828 		if (*p == '\\' && p[1] == quote)
829 		  {
830 		    string_local[ind] = (gdb_byte) quote;
831 		    ind++;
832 		    p += 2;
833 		  }
834 		else if (*p)
835 		  {
836 		    string_local[ind] = (gdb_byte) (*p);
837 		    ind++;
838 		    p++;
839 		  }
840 	      }
841 	    if (*p != quote)
842 	      {
843 		SYMBOL_CLASS (sym) = LOC_CONST;
844 		SYMBOL_TYPE (sym) = error_type (&p, objfile);
845 		SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
846 		add_symbol_to_list (sym, &file_symbols);
847 		return sym;
848 	      }
849 
850 	    /* NULL terminate the string.  */
851 	    string_local[ind] = 0;
852 	    range_type = create_range_type (NULL,
853 					    objfile_type (objfile)->builtin_int,
854 					    0, ind);
855 	    SYMBOL_TYPE (sym) = create_array_type (NULL,
856 				  objfile_type (objfile)->builtin_char,
857 				  range_type);
858 	    string_value = obstack_alloc (&objfile->objfile_obstack, ind + 1);
859 	    memcpy (string_value, string_local, ind + 1);
860 	    p++;
861 
862 	    SYMBOL_VALUE_BYTES (sym) = string_value;
863 	    SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
864 	  }
865 	  break;
866 
867 	case 'e':
868 	  /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
869 	     can be represented as integral.
870 	     e.g. "b:c=e6,0" for "const b = blob1"
871 	     (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;").  */
872 	  {
873 	    SYMBOL_CLASS (sym) = LOC_CONST;
874 	    SYMBOL_TYPE (sym) = read_type (&p, objfile);
875 
876 	    if (*p != ',')
877 	      {
878 		SYMBOL_TYPE (sym) = error_type (&p, objfile);
879 		break;
880 	      }
881 	    ++p;
882 
883 	    /* If the value is too big to fit in an int (perhaps because
884 	       it is unsigned), or something like that, we silently get
885 	       a bogus value.  The type and everything else about it is
886 	       correct.  Ideally, we should be using whatever we have
887 	       available for parsing unsigned and long long values,
888 	       however.  */
889 	    SYMBOL_VALUE (sym) = atoi (p);
890 	  }
891 	  break;
892 	default:
893 	  {
894 	    SYMBOL_CLASS (sym) = LOC_CONST;
895 	    SYMBOL_TYPE (sym) = error_type (&p, objfile);
896 	  }
897 	}
898       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
899       add_symbol_to_list (sym, &file_symbols);
900       return sym;
901 
902     case 'C':
903       /* The name of a caught exception.  */
904       SYMBOL_TYPE (sym) = read_type (&p, objfile);
905       SYMBOL_CLASS (sym) = LOC_LABEL;
906       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
907       SYMBOL_VALUE_ADDRESS (sym) = valu;
908       add_symbol_to_list (sym, &local_symbols);
909       break;
910 
911     case 'f':
912       /* A static function definition.  */
913       SYMBOL_TYPE (sym) = read_type (&p, objfile);
914       SYMBOL_CLASS (sym) = LOC_BLOCK;
915       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
916       add_symbol_to_list (sym, &file_symbols);
917       /* fall into process_function_types.  */
918 
919     process_function_types:
920       /* Function result types are described as the result type in stabs.
921          We need to convert this to the function-returning-type-X type
922          in GDB.  E.g. "int" is converted to "function returning int".  */
923       if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
924 	SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
925 
926       /* All functions in C++ have prototypes.  Stabs does not offer an
927          explicit way to identify prototyped or unprototyped functions,
928          but both GCC and Sun CC emit stabs for the "call-as" type rather
929          than the "declared-as" type for unprototyped functions, so
930          we treat all functions as if they were prototyped.  This is used
931          primarily for promotion when calling the function from GDB.  */
932       TYPE_PROTOTYPED (SYMBOL_TYPE (sym)) = 1;
933 
934       /* fall into process_prototype_types */
935 
936     process_prototype_types:
937       /* Sun acc puts declared types of arguments here.  */
938       if (*p == ';')
939 	{
940 	  struct type *ftype = SYMBOL_TYPE (sym);
941 	  int nsemi = 0;
942 	  int nparams = 0;
943 	  char *p1 = p;
944 
945 	  /* Obtain a worst case guess for the number of arguments
946 	     by counting the semicolons.  */
947 	  while (*p1)
948 	    {
949 	      if (*p1++ == ';')
950 		nsemi++;
951 	    }
952 
953 	  /* Allocate parameter information fields and fill them in. */
954 	  TYPE_FIELDS (ftype) = (struct field *)
955 	    TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
956 	  while (*p++ == ';')
957 	    {
958 	      struct type *ptype;
959 
960 	      /* A type number of zero indicates the start of varargs.
961 	         FIXME: GDB currently ignores vararg functions.  */
962 	      if (p[0] == '0' && p[1] == '\0')
963 		break;
964 	      ptype = read_type (&p, objfile);
965 
966 	      /* The Sun compilers mark integer arguments, which should
967 	         be promoted to the width of the calling conventions, with
968 	         a type which references itself. This type is turned into
969 	         a TYPE_CODE_VOID type by read_type, and we have to turn
970 	         it back into builtin_int here.
971 	         FIXME: Do we need a new builtin_promoted_int_arg ?  */
972 	      if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
973 		ptype = objfile_type (objfile)->builtin_int;
974 	      TYPE_FIELD_TYPE (ftype, nparams) = ptype;
975 	      TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
976 	    }
977 	  TYPE_NFIELDS (ftype) = nparams;
978 	  TYPE_PROTOTYPED (ftype) = 1;
979 	}
980       break;
981 
982     case 'F':
983       /* A global function definition.  */
984       SYMBOL_TYPE (sym) = read_type (&p, objfile);
985       SYMBOL_CLASS (sym) = LOC_BLOCK;
986       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
987       add_symbol_to_list (sym, &global_symbols);
988       goto process_function_types;
989 
990     case 'G':
991       /* For a class G (global) symbol, it appears that the
992          value is not correct.  It is necessary to search for the
993          corresponding linker definition to find the value.
994          These definitions appear at the end of the namelist.  */
995       SYMBOL_TYPE (sym) = read_type (&p, objfile);
996       SYMBOL_CLASS (sym) = LOC_STATIC;
997       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
998       /* Don't add symbol references to global_sym_chain.
999          Symbol references don't have valid names and wont't match up with
1000          minimal symbols when the global_sym_chain is relocated.
1001          We'll fixup symbol references when we fixup the defining symbol.  */
1002       if (SYMBOL_LINKAGE_NAME (sym) && SYMBOL_LINKAGE_NAME (sym)[0] != '#')
1003 	{
1004 	  i = hashname (SYMBOL_LINKAGE_NAME (sym));
1005 	  SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
1006 	  global_sym_chain[i] = sym;
1007 	}
1008       add_symbol_to_list (sym, &global_symbols);
1009       break;
1010 
1011       /* This case is faked by a conditional above,
1012          when there is no code letter in the dbx data.
1013          Dbx data never actually contains 'l'.  */
1014     case 's':
1015     case 'l':
1016       SYMBOL_TYPE (sym) = read_type (&p, objfile);
1017       SYMBOL_CLASS (sym) = LOC_LOCAL;
1018       SYMBOL_VALUE (sym) = valu;
1019       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1020       add_symbol_to_list (sym, &local_symbols);
1021       break;
1022 
1023     case 'p':
1024       if (*p == 'F')
1025 	/* pF is a two-letter code that means a function parameter in Fortran.
1026 	   The type-number specifies the type of the return value.
1027 	   Translate it into a pointer-to-function type.  */
1028 	{
1029 	  p++;
1030 	  SYMBOL_TYPE (sym)
1031 	    = lookup_pointer_type
1032 	    (lookup_function_type (read_type (&p, objfile)));
1033 	}
1034       else
1035 	SYMBOL_TYPE (sym) = read_type (&p, objfile);
1036 
1037       SYMBOL_CLASS (sym) = LOC_ARG;
1038       SYMBOL_VALUE (sym) = valu;
1039       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1040       SYMBOL_IS_ARGUMENT (sym) = 1;
1041       add_symbol_to_list (sym, &local_symbols);
1042 
1043       if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
1044 	{
1045 	  /* On little-endian machines, this crud is never necessary,
1046 	     and, if the extra bytes contain garbage, is harmful.  */
1047 	  break;
1048 	}
1049 
1050       /* If it's gcc-compiled, if it says `short', believe it.  */
1051       if (processing_gcc_compilation
1052 	  || gdbarch_believe_pcc_promotion (gdbarch))
1053 	break;
1054 
1055       if (!gdbarch_believe_pcc_promotion (gdbarch))
1056 	{
1057 	  /* If PCC says a parameter is a short or a char, it is
1058 	     really an int.  */
1059 	  if (TYPE_LENGTH (SYMBOL_TYPE (sym))
1060 	      < gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT
1061 	      && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
1062 	    {
1063 	      SYMBOL_TYPE (sym) =
1064 		TYPE_UNSIGNED (SYMBOL_TYPE (sym))
1065 		? objfile_type (objfile)->builtin_unsigned_int
1066 		: objfile_type (objfile)->builtin_int;
1067 	    }
1068 	  break;
1069 	}
1070 
1071     case 'P':
1072       /* acc seems to use P to declare the prototypes of functions that
1073          are referenced by this file.  gdb is not prepared to deal
1074          with this extra information.  FIXME, it ought to.  */
1075       if (type == N_FUN)
1076 	{
1077 	  SYMBOL_TYPE (sym) = read_type (&p, objfile);
1078 	  goto process_prototype_types;
1079 	}
1080       /*FALLTHROUGH */
1081 
1082     case 'R':
1083       /* Parameter which is in a register.  */
1084       SYMBOL_TYPE (sym) = read_type (&p, objfile);
1085       SYMBOL_CLASS (sym) = LOC_REGISTER;
1086       SYMBOL_REGISTER_OPS (sym) = &stab_register_funcs;
1087       SYMBOL_IS_ARGUMENT (sym) = 1;
1088       SYMBOL_VALUE (sym) = valu;
1089       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1090       add_symbol_to_list (sym, &local_symbols);
1091       break;
1092 
1093     case 'r':
1094       /* Register variable (either global or local).  */
1095       SYMBOL_TYPE (sym) = read_type (&p, objfile);
1096       SYMBOL_CLASS (sym) = LOC_REGISTER;
1097       SYMBOL_REGISTER_OPS (sym) = &stab_register_funcs;
1098       SYMBOL_VALUE (sym) = valu;
1099       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1100       if (within_function)
1101 	{
1102 	  /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1103 	     the same name to represent an argument passed in a
1104 	     register.  GCC uses 'P' for the same case.  So if we find
1105 	     such a symbol pair we combine it into one 'P' symbol.
1106 	     For Sun cc we need to do this regardless of
1107 	     stabs_argument_has_addr, because the compiler puts out
1108 	     the 'p' symbol even if it never saves the argument onto
1109 	     the stack.
1110 
1111 	     On most machines, we want to preserve both symbols, so
1112 	     that we can still get information about what is going on
1113 	     with the stack (VAX for computing args_printed, using
1114 	     stack slots instead of saved registers in backtraces,
1115 	     etc.).
1116 
1117 	     Note that this code illegally combines
1118 	     main(argc) struct foo argc; { register struct foo argc; }
1119 	     but this case is considered pathological and causes a warning
1120 	     from a decent compiler.  */
1121 
1122 	  if (local_symbols
1123 	      && local_symbols->nsyms > 0
1124 	      && gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym)))
1125 	    {
1126 	      struct symbol *prev_sym;
1127 
1128 	      prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1129 	      if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1130 		   || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1131 		  && strcmp (SYMBOL_LINKAGE_NAME (prev_sym),
1132 			     SYMBOL_LINKAGE_NAME (sym)) == 0)
1133 		{
1134 		  SYMBOL_CLASS (prev_sym) = LOC_REGISTER;
1135 		  SYMBOL_REGISTER_OPS (prev_sym) = &stab_register_funcs;
1136 		  /* Use the type from the LOC_REGISTER; that is the type
1137 		     that is actually in that register.  */
1138 		  SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1139 		  SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1140 		  sym = prev_sym;
1141 		  break;
1142 		}
1143 	    }
1144 	  add_symbol_to_list (sym, &local_symbols);
1145 	}
1146       else
1147 	add_symbol_to_list (sym, &file_symbols);
1148       break;
1149 
1150     case 'S':
1151       /* Static symbol at top level of file */
1152       SYMBOL_TYPE (sym) = read_type (&p, objfile);
1153       SYMBOL_CLASS (sym) = LOC_STATIC;
1154       SYMBOL_VALUE_ADDRESS (sym) = valu;
1155       if (gdbarch_static_transform_name_p (gdbarch)
1156 	  && gdbarch_static_transform_name (gdbarch,
1157 					    SYMBOL_LINKAGE_NAME (sym))
1158 	     != SYMBOL_LINKAGE_NAME (sym))
1159 	{
1160 	  struct minimal_symbol *msym;
1161 
1162 	  msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym), NULL, objfile);
1163 	  if (msym != NULL)
1164 	    {
1165 	      char *new_name = gdbarch_static_transform_name
1166 		(gdbarch, SYMBOL_LINKAGE_NAME (sym));
1167 
1168 	      SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1169 	      SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1170 	    }
1171 	}
1172       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1173       add_symbol_to_list (sym, &file_symbols);
1174       break;
1175 
1176     case 't':
1177       /* In Ada, there is no distinction between typedef and non-typedef;
1178          any type declaration implicitly has the equivalent of a typedef,
1179          and thus 't' is in fact equivalent to 'Tt'.
1180 
1181          Therefore, for Ada units, we check the character immediately
1182          before the 't', and if we do not find a 'T', then make sure to
1183          create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1184          will be stored in the VAR_DOMAIN).  If the symbol was indeed
1185          defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1186          elsewhere, so we don't need to take care of that.
1187 
1188          This is important to do, because of forward references:
1189          The cleanup of undefined types stored in undef_types only uses
1190          STRUCT_DOMAIN symbols to perform the replacement.  */
1191       synonym = (SYMBOL_LANGUAGE (sym) == language_ada && p[-2] != 'T');
1192 
1193       /* Typedef */
1194       SYMBOL_TYPE (sym) = read_type (&p, objfile);
1195 
1196       /* For a nameless type, we don't want a create a symbol, thus we
1197          did not use `sym'. Return without further processing. */
1198       if (nameless)
1199 	return NULL;
1200 
1201       SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1202       SYMBOL_VALUE (sym) = valu;
1203       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1204       /* C++ vagaries: we may have a type which is derived from
1205          a base type which did not have its name defined when the
1206          derived class was output.  We fill in the derived class's
1207          base part member's name here in that case.  */
1208       if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1209 	if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1210 	     || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1211 	    && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1212 	  {
1213 	    int j;
1214 
1215 	    for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1216 	      if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1217 		TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1218 		  type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1219 	  }
1220 
1221       if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1222 	{
1223 	  /* gcc-2.6 or later (when using -fvtable-thunks)
1224 	     emits a unique named type for a vtable entry.
1225 	     Some gdb code depends on that specific name. */
1226 	  extern const char vtbl_ptr_name[];
1227 
1228 	  if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1229 	       && strcmp (SYMBOL_LINKAGE_NAME (sym), vtbl_ptr_name))
1230 	      || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1231 	    {
1232 	      /* If we are giving a name to a type such as "pointer to
1233 	         foo" or "function returning foo", we better not set
1234 	         the TYPE_NAME.  If the program contains "typedef char
1235 	         *caddr_t;", we don't want all variables of type char
1236 	         * to print as caddr_t.  This is not just a
1237 	         consequence of GDB's type management; PCC and GCC (at
1238 	         least through version 2.4) both output variables of
1239 	         either type char * or caddr_t with the type number
1240 	         defined in the 't' symbol for caddr_t.  If a future
1241 	         compiler cleans this up it GDB is not ready for it
1242 	         yet, but if it becomes ready we somehow need to
1243 	         disable this check (without breaking the PCC/GCC2.4
1244 	         case).
