1 /* GDB routines for manipulating objfiles. 2 3 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 4 2002, 2003, 2004, 2007, 2008, 2009, 2010 Free Software Foundation, Inc. 5 6 Contributed by Cygnus Support, using pieces from other GDB modules. 7 8 This file is part of GDB. 9 10 This program is free software; you can redistribute it and/or modify 11 it under the terms of the GNU General Public License as published by 12 the Free Software Foundation; either version 3 of the License, or 13 (at your option) any later version. 14 15 This program is distributed in the hope that it will be useful, 16 but WITHOUT ANY WARRANTY; without even the implied warranty of 17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 GNU General Public License for more details. 19 20 You should have received a copy of the GNU General Public License 21 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 22 23 /* This file contains support routines for creating, manipulating, and 24 destroying objfile structures. */ 25 26 #include "defs.h" 27 #include "bfd.h" /* Binary File Description */ 28 #include "symtab.h" 29 #include "symfile.h" 30 #include "objfiles.h" 31 #include "gdb-stabs.h" 32 #include "target.h" 33 #include "bcache.h" 34 #include "mdebugread.h" 35 #include "expression.h" 36 #include "parser-defs.h" 37 38 #include "gdb_assert.h" 39 #include <sys/types.h> 40 #include "gdb_stat.h" 41 #include <fcntl.h> 42 #include "gdb_obstack.h" 43 #include "gdb_string.h" 44 #include "hashtab.h" 45 46 #include "breakpoint.h" 47 #include "block.h" 48 #include "dictionary.h" 49 #include "source.h" 50 #include "addrmap.h" 51 #include "arch-utils.h" 52 #include "exec.h" 53 #include "observer.h" 54 #include "complaints.h" 55 #include "psymtab.h" 56 #include "solist.h" 57 58 /* Prototypes for local functions */ 59 60 static void objfile_alloc_data (struct objfile *objfile); 61 static void objfile_free_data (struct objfile *objfile); 62 63 /* Externally visible variables that are owned by this module. 64 See declarations in objfile.h for more info. */ 65 66 struct objfile *current_objfile; /* For symbol file being read in */ 67 struct objfile *rt_common_objfile; /* For runtime common symbols */ 68 69 struct objfile_pspace_info 70 { 71 int objfiles_changed_p; 72 struct obj_section **sections; 73 int num_sections; 74 }; 75 76 /* Per-program-space data key. */ 77 static const struct program_space_data *objfiles_pspace_data; 78 79 static void 80 objfiles_pspace_data_cleanup (struct program_space *pspace, void *arg) 81 { 82 struct objfile_pspace_info *info; 83 84 info = program_space_data (pspace, objfiles_pspace_data); 85 if (info != NULL) 86 { 87 xfree (info->sections); 88 xfree (info); 89 } 90 } 91 92 /* Get the current svr4 data. If none is found yet, add it now. This 93 function always returns a valid object. */ 94 95 static struct objfile_pspace_info * 96 get_objfile_pspace_data (struct program_space *pspace) 97 { 98 struct objfile_pspace_info *info; 99 100 info = program_space_data (pspace, objfiles_pspace_data); 101 if (info == NULL) 102 { 103 info = XZALLOC (struct objfile_pspace_info); 104 set_program_space_data (pspace, objfiles_pspace_data, info); 105 } 106 107 return info; 108 } 109 110 /* Records whether any objfiles appeared or disappeared since we last updated 111 address to obj section map. */ 112 113 /* Locate all mappable sections of a BFD file. 114 objfile_p_char is a char * to get it through 115 bfd_map_over_sections; we cast it back to its proper type. */ 116 117 /* Called via bfd_map_over_sections to build up the section table that 118 the objfile references. The objfile contains pointers to the start 119 of the table (objfile->sections) and to the first location after 120 the end of the table (objfile->sections_end). */ 121 122 static void 123 add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect, 124 void *objfile_p_char) 125 { 126 struct objfile *objfile = (struct objfile *) objfile_p_char; 127 struct obj_section section; 128 flagword aflag; 129 130 aflag = bfd_get_section_flags (abfd, asect); 131 132 if (!