1 /* Handle SVR4 shared libraries for GDB, the GNU Debugger. 2 3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 4 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 5 Free Software Foundation, Inc. 6 7 This file is part of GDB. 8 9 This program is free software; you can redistribute it and/or modify 10 it under the terms of the GNU General Public License as published by 11 the Free Software Foundation; either version 3 of the License, or 12 (at your option) any later version. 13 14 This program is distributed in the hope that it will be useful, 15 but WITHOUT ANY WARRANTY; without even the implied warranty of 16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 GNU General Public License for more details. 18 19 You should have received a copy of the GNU General Public License 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 21 22 #include "defs.h" 23 24 #include "elf/external.h" 25 #include "elf/common.h" 26 #include "elf/mips.h" 27 28 #include "symtab.h" 29 #include "bfd.h" 30 #include "symfile.h" 31 #include "objfiles.h" 32 #include "gdbcore.h" 33 #include "target.h" 34 #include "inferior.h" 35 #include "regcache.h" 36 #include "gdbthread.h" 37 #include "observer.h" 38 39 #include "gdb_assert.h" 40 41 #include "solist.h" 42 #include "solib.h" 43 #include "solib-svr4.h" 44 45 #include "bfd-target.h" 46 #include "elf-bfd.h" 47 #include "exec.h" 48 #include "auxv.h" 49 #include "exceptions.h" 50 51 static struct link_map_offsets *svr4_fetch_link_map_offsets (void); 52 static int svr4_have_link_map_offsets (void); 53 static void svr4_relocate_main_executable (void); 54 55 /* Link map info to include in an allocated so_list entry */ 56 57 struct lm_info 58 { 59 /* Pointer to copy of link map from inferior. The type is char * 60 rather than void *, so that we may use byte offsets to find the 61 various fields without the need for a cast. */ 62 gdb_byte *lm; 63 64 /* Amount by which addresses in the binary should be relocated to 65 match the inferior. This could most often be taken directly 66 from lm, but when prelinking is involved and the prelink base 67 address changes, we may need a different offset, we want to 68 warn about the difference and compute it only once. */ 69 CORE_ADDR l_addr; 70 71 /* The target location of lm. */ 72 CORE_ADDR lm_addr; 73 }; 74 75 /* On SVR4 systems, a list of symbols in the dynamic linker where 76 GDB can try to place a breakpoint to monitor shared library 77 events. 78 79 If none of these symbols are found, or other errors occur, then 80 SVR4 systems will fall back to using a symbol as the "startup 81 mapping complete" breakpoint address. */ 82 83 static char *solib_break_names[] = 84 { 85 "r_debug_state", 86 "_r_debug_state", 87 "_dl_debug_state", 88 "rtld_db_dlactivity", 89 "__dl_rtld_db_dlactivity", 90 "_rtld_debug_state", 91 92 NULL 93 }; 94 95 static char *bkpt_names[] = 96 { 97 "_start", 98 "__start", 99 "main", 100 NULL 101 }; 102 103 static char *main_name_list[] = 104 { 105 "main_$main", 106 NULL 107 }; 108 109 /* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent 110 the same shared library. */ 111 112 static int 113 svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name) 114 { 115 if (strcmp (gdb_so_name, inferior_so_name) == 0) 116 return 1; 117 118 /* On Solaris, when starting inferior we think that dynamic linker is 119 /usr/lib/ld.so.1, but later on, the table of loaded shared libraries 120 contains /lib/ld.so.1. Sometimes one file is a link to another, but 121 sometimes they have identical content, but are not linked to each 122 other. We don't restrict this check for Solaris, but the chances 123 of running into this situation elsewhere are very low. */ 124 if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0 125 && strcmp (inferior_so_name, "/lib/ld.so.1") == 0) 126 return 1; 127 128 /* Similarly, we observed the same issue with sparc64, but with 129 different locations. */ 130 if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0 131 && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0) 132 return 1; 133 134 return 0; 135 } 136 137 static int 138 svr4_same (struct so_list *gdb, struct so_list *inferior) 139 { 140 return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name)); 141 } 142 143 /* link map access functions */ 144 145 static CORE_ADDR 146 LM_ADDR_FROM_LINK_MAP (struct so_list *so) 147 { 148 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets (); 149 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr; 150 151 return extract_typed_address (so->lm_info->lm + lmo->l_addr_offset, 152 ptr_type); 153 } 154 155 static int 156 HAS_LM_DYNAMIC_FROM_LINK_MAP (void) 157 { 158 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets (); 159 160 return lmo->l_ld_offset >= 0; 161 } 162 163 static CORE_ADDR 164 LM_DYNAMIC_FROM_LINK_MAP (struct so_list *so) 165 { 166 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets (); 167 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr; 168 169 return extract_typed_address (so->lm_info->lm + lmo->l_ld_offset, 170 ptr_type); 171 } 172 173 static CORE_ADDR 174 LM_ADDR_CHECK (struct so_list *so, bfd *abfd) 175 { 176 if (so->lm_info->l_addr == (CORE_ADDR)-1) 177 { 178 struct bfd_section *dyninfo_sect; 179 CORE_ADDR l_addr, l_dynaddr, dynaddr; 180 181 l_addr = LM_ADDR_FROM_LINK_MAP (so); 182 183 if (! abfd || ! HAS_LM_DYNAMIC_FROM_LINK_MAP ()) 184 goto set_addr; 185 186 l_dynaddr = LM_DYNAMIC_FROM_LINK_MAP (so); 187 188 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic"); 189 if (dyninfo_sect == NULL) 190 goto set_addr; 191 192 dynaddr = bfd_section_vma (abfd, dyninfo_sect); 193 194 if (dynaddr + l_addr != l_dynaddr) 195 { 196 CORE_ADDR align = 0x1000; 197 CORE_ADDR minpagesize = align; 198 199 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour) 200 { 201 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header; 202 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr; 203 int i; 204 205 align = 1; 206 207 for (i = 0; i < ehdr->e_phnum; i++) 208 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align) 209 align = phdr[i].p_align; 210 211 minpagesize = get_elf_backend_data (abfd)->minpagesize; 212 } 213 214 /* Turn it into a mask. */ 215 align--; 216 217 /* If the changes match the alignment requirements, we 218 assume we're using a core file that was generated by the 219 same binary, just prelinked with a different base offset. 220 If it doesn't match, we may have a different binary, the 221 same binary with the dynamic table loaded at an unrelated 222 location, or anything, really. To avoid regressions, 223 don't adjust the base offset in the latter case, although 224 odds are that, if things really changed, debugging won't 225 quite work. 226 227 One could expect more the condition 228 ((l_addr & align) == 0 && ((l_dynaddr - dynaddr) & align) == 0) 229 but the one below is relaxed for PPC. The PPC kernel supports 230 either 4k or 64k page sizes. To be prepared for 64k pages, 231 PPC ELF files are built using an alignment requirement of 64k. 232 However, when running on a kernel supporting 4k pages, the memory 233 mapping of the library may not actually happen on a 64k boundary! 234 235 (In the usual case where (l_addr & align) == 0, this check is 236 equivalent to the possibly expected check above.) 237 238 Even on PPC it must be zero-aligned at least for MINPAGESIZE. */ 239 240 if ((l_addr & (minpagesize - 1)) == 0 241 && (l_addr & align) == ((l_dynaddr - dynaddr) & align)) 242 { 243 l_addr = l_dynaddr - dynaddr; 244 245 if (info_verbose) 246 printf_unfiltered (_("Using PIC (Position Independent Code) " 247 "prelink displacement %s for \"%s\".\n"), 248 paddress (target_gdbarch, l_addr), 249 so->so_name); 250 } 251 else 252 warning (_(".dynamic section for \"%s\" " 253 "is not at the expected address " 254 "(wrong library or version mismatch?)"), so->so_name); 255 } 256 257 set_addr: 258 so->lm_info->l_addr = l_addr; 259 } 260 261 return so->lm_info->l_addr; 262 } 263 264 static CORE_ADDR 265 LM_NEXT (struct so_list *so) 266 { 267 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets (); 268 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr; 269 270 return extract_typed_address (so->lm_info->lm + lmo->l_next_offset, 271 ptr_type); 272 } 273 274 static CORE_ADDR 275 LM_PREV (struct so_list *so) 276 { 277 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets (); 278 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr; 279 280 return extract_typed_address (so->lm_info->lm + lmo->l_prev_offset, 281 ptr_type); 282 } 283 284 static CORE_ADDR 285 LM_NAME (struct so_list *so) 286 { 287 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets (); 288 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr; 289 290 return extract_typed_address (so->lm_info->lm + lmo->l_name_offset, 291 ptr_type); 292 } 293 294 static int 295 IGNORE_FIRST_LINK_MAP_ENTRY (struct so_list *so) 296 { 297 /* Assume that everything is a library if the dynamic loader was loaded 298 late by a static executable. */ 299 if (exec_bfd && bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL) 300 return 0; 301 302 return LM_PREV (so) == 0; 303 } 304 305 /* Per pspace SVR4 specific data. */ 306 307 struct svr4_info 308 { 309 CORE_ADDR debug_base; /* Base of dynamic linker structures */ 310 311 /* Validity flag for debug_loader_offset. */ 312 int debug_loader_offset_p; 313 314 /* Load address for the dynamic linker, inferred. */ 315 CORE_ADDR debug_loader_offset; 316 317 /* Name of the dynamic linker, valid if debug_loader_offset_p. */ 318 char *debug_loader_name; 319 320 /* Load map