1245 
1246 	         Sigh.
1247 
1248 	         Fortunately, this check seems not to be necessary
1249 	         for anything except pointers or functions.  */
1250               /* ezannoni: 2000-10-26. This seems to apply for
1251 		 versions of gcc older than 2.8. This was the original
1252 		 problem: with the following code gdb would tell that
1253 		 the type for name1 is caddr_t, and func is char()
1254 	         typedef char *caddr_t;
1255 		 char *name2;
1256 		 struct x
1257 		 {
1258 		 char *name1;
1259 		 } xx;
1260 		 char *func()
1261 		 {
1262 		 }
1263 		 main () {}
1264 		 */
1265 
1266 	      /* Pascal accepts names for pointer types. */
1267 	      if (current_subfile->language == language_pascal)
1268 		{
1269 		  TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1270           	}
1271 	    }
1272 	  else
1273 	    TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1274 	}
1275 
1276       add_symbol_to_list (sym, &file_symbols);
1277 
1278       if (synonym)
1279         {
1280           /* Create the STRUCT_DOMAIN clone.  */
1281           struct symbol *struct_sym = (struct symbol *)
1282             obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
1283 
1284           *struct_sym = *sym;
1285           SYMBOL_CLASS (struct_sym) = LOC_TYPEDEF;
1286           SYMBOL_VALUE (struct_sym) = valu;
1287           SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
1288           if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1289             TYPE_NAME (SYMBOL_TYPE (sym)) = obconcat (&objfile->objfile_obstack,
1290 						      SYMBOL_LINKAGE_NAME (sym),
1291 						      (char *) NULL);
1292           add_symbol_to_list (struct_sym, &file_symbols);
1293         }
1294 
1295       break;
1296 
1297     case 'T':
1298       /* Struct, union, or enum tag.  For GNU C++, this can be be followed
1299          by 't' which means we are typedef'ing it as well.  */
1300       synonym = *p == 't';
1301 
1302       if (synonym)
1303 	p++;
1304 
1305       SYMBOL_TYPE (sym) = read_type (&p, objfile);
1306 
1307       /* For a nameless type, we don't want a create a symbol, thus we
1308          did not use `sym'. Return without further processing. */
1309       if (nameless)
1310 	return NULL;
1311 
1312       SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1313       SYMBOL_VALUE (sym) = valu;
1314       SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
1315       if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
1316 	TYPE_TAG_NAME (SYMBOL_TYPE (sym)) = obconcat (&objfile->objfile_obstack,
1317 						      SYMBOL_LINKAGE_NAME (sym),
1318 						      (char *) NULL);
1319       add_symbol_to_list (sym, &file_symbols);
1320 
1321       if (synonym)
1322 	{
1323 	  /* Clone the sym and then modify it. */
1324 	  struct symbol *typedef_sym = (struct symbol *)
1325 	    obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
1326 
1327 	  *typedef_sym = *sym;
1328 	  SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
1329 	  SYMBOL_VALUE (typedef_sym) = valu;
1330 	  SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
1331 	  if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1332 	    TYPE_NAME (SYMBOL_TYPE (sym)) = obconcat (&objfile->objfile_obstack,
1333 						      SYMBOL_LINKAGE_NAME (sym),
1334 						      (char *) NULL);
1335 	  add_symbol_to_list (typedef_sym, &file_symbols);
1336 	}
1337       break;
1338 
1339     case 'V':
1340       /* Static symbol of local scope */
1341       SYMBOL_TYPE (sym) = read_type (&p, objfile);
1342       SYMBOL_CLASS (sym) = LOC_STATIC;
1343       SYMBOL_VALUE_ADDRESS (sym) = valu;
1344       if (gdbarch_static_transform_name_p (gdbarch)
1345 	  && gdbarch_static_transform_name (gdbarch,
1346 					    SYMBOL_LINKAGE_NAME (sym))
1347 	     != SYMBOL_LINKAGE_NAME (sym))
1348 	{
1349 	  struct minimal_symbol *msym;
1350 
1351 	  msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1352 					NULL, objfile);
1353 	  if (msym != NULL)
1354 	    {
1355 	      char *new_name = gdbarch_static_transform_name
1356 		(gdbarch, SYMBOL_LINKAGE_NAME (sym));
1357 
1358 	      SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1359 	      SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1360 	    }
1361 	}
1362       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1363 	add_symbol_to_list (sym, &local_symbols);
1364       break;
1365 
1366     case 'v':
1367       /* Reference parameter */
1368       SYMBOL_TYPE (sym) = read_type (&p, objfile);
1369       SYMBOL_CLASS (sym) = LOC_REF_ARG;
1370       SYMBOL_IS_ARGUMENT (sym) = 1;
1371       SYMBOL_VALUE (sym) = valu;
1372       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1373       add_symbol_to_list (sym, &local_symbols);
1374       break;
1375 
1376     case 'a':
1377       /* Reference parameter which is in a register.  */
1378       SYMBOL_TYPE (sym) = read_type (&p, objfile);
1379       SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1380       SYMBOL_REGISTER_OPS (sym) = &stab_register_funcs;
1381       SYMBOL_IS_ARGUMENT (sym) = 1;
1382       SYMBOL_VALUE (sym) = valu;
1383       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1384       add_symbol_to_list (sym, &local_symbols);
1385       break;
1386 
1387     case 'X':
1388       /* This is used by Sun FORTRAN for "function result value".
1389          Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1390          that Pascal uses it too, but when I tried it Pascal used
1391          "x:3" (local symbol) instead.  */
1392       SYMBOL_TYPE (sym) = read_type (&p, objfile);
1393       SYMBOL_CLASS (sym) = LOC_LOCAL;
1394       SYMBOL_VALUE (sym) = valu;
1395       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1396       add_symbol_to_list (sym, &local_symbols);
1397       break;
1398 
1399     default:
1400       SYMBOL_TYPE (sym) = error_type (&p, objfile);
1401       SYMBOL_CLASS (sym) = LOC_CONST;
1402       SYMBOL_VALUE (sym) = 0;
1403       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1404       add_symbol_to_list (sym, &file_symbols);
1405       break;
1406     }
1407 
1408   /* Some systems pass variables of certain types by reference instead
1409      of by value, i.e. they will pass the address of a structure (in a
1410      register or on the stack) instead of the structure itself.  */
1411 
1412   if (gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym))
1413       && SYMBOL_IS_ARGUMENT (sym))
1414     {
1415       /* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
1416          variables passed in a register).  */
1417       if (SYMBOL_CLASS (sym) == LOC_REGISTER)
1418 	SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1419       /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1420 	 and subsequent arguments on SPARC, for example).  */
1421       else if (SYMBOL_CLASS (sym) == LOC_ARG)
1422 	SYMBOL_CLASS (sym) = LOC_REF_ARG;
1423     }
1424 
1425   return sym;
1426 }
1427 
1428 /* Skip rest of this symbol and return an error type.
1429 
1430    General notes on error recovery:  error_type always skips to the
1431    end of the symbol (modulo cretinous dbx symbol name continuation).
1432    Thus code like this:
1433 
1434    if (*(*pp)++ != ';')
1435    return error_type (pp, objfile);
1436 
1437    is wrong because if *pp starts out pointing at '\0' (typically as the
1438    result of an earlier error), it will be incremented to point to the
1439    start of the next symbol, which might produce strange results, at least
1440    if you run off the end of the string table.  Instead use
1441 
1442    if (**pp != ';')
1443    return error_type (pp, objfile);
1444    ++*pp;
1445 
1446    or
1447 
1448    if (**pp != ';')
1449    foo = error_type (pp, objfile);
1450    else
1451    ++*pp;
1452 
1453    And in case it isn't obvious, the point of all this hair is so the compiler
1454    can define new types and new syntaxes, and old versions of the
1455    debugger will be able to read the new symbol tables.  */
1456 
1457 static struct type *
1458 error_type (char **pp, struct objfile *objfile)
1459 {
1460   complaint (&symfile_complaints, _("couldn't parse type; debugger out of date?"));
1461   while (1)
1462     {
1463       /* Skip to end of symbol.  */
1464       while (**pp != '\0')
1465 	{
1466 	  (*pp)++;
1467 	}
1468 
1469       /* Check for and handle cretinous dbx symbol name continuation!  */
1470       if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1471 	{
1472 	  *pp = next_symbol_text (objfile);
1473 	}
1474       else
1475 	{
1476 	  break;
1477 	}
1478     }
1479   return objfile_type (objfile)->builtin_error;
1480 }
1481 
1482 
1483 /* Read type information or a type definition; return the type.  Even
1484    though this routine accepts either type information or a type
1485    definition, the distinction is relevant--some parts of stabsread.c
1486    assume that type information starts with a digit, '-', or '(' in
1487    deciding whether to call read_type.  */
1488 
1489 static struct type *
1490 read_type (char **pp, struct objfile *objfile)
1491 {
1492   struct type *type = 0;
1493   struct type *type1;
1494   int typenums[2];
1495   char type_descriptor;
1496 
1497   /* Size in bits of type if specified by a type attribute, or -1 if
1498      there is no size attribute.  */
1499   int type_size = -1;
1500 
1501   /* Used to distinguish string and bitstring from char-array and set. */
1502   int is_string = 0;
1503 
1504   /* Used to distinguish vector from array. */
1505   int is_vector = 0;
1506 
1507   /* Read type number if present.  The type number may be omitted.
1508      for instance in a two-dimensional array declared with type
1509      "ar1;1;10;ar1;1;10;4".  */
1510   if ((**pp >= '0' && **pp <= '9')
1511       || **pp == '('
1512       || **pp == '-')
1513     {
1514       if (read_type_number (pp, typenums) != 0)
1515 	return error_type (pp, objfile);
1516 
1517       if (**pp != '=')
1518         {
1519           /* Type is not being defined here.  Either it already
1520              exists, or this is a forward reference to it.
1521              dbx_alloc_type handles both cases.  */
1522           type = dbx_alloc_type (typenums, objfile);
1523 
1524           /* If this is a forward reference, arrange to complain if it
1525              doesn't get patched up by the time we're done
1526              reading.  */
1527           if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
1528             add_undefined_type (type, typenums);
1529 
1530           return type;
1531         }
1532 
1533       /* Type is being defined here.  */
1534       /* Skip the '='.
1535          Also skip the type descriptor - we get it below with (*pp)[-1].  */
1536       (*pp) += 2;
1537     }
1538   else
1539     {
1540       /* 'typenums=' not present, type is anonymous.  Read and return
1541          the definition, but don't put it in the type vector.  */
1542       typenums[0] = typenums[1] = -1;
1543       (*pp)++;
1544     }
1545 
1546 again:
1547   type_descriptor = (*pp)[-1];
1548   switch (type_descriptor)
1549     {
1550     case 'x':
1551       {
1552 	enum type_code code;
1553 
1554 	/* Used to index through file_symbols.  */
1555 	struct pending *ppt;
1556 	int i;
1557 
1558 	/* Name including "struct", etc.  */
1559 	char *type_name;
1560 
1561 	{
1562 	  char *from, *to, *p, *q1, *q2;
1563 
1564 	  /* Set the type code according to the following letter.  */
1565 	  switch ((*pp)[0])
1566 	    {
1567 	    case 's':
1568 	      code = TYPE_CODE_STRUCT;
1569 	      break;
1570 	    case 'u':
1571 	      code = TYPE_CODE_UNION;
1572 	      break;
1573 	    case 'e':
1574 	      code = TYPE_CODE_ENUM;
1575 	      break;
1576 	    default:
1577 	      {
1578 		/* Complain and keep going, so compilers can invent new
1579 		   cross-reference types.  */
1580 		complaint (&symfile_complaints,
1581 			   _("Unrecognized cross-reference type `%c'"), (*pp)[0]);
1582 		code = TYPE_CODE_STRUCT;
1583 		break;
1584 	      }
1585 	    }
1586 
1587 	  q1 = strchr (*pp, '<');
1588 	  p = strchr (*pp, ':');
1589 	  if (p == NULL)
1590 	    return error_type (pp, objfile);
1591 	  if (q1 && p > q1 && p[1] == ':')
1592 	    {
1593 	      int nesting_level = 0;
1594 
1595 	      for (q2 = q1; *q2; q2++)
1596 		{
1597 		  if (*q2 == '<')
1598 		    nesting_level++;
1599 		  else if (*q2 == '>')
1600 		    nesting_level--;
1601 		  else if (*q2 == ':' && nesting_level == 0)
1602 		    break;
1603 		}
1604 	      p = q2;
1605 	      if (*p != ':')
1606 		return error_type (pp, objfile);
1607 	    }
1608 	  type_name = NULL;
1609 	  if (current_subfile->language == language_cplus)
1610 	    {
1611 	      char *new_name, *name = alloca (p - *pp + 1);
1612 
1613 	      memcpy (name, *pp, p - *pp);
1614 	      name[p - *pp] = '\0';
1615 	      new_name = cp_canonicalize_string (name);
1616 	      if (new_name != NULL)
1617 		{
1618 		  type_name = obsavestring (new_name, strlen (new_name),
1619 					    &objfile->objfile_obstack);
1620 		  xfree (new_name);
1621 		}
1622 	    }
1623 	  if (type_name == NULL)
1624 	    {
1625 	      to = type_name =
1626 		(char *) obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
1627 
1628 	      /* Copy the name.  */
1629 	      from = *pp + 1;
1630 	      while (from < p)
1631 		*to++ = *from++;
1632 	      *to = '\0';
1633 	    }
1634 
1635 	  /* Set the pointer ahead of the name which we just read, and
1636 	     the colon.  */
1637 	  *pp = p + 1;
1638 	}
1639 
1640         /* If this type has already been declared, then reuse the same
1641            type, rather than allocating a new one.  This saves some
1642            memory.  */
1643 
1644 	for (ppt = file_symbols; ppt; ppt = ppt->next)
1645 	  for (i = 0; i < ppt->nsyms; i++)
1646 	    {
1647 	      struct symbol *sym = ppt->symbol[i];
1648 
1649 	      if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1650 		  && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
1651 		  && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1652 		  && strcmp (SYMBOL_LINKAGE_NAME (sym), type_name) == 0)
1653 		{
1654 		  obstack_free (&objfile->objfile_obstack, type_name);
1655 		  type = SYMBOL_TYPE (sym);
1656 	          if (typenums[0] != -1)
1657 	            *dbx_lookup_type (typenums, objfile) = type;
1658 		  return type;
1659 		}
1660 	    }
1661 
1662 	/* Didn't find the type to which this refers, so we must
1663 	   be dealing with a forward reference.  Allocate a type
1664 	   structure for it, and keep track of it so we can
1665 	   fill in the rest of the fields when we get the full
1666 	   type.  */
1667 	type = dbx_alloc_type (typenums, objfile);
1668 	TYPE_CODE (type) = code;
1669 	TYPE_TAG_NAME (type) = type_name;
1670 	INIT_CPLUS_SPECIFIC (type);
1671 	TYPE_STUB (type) = 1;
1672 
1673 	add_undefined_type (type, typenums);
1674 	return type;
1675       }
1676 
1677     case '-':			/* RS/6000 built-in type */
1678     case '0':
1679     case '1':
1680     case '2':
1681     case '3':
1682     case '4':
1683     case '5':
1684     case '6':
1685     case '7':
1686     case '8':
1687     case '9':
1688     case '(':
1689       (*pp)--;
1690 
1691       /* We deal with something like t(1,2)=(3,4)=... which
1692          the Lucid compiler and recent gcc versions (post 2.7.3) use. */
1693 
1694       /* Allocate and enter the typedef type first.
1695          This handles recursive types. */
1696       type = dbx_alloc_type (typenums, objfile);
1697       TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
1698       {
1699 	struct type *xtype = read_type (pp, objfile);
1700 
1701 	if (type == xtype)
1702 	  {
1703 	    /* It's being defined as itself.  That means it is "void".  */
1704 	    TYPE_CODE (type) = TYPE_CODE_VOID;
1705 	    TYPE_LENGTH (type) = 1;
1706 	  }
1707 	else if (type_size >= 0 || is_string)
1708 	  {
1709 	    /* This is the absolute wrong way to construct types.  Every
1710 	       other debug format has found a way around this problem and
1711 	       the related problems with unnecessarily stubbed types;
1712 	       someone motivated should attempt to clean up the issue
1713 	       here as well.  Once a type pointed to has been created it
1714 	       should not be modified.
1715 
1716                Well, it's not *absolutely* wrong.  Constructing recursive
1717                types (trees, linked lists) necessarily entails modifying
1718                types after creating them.  Constructing any loop structure
1719                entails side effects.  The Dwarf 2 reader does handle this
1720                more gracefully (it never constructs more than once
1721                instance of a type object, so it doesn't have to copy type
1722                objects wholesale), but it still mutates type objects after
1723                other folks have references to them.
1724 
1725                Keep in mind that this circularity/mutation issue shows up
1726                at the source language level, too: C's "incomplete types",
1727                for example.  So the proper cleanup, I think, would be to
1728                limit GDB's type smashing to match exactly those required
1729                by the source language.  So GDB could have a
1730                "complete_this_type" function, but never create unnecessary
1731                copies of a type otherwise.  */
1732 	    replace_type (type, xtype);
1733 	    TYPE_NAME (type) = NULL;
1734 	    TYPE_TAG_NAME (type) = NULL;
1735 	  }
1736 	else
1737 	  {
1738 	    TYPE_TARGET_STUB (type) = 1;
1739 	    TYPE_TARGET_TYPE (type) = xtype;
1740 	  }
1741       }
1742       break;
1743 
1744       /* In the following types, we must be sure to overwrite any existing
1745          type that the typenums refer to, rather than allocating a new one
1746          and making the typenums point to the new one.  This is because there
1747          may already be pointers to the existing type (if it had been
1748          forward-referenced), and we must change it to a pointer, function,
1749          reference, or whatever, *in-place*.  */
1750 
1751     case '*':			/* Pointer to another type */
1752       type1 = read_type (pp, objfile);
1753       type = make_pointer_type (type1, dbx_lookup_type (typenums, objfile));
1754       break;
1755 
1756     case '&':			/* Reference to another type */
1757       type1 = read_type (pp, objfile);
1758       type = make_reference_type (type1, dbx_lookup_type (typenums, objfile));
1759       break;
1760 
1761     case 'f':			/* Function returning another type */
1762       type1 = read_type (pp, objfile);
1763       type = make_function_type (type1, dbx_lookup_type (typenums, objfile));
1764       break;
1765 
1766     case 'g':                   /* Prototyped function.  (Sun)  */
1767       {
1768         /* Unresolved questions:
1769 
1770            - According to Sun's ``STABS Interface Manual'', for 'f'
1771            and 'F' symbol descriptors, a `0' in the argument type list
1772            indicates a varargs function.  But it doesn't say how 'g'
1773            type descriptors represent that info.  Someone with access
1774            to Sun's toolchain should try it out.