(aflag & SEC_ALLOC)) 133 return; 134 135 if (0 == bfd_section_size (abfd, asect)) 136 return; 137 section.objfile = objfile; 138 section.the_bfd_section = asect; 139 section.ovly_mapped = 0; 140 obstack_grow (&objfile->objfile_obstack, (char *) §ion, sizeof (section)); 141 objfile->sections_end 142 = (struct obj_section *) (((size_t) objfile->sections_end) + 1); 143 } 144 145 /* Builds a section table for OBJFILE. 146 Returns 0 if OK, 1 on error (in which case bfd_error contains the 147 error). 148 149 Note that while we are building the table, which goes into the 150 psymbol obstack, we hijack the sections_end pointer to instead hold 151 a count of the number of sections. When bfd_map_over_sections 152 returns, this count is used to compute the pointer to the end of 153 the sections table, which then overwrites the count. 154 155 Also note that the OFFSET and OVLY_MAPPED in each table entry 156 are initialized to zero. 157 158 Also note that if anything else writes to the psymbol obstack while 159 we are building the table, we're pretty much hosed. */ 160 161 int 162 build_objfile_section_table (struct objfile *objfile) 163 { 164 /* objfile->sections can be already set when reading a mapped symbol 165 file. I believe that we do need to rebuild the section table in 166 this case (we rebuild other things derived from the bfd), but we 167 can't free the old one (it's in the objfile_obstack). So we just 168 waste some memory. */ 169 170 objfile->sections_end = 0; 171 bfd_map_over_sections (objfile->obfd, 172 add_to_objfile_sections, (void *) objfile); 173 objfile->sections = obstack_finish (&objfile->objfile_obstack); 174 objfile->sections_end = objfile->sections + (size_t) objfile->sections_end; 175 return (0); 176 } 177 178 /* Given a pointer to an initialized bfd (ABFD) and some flag bits 179 allocate a new objfile struct, fill it in as best we can, link it 180 into the list of all known objfiles, and return a pointer to the 181 new objfile struct. 182 183 The FLAGS word contains various bits (OBJF_*) that can be taken as 184 requests for specific operations. Other bits like OBJF_SHARED are 185 simply copied through to the new objfile flags member. */ 186 187 /* NOTE: carlton/2003-02-04: This function is called with args NULL, 0 188 by jv-lang.c, to create an artificial objfile used to hold 189 information about dynamically-loaded Java classes. Unfortunately, 190 that branch of this function doesn't get tested very frequently, so 191 it's prone to breakage. (E.g. at one time the name was set to NULL 192 in that situation, which broke a loop over all names in the dynamic 193 library loader.) If you change this function, please try to leave 194 things in a consistent state even if abfd is NULL. */ 195 196 struct objfile * 197 allocate_objfile (bfd *abfd, int flags) 198 { 199 struct objfile *objfile; 200 201 objfile = (struct objfile *) xzalloc (sizeof (struct objfile)); 202 objfile->psymbol_cache = bcache_xmalloc (); 203 objfile->macro_cache = bcache_xmalloc (); 204 objfile->filename_cache = bcache_xmalloc (); 205 /* We could use obstack_specify_allocation here instead, but 206 gdb_obstack.h specifies the alloc/dealloc functions. */ 207 obstack_init (&objfile->objfile_obstack); 208 terminate_minimal_symbol_table (objfile); 209 210 objfile_alloc_data (objfile); 211 212 /* Update the per-objfile information that comes from the bfd, ensuring 213 that any data that is reference is saved in the per-objfile data 214 region. */ 215 216 objfile->obfd = gdb_bfd_ref (abfd); 217 if (objfile->name != NULL) 218 { 219 xfree (objfile->name); 220 } 221 if (abfd != NULL) 222 { 223 /* Look up the gdbarch associated with the BFD. */ 224 objfile->gdbarch = gdbarch_from_bfd (abfd); 225 226 objfile->name = xstrdup (bfd_get_filename (abfd)); 227 objfile->mtime = bfd_get_mtime (abfd); 228 229 /* Build section table. */ 230 231 if (build_objfile_section_table (objfile)) 232 { 233 error (_("Can't find the file