address for the main executable. */ 321 CORE_ADDR main_lm_addr; 322 323 CORE_ADDR interp_text_sect_low; 324 CORE_ADDR interp_text_sect_high; 325 CORE_ADDR interp_plt_sect_low; 326 CORE_ADDR interp_plt_sect_high; 327 }; 328 329 /* Per-program-space data key. */ 330 static const struct program_space_data *solib_svr4_pspace_data; 331 332 static void 333 svr4_pspace_data_cleanup (struct program_space *pspace, void *arg) 334 { 335 struct svr4_info *info; 336 337 info = program_space_data (pspace, solib_svr4_pspace_data); 338 xfree (info); 339 } 340 341 /* Get the current svr4 data. If none is found yet, add it now. This 342 function always returns a valid object. */ 343 344 static struct svr4_info * 345 get_svr4_info (void) 346 { 347 struct svr4_info *info; 348 349 info = program_space_data (current_program_space, solib_svr4_pspace_data); 350 if (info != NULL) 351 return info; 352 353 info = XZALLOC (struct svr4_info); 354 set_program_space_data (current_program_space, solib_svr4_pspace_data, info); 355 return info; 356 } 357 358 /* Local function prototypes */ 359 360 static int match_main (char *); 361 362 static CORE_ADDR bfd_lookup_symbol (bfd *, char *); 363 364 /* 365 366 LOCAL FUNCTION 367 368 bfd_lookup_symbol -- lookup the value for a specific symbol 369 370 SYNOPSIS 371 372 CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname) 373 374 DESCRIPTION 375 376 An expensive way to lookup the value of a single symbol for 377 bfd's that are only temporary anyway. This is used by the 378 shared library support to find the address of the debugger 379 notification routine in the shared library. 380 381 The returned symbol may be in a code or data section; functions 382 will normally be in a code section, but may be in a data section 383 if this architecture uses function descriptors. 384 385 Note that 0 is specifically allowed as an error return (no 386 such symbol). 387 */ 388 389 static CORE_ADDR 390 bfd_lookup_symbol (bfd *abfd, char *symname) 391 { 392 long storage_needed; 393 asymbol *sym; 394 asymbol **symbol_table; 395 unsigned int number_of_symbols; 396 unsigned int i; 397 struct cleanup *back_to; 398 CORE_ADDR symaddr = 0; 399 400 storage_needed = bfd_get_symtab_upper_bound (abfd); 401 402 if (storage_needed > 0) 403 { 404 symbol_table = (asymbol **) xmalloc (storage_needed); 405 back_to = make_cleanup (xfree, symbol_table); 406 number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table); 407 408 for (i = 0; i < number_of_symbols; i++) 409 { 410 sym = *symbol_table++; 411 if (strcmp (sym->name, symname) == 0 412 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0) 413 { 414 /* BFD symbols are section relative. */ 415 symaddr = sym->value + sym->section->vma; 416 break; 417 } 418 } 419 do_cleanups (back_to); 420 } 421 422 if (symaddr) 423 return symaddr; 424 425 /* On FreeBSD, the dynamic linker is stripped by default. So we'll 426 have to check the dynamic string table too. */ 427 428 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd); 429 430 if (storage_needed > 0) 431 { 432 symbol_table = (asymbol **) xmalloc (storage_needed); 433 back_to = make_cleanup (xfree, symbol_table); 434 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, symbol_table); 435 436 for (i = 0; i < number_of_symbols; i++) 437 { 438 sym = *symbol_table++; 439 440 if (strcmp (sym->name, symname) == 0 441 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0) 442 { 443 /* BFD symbols are section relative. */ 444 symaddr = sym->value + sym->section->vma; 445 break; 446 } 447 } 448 do_cleanups (back_to); 449 } 450 451 return symaddr; 452 } 453 454 455 /* Read program header TYPE from inferior memory. The header is found 456 by scanning the OS auxillary vector. 457 458 If TYPE == -1, return the program headers instead of the contents of 459 one program header. 460 461 Return a pointer to allocated memory holding the program header contents, 462 or NULL on failure. If sucessful, and unless P_SECT_SIZE is NULL, the 463 size of those contents is returned to P_SECT_SIZE. Likewise, the target 464 architecture size (32-bit or 64-bit) is returned to P_ARCH_SIZE. */ 465 466 static gdb_byte * 467 read_program_header (int type, int *p_sect_size, int *p_arch_size) 468 { 469 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch); 470 CORE_ADDR at_phdr, at_phent, at_phnum; 471 int arch_size, sect_size; 472 CORE_ADDR sect_addr; 473 gdb_byte *buf; 474 475 /* Get required auxv elements from target. */ 476 if (target_auxv_search (¤t_target, AT_PHDR, &at_phdr) <= 0) 477 return 0; 478 if (target_auxv_search (¤t_target, AT_PHENT, &at_phent) <= 0) 479 return 0; 480 if (target_auxv_search (¤t_target, AT_PHNUM, &at_phnum) <= 0) 481 return 0; 482 if (!at_phdr || !at_phnum) 483 return 0; 484 485 /* Determine ELF architecture type. */ 486 if (at_phent == sizeof (Elf32_External_Phdr)) 487 arch_size = 32; 488 else if (at_phent == sizeof (Elf64_External_Phdr)) 489 arch_size = 64; 490 else 491 return 0; 492 493 /* Find the requested segment. */ 494 if (type == -1) 495 { 496 sect_addr = at_phdr; 497 sect_size = at_phent * at_phnum; 498 } 499 else if (arch_size == 32) 500 { 501 Elf32_External_Phdr phdr; 502 int i; 503 504 /* Search for requested PHDR. */ 505 for (i = 0; i < at_phnum; i++) 506 { 507 if (target_read_memory (at_phdr + i * sizeof (phdr), 508 (gdb_byte *)&phdr, sizeof (phdr))) 509 return 0; 510 511 if (extract_unsigned_integer ((gdb_byte *)phdr.p_type, 512 4, byte_order) == type) 513 break; 514 } 515 516 if (i == at_phnum) 517 return 0; 518 519 /* Retrieve address and size. */ 520 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr, 521 4, byte_order); 522 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz, 523 4, byte_order); 524 } 525 else 526 { 527 Elf64_External_Phdr phdr; 528 int i; 529 530 /* Search for requested PHDR. */ 531 for (i = 0; i < at_phnum; i++) 532 { 533 if (target_read_memory (at_phdr + i * sizeof (phdr), 534 (gdb_byte *)&phdr, sizeof (phdr))) 535 return 0; 536 537 if (extract_unsigned_integer ((gdb_byte *)phdr.p_type, 538 4, byte_order) == type) 539 break; 540 } 541 542 if (i == at_phnum) 543 return 0; 544 545 /* Retrieve address and size. */ 546 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr, 547 8, byte_order); 548 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz, 549 8, byte_order); 550 } 551 552 /* Read in requested program header. */ 553 buf = xmalloc (sect_size); 554 if (target_read_memory (sect_addr, buf, sect_size)) 555 { 556 xfree (buf); 557 return NULL; 558 } 559 560 if (p_arch_size) 561 *p_arch_size = arch_size; 562 if (p_sect_size) 563 *p_sect_size = sect_size; 564 565 return buf; 566 } 567 568 569 /* Return program interpreter string. */ 570 static gdb_byte * 571 find_program_interpreter (void) 572 { 573 gdb_byte *buf = NULL; 574 575 /* If we have an exec_bfd, use its section table. */ 576 if (exec_bfd 577 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour) 578 { 579 struct bfd_section *interp_sect; 580 581 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp"); 582 if (interp_sect != NULL) 583 { 584 int sect_size = bfd_section_size (exec_bfd, interp_sect); 585 586 buf = xmalloc (sect_size); 587 bfd_get_section_contents (exec_bfd, interp_sect, buf, 0, sect_size); 588 } 589 } 590 591 /* If we didn't find it, use the target auxillary vector. */ 592 if (!buf) 593 buf = read_program_header (PT_INTERP, NULL, NULL); 594 595 return buf; 596 } 597 598 599 /* Scan for DYNTAG in .dynamic section of ABFD. If DYNTAG is found 1 is 600 returned and the corresponding PTR is set. */ 601 602 static int 603 scan_dyntag (int dyntag, bfd *abfd, CORE_ADDR *ptr) 604 { 605 int arch_size, step, sect_size; 606 long dyn_tag; 607 CORE_ADDR dyn_ptr, dyn_addr; 608 gdb_byte *bufend, *bufstart, *buf; 609 Elf32_External_Dyn *x_dynp_32; 610 Elf64_External_Dyn *x_dynp_64; 611 struct bfd_section *sect; 612 struct target_section *target_section; 613 614 if (abfd == NULL) 615 return 0; 616 617 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour) 618 return 0; 619 620 arch_size = bfd_get_arch_size (abfd); 621 if (arch_size == -1) 622 return 0; 623 624 /* Find the start address of the .dynamic section. */ 625 sect = bfd_get_section_by_name (abfd, ".dynamic"); 626 if (sect == NULL) 627 return 0; 628 629 for (target_section = current_target_sections->sections; 630 target_section < current_target_sections->sections_end; 631 target_section++) 632 if (sect == target_section->the_bfd_section) 633 break; 634 if (target_section < current_target_sections->sections_end) 635 dyn_addr = target_section->addr; 636 else 637 { 638 /* ABFD may come from OBJFILE acting only as a symbol file without being 639 loaded into the target (see add_symbol_file_command). This case is 640 such fallback to the file VMA address without the possibility of 641 having the section relocated to its actual in-memory address. */ 642 643 dyn_addr = bfd_section_vma (abfd, sect); 644 } 645 646 /* Read in .dynamic from the BFD. We will get the actual value 647 from memory later. */ 648 sect_size = bfd_section_size (abfd, sect); 649 buf = bufstart = alloca (sect_size); 650 if (!bfd_get_section_contents (abfd, sect, 651 buf, 0, sect_size)) 652 return 0; 653 654 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */ 655 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn) 656 : sizeof (Elf64_External_Dyn); 657 for (bufend = buf + sect_size; 658 buf < bufend; 659 buf += step) 660 { 661 if (arch_size == 32) 662 { 663 x_dynp_32 = (Elf32_External_Dyn *) buf; 664 dyn_tag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag); 665 dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr); 666 } 667 else 668 { 669 x_dynp_64 = (Elf64_External_Dyn *) buf; 670 dyn_tag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag); 671 dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr); 672 } 673 if (dyn_tag == DT_NULL) 674 return 0; 675 if (dyn_tag == dyntag) 676 { 677 /* If requested, try to read the runtime value of this .dynamic 678 entry. */ 679 if (ptr) 680 { 681 struct type *ptr_type; 682 gdb_byte ptr_buf[8]; 683 CORE_ADDR ptr_addr; 684 685 ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr; 686 ptr_addr = dyn_addr + (buf - bufstart) + arch_size / 8; 687 if (target_read_memory (ptr_addr, ptr_buf, arch_size / 8) == 0) 688 dyn_ptr = extract_typed_address (ptr_buf, ptr_type); 689 *ptr = dyn_ptr; 690 } 691 return 1; 692 } 693 } 694 695 return 0; 696 } 697 698 /* Scan for DYNTAG in .dynamic section of the target's main executable, 699 found by consulting the OS auxillary vector. If DYNTAG is found 1 is 700 returned and the corresponding PTR is set. */ 701 702 static int 703 scan_dyntag_auxv (int dyntag, CORE_ADDR *ptr) 704 { 705 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch); 706 int sect_size, arch_size, step; 707 long dyn_tag; 708 CORE_ADDR dyn_ptr; 709 gdb_byte *bufend, *bufstart, *buf; 710 711 /* Read in .dynamic section. */ 712 buf = bufstart = read_program_header (PT_DYNAMIC, §_size, &arch_size); 713 if (!buf) 714 return 0; 715 716 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */ 717 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn) 718 : sizeof (Elf64_External_Dyn); 719 for (bufend = buf + sect_size; 720 buf < bufend; 721 buf += step) 722 { 723 if (arch_size == 32) 724 { 725 Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf; 726 727 dyn_tag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag, 728 4, byte_order); 729 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr, 730 4, byte_order); 731 } 732 else 733 { 734 Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf; 735 736 dyn_tag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag, 737 8, byte_order); 738 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr, 739 8, byte_order); 740 } 741 if (dyn_tag == DT_NULL) 742 break; 743 744 if (dyn_tag == dyntag) 745 { 746 if (ptr) 747 *ptr = dyn_ptr; 748 749 xfree (bufstart); 750 return 1; 751 } 752 } 753 754 xfree (bufstart); 755 return 0; 756 } 757 758 759 /* 760 761 LOCAL FUNCTION 762 763 elf_locate_base -- locate the base address of dynamic linker structs 764 for SVR4 elf targets. 765 766 SYNOPSIS 767 768 CORE_ADDR elf_locate_base (void) 769 770 DESCRIPTION 771 772 For SVR4 elf targets the address of the dynamic linker's runtime 773 structure is contained within the dynamic info section in the 774 executable file. The dynamic section is also mapped into the 775 inferior address space. Because the runtime loader fills in the 776 real address before starting the inferior, we have to read in the 777 dynamic info section from the inferior address space. 778 If there are any errors while trying to find the address, we 779 silently return 0, otherwise the found address is returned. 780 781 */ 782 783 static CORE_ADDR 784 elf_locate_base (void) 785 { 786 struct minimal_symbol *msymbol; 787 CORE_ADDR dyn_ptr; 788 789 /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this 790 instead of DT_DEBUG, although they sometimes contain an unused 791 DT_DEBUG. */ 792 if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr) 793 || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr)) 794 { 795 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr; 796 gdb_byte *pbuf; 797 int pbuf_size = TYPE_LENGTH (ptr_type); 798 799 pbuf = alloca (pbuf_size); 800 /* DT_MIPS_RLD_MAP contains a pointer to the address 801 of the dynamic link structure. */ 802 if (target_read_memory (dyn_ptr, pbuf, pbuf_size)) 803 return 0; 804 return extract_typed_address (pbuf, ptr_type); 805 } 806 807 /* Find DT_DEBUG. */ 808 if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr) 809 || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr)) 810 return dyn_ptr; 811 812 /* This may be a static executable. Look for the symbol 813 conventionally named _r_debug, as a last resort. */ 814 msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile); 815 if (msymbol != NULL) 816 return SYMBOL_VALUE_ADDRESS (msymbol); 817 818 /* DT_DEBUG entry not found. */ 819 return 0; 820 } 821 822 /* 823 824 LOCAL FUNCTION 825 826 locate_base -- locate the base address of dynamic linker structs 827 828 SYNOPSIS 829 830 CORE_ADDR locate_base (struct svr4_info *) 831 832 DESCRIPTION 833 834 For both the SunOS and SVR4 shared library implementations, if the 835 inferior executable has been linked dynamically, there is a single 836 address somewhere in the inferior's data space which is the key to 837 locating all of the dynamic linker's runtime structures. This 838 address is the value of the debug base symbol. The job of this 839 function is to find and return that address, or to return 0 if there 840 is no such address (the executable is statically linked for example). 841 842 For SunOS, the job is almost trivial, since the dynamic linker and 843 all of it's structures are statically linked to the executable at 844 link time. Thus the symbol for the address we are looking for has 845 already been added to the minimal symbol table for the executable's 846 objfile at the time the symbol file's symbols were read, and all we 847 have to do is look it up there. Note that we explicitly do NOT want 848 to find the copies in the shared library. 849 850 The SVR4 version is a bit more complicated because the address 851 is contained somewhere in the dynamic info section. We have to go 852 to a lot more work to discover the address of the debug base symbol. 853 Because of this complexity, we cache the value we find and return that 854 value on subsequent invocations. Note there is no copy in the 855 executable symbol tables. 856 857 */ 858 859 static CORE_ADDR 860 locate_base (struct svr4_info *info) 861 { 862 /* Check to see if we have a currently valid address, and if so, avoid 863 doing all this work again and just return the cached address. If 864 we have no cached address, try to locate it in the dynamic info 865 section for ELF executables. There's no point in doing any of this 866 though if we don't have some link map offsets to work with. */ 867 868 if (info->debug_base == 0 && svr4_have_link_map_offsets ()) 869 info->debug_base = elf_locate_base (); 870 return info->debug_base; 871 } 872 873 /* Find the first element in the inferior's dynamic link map, and 874 return its address in the inferior. Return zero if the address 875 could not be determined. 876 877 FIXME: Perhaps we should validate the info somehow, perhaps by 878 checking r_version for a known version number, or r_state for 879 RT_CONSISTENT. */ 880 881 static CORE_ADDR 882 solib_svr4_r_map (struct svr4_info *info) 883 { 884 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets (); 885 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr; 886 CORE_ADDR addr = 0; 887 volatile struct gdb_exception ex; 888 889 TRY_CATCH (ex, RETURN_MASK_ERROR) 890 { 891 addr = read_memory_typed_address (info->debug_base + lmo->r_map_offset, 892 ptr_type); 893 } 894 exception_print (gdb_stderr, ex); 895 return addr; 896 } 897 898 /* Find r_brk from the inferior's debug base. */ 899 900 static CORE_ADDR 901 solib_svr4_r_brk (struct svr4_info *info) 902 { 903 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets (); 904 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr; 905 906 return read_memory_typed_address (info->debug_base + lmo->r_brk_offset, 907 ptr_type); 908 } 909 910 /* Find the link map for the dynamic linker (if it is not in the 911 normal list of loaded shared objects). */ 912 913 static CORE_ADDR 914 solib_svr4_r_ldsomap (struct svr4_info *info) 915 { 916 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets (); 917 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr; 918 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch); 919 ULONGEST version; 920 921 /* Check version, and return zero if `struct r_debug' doesn't have 922 the r_ldsomap member. */ 923 version 924 = read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset, 925 lmo->r_version_size, byte_order); 926 if (version < 2 || lmo->r_ldsomap_offset == -1) 927 return 0; 928 929 return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset, 930 ptr_type); 931 } 932 933 /* On Solaris systems with some versions of the dynamic linker, 934 ld.so's l_name pointer points to the SONAME in the string table 935 rather than into writable memory. So that GDB can find shared 936 libraries when loading a core file generated by gcore, ensure that 937 memory areas containing the l_name string are saved in the core 938 file. */ 939 940 static int 941 svr4_keep_data_in_core (CORE_ADDR vaddr, unsigned long size) 942 { 943 struct svr4_info *info; 944 CORE_ADDR ldsomap; 945 struct so_list *new; 946 struct cleanup *old_chain; 947 struct link_map_offsets *lmo; 948 CORE_ADDR lm_name; 949 950 info = get_svr4_info (); 951 952 info->debug_base = 0; 953 locate_base (info); 954 if (!info->debug_base) 955 return 0; 956 957 ldsomap = solib_svr4_r_ldsomap (info); 958 if (!ldsomap) 959 return 0; 960 961 lmo = svr4_fetch_link_map_offsets (); 962 new = XZALLOC (struct so_list); 963 old_chain = make_cleanup (xfree, new); 964 new->lm_info = xmalloc (sizeof (struct lm_info)); 965 make_cleanup (xfree, new->lm_info); 966 new->lm_info->l_addr = (CORE_ADDR)-1; 967 new->lm_info->lm_addr = ldsomap; 