1775 
1776            - According to the comment in define_symbol (search for
1777            `process_prototype_types:'), Sun emits integer arguments as
1778            types which ref themselves --- like `void' types.  Do we
1779            have to deal with that here, too?  Again, someone with
1780            access to Sun's toolchain should try it out and let us
1781            know.  */
1782 
1783         const char *type_start = (*pp) - 1;
1784         struct type *return_type = read_type (pp, objfile);
1785         struct type *func_type
1786           = make_function_type (return_type,
1787 				dbx_lookup_type (typenums, objfile));
1788         struct type_list {
1789           struct type *type;
1790           struct type_list *next;
1791         } *arg_types = 0;
1792         int num_args = 0;
1793 
1794         while (**pp && **pp != '#')
1795           {
1796             struct type *arg_type = read_type (pp, objfile);
1797             struct type_list *new = alloca (sizeof (*new));
1798             new->type = arg_type;
1799             new->next = arg_types;
1800             arg_types = new;
1801             num_args++;
1802           }
1803         if (**pp == '#')
1804           ++*pp;
1805         else
1806           {
1807 	    complaint (&symfile_complaints,
1808 		       _("Prototyped function type didn't end arguments with `#':\n%s"),
1809 		       type_start);
1810           }
1811 
1812         /* If there is just one argument whose type is `void', then
1813            that's just an empty argument list.  */
1814         if (arg_types
1815             && ! arg_types->next
1816             && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1817           num_args = 0;
1818 
1819         TYPE_FIELDS (func_type)
1820           = (struct field *) TYPE_ALLOC (func_type,
1821                                          num_args * sizeof (struct field));
1822         memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1823         {
1824           int i;
1825           struct type_list *t;
1826 
1827           /* We stuck each argument type onto the front of the list
1828              when we read it, so the list is reversed.  Build the
1829              fields array right-to-left.  */
1830           for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1831             TYPE_FIELD_TYPE (func_type, i) = t->type;
1832         }
1833         TYPE_NFIELDS (func_type) = num_args;
1834         TYPE_PROTOTYPED (func_type) = 1;
1835 
1836         type = func_type;
1837         break;
1838       }
1839 
1840     case 'k':			/* Const qualifier on some type (Sun) */
1841       type = read_type (pp, objfile);
1842       type = make_cv_type (1, TYPE_VOLATILE (type), type,
1843 			   dbx_lookup_type (typenums, objfile));
1844       break;
1845 
1846     case 'B':			/* Volatile qual on some type (Sun) */
1847       type = read_type (pp, objfile);
1848       type = make_cv_type (TYPE_CONST (type), 1, type,
1849 			   dbx_lookup_type (typenums, objfile));
1850       break;
1851 
1852     case '@':
1853       if (isdigit (**pp) || **pp == '(' || **pp == '-')
1854 	{			/* Member (class & variable) type */
1855 	  /* FIXME -- we should be doing smash_to_XXX types here.  */
1856 
1857 	  struct type *domain = read_type (pp, objfile);
1858 	  struct type *memtype;
1859 
1860 	  if (**pp != ',')
1861 	    /* Invalid member type data format.  */
1862 	    return error_type (pp, objfile);
1863 	  ++*pp;
1864 
1865 	  memtype = read_type (pp, objfile);
1866 	  type = dbx_alloc_type (typenums, objfile);
1867 	  smash_to_memberptr_type (type, domain, memtype);
1868 	}
1869       else
1870 	/* type attribute */
1871 	{
1872 	  char *attr = *pp;
1873 
1874 	  /* Skip to the semicolon.  */
1875 	  while (**pp != ';' && **pp != '\0')
1876 	    ++(*pp);
1877 	  if (**pp == '\0')
1878 	    return error_type (pp, objfile);
1879 	  else
1880 	    ++ * pp;		/* Skip the semicolon.  */
1881 
1882 	  switch (*attr)
1883 	    {
1884 	    case 's':		/* Size attribute */
1885 	      type_size = atoi (attr + 1);
1886 	      if (type_size <= 0)
1887 		type_size = -1;
1888 	      break;
1889 
1890 	    case 'S':		/* String attribute */
1891 	      /* FIXME: check to see if following type is array? */
1892 	      is_string = 1;
1893 	      break;
1894 
1895 	    case 'V':		/* Vector attribute */
1896 	      /* FIXME: check to see if following type is array? */
1897 	      is_vector = 1;
1898 	      break;
1899 
1900 	    default:
1901 	      /* Ignore unrecognized type attributes, so future compilers
1902 	         can invent new ones.  */
1903 	      break;
1904 	    }
1905 	  ++*pp;
1906 	  goto again;
1907 	}
1908       break;
1909 
1910     case '#':			/* Method (class & fn) type */
1911       if ((*pp)[0] == '#')
1912 	{
1913 	  /* We'll get the parameter types from the name.  */
1914 	  struct type *return_type;
1915 
1916 	  (*pp)++;
1917 	  return_type = read_type (pp, objfile);
1918 	  if (*(*pp)++ != ';')
1919 	    complaint (&symfile_complaints,
1920 		       _("invalid (minimal) member type data format at symtab pos %d."),
1921 		       symnum);
1922 	  type = allocate_stub_method (return_type);
1923 	  if (typenums[0] != -1)
1924 	    *dbx_lookup_type (typenums, objfile) = type;
1925 	}
1926       else
1927 	{
1928 	  struct type *domain = read_type (pp, objfile);
1929 	  struct type *return_type;
1930 	  struct field *args;
1931 	  int nargs, varargs;
1932 
1933 	  if (**pp != ',')
1934 	    /* Invalid member type data format.  */
1935 	    return error_type (pp, objfile);
1936 	  else
1937 	    ++(*pp);
1938 
1939 	  return_type = read_type (pp, objfile);
1940 	  args = read_args (pp, ';', objfile, &nargs, &varargs);
1941 	  if (args == NULL)
1942 	    return error_type (pp, objfile);
1943 	  type = dbx_alloc_type (typenums, objfile);
1944 	  smash_to_method_type (type, domain, return_type, args,
1945 				nargs, varargs);
1946 	}
1947       break;
1948 
1949     case 'r':			/* Range type */
1950       type = read_range_type (pp, typenums, type_size, objfile);
1951       if (typenums[0] != -1)
1952 	*dbx_lookup_type (typenums, objfile) = type;
1953       break;
1954 
1955     case 'b':
1956 	{
1957 	  /* Sun ACC builtin int type */
1958 	  type = read_sun_builtin_type (pp, typenums, objfile);
1959 	  if (typenums[0] != -1)
1960 	    *dbx_lookup_type (typenums, objfile) = type;
1961 	}
1962       break;
1963 
1964     case 'R':			/* Sun ACC builtin float type */
1965       type = read_sun_floating_type (pp, typenums, objfile);
1966       if (typenums[0] != -1)
1967 	*dbx_lookup_type (typenums, objfile) = type;
1968       break;
1969 
1970     case 'e':			/* Enumeration type */
1971       type = dbx_alloc_type (typenums, objfile);
1972       type = read_enum_type (pp, type, objfile);
1973       if (typenums[0] != -1)
1974 	*dbx_lookup_type (typenums, objfile) = type;
1975       break;
1976 
1977     case 's':			/* Struct type */
1978     case 'u':			/* Union type */
1979       {
1980         enum type_code type_code = TYPE_CODE_UNDEF;
1981         type = dbx_alloc_type (typenums, objfile);
1982         switch (type_descriptor)
1983           {
1984           case 's':
1985             type_code = TYPE_CODE_STRUCT;
1986             break;
1987           case 'u':
1988             type_code = TYPE_CODE_UNION;
1989             break;
1990           }
1991         type = read_struct_type (pp, type, type_code, objfile);
1992         break;
1993       }
1994 
1995     case 'a':			/* Array type */
1996       if (**pp != 'r')
1997 	return error_type (pp, objfile);
1998       ++*pp;
1999 
2000       type = dbx_alloc_type (typenums, objfile);
2001       type = read_array_type (pp, type, objfile);
2002       if (is_string)
2003 	TYPE_CODE (type) = TYPE_CODE_STRING;
2004       if (is_vector)
2005 	make_vector_type (type);
2006       break;
2007 
2008     case 'S':			/* Set or bitstring  type */
2009       type1 = read_type (pp, objfile);
2010       type = create_set_type ((struct type *) NULL, type1);
2011       if (is_string)
2012 	TYPE_CODE (type) = TYPE_CODE_BITSTRING;
2013       if (typenums[0] != -1)
2014 	*dbx_lookup_type (typenums, objfile) = type;
2015       break;
2016 
2017     default:
2018       --*pp;			/* Go back to the symbol in error */
2019       /* Particularly important if it was \0! */
2020       return error_type (pp, objfile);
2021     }
2022 
2023   if (type == 0)
2024     {
2025       warning (_("GDB internal error, type is NULL in stabsread.c."));
2026       return error_type (pp, objfile);
2027     }
2028 
2029   /* Size specified in a type attribute overrides any other size.  */
2030   if (type_size != -1)
2031     TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2032 
2033   return type;
2034 }
2035 
2036 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
2037    Return the proper type node for a given builtin type number. */
2038 
2039 static const struct objfile_data *rs6000_builtin_type_data;
2040 
2041 static struct type *
2042 rs6000_builtin_type (int typenum, struct objfile *objfile)
2043 {
2044   struct type **negative_types = objfile_data (objfile, rs6000_builtin_type_data);
2045 
2046   /* We recognize types numbered from -NUMBER_RECOGNIZED to -1.  */
2047 #define NUMBER_RECOGNIZED 34
2048   struct type *rettype = NULL;
2049 
2050   if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
2051     {
2052       complaint (&symfile_complaints, _("Unknown builtin type %d"), typenum);
2053       return objfile_type (objfile)->builtin_error;
2054     }
2055 
2056   if (!negative_types)
2057     {
2058       /* This includes an empty slot for type number -0.  */
2059       negative_types = OBSTACK_CALLOC (&objfile->objfile_obstack,
2060 				       NUMBER_RECOGNIZED + 1, struct type *);
2061       set_objfile_data (objfile, rs6000_builtin_type_data, negative_types);
2062     }
2063 
2064   if (negative_types[-typenum] != NULL)
2065     return negative_types[-typenum];
2066 
2067 #if TARGET_CHAR_BIT != 8
2068 #error This code wrong for TARGET_CHAR_BIT not 8
2069   /* These definitions all assume that TARGET_CHAR_BIT is 8.  I think
2070      that if that ever becomes not true, the correct fix will be to
2071      make the size in the struct type to be in bits, not in units of
2072      TARGET_CHAR_BIT.  */
2073 #endif
2074 
2075   switch (-typenum)
2076     {
2077     case 1:
2078       /* The size of this and all the other types are fixed, defined
2079          by the debugging format.  If there is a type called "int" which
2080          is other than 32 bits, then it should use a new negative type
2081          number (or avoid negative type numbers for that case).
2082          See stabs.texinfo.  */
2083       rettype = init_type (TYPE_CODE_INT, 4, 0, "int", objfile);
2084       break;
2085     case 2:
2086       rettype = init_type (TYPE_CODE_INT, 1, 0, "char", objfile);
2087       break;
2088     case 3:
2089       rettype = init_type (TYPE_CODE_INT, 2, 0, "short", objfile);
2090       break;
2091     case 4:
2092       rettype = init_type (TYPE_CODE_INT, 4, 0, "long", objfile);
2093       break;
2094     case 5:
2095       rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
2096 			   "unsigned char", objfile);
2097       break;
2098     case 6:
2099       rettype = init_type (TYPE_CODE_INT, 1, 0, "signed char", objfile);
2100       break;
2101     case 7:
2102       rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
2103 			   "unsigned short", objfile);
2104       break;
2105     case 8:
2106       rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2107 			   "unsigned int", objfile);
2108       break;
2109     case 9:
2110       rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2111 			   "unsigned", objfile);
2112     case 10:
2113       rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2114 			   "unsigned long", objfile);
2115       break;
2116     case 11:
2117       rettype = init_type (TYPE_CODE_VOID, 1, 0, "void", objfile);
2118       break;
2119     case 12:
2120       /* IEEE single precision (32 bit).  */
2121       rettype = init_type (TYPE_CODE_FLT, 4, 0, "float", objfile);
2122       break;
2123     case 13:
2124       /* IEEE double precision (64 bit).  */
2125       rettype = init_type (TYPE_CODE_FLT, 8, 0, "double", objfile);
2126       break;
2127     case 14:
2128       /* This is an IEEE double on the RS/6000, and different machines with
2129          different sizes for "long double" should use different negative
2130          type numbers.  See stabs.texinfo.  */
2131       rettype = init_type (TYPE_CODE_FLT, 8, 0, "long double", objfile);
2132       break;
2133     case 15:
2134       rettype = init_type (TYPE_CODE_INT, 4, 0, "integer", objfile);
2135       break;
2136     case 16:
2137       rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2138 			   "boolean", objfile);
2139       break;
2140     case 17:
2141       rettype = init_type (TYPE_CODE_FLT, 4, 0, "short real", objfile);
2142       break;
2143     case 18:
2144       rettype = init_type (TYPE_CODE_FLT, 8, 0, "real", objfile);
2145       break;
2146     case 19:
2147       rettype = init_type (TYPE_CODE_ERROR, 0, 0, "stringptr", objfile);
2148       break;
2149     case 20:
2150       rettype = init_type (TYPE_CODE_CHAR, 1, TYPE_FLAG_UNSIGNED,
2151 			   "character", objfile);
2152       break;
2153     case 21:
2154       rettype = init_type (TYPE_CODE_BOOL, 1, TYPE_FLAG_UNSIGNED,
2155 			   "logical*1", objfile);
2156       break;
2157     case 22:
2158       rettype = init_type (TYPE_CODE_BOOL, 2, TYPE_FLAG_UNSIGNED,
2159 			   "logical*2", objfile);
2160       break;
2161     case 23:
2162       rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2163 			   "logical*4", objfile);
2164       break;
2165     case 24:
2166       rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2167 			   "logical", objfile);
2168       break;
2169     case 25:
2170       /* Complex type consisting of two IEEE single precision values.  */
2171       rettype = init_type (TYPE_CODE_COMPLEX, 8, 0, "complex", objfile);
2172       TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 4, 0, "float",
2173 					      objfile);
2174       break;
2175     case 26:
2176       /* Complex type consisting of two IEEE double precision values.  */
2177       rettype = init_type (TYPE_CODE_COMPLEX, 16, 0, "double complex", NULL);
2178       TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 8, 0, "double",
2179 					      objfile);
2180       break;
2181     case 27:
2182       rettype = init_type (TYPE_CODE_INT, 1, 0, "integer*1", objfile);
2183       break;
2184     case 28:
2185       rettype = init_type (TYPE_CODE_INT, 2, 0, "integer*2", objfile);
2186       break;
2187     case 29:
2188       rettype = init_type (TYPE_CODE_INT, 4, 0, "integer*4", objfile);
2189       break;
2190     case 30:
2191       rettype = init_type (TYPE_CODE_CHAR, 2, 0, "wchar", objfile);
2192       break;
2193     case 31:
2194       rettype = init_type (TYPE_CODE_INT, 8, 0, "long long", objfile);
2195       break;
2196     case 32:
2197       rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2198 			   "unsigned long long", objfile);
2199       break;
2200     case 33:
2201       rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2202 			   "logical*8", objfile);
2203       break;
2204     case 34:
2205       rettype = init_type (TYPE_CODE_INT, 8, 0, "integer*8", objfile);
2206       break;
2207     }
2208   negative_types[-typenum] = rettype;
2209   return rettype;
2210 }
2211 
2212 /* This page contains subroutines of read_type.  */
2213 
2214 /* Replace *OLD_NAME with the method name portion of PHYSNAME.  */
2215 
2216 static void
2217 update_method_name_from_physname (char **old_name, char *physname)
2218 {
2219   char *method_name;
2220 
2221   method_name = method_name_from_physname (physname);
2222 
2223   if (method_name == NULL)
2224     {
2225       complaint (&symfile_complaints,
2226 		 _("Method has bad physname %s\n"), physname);
2227       return;
2228     }
2229 
2230   if (strcmp (*old_name, method_name) != 0)
2231     {
2232       xfree (*old_name);
2233       *old_name = method_name;
2234     }
2235   else
2236     xfree (method_name);
2237 }
2238 
2239 /* Read member function stabs info for C++ classes.  The form of each member
2240    function data is:
2241 
2242    NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2243 
2244    An example with two member functions is:
2245 
2246    afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2247 
2248    For the case of overloaded operators, the format is op$::*.funcs, where
2249    $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2250    name (such as `+=') and `.' marks the end of the operator name.
2251 
2252    Returns 1 for success, 0 for failure.  */
2253 
2254 static int
2255 read_member_functions (struct field_info *fip, char **pp, struct type *type,
2256 		       struct objfile *objfile)
2257 {
2258   int nfn_fields = 0;
2259   int length = 0;
2260   /* Total number of member functions defined in this class.  If the class
2261      defines two `f' functions, and one `g' function, then this will have
2262      the value 3.  */
2263   int total_length = 0;
2264   int i;
2265   struct next_fnfield
2266     {
2267       struct next_fnfield *next;
2268       struct fn_field fn_field;
2269     }
2270    *sublist;
2271   struct type *look_ahead_type;
2272   struct next_fnfieldlist *new_fnlist;
2273   struct next_fnfield *new_sublist;
2274   char *main_fn_name;
2275   char *p;
2276 
2277   /* Process each list until we find something that is not a member function
2278      or find the end of the functions. */
2279 
2280   while (**pp != ';')
2281     {
2282       /* We should be positioned at the start of the function name.
2283          Scan forward to find the first ':' and if it is not the
2284          first of a "::" delimiter, then this is not a member function. */
2285       p = *pp;
2286       while (*p != ':')
2287 	{
2288 	  p++;
2289 	}
2290       if (p[1] != ':')
2291 	{
2292 	  break;
2293 	}
2294 
2295       sublist = NULL;
2296       look_ahead_type = NULL;
2297       length = 0;
2298 
2299       new_fnlist = (struct next_fnfieldlist *)
2300 	xmalloc (sizeof (struct next_fnfieldlist));
2301       make_cleanup (xfree, new_fnlist);
2302       memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
2303 
2304       if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2305 	{
2306 	  /* This is a completely wierd case.  In order to stuff in the
2307 	     names that might contain colons (the usual name delimiter),
2308 	     Mike Tiemann defined a different name format which is
2309 	     signalled if the identifier is "op$".  In that case, the
2310 	     format is "op$::XXXX." where XXXX is the name.  This is
2311 	     used for names like "+" or "=".  YUUUUUUUK!  FIXME!  */
2312 	  /* This lets the user type "break operator+".
2313 	     We could just put in "+" as the name, but that wouldn't
2314 	     work for "*".  */
2315 	  static char opname[32] = "op$";
2316 	  char *o = opname + 3;
2317 
2318 	  /* Skip past '::'.  */
2319 	  *pp = p + 2;
2320 
2321 	  STABS_CONTINUE (pp, objfile);
2322 	  p = *pp;
2323 	  while (*p != '.')
2324 	    {
2325 	      *o++ = *p++;
2326 	    }
2327 	  main_fn_name = savestring (opname, o - opname);
2328 	  /* Skip past '.'  */
2329 	  *pp = p + 1;
2330 	}
2331       else
2332 	{
2333 	  main_fn_name = savestring (*pp, p - *pp);
2334 	  /* Skip past '::'.  */
2335 	  *pp = p + 2;
2336 	}
2337       new_fnlist->fn_fieldlist.name = main_fn_name;
2338 
2339       do
2340 	{
2341 	  new_sublist =
2342 	    (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
2343 	  make_cleanup (xfree, new_sublist);
2344 	  memset (new_sublist, 0, sizeof (struct next_fnfield));
2345 
2346 	  /* Check for and handle cretinous dbx symbol name continuation!  */
2347 	  if (look_ahead_type == NULL)
2348 	    {
2349 	      /* Normal case. */
2350 	      STABS_CONTINUE (pp, objfile);
2351 
2352 	      new_sublist->fn_field.type = read_type (pp, objfile);
2353 	      if (**pp != ':')
2354 		{
2355 		  /* Invalid symtab info for member function.  */
2356 		  return 0;
2357 		}
2358 	    }
2359 	  else
2360 	    {
2361 	      /* g++ version 1 kludge */
2362 	      new_sublist->fn_field.type = look_ahead_type;
2363 	      look_ahead_type = NULL;
2364 	    }
2365 
2366 	  (*pp)++;
2367 	  p = *pp;
2368 	  while (*p != ';')
2369 	    {
2370 	      p++;
2371 	    }
2372 
2373 	  /* If this is just a stub, then we don't have the real name here. */
2374 
2375 	  if (TYPE_STUB (new_sublist->fn_field.type))
2376 	    {
2377 	      if (!TYPE_DOMAIN_TYPE (new_sublist->fn_field.type))
2378 		TYPE_DOMAIN_TYPE (new_sublist->fn_field.type) = type;
2379 	      new_sublist->fn_field.is_stub = 1;
2380 	    }
2381 	  new_sublist->fn_field.physname = savestring (*pp, p - *pp);
2382 	  *pp = p + 1;
2383 
2384 	  /* Set this member function's visibility fields.  */
2385 	  switch (*(*pp)++)
2386 	    {
2387 	    case VISIBILITY_PRIVATE:
2388 	      new_sublist->fn_field.is_private = 1;
2389 	      break;
2390 	    case VISIBILITY_PROTECTED:
2391 	      new_sublist->fn_field.is_protected = 1;
2392 	      break;
2393 	    }
2394 
2395 	  STABS_CONTINUE (pp, objfile);
2396 	  switch (**pp)
2397 	    {
2398 	    case 'A':		/* Normal functions. */
2399 	      new_sublist->fn_field.is_const = 0;
2400 	      new_sublist->fn_field.is_volatile = 0;
2401 	      (*pp)++;
2402 	      break;
2403 	    case 'B':		/* `const' member functions. */
2404 	      new_sublist->fn_field.is_const = 1;
2405 	      new_sublist->fn_field.is_volatile = 0;
2406 	      (*pp)++;
2407 	      break;
2408 	    case 'C':		/* `volatile' member function. */
2409 	      new_sublist->fn_field.is_const = 0;
2410 	      new_sublist->fn_field.is_volatile = 1;
2411 	      (*pp)++;
2412 	      break;
2413 	    case 'D':		/* `const volatile' member function. */
2414 	      new_sublist->fn_field.is_const = 1;
2415 	      new_sublist->fn_field.is_volatile = 1;
2416 	      (*pp)++;
2417 	      break;
2418 	    case '*':		/* File compiled with g++ version 1 -- no info */
2419 	    case '?':
2420 	    case '.':
2421 	      break;
2422 	    default:
2423 	      complaint (&symfile_complaints,
2424 			 _("const/volatile indicator missing, got '%c'"), **pp);
2425 	      break;
2426 	    }
2427 
2428 	  switch (*(*pp)++)
2429 	    {
2430 	    case '*':
2431 	      {
2432 		int nbits;
2433 		/* virtual member function, followed by index.
2434 		   The sign bit is set to distinguish pointers-to-methods
2435 		   from virtual function indicies.  Since the array is
2436 		   in words, the quantity must be shifted left by 1
2437 		   on 16 bit machine, and by 2 on 32 bit machine, forcing
2438 		   the sign bit out, and usable as a valid index into
2439 		   the array.  Remove the sign bit here.  */
2440 		new_sublist->fn_field.voffset =
2441 		  (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
2442 		if (nbits != 0)
2443 		  return 0;
2444 
2445 		STABS_CONTINUE (pp, objfile);
2446 		if (**pp == ';' || **pp == '\0')
2447 		  {
2448 		    /* Must be g++ version 1.  */
2449 		    new_sublist->fn_field.fcontext = 0;
2450 		  }
2451 		else
2452 		  {
2453 		    /* Figure out from whence this virtual function came.
2454 		       It may belong to virtual function table of
2455 		       one of its baseclasses.  */
2456 		    look_ahead_type = read_type (pp, objfile);
2457 		    if (**pp == ':')
2458 		      {
2459 			/* g++ version 1 overloaded methods. */
2460 		      }
2461 		    else
2462 		      {
2463 			new_sublist->fn_field.fcontext = look_ahead_type;
2464 			if (**pp != ';')
2465 			  {
2466 			    return 0;
2467 			  }
2468 			else
2469 			  {
2470 			    ++*pp;
2471 			  }
2472 			look_ahead_type = NULL;
2473 		      }
2474 		  }
2475 		break;
2476 	      }
2477 	    case '?':
2478 	      /* static member function.  */
2479 	      {
2480 		int slen = strlen (main_fn_name);
2481 
2482 		new_sublist->fn_field.voffset = VOFFSET_STATIC;
2483 
2484 		/* For static member functions, we can't tell if they
2485 		   are stubbed, as they are put out as functions, and not as
2486 		   methods.
2487 		   GCC v2 emits the fully mangled name if
2488 		   dbxout.c:flag_minimal_debug is not set, so we have to
2489 		   detect a fully mangled physname here and set is_stub
2490 		   accordingly.  Fully mangled physnames in v2 start with
2491 		   the member function name, followed by two underscores.
2492 		   GCC v3 currently always emits stubbed member functions,
2493 		   but with fully mangled physnames, which start with _Z.  */
2494 		if (!(strncmp (new_sublist->fn_field.physname,
2495 			       main_fn_name, slen) == 0
2496 		      && new_sublist->fn_field.physname[slen] == '_'
2497 		      && new_sublist->fn_field.physname[slen + 1] == '_'))
2498 		  {
2499 		    new_sublist->fn_field.is_stub = 1;
2500 		  }
2501 		break;
2502 	      }
2503 
2504 	    default:
2505 	      /* error */
2506 	      complaint (&symfile_complaints,
2507 			 _("member function type missing, got '%c'"), (*pp)[-1]);
2508 	      /* Fall through into normal member function.  */
2509 
2510 	    case '.':
2511 	      /* normal member function.  */
2512 	      new_sublist->fn_field.voffset = 0;
2513 	      new_sublist->fn_field.fcontext = 0;
2514 	      break;
2515 	    }
2516 
2517 	  new_sublist->next = sublist;
2518 	  sublist = new_sublist;
2519 	  length++;
2520 	  STABS_CONTINUE (pp, objfile);
2521 	}
2522       while (**pp != ';' && **pp != '\0');
2523 
2524       (*pp)++;
2525       STABS_CONTINUE (pp, objfile);
2526 
2527       /* Skip GCC 3.X member functions which are duplicates of the callable
2528 	 constructor/destructor.  */
2529       if (strcmp_iw (main_fn_name, "__base_ctor ") == 0
2530 	  || strcmp_iw (main_fn_name, "__base_dtor ") == 0
2531 	  || strcmp (main_fn_name, "__deleting_dtor") == 0)
2532 	{
2533 	  xfree (main_fn_name);
2534 	}
2535       else
2536 	{
2537 	  int has_stub = 0;
2538 	  int has_destructor = 0, has_other = 0;
2539 	  int is_v3 = 0;
2540 	  struct next_fnfield *tmp_sublist;
2541 
2542 	  /* Various versions of GCC emit various mostly-useless
2543 	     strings in the name field for special member functions.
2544 
2545 	     For stub methods, we need to defer correcting the name
2546 	     until we are ready to unstub the method, because the current
2547 	     name string is used by gdb_mangle_name.  The only stub methods
2548 	     of concern here are GNU v2 operators; other methods have their
2549 	     names correct (see caveat below).
2550 
2551 	     For non-stub methods, in GNU v3, we have a complete physname.
2552 	     Therefore we can safely correct the name now.  This primarily
2553 	     affects constructors and destructors, whose name will be
2554 	     __comp_ctor or __comp_dtor instead of Foo or ~Foo.  Cast
2555 	     operators will also have incorrect names; for instance,
2556 	     "operator int" will be named "operator i" (i.e. the type is
2557 	     mangled).
2558 
2559 	     For non-stub methods in GNU v2, we have no easy way to
2560 	     know if we have a complete physname or not.  For most
2561 	     methods the result depends on the platform (if CPLUS_MARKER
2562 	     can be `$' or `.', it will use minimal debug information, or
2563 	     otherwise the full physname will be included).
2564 
2565 	     Rather than dealing with this, we take a different approach.
2566 	     For v3 mangled names, we can use the full physname; for v2,
2567 	     we use cplus_demangle_opname (which is actually v2 specific),
2568 	     because the only interesting names are all operators - once again
2569 	     barring the caveat below.  Skip this process if any method in the
2570 	     group is a stub, to prevent our fouling up the workings of
2571 	     gdb_mangle_name.
2572 
2573 	     The caveat: GCC 2.95.x (and earlier?) put constructors and
2574 	     destructors in the same method group.  We need to split this
2575 	     into two groups, because they should have different names.
2576 	     So for each method group we check whether it contains both
2577 	     routines whose physname appears to be a destructor (the physnames
2578 	     for and destructors are always provided, due to quirks in v2
2579 	     mangling) and routines whose physname does not appear to be a
2580 	     destructor.  If so then we break up the list into two halves.
2581 	     Even if the constructors and destructors aren't in the same group
2582 	     the destructor will still lack the leading tilde, so that also
2583 	     needs to be fixed.
2584 
2585 	     So, to summarize what we expect and handle here:
2586 
2587 	        Given         Given          Real         Real       Action
2588 	     method name     physname      physname   method name
2589 
2590 	     __opi            [none]     __opi__3Foo  operator int    opname
2591 	                                                           [now or later]
2592 	     Foo              _._3Foo       _._3Foo      ~Foo       separate and
2593 	                                                               rename
2594 	     operator i     _ZN3FoocviEv _ZN3FoocviEv operator int    demangle
2595 	     __comp_ctor  _ZN3FooC1ERKS_ _ZN3FooC1ERKS_   Foo         demangle
2596 	  */
2597 
2598 	  tmp_sublist = sublist;
2599 	  while (tmp_sublist != NULL)
2600 	    {
2601 	      if (tmp_sublist->fn_field.is_stub)
2602 		has_stub = 1;
2603 	      if (tmp_sublist->fn_field.physname[0] == '_'
2604 		  && tmp_sublist->fn_field.physname[1] == 'Z')
2605 		is_v3 = 1;
2606 
2607 	      if (is_destructor_name (tmp_sublist->fn_field.physname))
2608 		has_destructor++;
2609 	      else
2610 		has_other++;
2611 
2612 	      tmp_sublist = tmp_sublist->next;
2613 	    }
2614 
2615 	  if (has_destructor && has_other)
2616 	    {
2617 	      struct next_fnfieldlist *destr_fnlist;
2618 	      struct next_fnfield *last_sublist;
2619 
2620 	      /* Create a new fn_fieldlist for the destructors.  */
2621 
2622 	      destr_fnlist = (struct next_fnfieldlist *)
2623 		xmalloc (sizeof (struct next_fnfieldlist));
2624 	      make_cleanup (xfree, destr_fnlist);
2625 	      memset (destr_fnlist, 0, sizeof (struct next_fnfieldlist));
2626 	      destr_fnlist->fn_fieldlist.name
2627 		= obconcat (&objfile->objfile_obstack, "~",
2628 			    new_fnlist->fn_fieldlist.name, (char *) NULL);
2629 
2630 	      destr_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2631 		obstack_alloc (&objfile->objfile_obstack,
2632 			       sizeof (struct fn_field) * has_destructor);
2633 	      memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2634 		  sizeof (struct fn_field) * has_destructor);
2635 	      tmp_sublist = sublist;
2636 	      last_sublist = NULL;
2637 	      i = 0;
2638 	      while (tmp_sublist != NULL)
2639 		{
2640 		  if (!is_destructor_name (tmp_sublist->fn_field.physname))
2641 		    {
2642 		      tmp_sublist = tmp_sublist->next;
2643 		      continue;
2644 		    }
2645 
2646 		  destr_fnlist->fn_fieldlist.fn_fields[i++]
2647 		    = tmp_sublist->fn_field;
2648 		  if (last_sublist)
2649 		    last_sublist->next = tmp_sublist->next;
2650 		  else
2651 		    sublist = tmp_sublist->next;
2652 		  last_sublist = tmp_sublist;
2653 		  tmp_sublist = tmp_sublist->next;
2654 		}
2655 
2656 	      destr_fnlist->fn_fieldlist.length = has_destructor;
2657 	      destr_fnlist->next = fip->fnlist;
2658 	      fip->fnlist = destr_fnlist;
2659 	      nfn_fields++;
2660 	      total_length += has_destructor;
2661 	      length -= has_destructor;
2662 	    }
2663 	  else if (is_v3)
2664 	    {
2665 	      /* v3 mangling prevents the use of abbreviated physnames,
2666 		 so we can do this here.  There are stubbed methods in v3
2667 		 only:
2668 		 - in -gstabs instead of -gstabs+
2669 		 - or for static methods, which are output as a function type
2670 		   instead of a method type.  */
2671 
2672 	      update_method_name_from_physname (&new_fnlist->fn_fieldlist.name,
2673 						sublist->fn_field.physname);
2674 	    }
2675 	  else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2676 	    {
2677 	      new_fnlist->fn_fieldlist.name =
2678 		concat ("~", main_fn_name, (char *)NULL);
2679 	      xfree (main_fn_name);
2680 	    }
2681 	  else if (!has_stub)
2682 	    {
2683 	      char dem_opname[256];
2684 	      int ret;
2685 
2686 	      ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2687 					      dem_opname, DMGL_ANSI);
2688 	      if (!ret)
2689 		ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2690 					     dem_opname, 0);
2691 	      if (ret)
2692 		new_fnlist->fn_fieldlist.name
2693 		  = obsavestring (dem_opname, strlen (dem_opname),
2694 				  &objfile->objfile_obstack);
2695 	    }
2696 
2697 	  new_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2698 	    obstack_alloc (&objfile->objfile_obstack,
2699 			   sizeof (struct fn_field) * length);
2700 	  memset (new_fnlist->fn_fieldlist.fn_fields, 0,
2701 		  sizeof (struct fn_field) * length);
2702 	  for (i = length; (i--, sublist); sublist = sublist->next)
2703 	    {
2704 	      new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2705 	    }
2706 
2707 	  new_fnlist->fn_fieldlist.length = length;
2708 	  new_fnlist->next = fip->fnlist;
2709 	  fip->fnlist = new_fnlist;
2710 	  nfn_fields++;
2711 	  total_length += length;
2712 	}
2713     }
2714 
2715   if (nfn_fields)
2716     {
2717       ALLOCATE_CPLUS_STRUCT_TYPE (type);
2718       TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2719 	TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2720       memset (TYPE_FN_FIELDLISTS (type), 0,
2721 	      sizeof (struct fn_fieldlist) * nfn_fields);
2722       TYPE_NFN_FIELDS (type) = nfn_fields;
2723       TYPE_NFN_FIELDS_TOTAL (type) = total_length;
2724     }
2725 
2726   return 1;
2727 }
2728 
2729 /* Special GNU C++ name.