968 new->lm_info->lm = xzalloc (lmo->link_map_size); 969 make_cleanup (xfree, new->lm_info->lm); 970 read_memory (ldsomap, new->lm_info->lm, lmo->link_map_size); 971 lm_name = LM_NAME (new); 972 do_cleanups (old_chain); 973 974 return (lm_name >= vaddr && lm_name < vaddr + size); 975 } 976 977 /* 978 979 LOCAL FUNCTION 980 981 open_symbol_file_object 982 983 SYNOPSIS 984 985 void open_symbol_file_object (void *from_tty) 986 987 DESCRIPTION 988 989 If no open symbol file, attempt to locate and open the main symbol 990 file. On SVR4 systems, this is the first link map entry. If its 991 name is here, we can open it. Useful when attaching to a process 992 without first loading its symbol file. 993 994 If FROM_TTYP dereferences to a non-zero integer, allow messages to 995 be printed. This parameter is a pointer rather than an int because 996 open_symbol_file_object() is called via catch_errors() and 997 catch_errors() requires a pointer argument. */ 998 999 static int 1000 open_symbol_file_object (void *from_ttyp) 1001 { 1002 CORE_ADDR lm, l_name; 1003 char *filename; 1004 int errcode; 1005 int from_tty = *(int *)from_ttyp; 1006 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets (); 1007 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr; 1008 int l_name_size = TYPE_LENGTH (ptr_type); 1009 gdb_byte *l_name_buf = xmalloc (l_name_size); 1010 struct cleanup *cleanups = make_cleanup (xfree, l_name_buf); 1011 struct svr4_info *info = get_svr4_info (); 1012 1013 if (symfile_objfile) 1014 if (!query (_("Attempt to reload symbols from process? "))) 1015 return 0; 1016 1017 /* Always locate the debug struct, in case it has moved. */ 1018 info->debug_base = 0; 1019 if (locate_base (info) == 0) 1020 return 0; /* failed somehow... */ 1021 1022 /* First link map member should be the executable. */ 1023 lm = solib_svr4_r_map (info); 1024 if (lm == 0) 1025 return 0; /* failed somehow... */ 1026 1027 /* Read address of name from target memory to GDB. */ 1028 read_memory (lm + lmo->l_name_offset, l_name_buf, l_name_size); 1029 1030 /* Convert the address to host format. */ 1031 l_name = extract_typed_address (l_name_buf, ptr_type); 1032 1033 /* Free l_name_buf. */ 1034 do_cleanups (cleanups); 1035 1036 if (l_name == 0) 1037 return 0; /* No filename. */ 1038 1039 /* Now fetch the filename from target memory. */ 1040 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode); 1041 make_cleanup (xfree, filename); 1042 1043 if (errcode) 1044 { 1045 warning (_("failed to read exec filename from attached file: %s"), 1046 safe_strerror (errcode)); 1047 return 0; 1048 } 1049 1050 /* Have a pathname: read the symbol file. */ 1051 symbol_file_add_main (filename, from_tty); 1052 1053 return 1; 1054 } 1055 1056 /* If no shared library information is available from the dynamic 1057 linker, build a fallback list from other sources. */ 1058 1059 static struct so_list * 1060 svr4_default_sos (void) 1061 { 1062 struct svr4_info *info = get_svr4_info (); 1063 1064 struct so_list *head = NULL; 1065 struct so_list **link_ptr = &head; 1066 1067 if (info->debug_loader_offset_p) 1068 { 1069 struct so_list *new = XZALLOC (struct so_list); 1070 1071 new->lm_info = xmalloc (sizeof (struct lm_info)); 1072 1073 /* Nothing will ever check the cached copy of the link 1074 map if we set l_addr. */ 1075 new->lm_info->l_addr = info->debug_loader_offset; 1076 new->lm_info->lm_addr = 0; 1077 new->lm_info->lm = NULL; 1078 1079 strncpy (new->so_name, info->debug_loader_name, 1080 SO_NAME_MAX_PATH_SIZE - 1); 1081 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0'; 1082 strcpy (new->so_original_name, new->so_name); 1083 1084 *link_ptr = new; 1085 link_ptr = &new->next; 1086 } 1087 1088 return head; 1089 } 1090 1091 /* LOCAL FUNCTION 1092 1093 current_sos -- build a list of currently loaded shared objects 1094 1095 SYNOPSIS 1096 1097 struct so_list *current_sos () 1098 1099 DESCRIPTION 1100 1101 Build a list of `struct so_list' objects describing the shared 1102 objects currently loaded in the inferior. This list does not 1103 include an entry for the main executable file. 1104 1105 Note that we only gather information directly available from the 1106 inferior --- we don't examine any of the shared library files 1107 themselves. The declaration of `struct so_list' says which fields 1108 we provide values for. */ 1109 1110 static struct so_list * 1111 svr4_current_sos (void) 1112 { 1113 CORE_ADDR lm, prev_lm; 1114 struct so_list *head = 0; 1115 struct so_list **link_ptr = &head; 1116 CORE_ADDR ldsomap = 0; 1117 struct svr4_info *info; 1118 1119 info = get_svr4_info (); 1120 1121 /* Always locate the debug struct, in case it has moved. */ 1122 info->debug_base = 0; 1123 locate_base (info); 1124 1125 /* If we can't find the dynamic linker's base structure, this 1126 must not be a dynamically linked executable. Hmm. */ 1127 if (! info->debug_base) 1128 return svr4_default_sos (); 1129 1130 /* Walk the inferior's link map list, and build our list of 1131 `struct so_list' nodes. */ 1132 prev_lm = 0; 1133 lm = solib_svr4_r_map (info); 1134 1135 while (lm) 1136 { 1137 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets (); 1138 struct so_list *new = XZALLOC (struct so_list); 1139 struct cleanup *old_chain = make_cleanup (xfree, new); 1140 CORE_ADDR next_lm; 1141 1142 new->lm_info = xmalloc (sizeof (struct lm_info)); 1143 make_cleanup (xfree, new->lm_info); 1144 1145 new->lm_info->l_addr = (CORE_ADDR)-1; 1146 new->lm_info->lm_addr = lm; 1147 new->lm_info->lm = xzalloc (lmo->link_map_size); 1148 make_cleanup (xfree, new->lm_info->lm); 1149 1150 read_memory (lm, new->lm_info->lm, lmo->link_map_size); 1151 1152 next_lm = LM_NEXT (new); 1153 1154 if (LM_PREV (new) != prev_lm) 1155 { 1156 warning (_("Corrupted shared library list")); 1157 free_so (new); 1158 next_lm = 0; 1159 } 1160 1161 /* For SVR4 versions, the first entry in the link map is for the 1162 inferior executable, so we must ignore it. For some versions of 1163 SVR4, it has no name. For others (Solaris 2.3 for example), it 1164 does have a name, so we can no longer use a missing name to 1165 decide when to ignore it. */ 1166 else if (IGNORE_FIRST_LINK_MAP_ENTRY (new) && ldsomap == 0) 1167 { 1168 info->main_lm_addr = new->lm_info->lm_addr; 1169 free_so (new); 1170 } 1171 else 1172 { 1173 int errcode; 1174 char *buffer; 1175 1176 /* Extract this shared object's name. */ 1177 target_read_string (LM_NAME (new), &buffer, 1178 SO_NAME_MAX_PATH_SIZE - 1, &errcode); 1179 if (errcode != 0) 1180 warning (_("Can't read pathname for load map: %s."), 1181 safe_strerror (errcode)); 1182 else 1183 { 1184 strncpy (new->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1); 1185 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0'; 1186 strcpy (new->so_original_name, new->so_name); 1187 } 1188 xfree (buffer); 1189 1190 /* If this entry has no name, or its name matches the name 1191 for the main executable, don't include it in the list. */ 1192 if (! new->so_name[0] 1193 || match_main (new->so_name)) 1194 free_so (new); 1195 else 1196 { 1197 new->next = 0; 1198 *link_ptr = new; 1199 link_ptr = &new->next; 1200 } 1201 } 1202 1203 prev_lm = lm; 1204 lm = next_lm; 1205 1206 /* On Solaris, the dynamic linker is not in the normal list of 1207 shared objects, so make sure we pick it up too. Having 1208 symbol information for the dynamic linker is quite crucial 1209 for skipping dynamic linker resolver code. */ 1210 if (lm == 0 && ldsomap == 0) 1211 { 1212 lm = ldsomap = solib_svr4_r_ldsomap (info); 1213 prev_lm = 0; 1214 } 1215 1216 discard_cleanups (old_chain); 1217 } 1218 1219 if (head == NULL) 1220 return svr4_default_sos (); 1221 1222 return head; 1223 } 1224 1225 /* Get the address of the link_map for a given OBJFILE. */ 1226 1227 CORE_ADDR 1228 svr4_fetch_objfile_link_map (struct objfile *objfile) 1229 { 1230 struct so_list *so; 1231 struct svr4_info *info = get_svr4_info (); 1232 1233 /* Cause svr4_current_sos() to be run if it hasn't been already. */ 1234 if (info->main_lm_addr == 0) 1235 solib_add (NULL, 0, ¤t_target, auto_solib_add); 1236 1237 /* svr4_current_sos() will set main_lm_addr for the main executable. */ 1238 if (objfile == symfile_objfile) 1239 return info->main_lm_addr; 1240 1241 /* The other link map addresses may be found by examining the list 1242 of shared libraries. */ 1243 for (so = master_so_list (); so; so = so->next) 1244 if (so->objfile == objfile) 1245 return so->lm_info->lm_addr; 1246 1247 /* Not found! */ 1248 return 0; 1249 } 1250 1251 /* On some systems, the only way to recognize the link map entry for 1252 the main executable file is by looking at its name. Return 1253 non-zero iff SONAME matches one of the known main executable names. */ 1254 1255 static int 1256 match_main (char *soname) 1257 { 1258 char **mainp; 1259 1260 for (mainp = main_name_list; *mainp != NULL; mainp++) 1261 { 1262 if (strcmp (soname, *mainp) == 0) 1263 return (1); 1264 } 1265 1266 return (0); 1267 } 1268 1269 /* Return 1 if PC lies in the dynamic symbol resolution code of the 1270 SVR4 run time loader. */ 1271 1272 int 1273 svr4_in_dynsym_resolve_code (CORE_ADDR pc) 1274 { 1275 struct svr4_info *info = get_svr4_info (); 1276 1277 return ((pc >= info->interp_text_sect_low 1278 && pc < info->interp_text_sect_high) 1279 || (pc >= info->interp_plt_sect_low 1280 && pc < info->interp_plt_sect_high) 1281 || in_plt_section (pc, NULL)); 1282 } 1283 1284 /* Given an executable's ABFD and target, compute the entry-point 1285 address. */ 1286 1287 static CORE_ADDR 1288 exec_entry_point (struct bfd *abfd, struct target_ops *targ) 1289 { 1290 /* KevinB wrote ... for most targets, the address returned by 1291 bfd_get_start_address() is the entry point for the start 1292 function. But, for some targets, bfd_get_start_address() returns 1293 the address of a function descriptor from which the entry point 1294 address may be extracted. This address is extracted by 1295 gdbarch_convert_from_func_ptr_addr(). The method 1296 gdbarch_convert_from_func_ptr_addr() is the merely the identify 1297 function for targets which don't use function descriptors. */ 1298 return gdbarch_convert_from_func_ptr_addr (target_gdbarch, 1299 bfd_get_start_address (abfd), 1300 targ); 1301 } 1302 1303 /* 1304 1305 LOCAL FUNCTION 1306 1307 enable_break -- arrange for dynamic linker to hit breakpoint 1308 1309 SYNOPSIS 1310 1311 int enable_break (void) 1312 1313 DESCRIPTION 1314 1315 Both the SunOS and the SVR4 dynamic linkers have, as part of their 1316 debugger interface, support for arranging for the inferior to hit 1317 a breakpoint after mapping in the shared libraries. This function 1318 enables that breakpoint. 