2730 
2731    Returns 1 for success, 0 for failure.  "failure" means that we can't
2732    keep parsing and it's time for error_type().  */
2733 
2734 static int
2735 read_cpp_abbrev (struct field_info *fip, char **pp, struct type *type,
2736 		 struct objfile *objfile)
2737 {
2738   char *p;
2739   char *name;
2740   char cpp_abbrev;
2741   struct type *context;
2742 
2743   p = *pp;
2744   if (*++p == 'v')
2745     {
2746       name = NULL;
2747       cpp_abbrev = *++p;
2748 
2749       *pp = p + 1;
2750 
2751       /* At this point, *pp points to something like "22:23=*22...",
2752          where the type number before the ':' is the "context" and
2753          everything after is a regular type definition.  Lookup the
2754          type, find it's name, and construct the field name. */
2755 
2756       context = read_type (pp, objfile);
2757 
2758       switch (cpp_abbrev)
2759 	{
2760 	case 'f':		/* $vf -- a virtual function table pointer */
2761 	  name = type_name_no_tag (context);
2762 	  if (name == NULL)
2763 	    {
2764 	      name = "";
2765 	    }
2766 	  fip->list->field.name = obconcat (&objfile->objfile_obstack,
2767 					    vptr_name, name, (char *) NULL);
2768 	  break;
2769 
2770 	case 'b':		/* $vb -- a virtual bsomethingorother */
2771 	  name = type_name_no_tag (context);
2772 	  if (name == NULL)
2773 	    {
2774 	      complaint (&symfile_complaints,
2775 			 _("C++ abbreviated type name unknown at symtab pos %d"),
2776 			 symnum);
2777 	      name = "FOO";
2778 	    }
2779 	  fip->list->field.name = obconcat (&objfile->objfile_obstack, vb_name,
2780 					    name, (char *) NULL);
2781 	  break;
2782 
2783 	default:
2784 	  invalid_cpp_abbrev_complaint (*pp);
2785 	  fip->list->field.name = obconcat (&objfile->objfile_obstack,
2786 					    "INVALID_CPLUSPLUS_ABBREV",
2787 					    (char *) NULL);
2788 	  break;
2789 	}
2790 
2791       /* At this point, *pp points to the ':'.  Skip it and read the
2792          field type. */
2793 
2794       p = ++(*pp);
2795       if (p[-1] != ':')
2796 	{
2797 	  invalid_cpp_abbrev_complaint (*pp);
2798 	  return 0;
2799 	}
2800       fip->list->field.type = read_type (pp, objfile);
2801       if (**pp == ',')
2802 	(*pp)++;		/* Skip the comma.  */
2803       else
2804 	return 0;
2805 
2806       {
2807 	int nbits;
2808 
2809 	FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ';', &nbits,
2810                                                             0);
2811 	if (nbits != 0)
2812 	  return 0;
2813       }
2814       /* This field is unpacked.  */
2815       FIELD_BITSIZE (fip->list->field) = 0;
2816       fip->list->visibility = VISIBILITY_PRIVATE;
2817     }
2818   else
2819     {
2820       invalid_cpp_abbrev_complaint (*pp);
2821       /* We have no idea what syntax an unrecognized abbrev would have, so
2822          better return 0.  If we returned 1, we would need to at least advance
2823          *pp to avoid an infinite loop.  */
2824       return 0;
2825     }
2826   return 1;
2827 }
2828 
2829 static void
2830 read_one_struct_field (struct field_info *fip, char **pp, char *p,
2831 		       struct type *type, struct objfile *objfile)
2832 {
2833   struct gdbarch *gdbarch = get_objfile_arch (objfile);
2834 
2835   fip->list->field.name =
2836     obsavestring (*pp, p - *pp, &objfile->objfile_obstack);
2837   *pp = p + 1;
2838 
2839   /* This means we have a visibility for a field coming. */
2840   if (**pp == '/')
2841     {
2842       (*pp)++;
2843       fip->list->visibility = *(*pp)++;
2844     }
2845   else
2846     {
2847       /* normal dbx-style format, no explicit visibility */
2848       fip->list->visibility = VISIBILITY_PUBLIC;
2849     }
2850 
2851   fip->list->field.type = read_type (pp, objfile);
2852   if (**pp == ':')
2853     {
2854       p = ++(*pp);
2855 #if 0
2856       /* Possible future hook for nested types. */
2857       if (**pp == '!')
2858 	{
2859 	  fip->list->field.bitpos = (long) -2;	/* nested type */
2860 	  p = ++(*pp);
2861 	}
2862       else
2863 	...;
2864 #endif
2865       while (*p != ';')
2866 	{
2867 	  p++;
2868 	}
2869       /* Static class member.  */
2870       SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2871       *pp = p + 1;
2872       return;
2873     }
2874   else if (**pp != ',')
2875     {
2876       /* Bad structure-type format.  */
2877       stabs_general_complaint ("bad structure-type format");
2878       return;
2879     }
2880 
2881   (*pp)++;			/* Skip the comma.  */
2882 
2883   {
2884     int nbits;
2885 
2886     FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ',', &nbits, 0);
2887     if (nbits != 0)
2888       {
2889 	stabs_general_complaint ("bad structure-type format");
2890 	return;
2891       }
2892     FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
2893     if (nbits != 0)
2894       {
2895 	stabs_general_complaint ("bad structure-type format");
2896 	return;
2897       }
2898   }
2899 
2900   if (FIELD_BITPOS (fip->list->field) == 0
2901       && FIELD_BITSIZE (fip->list->field) == 0)
2902     {
2903       /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2904          it is a field which has been optimized out.  The correct stab for
2905          this case is to use VISIBILITY_IGNORE, but that is a recent
2906          invention.  (2) It is a 0-size array.  For example
2907          union { int num; char str[0]; } foo.  Printing _("<no value>" for
2908          str in "p foo" is OK, since foo.str (and thus foo.str[3])
2909          will continue to work, and a 0-size array as a whole doesn't
2910          have any contents to print.
2911 
2912          I suspect this probably could also happen with gcc -gstabs (not
2913          -gstabs+) for static fields, and perhaps other C++ extensions.
2914          Hopefully few people use -gstabs with gdb, since it is intended
2915          for dbx compatibility.  */
2916 
2917       /* Ignore this field.  */
2918       fip->list->visibility = VISIBILITY_IGNORE;
2919     }
2920   else
2921     {
2922       /* Detect an unpacked field and mark it as such.
2923          dbx gives a bit size for all fields.
2924          Note that forward refs cannot be packed,
2925          and treat enums as if they had the width of ints.  */
2926 
2927       struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2928 
2929       if (TYPE_CODE (field_type) != TYPE_CODE_INT
2930 	  && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2931 	  && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2932 	  && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2933 	{
2934 	  FIELD_BITSIZE (fip->list->field) = 0;
2935 	}
2936       if ((FIELD_BITSIZE (fip->list->field)
2937 	   == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2938 	   || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
2939 	       && FIELD_BITSIZE (fip->list->field)
2940 		  == gdbarch_int_bit (gdbarch))
2941 	  )
2942 	  &&
2943 	  FIELD_BITPOS (fip->list->field) % 8 == 0)
2944 	{
2945 	  FIELD_BITSIZE (fip->list->field) = 0;
2946 	}
2947     }
2948 }
2949 
2950 
2951 /* Read struct or class data fields.  They have the form:
2952 
2953    NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2954 
2955    At the end, we see a semicolon instead of a field.
2956 
2957    In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2958    a static field.
2959 
2960    The optional VISIBILITY is one of:
2961 
2962    '/0' (VISIBILITY_PRIVATE)
2963    '/1' (VISIBILITY_PROTECTED)
2964    '/2' (VISIBILITY_PUBLIC)
2965    '/9' (VISIBILITY_IGNORE)
2966 
2967    or nothing, for C style fields with public visibility.
2968 
2969    Returns 1 for success, 0 for failure.  */
2970 
2971 static int
2972 read_struct_fields (struct field_info *fip, char **pp, struct type *type,
2973 		    struct objfile *objfile)
2974 {
2975   char *p;
2976   struct nextfield *new;
2977 
2978   /* We better set p right now, in case there are no fields at all...    */
2979 
2980   p = *pp;
2981 
2982   /* Read each data member type until we find the terminating ';' at the end of
2983      the data member list, or break for some other reason such as finding the
2984      start of the member function list. */
2985   /* Stab string for structure/union does not end with two ';' in
2986      SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
2987 
2988   while (**pp != ';' && **pp != '\0')
2989     {
2990       STABS_CONTINUE (pp, objfile);
2991       /* Get space to record the next field's data.  */
2992       new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2993       make_cleanup (xfree, new);
2994       memset (new, 0, sizeof (struct nextfield));
2995       new->next = fip->list;
2996       fip->list = new;
2997 
2998       /* Get the field name.  */
2999       p = *pp;
3000 
3001       /* If is starts with CPLUS_MARKER it is a special abbreviation,
3002          unless the CPLUS_MARKER is followed by an underscore, in
3003          which case it is just the name of an anonymous type, which we
3004          should handle like any other type name.  */
3005 
3006       if (is_cplus_marker (p[0]) && p[1] != '_')
3007 	{
3008 	  if (!read_cpp_abbrev (fip, pp, type, objfile))
3009 	    return 0;
3010 	  continue;
3011 	}
3012 
3013       /* Look for the ':' that separates the field name from the field
3014          values.  Data members are delimited by a single ':', while member
3015          functions are delimited by a pair of ':'s.  When we hit the member
3016          functions (if any), terminate scan loop and return. */
3017 
3018       while (*p != ':' && *p != '\0')
3019 	{
3020 	  p++;
3021 	}
3022       if (*p == '\0')
3023 	return 0;
3024 
3025       /* Check to see if we have hit the member functions yet.  */
3026       if (p[1] == ':')
3027 	{
3028 	  break;
3029 	}
3030       read_one_struct_field (fip, pp, p, type, objfile);
3031     }
3032   if (p[0] == ':' && p[1] == ':')
3033     {
3034       /* (the deleted) chill the list of fields: the last entry (at
3035          the head) is a partially constructed entry which we now
3036          scrub. */
3037       fip->list = fip->list->next;
3038     }
3039   return 1;
3040 }
3041 /* *INDENT-OFF* */
3042 /* The stabs for C++ derived classes contain baseclass information which
3043    is marked by a '!' character after the total size.  This function is
3044    called when we encounter the baseclass marker, and slurps up all the
3045    baseclass information.
3046 
3047    Immediately following the '!' marker is the number of base classes that
3048    the class is derived from, followed by information for each base class.
3049    For each base class, there are two visibility specifiers, a bit offset
3050    to the base class information within the derived class, a reference to
3051    the type for the base class, and a terminating semicolon.
3052 
3053    A typical example, with two base classes, would be "!2,020,19;0264,21;".
3054    						       ^^ ^ ^ ^  ^ ^  ^
3055 	Baseclass information marker __________________|| | | |  | |  |
3056 	Number of baseclasses __________________________| | | |  | |  |
3057 	Visibility specifiers (2) ________________________| | |  | |  |
3058 	Offset in bits from start of class _________________| |  | |  |
3059 	Type number for base class ___________________________|  | |  |
3060 	Visibility specifiers (2) _______________________________| |  |
3061 	Offset in bits from start of class ________________________|  |
3062 	Type number of base class ____________________________________|
3063 
3064   Return 1 for success, 0 for (error-type-inducing) failure.  */
3065 /* *INDENT-ON* */
3066 
3067 
3068 
3069 static int
3070 read_baseclasses (struct field_info *fip, char **pp, struct type *type,
3071 		  struct objfile *objfile)
3072 {
3073   int i;
3074   struct nextfield *new;
3075 
3076   if (**pp != '!')
3077     {
3078       return 1;
3079     }
3080   else
3081     {
3082       /* Skip the '!' baseclass information marker. */
3083       (*pp)++;
3084     }
3085 
3086   ALLOCATE_CPLUS_STRUCT_TYPE (type);
3087   {
3088     int nbits;
3089 
3090     TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
3091     if (nbits != 0)
3092       return 0;
3093   }
3094 
3095 #if 0
3096   /* Some stupid compilers have trouble with the following, so break
3097      it up into simpler expressions.  */
3098   TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3099     TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3100 #else
3101   {
3102     int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3103     char *pointer;
3104 
3105     pointer = (char *) TYPE_ALLOC (type, num_bytes);
3106     TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3107   }
3108 #endif /* 0 */
3109 
3110   B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3111 
3112   for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3113     {
3114       new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3115       make_cleanup (xfree, new);
3116       memset (new, 0, sizeof (struct nextfield));
3117       new->next = fip->list;
3118       fip->list = new;
3119       FIELD_BITSIZE (new->field) = 0;	/* this should be an unpacked field! */
3120 
3121       STABS_CONTINUE (pp, objfile);
3122       switch (**pp)
3123 	{
3124 	case '0':
3125 	  /* Nothing to do. */
3126 	  break;
3127 	case '1':
3128 	  SET_TYPE_FIELD_VIRTUAL (type, i);
3129 	  break;
3130 	default:
3131 	  /* Unknown character.  Complain and treat it as non-virtual.  */
3132 	  {
3133 	    complaint (&symfile_complaints,
3134 		       _("Unknown virtual character `%c' for baseclass"), **pp);
3135 	  }
3136 	}
3137       ++(*pp);
3138 
3139       new->visibility = *(*pp)++;
3140       switch (new->visibility)
3141 	{
3142 	case VISIBILITY_PRIVATE:
3143 	case VISIBILITY_PROTECTED:
3144 	case VISIBILITY_PUBLIC:
3145 	  break;
3146 	default:
3147 	  /* Bad visibility format.  Complain and treat it as
3148 	     public.  */
3149 	  {
3150 	    complaint (&symfile_complaints,
3151 		       _("Unknown visibility `%c' for baseclass"),
3152 		       new->visibility);
3153 	    new->visibility = VISIBILITY_PUBLIC;
3154 	  }
3155 	}
3156 
3157       {
3158 	int nbits;
3159 
3160 	/* The remaining value is the bit offset of the portion of the object
3161 	   corresponding to this baseclass.  Always zero in the absence of
3162 	   multiple inheritance.  */
3163 
3164 	FIELD_BITPOS (new->field) = read_huge_number (pp, ',', &nbits, 0);
3165 	if (nbits != 0)
3166 	  return 0;
3167       }
3168 
3169       /* The last piece of baseclass information is the type of the
3170          base class.  Read it, and remember it's type name as this
3171          field's name. */
3172 
3173       new->field.type = read_type (pp, objfile);
3174       new->field.name = type_name_no_tag (new->field.type);
3175 
3176       /* skip trailing ';' and bump count of number of fields seen */
3177       if (**pp == ';')
3178 	(*pp)++;
3179       else
3180 	return 0;
3181     }
3182   return 1;
3183 }
3184 
3185 /* The tail end of stabs for C++ classes that contain a virtual function
3186    pointer contains a tilde, a %, and a type number.
3187    The type number refers to the base class (possibly this class itself) which
3188    contains the vtable pointer for the current class.
3189 
3190    This function is called when we have parsed all the method declarations,
3191    so we can look for the vptr base class info.  */
3192 
3193 static int
3194 read_tilde_fields (struct field_info *fip, char **pp, struct type *type,
3195 		   struct objfile *objfile)
3196 {
3197   char *p;
3198 
3199   STABS_CONTINUE (pp, objfile);
3200 
3201   /* If we are positioned at a ';', then skip it. */
3202   if (**pp == ';')
3203     {
3204       (*pp)++;
3205     }
3206 
3207   if (**pp == '~')
3208     {
3209       (*pp)++;
3210 
3211       if (**pp == '=' || **pp == '+' || **pp == '-')
3212 	{
3213 	  /* Obsolete flags that used to indicate the presence
3214 	     of constructors and/or destructors. */
3215 	  (*pp)++;
3216 	}
3217 
3218       /* Read either a '%' or the final ';'.  */
3219       if (*(*pp)++ == '%')
3220 	{
3221 	  /* The next number is the type number of the base class
3222 	     (possibly our own class) which supplies the vtable for
3223 	     this class.  Parse it out, and search that class to find
3224 	     its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3225 	     and TYPE_VPTR_FIELDNO.  */
3226 
3227 	  struct type *t;
3228 	  int i;
3229 
3230 	  t = read_type (pp, objfile);
3231 	  p = (*pp)++;
3232 	  while (*p != '\0' && *p != ';')
3233 	    {
3234 	      p++;
3235 	    }
3236 	  if (*p == '\0')
3237 	    {
3238 	      /* Premature end of symbol.  */
3239 	      return 0;
3240 	    }
3241 
3242 	  TYPE_VPTR_BASETYPE (type) = t;
3243 	  if (type == t)	/* Our own class provides vtbl ptr */
3244 	    {
3245 	      for (i = TYPE_NFIELDS (t) - 1;
3246 		   i >= TYPE_N_BASECLASSES (t);
3247 		   --i)
3248 		{
3249 		  char *name = TYPE_FIELD_NAME (t, i);
3250 
3251 		  if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
3252 		      && is_cplus_marker (name[sizeof (vptr_name) - 2]))
3253 		    {
3254 		      TYPE_VPTR_FIELDNO (type) = i;
3255 		      goto gotit;
3256 		    }
3257 		}
3258 	      /* Virtual function table field not found.  */
3259 	      complaint (&symfile_complaints,
3260 			 _("virtual function table pointer not found when defining class `%s'"),
3261 			 TYPE_NAME (type));
3262 	      return 0;
3263 	    }
3264 	  else
3265 	    {
3266 	      TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
3267 	    }
3268 
3269 	gotit:
3270 	  *pp = p + 1;
3271 	}
3272     }
3273   return 1;
3274 }
3275 
3276 static int
3277 attach_fn_fields_to_type (struct field_info *fip, struct type *type)
3278 {
3279   int n;
3280 
3281   for (n = TYPE_NFN_FIELDS (type);
3282        fip->fnlist != NULL;
3283        fip->fnlist = fip->fnlist->next)
3284     {
3285       --n;			/* Circumvent Sun3 compiler bug */
3286       TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3287     }
3288   return 1;
3289 }
3290 
3291 /* Create the vector of fields, and record how big it is.
3292    We need this info to record proper virtual function table information
3293    for this class's virtual functions.  */
3294 
3295 static int
3296 attach_fields_to_type (struct field_info *fip, struct type *type,
3297 		       struct objfile *objfile)
3298 {
3299   int nfields = 0;
3300   int non_public_fields = 0;
3301   struct nextfield *scan;
3302 
3303   /* Count up the number of fields that we have, as well as taking note of
3304      whether or not there are any non-public fields, which requires us to
3305      allocate and build the private_field_bits and protected_field_bits
3306      bitfields. */
3307 
3308   for (scan = fip->list; scan != NULL; scan = scan->next)
3309     {
3310       nfields++;
3311       if (scan->visibility != VISIBILITY_PUBLIC)
3312 	{
3313 	  non_public_fields++;
3314 	}
3315     }
3316 
3317   /* Now we know how many fields there are, and whether or not there are any
3318      non-public fields.  Record the field count, allocate space for the
3319      array of fields, and create blank visibility bitfields if necessary. */
3320 
3321   TYPE_NFIELDS (type) = nfields;
3322   TYPE_FIELDS (type) = (struct field *)
3323     TYPE_ALLOC (type, sizeof (struct field) * nfields);
3324   memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3325 
3326   if (non_public_fields)
3327     {
3328       ALLOCATE_CPLUS_STRUCT_TYPE (type);
3329 
3330       TYPE_FIELD_PRIVATE_BITS (type) =
3331 	(B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3332       B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3333 
3334       TYPE_FIELD_PROTECTED_BITS (type) =
3335 	(B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3336       B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3337 
3338       TYPE_FIELD_IGNORE_BITS (type) =
3339 	(B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3340       B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3341     }
3342 
3343   /* Copy the saved-up fields into the field vector.  Start from the head
3344      of the list, adding to the tail of the field array, so that they end
3345      up in the same order in the array in which they were added to the list. */
3346 
3347   while (nfields-- > 0)
3348     {
3349       TYPE_FIELD (type, nfields) = fip->list->field;
3350       switch (fip->list->visibility)
3351 	{
3352 	case VISIBILITY_PRIVATE:
3353 	  SET_TYPE_FIELD_PRIVATE (type, nfields);
3354 	  break;
3355 
3356 	case VISIBILITY_PROTECTED:
3357 	  SET_TYPE_FIELD_PROTECTED (type, nfields);
3358 	  break;
3359 
3360 	case VISIBILITY_IGNORE:
3361 	  SET_TYPE_FIELD_IGNORE (type, nfields);
3362 	  break;
3363 
3364 	case VISIBILITY_PUBLIC:
3365 	  break;
3366 
3367 	default:
3368 	  /* Unknown visibility.  Complain and treat it as public.  */
3369 	  {
3370 	    complaint (&symfile_complaints, _("Unknown visibility `%c' for field"),
3371 		       fip->list->visibility);
3372 	  }
3373 	  break;
3374 	}
3375       fip->list = fip->list->next;
3376     }
3377   return 1;
3378 }
3379 
3380 
3381 /* Complain that the compiler has emitted more than one definition for the
3382    structure type TYPE.  */
3383 static void
3384 complain_about_struct_wipeout (struct type *type)
3385 {
3386   char *name = "";
3387   char *kind = "";
3388 
3389   if (TYPE_TAG_NAME (type))
3390     {
3391       name = TYPE_TAG_NAME (type);
3392       switch (TYPE_CODE (type))
3393         {
3394         case TYPE_CODE_STRUCT: kind = "struct "; break;
3395         case TYPE_CODE_UNION:  kind = "union ";  break;
3396         case TYPE_CODE_ENUM:   kind = "enum ";   break;
3397         default: kind = "";
3398         }
3399     }
3400   else if (TYPE_NAME (type))
3401     {
3402       name = TYPE_NAME (type);
3403       kind = "";
3404     }
3405   else
3406     {
3407       name = "<unknown>";
3408       kind = "";
3409     }
3410 
3411   complaint (&symfile_complaints,
3412 	     _("struct/union type gets multiply defined: %s%s"), kind, name);
3413 }
3414 
3415 /* Set the length for all variants of a same main_type, which are
3416    connected in the closed chain.
3417 
3418    This is something that needs to be done when a type is defined *after*
3419    some cross references to this type have already been read.  Consider
3420    for instance the following scenario where we have the following two
3421    stabs entries:
3422 
3423         .stabs  "t:p(0,21)=*(0,22)=k(0,23)=xsdummy:",160,0,28,-24
3424         .stabs  "dummy:T(0,23)=s16x:(0,1),0,3[...]"
3425 
3426    A stubbed version of type dummy is created while processing the first
3427    stabs entry.  The length of that type is initially set to zero, since
3428    it is unknown at this point.  Also, a "constant" variation of type
3429    "dummy" is created as well (this is the "(0,22)=k(0,23)" section of
3430    the stabs line).
3431 
3432    The second stabs entry allows us to replace the stubbed definition
3433    with the real definition.  However, we still need to adjust the length
3434    of the "constant" variation of that type, as its length was left
3435    untouched during the main type replacement...  */
3436 
3437 static void
3438 set_length_in_type_chain (struct type *type)
3439 {
3440   struct type *ntype = TYPE_CHAIN (type);
3441 
3442   while (ntype != type)
3443     {
3444       if (TYPE_LENGTH(ntype) == 0)
3445 	TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
3446       else
3447         complain_about_struct_wipeout (ntype);
3448       ntype = TYPE_CHAIN (ntype);
3449     }
3450 }
3451 
3452 /* Read the description of a structure (or union type) and return an object
3453    describing the type.
3454 
3455    PP points to a character pointer that points to the next unconsumed token
3456    in the the stabs string.  For example, given stabs "A:T4=s4a:1,0,32;;",
3457    *PP will point to "4a:1,0,32;;".
3458 
3459    TYPE points to an incomplete type that needs to be filled in.
3460 
3461    OBJFILE points to the current objfile from which the stabs information is
3462    being read.  (Note that it is redundant in that TYPE also contains a pointer
3463    to this same objfile, so it might be a good idea to eliminate it.  FIXME).
3464  */
3465 
3466 static struct type *
3467 read_struct_type (char **pp, struct type *type, enum type_code type_code,
3468                   struct objfile *objfile)
3469 {
3470   struct cleanup *back_to;
3471   struct field_info fi;
3472 
3473   fi.list = NULL;
3474   fi.fnlist = NULL;
3475 
3476   /* When describing struct/union/class types in stabs, G++ always drops
3477      all qualifications from the name.  So if you've got:
3478        struct A { ... struct B { ... }; ... };
3479      then G++ will emit stabs for `struct A::B' that call it simply
3480      `struct B'.  Obviously, if you've got a real top-level definition for
3481      `struct B', or other nested definitions, this is going to cause
3482      problems.
3483 
3484      Obviously, GDB can't fix this by itself, but it can at least avoid
3485      scribbling on existing structure type objects when new definitions
3486      appear.  */
3487   if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3488          || TYPE_STUB (type)))
3489     {
3490       complain_about_struct_wipeout (type);
3491 
3492       /* It's probably best to return the type unchanged.  */
3493       return type;
3494     }
3495 
3496   back_to = make_cleanup (null_cleanup, 0);
3497 
3498   INIT_CPLUS_SPECIFIC (type);
3499   TYPE_CODE (type) = type_code;
3500   TYPE_STUB (type) = 0;
3501 
3502   /* First comes the total size in bytes.  */
3503 
3504   {
3505     int nbits;
3506 
3507     TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
3508     if (nbits != 0)
3509       return error_type (pp, objfile);
3510     set_length_in_type_chain (type);
3511   }
3512 
3513   /* Now read the baseclasses, if any, read the regular C struct or C++
3514      class member fields, attach the fields to the type, read the C++
3515      member functions, attach them to the type, and then read any tilde
3516      field (baseclass specifier for the class holding the main vtable). */
3517 
3518   if (!read_baseclasses (&fi, pp, type, objfile)
3519       || !read_struct_fields (&fi, pp, type, objfile)
3520       || !attach_fields_to_type (&fi, type, objfile)
3521       || !read_member_functions (&fi, pp, type, objfile)
3522       || !attach_fn_fields_to_type (&fi, type)
3523       || !read_tilde_fields (&fi, pp, type, objfile))
3524     {
3525       type = error_type (pp, objfile);
3526     }
3527 
3528   do_cleanups (back_to);
3529   return (type);
3530 }
3531 
3532 /* Read a definition of an array type,
3533    and create and return a suitable type object.
3534    Also creates a range type which represents the bounds of that
3535    array.  */
3536 
3537 static struct type *
3538 read_array_type (char **pp, struct type *type,
3539 		 struct objfile *objfile)
3540 {
3541   struct type *index_type, *element_type, *range_type;
3542   int lower, upper;
3543   int adjustable = 0;
3544   int nbits;
3545 
3546   /* Format of an array type:
3547      "ar<index type>;lower;upper;<array_contents_type>".
3548      OS9000: "arlower,upper;<array_contents_type>".
3549 
3550      Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3551      for these, produce a type like float[][].  */
3552 
3553     {
3554       index_type = read_type (pp, objfile);
3555       if (**pp != ';')
3556 	/* Improper format of array type decl.  */
3557 	return error_type (pp, objfile);
3558       ++*pp;
3559     }
3560 
3561   if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3562     {
3563       (*pp)++;
3564       adjustable = 1;
3565     }
3566   lower = read_huge_number (pp, ';', &nbits, 0);
3567 
3568   if (nbits != 0)
3569     return error_type (pp, objfile);
3570 
3571   if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3572     {
3573       (*pp)++;
3574       adjustable = 1;
3575     }
3576   upper = read_huge_number (pp, ';', &nbits, 0);
3577   if (nbits != 0)
3578     return error_type (pp, objfile);
3579 
3580   element_type = read_type (pp, objfile);
3581 
3582   if (adjustable)
3583     {
3584       lower = 0;
3585       upper = -1;
3586     }
3587 
3588   range_type =
3589     create_range_type ((struct type *) NULL, index_type, lower, upper);
3590   type = create_array_type (type, element_type, range_type);
3591 
3592   return type;
3593 }
3594 
3595 
3596 /* Read a definition of an enumeration type,
3597    and create and return a suitable type object.
3598    Also defines the symbols that represent the values of the type.  */
3599 
3600 static struct type *
3601 read_enum_type (char **pp, struct type *type,
3602 		struct objfile *objfile)
3603 {
3604   struct gdbarch *gdbarch = get_objfile_arch (objfile);
3605   char *p;
3606   char *name;
3607   long n;
3608   struct symbol *sym;
3609   int nsyms = 0;
3610   struct pending **symlist;
3611   struct pending *osyms, *syms;
3612   int o_nsyms;
3613   int nbits;
3614   int unsigned_enum = 1;
3615 
3616 #if 0
3617   /* FIXME!  The stabs produced by Sun CC merrily define things that ought
3618      to be file-scope, between N_FN entries, using N_LSYM.  What's a mother
3619      to do?  For now, force all enum values to file scope.  */
3620   if (within_function)
3621     symlist = &local_symbols;
3622   else
3623 #endif
3624     symlist = &file_symbols;
3625   osyms = *symlist;
3626   o_nsyms = osyms ? osyms->nsyms : 0;
3627 
3628   /* The aix4 compiler emits an extra field before the enum members;
3629      my guess is it's a type of some sort.  Just ignore it.  */
3630   if (**pp == '-')
3631     {
3632       /* Skip over the type.  */
3633       while (**pp != ':')
3634 	(*pp)++;
3635 
3636       /* Skip over the colon.  */
3637       (*pp)++;
3638     }
3639 
3640   /* Read the value-names and their values.
3641      The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3642      A semicolon or comma instead of a NAME means the end.  */
3643   while (**pp && **pp != ';' && **pp != ',')
3644     {
3645       STABS_CONTINUE (pp, objfile);
3646       p = *pp;
3647       while (*p != ':')
3648 	p++;
3649       name = obsavestring (*pp, p - *pp, &objfile->objfile_obstack);
3650       *pp = p + 1;
3651       n = read_huge_number (pp, ',', &nbits, 0);
3652       if (nbits != 0)
3653 	return error_type (pp, objfile);
3654 
3655       sym = (struct symbol *)
3656 	obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
3657       memset (sym, 0, sizeof (struct symbol));
3658       SYMBOL_SET_LINKAGE_NAME (sym, name);
3659       SYMBOL_LANGUAGE (sym) = current_subfile->language;
3660       SYMBOL_CLASS (sym) = LOC_CONST;
3661       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
3662       SYMBOL_VALUE (sym) = n;
3663       if (n < 0)
3664 	unsigned_enum = 0;
3665       add_symbol_to_list (sym, symlist);
3666       nsyms++;
3667     }
3668 
3669   if (**pp == ';')
3670     (*pp)++;			/* Skip the semicolon.  */
3671 
3672   /* Now fill in the fields of the type-structure.  */
3673 
3674   TYPE_LENGTH (type) = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
3675   set_length_in_type_chain (type);
3676   TYPE_CODE (type) = TYPE_CODE_ENUM;
3677   TYPE_STUB (type) = 0;
3678   if (unsigned_enum)
3679     TYPE_UNSIGNED (type) = 1;
3680   TYPE_NFIELDS (type) = nsyms;
3681   TYPE_FIELDS (type) = (struct field *)
3682     TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3683   memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3684 
3685   /* Find the symbols for the values and put them into the type.
3686      The symbols can be found in the symlist that we put them on
3687      to cause them to be defined.  osyms contains the old value
3688      of that symlist; everything up to there was defined by us.  */
3689   /* Note that we preserve the order of the enum constants, so
3690      that in something like "enum {FOO, LAST_THING=FOO}" we print
3691      FOO, not LAST_THING.  */
3692 
3693   for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3694     {
3695       int last = syms == osyms ? o_nsyms : 0;
3696       int j = syms->nsyms;
3697 
3698       for (; --j >= last; --n)
3699 	{
3700 	  struct symbol *xsym = syms->symbol[j];
3701 
3702 	  SYMBOL_TYPE (xsym) = type;
3703 	  TYPE_FIELD_NAME (type, n) = SYMBOL_LINKAGE_NAME (xsym);
3704 	  TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (xsym);
3705 	  TYPE_FIELD_BITSIZE (type, n) = 0;
3706 	}
3707       if (syms == osyms)
3708 	break;
3709     }
3710 
3711   return type;
3712 }
3713 
3714 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3715    typedefs in every file (for int, long, etc):
3716 
3717    type = b <signed> <width> <format type>; <offset>; <nbits>
3718    signed = u or s.
3719    optional format type = c or b for char or boolean.
3720    offset = offset from high order bit to start bit of type.
3721    width is # bytes in object of this type, nbits is # bits in type.
3722 
3723    The width/offset stuff appears to be for small objects stored in
3724    larger ones (e.g. `shorts' in `int' registers).  We ignore it for now,
3725    FIXME.  */
3726 
3727 static struct type *
3728 read_sun_builtin_type (char **pp, int typenums[2], struct objfile *objfile)
3729 {
3730   int type_bits;
3731   int nbits;
3732   int signed_type;
3733   enum type_code code = TYPE_CODE_INT;
3734 
3735   switch (**pp)
3736     {
3737     case 's':
3738       signed_type = 1;
3739       break;
3740     case 'u':
3741       signed_type = 0;
3742       break;
3743     default:
3744       return error_type (pp, objfile);
3745     }
3746   (*pp)++;
3747 
3748   /* For some odd reason, all forms of char put a c here.  This is strange
3749      because no other type has this honor.  We can safely ignore this because
3750      we actually determine 'char'acterness by the number of bits specified in
3751      the descriptor.
3752      Boolean forms, e.g Fortran logical*X, put a b here.  */
3753 
3754   if (**pp == 'c')
3755     (*pp)++;
3756   else if (**pp == 'b')
3757     {
3758       code = TYPE_CODE_BOOL;
3759       (*pp)++;
3760     }
3761 
3762   /* The first number appears to be the number of bytes occupied
3763      by this type, except that unsigned short is 4 instead of 2.