1319 1320 For SunOS, there is a special flag location (in_debugger) which we 1321 set to 1. When the dynamic linker sees this flag set, it will set 1322 a breakpoint at a location known only to itself, after saving the 1323 original contents of that place and the breakpoint address itself, 1324 in it's own internal structures. When we resume the inferior, it 1325 will eventually take a SIGTRAP when it runs into the breakpoint. 1326 We handle this (in a different place) by restoring the contents of 1327 the breakpointed location (which is only known after it stops), 1328 chasing around to locate the shared libraries that have been 1329 loaded, then resuming. 1330 1331 For SVR4, the debugger interface structure contains a member (r_brk) 1332 which is statically initialized at the time the shared library is 1333 built, to the offset of a function (_r_debug_state) which is guaran- 1334 teed to be called once before mapping in a library, and again when 1335 the mapping is complete. At the time we are examining this member, 1336 it contains only the unrelocated offset of the function, so we have 1337 to do our own relocation. Later, when the dynamic linker actually 1338 runs, it relocates r_brk to be the actual address of _r_debug_state(). 1339 1340 The debugger interface structure also contains an enumeration which 1341 is set to either RT_ADD or RT_DELETE prior to changing the mapping, 1342 depending upon whether or not the library is being mapped or unmapped, 1343 and then set to RT_CONSISTENT after the library is mapped/unmapped. 1344 */ 1345 1346 static int 1347 enable_break (struct svr4_info *info, int from_tty) 1348 { 1349 struct minimal_symbol *msymbol; 1350 char **bkpt_namep; 1351 asection *interp_sect; 1352 gdb_byte *interp_name; 1353 CORE_ADDR sym_addr; 1354 1355 info->interp_text_sect_low = info->interp_text_sect_high = 0; 1356 info->interp_plt_sect_low = info->interp_plt_sect_high = 0; 1357 1358 /* If we already have a shared library list in the target, and 1359 r_debug contains r_brk, set the breakpoint there - this should 1360 mean r_brk has already been relocated. Assume the dynamic linker 1361 is the object containing r_brk. */ 1362 1363 solib_add (NULL, from_tty, ¤t_target, auto_solib_add); 1364 sym_addr = 0; 1365 if (info->debug_base && solib_svr4_r_map (info) != 0) 1366 sym_addr = solib_svr4_r_brk (info); 1367 1368 if (sym_addr != 0) 1369 { 1370 struct obj_section *os; 1371 1372 sym_addr = gdbarch_addr_bits_remove 1373 (target_gdbarch, gdbarch_convert_from_func_ptr_addr (target_gdbarch, 1374 sym_addr, 1375 ¤t_target)); 1376 1377 /* On at least some versions of Solaris there's a dynamic relocation 1378 on _r_debug.r_brk and SYM_ADDR may not be relocated yet, e.g., if 1379 we get control before the dynamic linker has self-relocated. 1380 Check if SYM_ADDR is in a known section, if it is assume we can 1381 trust its value. This is just a heuristic though, it could go away 1382 or be replaced if it's getting in the way. 1383 1384 On ARM we need to know whether the ISA of rtld_db_dlactivity (or 1385 however it's spelled in your particular system) is ARM or Thumb. 1386 That knowledge is encoded in the address, if it's Thumb the low bit 1387 is 1. However, we've stripped that info above and it's not clear 1388 what all the consequences are of passing a non-addr_bits_remove'd 1389 address to create_solib_event_breakpoint. The call to 1390 find_pc_section verifies we know about the address and have some 1391 hope of computing the right kind of breakpoint to use (via 1392 symbol info). It does mean that GDB needs to be pointed at a 1393 non-stripped version of the dynamic linker in order to obtain 1394 information it already knows about. Sigh. */ 1395 1396 os = find_pc_section (sym_addr); 1397 if (os != NULL) 1398 { 1399 /* Record the relocated start and end address of the dynamic linker 1400 text and plt section for svr4_in_dynsym_resolve_code. */ 1401 bfd *tmp_bfd; 1402 CORE_ADDR load_addr; 1403 1404 tmp_bfd = os->objfile->obfd; 1405 load_addr = ANOFFSET (os->objfile->section_offsets, 1406 os->objfile->sect_index_text); 1407 1408 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text"); 1409 if (interp_sect) 1410 { 1411 info->interp_text_sect_low = 1412 bfd_section_vma (tmp_bfd, interp_sect) + load_addr; 1413 info->interp_text_sect_high = 1414 info->interp_text_sect_low 1415 + bfd_section_size (tmp_bfd, interp_sect); 1416 } 1417 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt"); 1418 if (interp_sect) 1419 { 1420 info->interp_plt_sect_low = 1421 bfd_section_vma (tmp_bfd, interp_sect) + load_addr; 1422 info->interp_plt_sect_high = 1423 info->interp_plt_sect_low 1424 + bfd_section_size (tmp_bfd, interp_sect); 1425 } 1426 1427 create_solib_event_breakpoint (target_gdbarch, sym_addr); 1428 return 1; 1429 } 1430 } 1431 1432 /* Find the program interpreter; if not found, warn the user and drop 1433 into the old breakpoint at symbol code. */ 1434 interp_name = find_program_interpreter (); 1435 if (interp_name) 1436 { 1437 CORE_ADDR load_addr = 0; 1438 int load_addr_found = 0; 1439 int loader_found_in_list = 0; 1440 struct so_list *so; 1441 bfd *tmp_bfd = NULL; 1442 struct target_ops *tmp_bfd_target; 1443 volatile struct gdb_exception ex; 1444 1445 sym_addr = 0; 1446 1447 /* Now we need to figure out where the dynamic linker was 1448 loaded so that we can load its symbols and place a breakpoint 1449 in the dynamic linker itself. 1450 1451 This address is stored on the stack. However, I've been unable 1452 to find any magic formula to find it for Solaris (appears to 1453 be trivial on GNU/Linux). Therefore, we have to try an alternate 1454 mechanism to find the dynamic linker's base address. */ 1455 1456 TRY_CATCH (ex, RETURN_MASK_ALL) 1457 { 1458 tmp_bfd = solib_bfd_open (interp_name); 1459 } 1460 if (tmp_bfd == NULL) 1461 goto bkpt_at_symbol; 1462 1463 /* Now convert the TMP_BFD into a target. That way target, as 1464 well as BFD operations can be used. Note that closing the 1465 target will also close the underlying bfd. */ 1466 tmp_bfd_target = target_bfd_reopen (tmp_bfd); 1467 1468 /* On a running target, we can get the dynamic linker's base 1469 address from the shared library table. */ 1470 so = master_so_list (); 1471 while (so) 1472 { 1473 if (svr4_same_1 (interp_name, so->so_original_name)) 1474 { 1475 load_addr_found = 1; 1476 loader_found_in_list = 1; 1477 load_addr = LM_ADDR_CHECK (so, tmp_bfd); 1478 break; 1479 } 1480 so = so->next; 1481 } 1482 1483 /* If we were not able to find the base address of the loader 1484 from our so_list, then try using the AT_BASE auxilliary entry. */ 1485 if (!load_addr_found) 1486 if (target_auxv_search (¤t_target, AT_BASE, &load_addr) > 0) 1487 { 1488 int addr_bit = gdbarch_addr_bit (target_gdbarch); 1489 1490 /* Ensure LOAD_ADDR has proper sign in its possible upper bits so 1491 that `+ load_addr' will overflow CORE_ADDR width not creating 1492 invalid addresses like 0x101234567 for 32bit inferiors on 64bit 1493 GDB. */ 1494 1495 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT)) 1496 { 1497 CORE_ADDR space_size = (CORE_ADDR) 1 << addr_bit; 1498 CORE_ADDR tmp_entry_point = exec_entry_point (tmp_bfd, 1499 tmp_bfd_target); 1500 1501 gdb_assert (load_addr < space_size); 1502 1503 /* TMP_ENTRY_POINT exceeding SPACE_SIZE would be for prelinked 1504 64bit ld.so with 32bit executable, it should not happen. */ 1505 1506 if (tmp_entry_point < space_size 1507 && tmp_entry_point + load_addr >= space_size) 1508 load_addr -= space_size; 1509 } 1510 1511 load_addr_found = 1; 1512 } 1513 1514 /* Otherwise we find the dynamic linker's base address by examining 1515 the current pc (which should point at the entry point for the 1516 dynamic linker) and subtracting the offset of the entry point. 1517 1518 This is more fragile than the previous approaches, but is a good 1519 fallback method because it has actually been working well in 1520 most cases. */ 1521 if (!load_addr_found) 1522 { 1523 struct regcache *regcache 1524 = get_thread_arch_regcache (inferior_ptid, target_gdbarch); 1525 1526 load_addr = (regcache_read_pc (regcache) 1527 - exec_entry_point (tmp_bfd, tmp_bfd_target)); 1528 } 1529 1530 if (!loader_found_in_list) 1531 { 1532 info->debug_loader_name = xstrdup (interp_name); 1533 info->debug_loader_offset_p = 1; 1534 info->debug_loader_offset = load_addr; 1535 solib_add (NULL, from_tty, ¤t_target, auto_solib_add); 1536 } 1537 1538 /* Record the relocated start and end address of the dynamic linker 1539 text and plt section for svr4_in_dynsym_resolve_code. */ 1540 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text"); 1541 if (interp_sect) 1542 { 1543 info->interp_text_sect_low = 1544 bfd_section_vma (tmp_bfd, interp_sect) + load_addr; 1545 info->interp_text_sect_high = 1546 info->interp_text_sect_low 1547 + bfd_section_size (tmp_bfd, interp_sect); 1548 } 1549 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt"); 1550 if (interp_sect) 1551 { 1552 info->interp_plt_sect_low = 1553 bfd_section_vma (tmp_bfd, interp_sect) + load_addr; 1554 info->interp_plt_sect_high = 1555 info->interp_plt_sect_low 1556 + bfd_section_size (tmp_bfd, interp_sect); 1557 } 1558 1559 /* Now try to set a breakpoint in the dynamic linker. */ 1560 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++) 1561 { 1562 sym_addr = bfd_lookup_symbol (tmp_bfd, *bkpt_namep); 1563 if (sym_addr != 0) 1564 break; 1565 } 1566 1567 if (sym_addr != 0) 1568 /* Convert 'sym_addr' from a function pointer to an address. 1569 Because we pass tmp_bfd_target instead of the current 1570 target, this will always produce an unrelocated value. */ 1571 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch, 1572 sym_addr, 1573 tmp_bfd_target); 1574 1575 /* We're done with both the temporary bfd and target. Remember, 1576 closing the target closes the underlying bfd. */ 1577 target_close (tmp_bfd_target, 0); 1578 1579 if (sym_addr != 0) 1580 { 1581 create_solib_event_breakpoint (target_gdbarch, load_addr + sym_addr); 1582 xfree (interp_name); 1583 return 1; 1584 } 1585 1586 /* For whatever reason we couldn't set a breakpoint in the dynamic 1587 linker. Warn and drop into the old code. */ 1588 bkpt_at_symbol: 1589 xfree (interp_name); 1590 warning (_("Unable to find dynamic linker breakpoint function.\n" 1591 "GDB will be unable to debug shared library initializers\n" 1592 "and track explicitly loaded dynamic code.")); 1593 } 1594 1595 /* Scan through the lists of symbols, trying to look up the symbol and 1596 set a breakpoint there. Terminate loop when we/if we succeed. */ 1597 1598 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++) 1599 { 1600 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile); 1601 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0)) 1602 { 1603 sym_addr = SYMBOL_VALUE_ADDRESS (msymbol); 1604 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch, 1605 sym_addr, 1606 ¤t_target); 1607 create_solib_event_breakpoint (target_gdbarch, sym_addr); 1608 return 1; 1609 } 1610 } 1611 1612 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++) 1613 { 1614 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile); 1615 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0)) 1616 { 1617 sym_addr = SYMBOL_VALUE_ADDRESS (msymbol); 1618 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch, 1619 sym_addr, 1620 ¤t_target); 1621 create_solib_event_breakpoint (target_gdbarch, sym_addr); 1622 return 1; 1623 } 1624 } 1625 return 0; 1626 } 1627 1628 /* 1629 1630 LOCAL FUNCTION 1631 1632 special_symbol_handling -- additional shared library symbol handling 1633 1634 SYNOPSIS 1635 1636 void special_symbol_handling () 1637 1638 DESCRIPTION 1639 1640 Once the symbols from a shared object have been loaded in the usual 1641 way, we are called to do any system specific symbol handling that 1642 is needed. 1643 1644 For SunOS4, this consisted of grunging around in the dynamic 1645 linkers structures to find symbol definitions for "common" symbols 1646 and adding them to the minimal symbol table for the runtime common 1647 objfile. 1648 1649 However, for SVR4, there's nothing to do. 1650 1651 */ 1652 1653 static void 1654 svr4_special_symbol_handling (void) 1655 { 1656 } 1657 1658 /* Read the ELF program headers from ABFD. Return the contents and 1659 set *PHDRS_SIZE to the size of the program headers. */ 1660 1661 static gdb_byte * 1662 read_program_headers_from_bfd (bfd *abfd, int *phdrs_size) 1663 { 1664 Elf_Internal_Ehdr *ehdr; 1665 gdb_byte *buf; 1666 1667 ehdr = elf_elfheader (abfd); 1668 1669 *phdrs_size = ehdr->e_phnum * ehdr->e_phentsize; 1670 if (*phdrs_size == 0) 1671 return NULL; 1672 1673 buf = xmalloc (*phdrs_size); 1674 if (bfd_seek (abfd, ehdr->e_phoff, SEEK_SET) != 0 1675 || bfd_bread (buf, *phdrs_size, abfd) != *phdrs_size) 1676 { 1677 xfree (buf); 1678 return NULL; 1679 } 1680 1681 return buf; 1682 } 1683 1684 /* Return 1 and fill *DISPLACEMENTP with detected PIE offset of inferior 1685 exec_bfd. Otherwise return 0. 1686 1687 We relocate all of the sections by the same amount. This 1688 behavior is mandated by recent editions of the System V ABI. 1689 According to the System V Application Binary Interface, 1690 Edition 4.1, page 5-5: 1691 1692 ... Though the system chooses virtual addresses for 1693 individual processes, it maintains the segments' relative 1694 positions. Because position-independent code uses relative 1695 addressesing between segments, the difference between 1696 virtual addresses in memory must match the difference 1697 between virtual addresses in the file. The difference 1698 between the virtual address of any segment in memory and 1699 the corresponding virtual address in the file is thus a 1700 single constant value for any one executable or shared 1701 object in a given process. This difference is the base 1702 address. One use of the base address is to relocate the 1703 memory image of the program during dynamic linking. 1704 1705 The same language also appears in Edition 4.0 of the System V 1706 ABI and is left unspecified in some of the earlier editions. 1707 1708 Decide if the objfile needs to be relocated. As indicated above, we will 1709 only be here when execution is stopped. But during attachment PC can be at 1710 arbitrary address therefore regcache_read_pc can be misleading (contrary to 1711 the auxv AT_ENTRY value). Moreover for executable with interpreter section 1712 regcache_read_pc would point to the interpreter and not the main executable. 1713 1714 So, to summarize, relocations are necessary when the start address obtained 1715 from the executable is different from the address in auxv AT_ENTRY entry. 1716 1717 [ The astute reader will note that we also test to make sure that 1718 the executable in question has the DYNAMIC flag set. It is my 1719 opinion that this test is unnecessary (undesirable even). It 1720 was added to avoid inadvertent relocation of an executable 1721 whose e_type member in the ELF header is not ET_DYN. There may 1722 be a time in the future when it is desirable to do relocations 1723 on other types of files as well in which case this condition 1724 should either be removed or modified to accomodate the new file 1725 type. - Kevin, Nov 2000. ] */ 1726 1727 static int 1728 svr4_exec_displacement (CORE_ADDR *displacementp) 1729 { 1730 /* ENTRY_POINT is a possible function descriptor - before 1731 a call to gdbarch_convert_from_func_ptr_addr. */ 1732 CORE_ADDR entry_point, displacement; 1733 1734 if (exec_bfd == NULL) 1735 return 0; 1736 1737 /* Therefore for ELF it is ET_EXEC and not ET_DYN. Both shared libraries 1738 being executed themselves and PIE (Position Independent Executable) 1739 executables are ET_DYN. */ 1740 1741 if ((bfd_get_file_flags (exec_bfd) & DYNAMIC) == 0) 1742 return 0; 1743 1744 if (target_auxv_search (¤t_target, AT_ENTRY, &entry_point) <= 0) 1745 return 0; 1746 1747 displacement = entry_point - bfd_get_start_address (exec_bfd); 1748 1749 /* Verify the DISPLACEMENT candidate complies with the required page 1750 alignment. It is cheaper than the program headers comparison below. */ 1751 1752 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour) 1753 { 1754 const struct elf_backend_data *elf = get_elf_backend_data (exec_bfd); 1755 1756 /* p_align of PT_LOAD segments does not specify any alignment but 1757 only congruency of addresses: 1758 p_offset % p_align == p_vaddr % p_align 1759 Kernel is free to load the executable with lower alignment. */ 1760 1761 if ((displacement & (elf->minpagesize - 1)) != 0) 1762 return 0; 1763 } 1764 1765 /* Verify that the auxilliary vector describes the same file as exec_bfd, by 1766 comparing their program headers. If the program headers in the auxilliary 1767 vector do not match the program headers in the executable, then we are 1768 looking at a different file than the one used by the kernel - for 1769 instance, "gdb program" connected to "gdbserver :PORT ld.so program". */ 1770 1771 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour) 1772 { 1773 /* Be optimistic and clear OK only if GDB was able to verify the headers 1774 really do not match. */ 1775 int phdrs_size, phdrs2_size, ok = 1; 1776 gdb_byte *buf, *buf2; 1777 int arch_size; 1778 1779 buf = read_program_header (-1, &phdrs_size, &arch_size); 1780 buf2 = read_program_headers_from_bfd (exec_bfd, &phdrs2_size); 1781 if (buf != NULL && buf2 != NULL) 1782 { 1783 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch); 1784 1785 /* We are dealing with three different addresses. EXEC_BFD 1786 represents current address in on-disk file. target memory content 1787 may be different from EXEC_BFD as the file may have been prelinked 1788 to a different address after the executable has been loaded. 