3764      Since this information is redundant with the third number,
3765      we will ignore it.  */
3766   read_huge_number (pp, ';', &nbits, 0);
3767   if (nbits != 0)
3768     return error_type (pp, objfile);
3769 
3770   /* The second number is always 0, so ignore it too. */
3771   read_huge_number (pp, ';', &nbits, 0);
3772   if (nbits != 0)
3773     return error_type (pp, objfile);
3774 
3775   /* The third number is the number of bits for this type. */
3776   type_bits = read_huge_number (pp, 0, &nbits, 0);
3777   if (nbits != 0)
3778     return error_type (pp, objfile);
3779   /* The type *should* end with a semicolon.  If it are embedded
3780      in a larger type the semicolon may be the only way to know where
3781      the type ends.  If this type is at the end of the stabstring we
3782      can deal with the omitted semicolon (but we don't have to like
3783      it).  Don't bother to complain(), Sun's compiler omits the semicolon
3784      for "void".  */
3785   if (**pp == ';')
3786     ++(*pp);
3787 
3788   if (type_bits == 0)
3789     return init_type (TYPE_CODE_VOID, 1,
3790 		      signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3791 		      objfile);
3792   else
3793     return init_type (code,
3794 		      type_bits / TARGET_CHAR_BIT,
3795 		      signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3796 		      objfile);
3797 }
3798 
3799 static struct type *
3800 read_sun_floating_type (char **pp, int typenums[2], struct objfile *objfile)
3801 {
3802   int nbits;
3803   int details;
3804   int nbytes;
3805   struct type *rettype;
3806 
3807   /* The first number has more details about the type, for example
3808      FN_COMPLEX.  */
3809   details = read_huge_number (pp, ';', &nbits, 0);
3810   if (nbits != 0)
3811     return error_type (pp, objfile);
3812 
3813   /* The second number is the number of bytes occupied by this type */
3814   nbytes = read_huge_number (pp, ';', &nbits, 0);
3815   if (nbits != 0)
3816     return error_type (pp, objfile);
3817 
3818   if (details == NF_COMPLEX || details == NF_COMPLEX16
3819       || details == NF_COMPLEX32)
3820     {
3821       rettype = init_type (TYPE_CODE_COMPLEX, nbytes, 0, NULL, objfile);
3822       TYPE_TARGET_TYPE (rettype)
3823 	= init_type (TYPE_CODE_FLT, nbytes / 2, 0, NULL, objfile);
3824       return rettype;
3825     }
3826 
3827   return init_type (TYPE_CODE_FLT, nbytes, 0, NULL, objfile);
3828 }
3829 
3830 /* Read a number from the string pointed to by *PP.
3831    The value of *PP is advanced over the number.
3832    If END is nonzero, the character that ends the
3833    number must match END, or an error happens;
3834    and that character is skipped if it does match.
3835    If END is zero, *PP is left pointing to that character.
3836 
3837    If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3838    the number is represented in an octal representation, assume that
3839    it is represented in a 2's complement representation with a size of
3840    TWOS_COMPLEMENT_BITS.
3841 
3842    If the number fits in a long, set *BITS to 0 and return the value.
3843    If not, set *BITS to be the number of bits in the number and return 0.
3844 
3845    If encounter garbage, set *BITS to -1 and return 0.  */
3846 
3847 static long
3848 read_huge_number (char **pp, int end, int *bits, int twos_complement_bits)
3849 {
3850   char *p = *pp;
3851   int sign = 1;
3852   int sign_bit = 0;
3853   long n = 0;
3854   int radix = 10;
3855   char overflow = 0;
3856   int nbits = 0;
3857   int c;
3858   long upper_limit;
3859   int twos_complement_representation = 0;
3860 
3861   if (*p == '-')
3862     {
3863       sign = -1;
3864       p++;
3865     }
3866 
3867   /* Leading zero means octal.  GCC uses this to output values larger
3868      than an int (because that would be hard in decimal).  */
3869   if (*p == '0')
3870     {
3871       radix = 8;
3872       p++;
3873     }
3874 
3875   /* Skip extra zeros.  */
3876   while (*p == '0')
3877     p++;
3878 
3879   if (sign > 0 && radix == 8 && twos_complement_bits > 0)
3880     {
3881       /* Octal, possibly signed.  Check if we have enough chars for a
3882 	 negative number.  */
3883 
3884       size_t len;
3885       char *p1 = p;
3886 
3887       while ((c = *p1) >= '0' && c < '8')
3888 	p1++;
3889 
3890       len = p1 - p;
3891       if (len > twos_complement_bits / 3
3892 	  || (twos_complement_bits % 3 == 0 && len == twos_complement_bits / 3))
3893 	{
3894 	  /* Ok, we have enough characters for a signed value, check
3895 	     for signness by testing if the sign bit is set.  */
3896 	  sign_bit = (twos_complement_bits % 3 + 2) % 3;
3897 	  c = *p - '0';
3898 	  if (c & (1 << sign_bit))
3899 	    {
3900 	      /* Definitely signed.  */
3901 	      twos_complement_representation = 1;
3902 	      sign = -1;
3903 	    }
3904 	}
3905     }
3906 
3907   upper_limit = LONG_MAX / radix;
3908 
3909   while ((c = *p++) >= '0' && c < ('0' + radix))
3910     {
3911       if (n <= upper_limit)
3912         {
3913           if (twos_complement_representation)
3914             {
3915 	      /* Octal, signed, twos complement representation.  In
3916 		 this case, n is the corresponding absolute value.  */
3917 	      if (n == 0)
3918 		{
3919 		  long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
3920 
3921 		  n = -sn;
3922 		}
3923               else
3924                 {
3925                   n *= radix;
3926                   n -= c - '0';
3927                 }
3928             }
3929           else
3930             {
3931               /* unsigned representation */
3932               n *= radix;
3933               n += c - '0';		/* FIXME this overflows anyway */
3934             }
3935         }
3936       else
3937         overflow = 1;
3938 
3939       /* This depends on large values being output in octal, which is
3940          what GCC does. */
3941       if (radix == 8)
3942 	{
3943 	  if (nbits == 0)
3944 	    {
3945 	      if (c == '0')
3946 		/* Ignore leading zeroes.  */
3947 		;
3948 	      else if (c == '1')
3949 		nbits = 1;
3950 	      else if (c == '2' || c == '3')
3951 		nbits = 2;
3952 	      else
3953 		nbits = 3;
3954 	    }
3955 	  else
3956 	    nbits += 3;
3957 	}
3958     }
3959   if (end)
3960     {
3961       if (c && c != end)
3962 	{
3963 	  if (bits != NULL)
3964 	    *bits = -1;
3965 	  return 0;
3966 	}
3967     }
3968   else
3969     --p;
3970 
3971   if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
3972     {
3973       /* We were supposed to parse a number with maximum
3974 	 TWOS_COMPLEMENT_BITS bits, but something went wrong.  */
3975       if (bits != NULL)
3976 	*bits = -1;
3977       return 0;
3978     }
3979 
3980   *pp = p;
3981   if (overflow)
3982     {
3983       if (nbits == 0)
3984 	{
3985 	  /* Large decimal constants are an error (because it is hard to
3986 	     count how many bits are in them).  */
3987 	  if (bits != NULL)
3988 	    *bits = -1;
3989 	  return 0;
3990 	}
3991 
3992       /* -0x7f is the same as 0x80.  So deal with it by adding one to
3993          the number of bits.  Two's complement represention octals
3994          can't have a '-' in front.  */
3995       if (sign == -1 && !twos_complement_representation)
3996 	++nbits;
3997       if (bits)
3998 	*bits = nbits;
3999     }
4000   else
4001     {
4002       if (bits)
4003 	*bits = 0;
4004       return n * sign;
4005     }
4006   /* It's *BITS which has the interesting information.  */
4007   return 0;
4008 }
4009 
4010 static struct type *
4011 read_range_type (char **pp, int typenums[2], int type_size,
4012                  struct objfile *objfile)
4013 {
4014   struct gdbarch *gdbarch = get_objfile_arch (objfile);
4015   char *orig_pp = *pp;
4016   int rangenums[2];
4017   long n2, n3;
4018   int n2bits, n3bits;
4019   int self_subrange;
4020   struct type *result_type;
4021   struct type *index_type = NULL;
4022 
4023   /* First comes a type we are a subrange of.
4024      In C it is usually 0, 1 or the type being defined.  */
4025   if (read_type_number (pp, rangenums) != 0)
4026     return error_type (pp, objfile);
4027   self_subrange = (rangenums[0] == typenums[0] &&
4028 		   rangenums[1] == typenums[1]);
4029 
4030   if (**pp == '=')
4031     {
4032       *pp = orig_pp;
4033       index_type = read_type (pp, objfile);
4034     }
4035 
4036   /* A semicolon should now follow; skip it.  */
4037   if (**pp == ';')
4038     (*pp)++;
4039 
4040   /* The remaining two operands are usually lower and upper bounds
4041      of the range.  But in some special cases they mean something else.  */
4042   n2 = read_huge_number (pp, ';', &n2bits, type_size);
4043   n3 = read_huge_number (pp, ';', &n3bits, type_size);
4044 
4045   if (n2bits == -1 || n3bits == -1)
4046     return error_type (pp, objfile);
4047 
4048   if (index_type)
4049     goto handle_true_range;
4050 
4051   /* If limits are huge, must be large integral type.  */
4052   if (n2bits != 0 || n3bits != 0)
4053     {
4054       char got_signed = 0;
4055       char got_unsigned = 0;
4056       /* Number of bits in the type.  */
4057       int nbits = 0;
4058 
4059       /* If a type size attribute has been specified, the bounds of
4060          the range should fit in this size. If the lower bounds needs
4061          more bits than the upper bound, then the type is signed.  */
4062       if (n2bits <= type_size && n3bits <= type_size)
4063         {
4064           if (n2bits == type_size && n2bits > n3bits)
4065             got_signed = 1;
4066           else
4067             got_unsigned = 1;
4068           nbits = type_size;
4069         }
4070       /* Range from 0 to <large number> is an unsigned large integral type.  */
4071       else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
4072 	{
4073 	  got_unsigned = 1;
4074 	  nbits = n3bits;
4075 	}
4076       /* Range from <large number> to <large number>-1 is a large signed
4077          integral type.  Take care of the case where <large number> doesn't
4078          fit in a long but <large number>-1 does.  */
4079       else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
4080 	       || (n2bits != 0 && n3bits == 0
4081 		   && (n2bits == sizeof (long) * HOST_CHAR_BIT)
4082 		   && n3 == LONG_MAX))
4083 	{
4084 	  got_signed = 1;
4085 	  nbits = n2bits;
4086 	}
4087 
4088       if (got_signed || got_unsigned)
4089 	{
4090 	  return init_type (TYPE_CODE_INT, nbits / TARGET_CHAR_BIT,
4091 			    got_unsigned ? TYPE_FLAG_UNSIGNED : 0, NULL,
4092 			    objfile);
4093 	}
4094       else
4095 	return error_type (pp, objfile);
4096     }
4097 
4098   /* A type defined as a subrange of itself, with bounds both 0, is void.  */
4099   if (self_subrange && n2 == 0 && n3 == 0)
4100     return init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
4101 
4102   /* If n3 is zero and n2 is positive, we want a floating type, and n2
4103      is the width in bytes.
4104 
4105      Fortran programs appear to use this for complex types also.  To
4106      distinguish between floats and complex, g77 (and others?)  seem
4107      to use self-subranges for the complexes, and subranges of int for
4108      the floats.
4109 
4110      Also note that for complexes, g77 sets n2 to the size of one of
4111      the member floats, not the whole complex beast.  My guess is that
4112      this was to work well with pre-COMPLEX versions of gdb. */
4113 
4114   if (n3 == 0 && n2 > 0)
4115     {
4116       struct type *float_type
4117 	= init_type (TYPE_CODE_FLT, n2, 0, NULL, objfile);
4118 
4119       if (self_subrange)
4120 	{
4121 	  struct type *complex_type =
4122 	    init_type (TYPE_CODE_COMPLEX, 2 * n2, 0, NULL, objfile);
4123 
4124 	  TYPE_TARGET_TYPE (complex_type) = float_type;
4125 	  return complex_type;
4126 	}
4127       else
4128 	return float_type;
4129     }
4130 
4131   /* If the upper bound is -1, it must really be an unsigned integral.  */
4132 
4133   else if (n2 == 0 && n3 == -1)
4134     {
4135       int bits = type_size;
4136 
4137       if (bits <= 0)
4138 	{
4139 	  /* We don't know its size.  It is unsigned int or unsigned
4140 	     long.  GCC 2.3.3 uses this for long long too, but that is
4141 	     just a GDB 3.5 compatibility hack.  */
4142 	  bits = gdbarch_int_bit (gdbarch);
4143 	}
4144 
4145       return init_type (TYPE_CODE_INT, bits / TARGET_CHAR_BIT,
4146 			TYPE_FLAG_UNSIGNED, NULL, objfile);
4147     }
4148 
4149   /* Special case: char is defined (Who knows why) as a subrange of
4150      itself with range 0-127.  */
4151   else if (self_subrange && n2 == 0 && n3 == 127)
4152     return init_type (TYPE_CODE_INT, 1, TYPE_FLAG_NOSIGN, NULL, objfile);
4153 
4154   /* We used to do this only for subrange of self or subrange of int.  */
4155   else if (n2 == 0)
4156     {
4157       /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4158          "unsigned long", and we already checked for that,
4159          so don't need to test for it here.  */
4160 
4161       if (n3 < 0)
4162 	/* n3 actually gives the size.  */
4163 	return init_type (TYPE_CODE_INT, -n3, TYPE_FLAG_UNSIGNED,
4164 			  NULL, objfile);
4165 
4166       /* Is n3 == 2**(8n)-1 for some integer n?  Then it's an
4167          unsigned n-byte integer.  But do require n to be a power of
4168          two; we don't want 3- and 5-byte integers flying around.  */
4169       {
4170 	int bytes;
4171 	unsigned long bits;
4172 
4173 	bits = n3;
4174 	for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4175 	  bits >>= 8;
4176 	if (bits == 0
4177 	    && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
4178 	  return init_type (TYPE_CODE_INT, bytes, TYPE_FLAG_UNSIGNED, NULL,
4179 			    objfile);
4180       }
4181     }
4182   /* I think this is for Convex "long long".  Since I don't know whether
4183      Convex sets self_subrange, I also accept that particular size regardless
4184      of self_subrange.  */
4185   else if (n3 == 0 && n2 < 0
4186 	   && (self_subrange
4187 	       || n2 == -gdbarch_long_long_bit
4188 			  (gdbarch) / TARGET_CHAR_BIT))
4189     return init_type (TYPE_CODE_INT, -n2, 0, NULL, objfile);
4190   else if (n2 == -n3 - 1)
4191     {
4192       if (n3 == 0x7f)
4193 	return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
4194       if (n3 == 0x7fff)
4195 	return init_type (TYPE_CODE_INT, 2, 0, NULL, objfile);
4196       if (n3 == 0x7fffffff)
4197 	return init_type (TYPE_CODE_INT, 4, 0, NULL, objfile);
4198     }
4199 
4200   /* We have a real range type on our hands.  Allocate space and
4201      return a real pointer.  */
4202 handle_true_range:
4203 
4204   if (self_subrange)
4205     index_type = objfile_type (objfile)->builtin_int;
4206   else
4207     index_type = *dbx_lookup_type (rangenums, objfile);
4208   if (index_type == NULL)
4209     {
4210       /* Does this actually ever happen?  Is that why we are worrying
4211          about dealing with it rather than just calling error_type?  */
4212 
4213       complaint (&symfile_complaints,
4214 		 _("base type %d of range type is not defined"), rangenums[1]);
4215 
4216       index_type = objfile_type (objfile)->builtin_int;
4217     }
4218 
4219   result_type = create_range_type ((struct type *) NULL, index_type, n2, n3);
4220   return (result_type);
4221 }
4222 
4223 /* Read in an argument list.  This is a list of types, separated by commas
4224    and terminated with END.  Return the list of types read in, or NULL
4225    if there is an error.  */
4226 
4227 static struct field *
4228 read_args (char **pp, int end, struct objfile *objfile, int *nargsp,
4229 	   int *varargsp)
4230 {
4231   /* FIXME!  Remove this arbitrary limit!  */
4232   struct type *types[1024];	/* allow for fns of 1023 parameters */
4233   int n = 0, i;
4234   struct field *rval;
4235 
4236   while (**pp != end)
4237     {
4238       if (**pp != ',')
4239 	/* Invalid argument list: no ','.  */
4240 	return NULL;
4241       (*pp)++;
4242       STABS_CONTINUE (pp, objfile);
4243       types[n++] = read_type (pp, objfile);
4244     }
4245   (*pp)++;			/* get past `end' (the ':' character) */
4246 
4247   if (n == 0)
4248     {
4249       /* We should read at least the THIS parameter here.  Some broken stabs
4250 	 output contained `(0,41),(0,42)=@s8;-16;,(0,43),(0,1);' where should
4251 	 have been present ";-16,(0,43)" reference instead.  This way the
4252 	 excessive ";" marker prematurely stops the parameters parsing.  */
4253 
4254       complaint (&symfile_complaints, _("Invalid (empty) method arguments"));
4255       *varargsp = 0;
4256     }
4257   else if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
4258     *varargsp = 1;
4259   else
4260     {
4261       n--;
4262       *varargsp = 0;
4263     }
4264 
4265   rval = (struct field *) xmalloc (n * sizeof (struct field));
4266   memset (rval, 0, n * sizeof (struct field));
4267   for (i = 0; i < n; i++)
4268     rval[i].type = types[i];
4269   *nargsp = n;
4270   return rval;
4271 }
4272 
4273 /* Common block handling.  */
4274 
4275 /* List of symbols declared since the last BCOMM.  This list is a tail
4276    of local_symbols.  When ECOMM is seen, the symbols on the list
4277    are noted so their proper addresses can be filled in later,
4278    using the common block base address gotten from the assembler
4279    stabs.  */
4280 
4281 static struct pending *common_block;
4282 static int common_block_i;
4283 
4284 /* Name of the current common block.  We get it from the BCOMM instead of the
4285    ECOMM to match IBM documentation (even though IBM puts the name both places
4286    like everyone else).  */
4287 static char *common_block_name;
4288 
4289 /* Process a N_BCOMM symbol.  The storage for NAME is not guaranteed
4290    to remain after this function returns.  */
4291 
4292 void
4293 common_block_start (char *name, struct objfile *objfile)
4294 {
4295   if (common_block_name != NULL)
4296     {
4297       complaint (&symfile_complaints,
4298 		 _("Invalid symbol data: common block within common block"));
4299     }
4300   common_block = local_symbols;
4301   common_block_i = local_symbols ? local_symbols->nsyms : 0;
4302   common_block_name = obsavestring (name, strlen (name),
4303 				    &objfile->objfile_obstack);
4304 }
4305 
4306 /* Process a N_ECOMM symbol.  */
4307 
4308 void
4309 common_block_end (struct objfile *objfile)
4310 {
4311   /* Symbols declared since the BCOMM are to have the common block
4312      start address added in when we know it.  common_block and
4313      common_block_i point to the first symbol after the BCOMM in
4314      the local_symbols list; copy the list and hang it off the
4315      symbol for the common block name for later fixup.  */
4316   int i;
4317   struct symbol *sym;
4318   struct pending *new = 0;
4319   struct pending *next;
4320   int j;
4321 
4322   if (common_block_name == NULL)
4323     {
4324       complaint (&symfile_complaints, _("ECOMM symbol unmatched by BCOMM"));
4325       return;
4326     }
4327 
4328   sym = (struct symbol *)
4329     obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
4330   memset (sym, 0, sizeof (struct symbol));
4331   /* Note: common_block_name already saved on objfile_obstack */
4332   SYMBOL_SET_LINKAGE_NAME (sym, common_block_name);
4333   SYMBOL_CLASS (sym) = LOC_BLOCK;
4334 
4335   /* Now we copy all the symbols which have been defined since the BCOMM.  */
4336 
4337   /* Copy all the struct pendings before common_block.  */
4338   for (next = local_symbols;
4339        next != NULL && next != common_block;
4340        next = next->next)
4341     {
4342       for (j = 0; j < next->nsyms; j++)
4343 	add_symbol_to_list (next->symbol[j], &new);
4344     }
4345 
4346   /* Copy however much of COMMON_BLOCK we need.  If COMMON_BLOCK is
4347      NULL, it means copy all the local symbols (which we already did
4348      above).  */
4349 
4350   if (common_block != NULL)
4351     for (j = common_block_i; j < common_block->nsyms; j++)
4352       add_symbol_to_list (common_block->symbol[j], &new);
4353 
4354   SYMBOL_TYPE (sym) = (struct type *) new;
4355 
4356   /* Should we be putting local_symbols back to what it was?