1789 Moreover the address of placement in target memory can be 1790 different from what the program headers in target memory say - this 1791 is the goal of PIE. 1792 1793 Detected DISPLACEMENT covers both the offsets of PIE placement and 1794 possible new prelink performed after start of the program. Here 1795 relocate BUF and BUF2 just by the EXEC_BFD vs. target memory 1796 content offset for the verification purpose. */ 1797 1798 if (phdrs_size != phdrs2_size 1799 || bfd_get_arch_size (exec_bfd) != arch_size) 1800 ok = 0; 1801 else if (arch_size == 32 && phdrs_size >= sizeof (Elf32_External_Phdr) 1802 && phdrs_size % sizeof (Elf32_External_Phdr) == 0) 1803 { 1804 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header; 1805 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr; 1806 CORE_ADDR displacement = 0; 1807 int i; 1808 1809 /* DISPLACEMENT could be found more easily by the difference of 1810 ehdr2->e_entry. But we haven't read the ehdr yet, and we 1811 already have enough information to compute that displacement 1812 with what we've read. */ 1813 1814 for (i = 0; i < ehdr2->e_phnum; i++) 1815 if (phdr2[i].p_type == PT_LOAD) 1816 { 1817 Elf32_External_Phdr *phdrp; 1818 gdb_byte *buf_vaddr_p, *buf_paddr_p; 1819 CORE_ADDR vaddr, paddr; 1820 CORE_ADDR displacement_vaddr = 0; 1821 CORE_ADDR displacement_paddr = 0; 1822 1823 phdrp = &((Elf32_External_Phdr *) buf)[i]; 1824 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr; 1825 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr; 1826 1827 vaddr = extract_unsigned_integer (buf_vaddr_p, 4, 1828 byte_order); 1829 displacement_vaddr = vaddr - phdr2[i].p_vaddr; 1830 1831 paddr = extract_unsigned_integer (buf_paddr_p, 4, 1832 byte_order); 1833 displacement_paddr = paddr - phdr2[i].p_paddr; 1834 1835 if (displacement_vaddr == displacement_paddr) 1836 displacement = displacement_vaddr; 1837 1838 break; 1839 } 1840 1841 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */ 1842 1843 for (i = 0; i < phdrs_size / sizeof (Elf32_External_Phdr); i++) 1844 { 1845 Elf32_External_Phdr *phdrp; 1846 Elf32_External_Phdr *phdr2p; 1847 gdb_byte *buf_vaddr_p, *buf_paddr_p; 1848 CORE_ADDR vaddr, paddr; 1849 1850 phdrp = &((Elf32_External_Phdr *) buf)[i]; 1851 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr; 1852 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr; 1853 phdr2p = &((Elf32_External_Phdr *) buf2)[i]; 1854 1855 /* PT_GNU_STACK is an exception by being never relocated by 1856 prelink as its addresses are always zero. */ 1857 1858 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0) 1859 continue; 1860 1861 /* Check also other adjustment combinations - PR 11786. */ 1862 1863 vaddr = extract_unsigned_integer (buf_vaddr_p, 4, byte_order); 1864 vaddr -= displacement; 1865 store_unsigned_integer (buf_vaddr_p, 4, byte_order, vaddr); 1866 1867 paddr = extract_unsigned_integer (buf_paddr_p, 4, byte_order); 1868 paddr -= displacement; 1869 store_unsigned_integer (buf_paddr_p, 4, byte_order, paddr); 1870 1871 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0) 1872 continue; 1873 1874 ok = 0; 1875 break; 1876 } 1877 } 1878 else if (arch_size == 64 && phdrs_size >= sizeof (Elf64_External_Phdr) 1879 && phdrs_size % sizeof (Elf64_External_Phdr) == 0) 1880 { 1881 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header; 1882 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr; 1883 CORE_ADDR displacement = 0; 1884 int i; 1885 1886 /* DISPLACEMENT could be found more easily by the difference of 1887 ehdr2->e_entry. But we haven't read the ehdr yet, and we 1888 already have enough information to compute that displacement 1889 with what we've read. */ 1890 1891 for (i = 0; i < ehdr2->e_phnum; i++) 1892 if (phdr2[i].p_type == PT_LOAD) 1893 { 1894 Elf64_External_Phdr *phdrp; 1895 gdb_byte *buf_vaddr_p, *buf_paddr_p; 1896 CORE_ADDR vaddr, paddr; 1897 CORE_ADDR displacement_vaddr = 0; 1898 CORE_ADDR displacement_paddr = 0; 1899 1900 phdrp = &((Elf64_External_Phdr *) buf)[i]; 1901 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr; 1902 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr; 1903 1904 vaddr = extract_unsigned_integer (buf_vaddr_p, 8, 1905 byte_order); 1906 displacement_vaddr = vaddr - phdr2[i].p_vaddr; 1907 1908 paddr = extract_unsigned_integer (buf_paddr_p, 8, 1909 byte_order); 1910 displacement_paddr = paddr - phdr2[i].p_paddr; 1911 1912 if (displacement_vaddr == displacement_paddr) 1913 displacement = displacement_vaddr; 1914 1915 break; 1916 } 1917 1918 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */ 1919 1920 for (i = 0; i < phdrs_size / sizeof (Elf64_External_Phdr); i++) 1921 { 1922 Elf64_External_Phdr *phdrp; 1923 Elf64_External_Phdr *phdr2p; 1924 gdb_byte *buf_vaddr_p, *buf_paddr_p; 1925 CORE_ADDR vaddr, paddr; 1926 1927 phdrp = &((Elf64_External_Phdr *) buf)[i]; 1928 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr; 1929 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr; 1930 phdr2p = &((Elf64_External_Phdr *) buf2)[i]; 1931 1932 /* PT_GNU_STACK is an exception by being never relocated by 1933 prelink as its addresses are always zero. */ 1934 1935 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0) 1936 continue; 1937 1938 /* Check also other adjustment combinations - PR 11786. */ 1939 1940 vaddr = extract_unsigned_integer (buf_vaddr_p, 8, byte_order); 1941 vaddr -= displacement; 1942 store_unsigned_integer (buf_vaddr_p, 8, byte_order, vaddr); 1943 1944 paddr = extract_unsigned_integer (buf_paddr_p, 8, byte_order); 1945 paddr -= displacement; 1946 store_unsigned_integer (buf_paddr_p, 8, byte_order, paddr); 1947 1948 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0) 1949 continue; 1950 1951 ok = 0; 1952 break; 1953 } 1954 } 1955 else 1956 ok = 0; 1957 } 1958 1959 xfree (buf); 1960 xfree (buf2); 1961 1962 if (!ok) 1963 return 0; 1964 } 1965 1966 if (info_verbose) 1967 { 1968 /* It can be printed repeatedly as there is no easy way to check 1969 the executable symbols/file has been already relocated to 1970 displacement. */ 1971 1972 printf_unfiltered (_("Using PIE (Position Independent Executable) " 1973 "displacement %s for \"%s\".\n"), 1974 paddress (target_gdbarch, displacement), 1975 bfd_get_filename (exec_bfd)); 1976 } 1977 1978 *displacementp = displacement; 1979 return 1; 1980 } 1981 1982 /* Relocate the main executable. This function should be called upon 1983 stopping the inferior process at the entry point to the program. 1984 The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are 1985 different, the main executable is relocated by the proper amount. */ 1986 1987 static void 1988 svr4_relocate_main_executable (void) 1989 { 1990 CORE_ADDR displacement; 1991 1992 /* If we are re-running this executable, SYMFILE_OBJFILE->SECTION_OFFSETS 1993 probably contains the offsets computed using the PIE displacement 1994 from the previous run, which of course are irrelevant for this run. 1995 So we need to determine the new PIE displacement and recompute the 1996 section offsets accordingly, even if SYMFILE_OBJFILE->SECTION_OFFSETS 1997 already contains pre-computed offsets. 1998 1999 If we cannot compute the PIE displacement, either: 2000 2001 - The executable is not PIE. 2002 2003 - SYMFILE_OBJFILE does not match the executable started in the target. 2004 This can happen for main executable symbols loaded at the host while 2005 `ld.so --ld-args main-executable' is loaded in the target. 2006 2007 Then we leave the section offsets untouched and use them as is for 2008 this run. Either: 2009 2010 - These section offsets were properly reset earlier, and thus 2011 already contain the correct values. This can happen for instance 2012 when reconnecting via the remote protocol to a target that supports 2013 the `qOffsets' packet. 2014 2015 - The section offsets were not reset earlier, and the best we can 2016 hope is that the old offsets are still applicable to the new run. 2017 */ 2018 2019 if (! svr4_exec_displacement (&displacement)) 2020 return; 2021 2022 /* Even DISPLACEMENT 0 is a valid new difference of in-memory vs. in-file 2023 addresses. */ 2024 2025 if (symfile_objfile) 2026 { 2027 struct section_offsets *new_offsets; 2028 int i; 2029 2030 new_offsets = alloca (symfile_objfile->num_sections 2031 * sizeof (*new_offsets)); 2032 2033 for (i = 0; i < symfile_objfile->num_sections; i++) 2034 new_offsets->offsets[i] = displacement; 2035 2036 objfile_relocate (symfile_objfile, new_offsets); 2037 } 2038 else if (exec_bfd) 2039 { 2040 asection *asect; 2041 2042 for (asect = exec_bfd->sections; asect != NULL; asect = asect->next) 2043 exec_set_section_address (bfd_get_filename (exec_bfd), asect->index, 2044 (bfd_section_vma (exec_bfd, asect) 2045 + displacement)); 2046 } 2047 } 2048 2049 /* 2050 2051 GLOBAL FUNCTION 2052 2053 svr4_solib_create_inferior_hook -- shared library startup support 2054 2055 SYNOPSIS 2056 2057 void svr4_solib_create_inferior_hook (int from_tty) 2058 2059 DESCRIPTION 2060 2061 When gdb starts up the inferior, it nurses it along (through the 2062 shell) until it is ready to execute it's first instruction. At this 2063 point, this function gets called via expansion of the macro 2064 SOLIB_CREATE_INFERIOR_HOOK. 2065 2066 For SunOS executables, this first instruction is typically the 2067 one at "_start", or a similar text label, regardless of whether 2068 the executable is statically or dynamically linked. The runtime 2069 startup code takes care of dynamically linking in any shared 2070 libraries, once gdb allows the inferior to continue. 2071 2072 For SVR4 executables, this first instruction is either the first 2073 instruction in the dynamic linker (for dynamically linked 2074 executables) or the instruction at "start" for statically linked 2075 executables. For dynamically linked executables, the system 2076 first exec's /lib/libc.so.N, which contains the dynamic linker, 2077 and starts it running. The dynamic linker maps in any needed 2078 shared libraries, maps in the actual user executable, and then 2079 jumps to "start" in the user executable. 2080 2081 For both SunOS shared libraries, and SVR4 shared libraries, we 2082 can arrange to cooperate with the dynamic linker to discover the 2083 names of shared libraries that are dynamically linked, and the 2084 base addresses to which they are linked. 2085 2086 This function is responsible for discovering those names and 2087 addresses, and saving sufficient information about them to allow 2088 their symbols to be read at a later time. 2089 2090 FIXME 2091 2092 Between enable_break() and disable_break(), this code does not 2093 properly handle hitting breakpoints which the user might have 2094 set in the startup code or in the dynamic linker itself. Proper 2095 handling will probably have to wait until the implementation is 2096 changed to use the "breakpoint handler function" method. 2097 2098 Also, what if child has exit()ed? Must exit loop somehow. 2099 */ 2100 2101 static void 2102 svr4_solib_create_inferior_hook (int from_tty) 2103 { 2104 #if defined(_SCO_DS) 2105 struct inferior *inf; 2106 struct thread_info *tp; 2107 #endif /* defined(_SCO_DS) */ 2108 struct svr4_info *info; 2109 2110 info = get_svr4_info (); 2111 2112 /* Relocate the main executable if necessary. */ 2113 svr4_relocate_main_executable (); 2114 2115 if (!svr4_have_link_map_offsets ()) 2116 return; 2117 2118 if (!enable_break (info, from_tty)) 2119 return; 2120 2121 #if defined(_SCO_DS) 2122 /* SCO needs the loop below, other systems should be using the 2123 special shared library breakpoints and the shared library breakpoint 2124 service routine. 2125 2126 Now run the target. It will eventually hit the breakpoint, at 2127 which point all of the libraries will have been mapped in and we 2128 can go groveling around in the dynamic linker structures to find 2129 out what we need to know about them. */ 2130 2131 inf = current_inferior (); 2132 tp = inferior_thread (); 2133 2134 clear_proceed_status (); 2135 inf->stop_soon = STOP_QUIETLY; 2136 tp->stop_signal = TARGET_SIGNAL_0; 2137 do 2138 { 2139 target_resume (pid_to_ptid (-1), 0, tp->stop_signal); 2140 wait_for_inferior (0); 2141 } 2142 while (tp->stop_signal != TARGET_SIGNAL_TRAP); 2143 inf->stop_soon = NO_STOP_QUIETLY; 2144 #endif /* defined(_SCO_DS) */ 2145 } 2146 2147 static void 2148 svr4_clear_solib (void) 2149 { 2150 struct svr4_info *info; 2151 2152 info = get_svr4_info (); 2153 info->debug_base = 0; 2154 info->debug_loader_offset_p = 0; 2155 info->debug_loader_offset = 0; 2156 xfree (info->debug_loader_name); 2157 info->debug_loader_name = NULL; 2158 } 2159 2160 static void 2161 svr4_free_so (struct so_list *so) 2162 { 2163 xfree (so->lm_info->lm); 2164 xfree (so->lm_info); 2165 } 2166 2167 2168 /* Clear any bits of ADDR that wouldn't fit in a target-format 2169 data pointer. "Data pointer" here refers to whatever sort of 2170 address the dynamic linker uses to manage its sections. At the 2171 moment, we don't support shared libraries on any processors where 2172 code and data pointers are different sizes. 2173 2174 This isn't really the right solution. What we really need here is 2175 a way to do arithmetic on CORE_ADDR values that respects the 2176 natural pointer/address correspondence. (For example, on the MIPS, 2177 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to 2178 sign-extend the value. There, simply truncating the bits above 2179 gdbarch_ptr_bit, as we do below, is no good.) This should probably 2180 be a new gdbarch method or something. */ 2181 static CORE_ADDR 2182 svr4_truncate_ptr (CORE_ADDR addr) 2183 { 2184 if (gdbarch_ptr_bit (target_gdbarch) == sizeof (CORE_ADDR) * 8) 2185 /* We don't need to truncate anything, and the bit twiddling below 2186 will fail due to overflow problems. */ 2187 return addr; 2188 else 2189 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch)) - 1); 2190 } 2191 2192 2193 static void 2194 svr4_relocate_section_addresses (struct so_list *so, 2195 struct target_section *sec) 2196 { 2197 sec->addr = svr4_truncate_ptr (sec->addr + LM_ADDR_CHECK (so, 2198 sec->bfd)); 2199 sec->endaddr = svr4_truncate_ptr (sec->endaddr + LM_ADDR_CHECK (so, 2200 sec->bfd)); 2201 } 2202 2203 2204 /* Architecture-specific operations. */ 2205 2206 /* Per-architecture data key. */ 2207 static struct gdbarch_data *solib_svr4_data; 2208 2209 struct solib_svr4_ops 2210 { 2211 /* Return a description of the layout of `struct link_map'. */ 2212 struct link_map_offsets *(*fetch_link_map_offsets)(void); 2213 }; 2214 2215 /* Return a default for the architecture-specific operations. */ 2216 2217 static void * 2218 solib_svr4_init (struct obstack *obstack) 2219 { 2220 struct solib_svr4_ops *ops; 2221 2222 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops); 2223 ops->fetch_link_map_offsets = NULL; 2224 return ops; 2225 } 2226 2227 /* Set the architecture-specific `struct link_map_offsets' fetcher for 2228 GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */ 2229 2230 void 2231 set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch, 2232 struct link_map_offsets *(*flmo) (void)) 2233 { 2234 struct solib_svr4_ops *ops = gdbarch_data (gdbarch, solib_svr4_data); 2235 2236 ops->fetch_link_map_offsets = flmo; 2237 2238 set_solib_ops (gdbarch, &svr4_so_ops); 2239 } 2240 2241 /* Fetch a link_map_offsets structure using the architecture-specific 2242 `struct link_map_offsets' fetcher. */ 2243 2244 static struct link_map_offsets * 2245 svr4_fetch_link_map_offsets (void) 2246 { 2247 struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch, solib_svr4_data); 2248 2249 gdb_assert (ops->fetch_link_map_offsets); 2250 return ops->fetch_link_map_offsets (); 2251 } 2252 2253 /* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */ 2254 2255 static int 2256 svr4_have_link_map_offsets (void) 2257 { 2258 struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch, solib_svr4_data); 2259 2260 return (ops->fetch_link_map_offsets != NULL); 2261 } 2262 2263 2264 /* Most OS'es that have SVR4-style ELF dynamic libraries define a 2265 `struct r_debug' and a `struct link_map' that are binary compatible 2266 with the origional SVR4 implementation. */ 2267 2268 /* Fetch (and possibly build) an appropriate `struct link_map_offsets' 2269 for an ILP32 SVR4 system. */ 2270 2271 struct link_map_offsets * 2272 svr4_ilp32_fetch_link_map_offsets (void) 2273 { 2274 static struct link_map_offsets lmo; 2275 static struct link_map_offsets *lmp = NULL; 2276 2277 if (lmp == NULL) 2278 { 2279 lmp = &lmo; 2280 2281 lmo.r_version_offset = 0; 2282 lmo.r_version_size = 4; 2283 lmo.r_map_offset = 4; 2284 lmo.r_brk_offset = 8; 2285 lmo.r_ldsomap_offset = 20; 2286 2287 /* Everything we need is in the first 20 bytes. */ 2288 lmo.link_map_size = 20; 2289 lmo.l_addr_offset = 0; 2290 lmo.l_name_offset = 4; 2291 lmo.l_ld_offset = 8; 2292 lmo.l_next_offset = 12; 2293 lmo.l_prev_offset = 16; 2294 } 2295 2296 return lmp; 2297 } 2298 2299 /* Fetch (and possibly build) an appropriate `struct link_map_offsets' 2300 for an LP64 SVR4 system. */ 2301 2302 struct link_map_offsets * 2303 svr4_lp64_fetch_link_map_offsets (void) 2304 { 2305 static struct link_map_offsets lmo; 2306 static struct link_map_offsets *lmp = NULL; 2307 2308 if (lmp == NULL) 2309 { 2310 lmp = &lmo; 2311 2312 lmo.r_version_offset = 0; 2313 lmo.r_version_size = 4; 2314 lmo.r_map_offset = 8; 2315 lmo.r_brk_offset = 16; 2316 lmo.r_ldsomap_offset = 40; 2317 2318 /* Everything we need is in the first 40 bytes. */ 2319 lmo.link_map_size = 40; 2320 lmo.l_addr_offset = 0; 2321 lmo.l_name_offset = 8; 2322 lmo.l_ld_offset = 16; 2323 lmo.l_next_offset = 24; 2324 lmo.l_prev_offset = 32; 2325 } 2326 2327 return lmp; 2328 } 2329 2330 2331 struct target_so_ops svr4_so_ops; 2332 2333 /* Lookup global symbol for ELF DSOs linked with -Bsymbolic. Those DSOs have a 2334 different rule for symbol lookup. The lookup begins here in the DSO, not in 2335 the main executable. */ 2336 2337 static struct symbol * 2338 elf_lookup_lib_symbol (const struct objfile *objfile, 2339 const char *name, 2340 const domain_enum domain) 2341 { 2342 bfd *abfd; 2343 2344 if (objfile == symfile_objfile) 2345 abfd = exec_bfd; 2346 else 2347 { 2348 /* OBJFILE should have been passed as the non-debug one. */ 2349 gdb_assert (objfile->separate_debug_objfile_backlink == NULL); 2350 2351 abfd = objfile->obfd; 2352 } 2353 2354 if (abfd == NULL || scan_dyntag (DT_SYMBOLIC, abfd, NULL) != 1) 2355 return NULL; 2356 2357 return lookup_global_symbol_from_objfile (objfile, name, domain); 2358 } 2359 2360 extern initialize_file_ftype _initialize_svr4_solib; /* -Wmissing-prototypes */ 2361 2362 void 2363 _initialize_svr4_solib (void) 2364 { 2365 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init); 2366 solib_svr4_pspace_data 2367 = register_program_space_data_with_cleanup (svr4_pspace_data_cleanup); 2368 2369 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses; 2370 svr4_so_ops.free_so = svr4_free_so; 2371 svr4_so_ops.clear_solib = svr4_clear_solib; 2372 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook; 2373 svr4_so_ops.special_symbol_handling = svr4_special_symbol_handling; 2374 svr4_so_ops.current_sos = svr4_current_sos; 2375 svr4_so_ops.open_symbol_file_object = open_symbol_file_object; 2376 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code; 2377 svr4_so_ops.bfd_open = solib_bfd_open; 2378 svr4_so_ops.lookup_lib_global_symbol = elf_lookup_lib_symbol; 2379 svr4_so_ops.same = svr4_same; 2380 svr4_so_ops.keep_data_in_core = svr4_keep_data_in_core; 2381 } 2382