4357      Does it matter?  */
4358 
4359   i = hashname (SYMBOL_LINKAGE_NAME (sym));
4360   SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4361   global_sym_chain[i] = sym;
4362   common_block_name = NULL;
4363 }
4364 
4365 /* Add a common block's start address to the offset of each symbol
4366    declared to be in it (by being between a BCOMM/ECOMM pair that uses
4367    the common block name).  */
4368 
4369 static void
4370 fix_common_block (struct symbol *sym, int valu)
4371 {
4372   struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
4373 
4374   for (; next; next = next->next)
4375     {
4376       int j;
4377 
4378       for (j = next->nsyms - 1; j >= 0; j--)
4379 	SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4380     }
4381 }
4382 
4383 
4384 
4385 /* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4386    See add_undefined_type for more details.  */
4387 
4388 static void
4389 add_undefined_type_noname (struct type *type, int typenums[2])
4390 {
4391   struct nat nat;
4392 
4393   nat.typenums[0] = typenums [0];
4394   nat.typenums[1] = typenums [1];
4395   nat.type = type;
4396 
4397   if (noname_undefs_length == noname_undefs_allocated)
4398     {
4399       noname_undefs_allocated *= 2;
4400       noname_undefs = (struct nat *)
4401 	xrealloc ((char *) noname_undefs,
4402 		  noname_undefs_allocated * sizeof (struct nat));
4403     }
4404   noname_undefs[noname_undefs_length++] = nat;
4405 }
4406 
4407 /* Add TYPE to the UNDEF_TYPES vector.
4408    See add_undefined_type for more details.  */
4409 
4410 static void
4411 add_undefined_type_1 (struct type *type)
4412 {
4413   if (undef_types_length == undef_types_allocated)
4414     {
4415       undef_types_allocated *= 2;
4416       undef_types = (struct type **)
4417 	xrealloc ((char *) undef_types,
4418 		  undef_types_allocated * sizeof (struct type *));
4419     }
4420   undef_types[undef_types_length++] = type;
4421 }
4422 
4423 /* What about types defined as forward references inside of a small lexical
4424    scope?  */
4425 /* Add a type to the list of undefined types to be checked through
4426    once this file has been read in.
4427 
4428    In practice, we actually maintain two such lists: The first list
4429    (UNDEF_TYPES) is used for types whose name has been provided, and
4430    concerns forward references (eg 'xs' or 'xu' forward references);
4431    the second list (NONAME_UNDEFS) is used for types whose name is
4432    unknown at creation time, because they were referenced through
4433    their type number before the actual type was declared.
4434    This function actually adds the given type to the proper list.  */
4435 
4436 static void
4437 add_undefined_type (struct type *type, int typenums[2])
4438 {
4439   if (TYPE_TAG_NAME (type) == NULL)
4440     add_undefined_type_noname (type, typenums);
4441   else
4442     add_undefined_type_1 (type);
4443 }
4444 
4445 /* Try to fix all undefined types pushed on the UNDEF_TYPES vector.  */
4446 
4447 static void
4448 cleanup_undefined_types_noname (struct objfile *objfile)
4449 {
4450   int i;
4451 
4452   for (i = 0; i < noname_undefs_length; i++)
4453     {
4454       struct nat nat = noname_undefs[i];
4455       struct type **type;
4456 
4457       type = dbx_lookup_type (nat.typenums, objfile);
4458       if (nat.type != *type && TYPE_CODE (*type) != TYPE_CODE_UNDEF)
4459         {
4460           /* The instance flags of the undefined type are still unset,
4461              and needs to be copied over from the reference type.
4462              Since replace_type expects them to be identical, we need
4463              to set these flags manually before hand.  */
4464           TYPE_INSTANCE_FLAGS (nat.type) = TYPE_INSTANCE_FLAGS (*type);
4465           replace_type (nat.type, *type);
4466         }
4467     }
4468 
4469   noname_undefs_length = 0;
4470 }
4471 
4472 /* Go through each undefined type, see if it's still undefined, and fix it
4473    up if possible.  We have two kinds of undefined types:
4474 
4475    TYPE_CODE_ARRAY:  Array whose target type wasn't defined yet.
4476    Fix:  update array length using the element bounds
4477    and the target type's length.
4478    TYPE_CODE_STRUCT, TYPE_CODE_UNION:  Structure whose fields were not
4479    yet defined at the time a pointer to it was made.
4480    Fix:  Do a full lookup on the struct/union tag.  */
4481 
4482 static void
4483 cleanup_undefined_types_1 (void)
4484 {
4485   struct type **type;
4486 
4487   /* Iterate over every undefined type, and look for a symbol whose type
4488      matches our undefined type.  The symbol matches if:
4489        1. It is a typedef in the STRUCT domain;
4490        2. It has the same name, and same type code;
4491        3. The instance flags are identical.
4492 
4493      It is important to check the instance flags, because we have seen
4494      examples where the debug info contained definitions such as:
4495 
4496          "foo_t:t30=B31=xefoo_t:"
4497 
4498      In this case, we have created an undefined type named "foo_t" whose
4499      instance flags is null (when processing "xefoo_t"), and then created
4500      another type with the same name, but with different instance flags
4501      ('B' means volatile).  I think that the definition above is wrong,
4502      since the same type cannot be volatile and non-volatile at the same
4503      time, but we need to be able to cope with it when it happens.  The
4504      approach taken here is to treat these two types as different.  */
4505 
4506   for (type = undef_types; type < undef_types + undef_types_length; type++)
4507     {
4508       switch (TYPE_CODE (*type))
4509 	{
4510 
4511 	case TYPE_CODE_STRUCT:
4512 	case TYPE_CODE_UNION:
4513 	case TYPE_CODE_ENUM:
4514 	  {
4515 	    /* Check if it has been defined since.  Need to do this here
4516 	       as well as in check_typedef to deal with the (legitimate in
4517 	       C though not C++) case of several types with the same name
4518 	       in different source files.  */
4519 	    if (TYPE_STUB (*type))
4520 	      {
4521 		struct pending *ppt;
4522 		int i;
4523 		/* Name of the type, without "struct" or "union" */
4524 		char *typename = TYPE_TAG_NAME (*type);
4525 
4526 		if (typename == NULL)
4527 		  {
4528 		    complaint (&symfile_complaints, _("need a type name"));
4529 		    break;
4530 		  }
4531 		for (ppt = file_symbols; ppt; ppt = ppt->next)
4532 		  {
4533 		    for (i = 0; i < ppt->nsyms; i++)
4534 		      {
4535 			struct symbol *sym = ppt->symbol[i];
4536 
4537 			if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4538 			    && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4539 			    && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4540 				TYPE_CODE (*type))
4541 			    && (TYPE_INSTANCE_FLAGS (*type) ==
4542 				TYPE_INSTANCE_FLAGS (SYMBOL_TYPE (sym)))
4543 			    && strcmp (SYMBOL_LINKAGE_NAME (sym),
4544 				       typename) == 0)
4545                           replace_type (*type, SYMBOL_TYPE (sym));
4546 		      }
4547 		  }
4548 	      }
4549 	  }
4550 	  break;
4551 
4552 	default:
4553 	  {
4554 	    complaint (&symfile_complaints,
4555 		       _("forward-referenced types left unresolved, "
4556                        "type code %d."),
4557 		       TYPE_CODE (*type));
4558 	  }
4559 	  break;
4560 	}
4561     }
4562 
4563   undef_types_length = 0;
4564 }
4565 
4566 /* Try to fix all the undefined types we ecountered while processing
4567    this unit.  */
4568 
4569 void
4570 cleanup_undefined_types (struct objfile *objfile)
4571 {
4572   cleanup_undefined_types_1 ();
4573   cleanup_undefined_types_noname (objfile);
4574 }
4575 
4576 /* Scan through all of the global symbols defined in the object file,
4577    assigning values to the debugging symbols that need to be assigned
4578    to.  Get these symbols from the minimal symbol table.  */
4579 
4580 void
4581 scan_file_globals (struct objfile *objfile)
4582 {
4583   int hash;
4584   struct minimal_symbol *msymbol;
4585   struct symbol *sym, *prev;
4586   struct objfile *resolve_objfile;
4587 
4588   /* SVR4 based linkers copy referenced global symbols from shared
4589      libraries to the main executable.
4590      If we are scanning the symbols for a shared library, try to resolve
4591      them from the minimal symbols of the main executable first.  */
4592 
4593   if (symfile_objfile && objfile != symfile_objfile)
4594     resolve_objfile = symfile_objfile;
4595   else
4596     resolve_objfile = objfile;
4597 
4598   while (1)
4599     {
4600       /* Avoid expensive loop through all minimal symbols if there are
4601          no unresolved symbols.  */
4602       for (hash = 0; hash < HASHSIZE; hash++)
4603 	{
4604 	  if (global_sym_chain[hash])
4605 	    break;
4606 	}
4607       if (hash >= HASHSIZE)
4608 	return;
4609 
4610       ALL_OBJFILE_MSYMBOLS (resolve_objfile, msymbol)
4611 	{
4612 	  QUIT;
4613 
4614 	  /* Skip static symbols.  */
4615 	  switch (MSYMBOL_TYPE (msymbol))
4616 	    {
4617 	    case mst_file_text:
4618 	    case mst_file_data:
4619 	    case mst_file_bss:
4620 	      continue;
4621 	    default:
4622 	      break;
4623 	    }
4624 
4625 	  prev = NULL;
4626 
4627 	  /* Get the hash index and check all the symbols
4628 	     under that hash index. */
4629 
4630 	  hash = hashname (SYMBOL_LINKAGE_NAME (msymbol));
4631 
4632 	  for (sym = global_sym_chain[hash]; sym;)
4633 	    {
4634 	      if (strcmp (SYMBOL_LINKAGE_NAME (msymbol),
4635 			  SYMBOL_LINKAGE_NAME (sym)) == 0)
4636 		{
4637 		  /* Splice this symbol out of the hash chain and
4638 		     assign the value we have to it. */
4639 		  if (prev)
4640 		    {
4641 		      SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4642 		    }
4643 		  else
4644 		    {
4645 		      global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4646 		    }
4647 
4648 		  /* Check to see whether we need to fix up a common block.  */
4649 		  /* Note: this code might be executed several times for
4650 		     the same symbol if there are multiple references.  */
4651 		  if (sym)
4652 		    {
4653 		      if (SYMBOL_CLASS (sym) == LOC_BLOCK)
4654 			{
4655 			  fix_common_block (sym,
4656 					    SYMBOL_VALUE_ADDRESS (msymbol));
4657 			}
4658 		      else
4659 			{
4660 			  SYMBOL_VALUE_ADDRESS (sym)
4661 			    = SYMBOL_VALUE_ADDRESS (msymbol);
4662 			}
4663 		      SYMBOL_SECTION (sym) = SYMBOL_SECTION (msymbol);
4664 		    }
4665 
4666 		  if (prev)
4667 		    {
4668 		      sym = SYMBOL_VALUE_CHAIN (prev);
4669 		    }
4670 		  else
4671 		    {
4672 		      sym = global_sym_chain[hash];
4673 		    }
4674 		}
4675 	      else
4676 		{
4677 		  prev = sym;
4678 		  sym = SYMBOL_VALUE_CHAIN (sym);
4679 		}
4680 	    }
4681 	}
4682       if (resolve_objfile == objfile)
4683 	break;
4684       resolve_objfile = objfile;
4685     }
4686 
4687   /* Change the storage class of any remaining unresolved globals to
4688      LOC_UNRESOLVED and remove them from the chain.  */
4689   for (hash = 0; hash < HASHSIZE; hash++)
4690     {
4691       sym = global_sym_chain[hash];
4692       while (sym)
4693 	{
4694 	  prev = sym;
4695 	  sym = SYMBOL_VALUE_CHAIN (sym);
4696 
4697 	  /* Change the symbol address from the misleading chain value
4698 	     to address zero.  */
4699 	  SYMBOL_VALUE_ADDRESS (prev) = 0;
4700 
4701 	  /* Complain about unresolved common block symbols.  */
4702 	  if (SYMBOL_CLASS (prev) == LOC_STATIC)
4703 	    SYMBOL_CLASS (prev) = LOC_UNRESOLVED;
4704 	  else
4705 	    complaint (&symfile_complaints,
4706 		       _("%s: common block `%s' from global_sym_chain unresolved"),
4707 		       objfile->name, SYMBOL_PRINT_NAME (prev));
4708 	}
4709     }
4710   memset (global_sym_chain, 0, sizeof (global_sym_chain));
4711 }
4712 
4713 /* Initialize anything that needs initializing when starting to read
4714    a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4715    to a psymtab.  */
4716 
4717 void
4718 stabsread_init (void)
4719 {
4720 }
4721 
4722 /* Initialize anything that needs initializing when a completely new
4723    symbol file is specified (not just adding some symbols from another
4724    file, e.g. a shared library).  */
4725 
4726 void
4727 stabsread_new_init (void)
4728 {
4729   /* Empty the hash table of global syms looking for values.  */
4730   memset (global_sym_chain, 0, sizeof (global_sym_chain));
4731 }
4732 
4733 /* Initialize anything that needs initializing at the same time as
4734    start_symtab() is called. */
4735 
4736 void
4737 start_stabs (void)
4738 {
4739   global_stabs = NULL;		/* AIX COFF */
4740   /* Leave FILENUM of 0 free for builtin types and this file's types.  */
4741   n_this_object_header_files = 1;
4742   type_vector_length = 0;
4743   type_vector = (struct type **) 0;
4744 
4745   /* FIXME: If common_block_name is not already NULL, we should complain().  */
4746   common_block_name = NULL;
4747 }
4748 
4749 /* Call after end_symtab() */
4750 
4751 void
4752 end_stabs (void)
4753 {
4754   if (type_vector)
4755     {
4756       xfree (type_vector);
4757     }
4758   type_vector = 0;
4759   type_vector_length = 0;
4760   previous_stab_code = 0;
4761 }
4762 
4763 void
4764 finish_global_stabs (struct objfile *objfile)
4765 {
4766   if (global_stabs)
4767     {
4768       patch_block_stabs (global_symbols, global_stabs, objfile);
4769       xfree (global_stabs);
4770       global_stabs = NULL;
4771     }
4772 }
4773 
4774 /* Find the end of the name, delimited by a ':', but don't match
4775    ObjC symbols which look like -[Foo bar::]:bla.  */
4776 static char *
4777 find_name_end (char *name)
4778 {
4779   char *s = name;
4780 
4781   if (s[0] == '-' || *s == '+')
4782     {
4783       /* Must be an ObjC method symbol.  */
4784       if (s[1] != '[')
4785 	{
4786 	  error (_("invalid symbol name \"%s\""), name);
4787 	}
4788       s = strchr (s, ']');
4789       if (s == NULL)
4790 	{
4791 	  error (_("invalid symbol name \"%s\""), name);
4792 	}
4793       return strchr (s, ':');
4794     }
4795   else
4796     {
4797       return strchr (s, ':');
4798     }
4799 }
4800 
4801 /* Initializer for this module */
4802 
4803 void
4804 _initialize_stabsread (void)
4805 {
4806   rs6000_builtin_type_data = register_objfile_data ();
4807 
4808   undef_types_allocated = 20;
4809   undef_types_length = 0;
4810   undef_types = (struct type **)
4811     xmalloc (undef_types_allocated * sizeof (struct type *));
4812 
4813   noname_undefs_allocated = 20;
4814   noname_undefs_length = 0;
4815   noname_undefs = (struct nat *)
4816     xmalloc (noname_undefs_allocated * sizeof (struct nat));
4817 }
4818