sections in `%s': %s"), 234 objfile->name, bfd_errmsg (bfd_get_error ())); 235 } 236 } 237 else 238 { 239 objfile->name = xstrdup ("<<anonymous objfile>>"); 240 } 241 242 objfile->pspace = current_program_space; 243 244 /* Initialize the section indexes for this objfile, so that we can 245 later detect if they are used w/o being properly assigned to. */ 246 247 objfile->sect_index_text = -1; 248 objfile->sect_index_data = -1; 249 objfile->sect_index_bss = -1; 250 objfile->sect_index_rodata = -1; 251 252 /* We don't yet have a C++-specific namespace symtab. */ 253 254 objfile->cp_namespace_symtab = NULL; 255 256 /* Add this file onto the tail of the linked list of other such files. */ 257 258 objfile->next = NULL; 259 if (object_files == NULL) 260 object_files = objfile; 261 else 262 { 263 struct objfile *last_one; 264 265 for (last_one = object_files; 266 last_one->next; 267 last_one = last_one->next); 268 last_one->next = objfile; 269 } 270 271 /* Save passed in flag bits. */ 272 objfile->flags |= flags; 273 274 /* Rebuild section map next time we need it. */ 275 get_objfile_pspace_data (objfile->pspace)->objfiles_changed_p = 1; 276 277 return objfile; 278 } 279 280 /* Retrieve the gdbarch associated with OBJFILE. */ 281 struct gdbarch * 282 get_objfile_arch (struct objfile *objfile) 283 { 284 return objfile->gdbarch; 285 } 286 287 /* Initialize entry point information for this objfile. */ 288 289 void 290 init_entry_point_info (struct objfile *objfile) 291 { 292 /* Save startup file's range of PC addresses to help blockframe.c 293 decide where the bottom of the stack is. */ 294 295 if (bfd_get_file_flags (objfile->obfd) & EXEC_P) 296 { 297 /* Executable file -- record its entry point so we'll recognize 298 the startup file because it contains the entry point. */ 299 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd); 300 objfile->ei.entry_point_p = 1; 301 } 302 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC 303 && bfd_get_start_address (objfile->obfd) != 0) 304 { 305 /* Some shared libraries may have entry points set and be 306 runnable. There's no clear way to indicate this, so just check 307 for values other than zero. */ 308 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd); 309 objfile->ei.entry_point_p = 1; 310 } 311 else 312 { 313 /* Examination of non-executable.o files. Short-circuit this stuff. */ 314 objfile->ei.entry_point_p = 0; 315 } 316 } 317 318 /* If there is a valid and known entry point, function fills *ENTRY_P with it 319 and returns non-zero; otherwise it returns zero. */ 320 321 int 322 entry_point_address_query (CORE_ADDR *entry_p) 323 { 324 struct gdbarch *gdbarch; 325 CORE_ADDR entry_point; 326 327 if (symfile_objfile == NULL || !symfile_objfile->ei.entry_point_p) 328 return 0; 329 330 gdbarch = get_objfile_arch (symfile_objfile); 331 332 entry_point = symfile_objfile->ei.entry_point; 333 334 /* Make certain that the address points at real code, and not a 335 function descriptor. */ 336 entry_point = gdbarch_convert_from_func_ptr_addr (gdbarch, entry_point, 337 ¤t_target); 338 339 /* Remove any ISA markers, so that this matches entries in the 340 symbol table. */ 341 entry_point = gdbarch_addr_bits_remove (gdbarch, entry_point); 342 343 *entry_p = entry_point; 344 return 1; 345 } 346 347 /* Get current entry point address. Call error if it is not known. */ 348 349 CORE_ADDR 350 entry_point_address (void) 351 { 352 CORE_ADDR retval; 353 354 if (!entry_point_address_query (&retval)) 355 error (_("Entry point address is not known.")); 356 357 return retval; 358 } 359 360 /* Create the terminating entry of OBJFILE's minimal symbol table. 361 If OBJFILE->msymbols is zero, allocate a single entry from 362 OBJFILE->objfile_obstack; otherwise, just initialize 363 OBJFILE->msymbols[OBJFILE->minimal_symbol_count]. */ 364 void 365 terminate_minimal_symbol_table (struct objfile *objfile) 366 { 367 if (! objfile->msymbols) 368 objfile->msymbols = ((struct minimal_symbol *) 369 obstack_alloc (&objfile->objfile_obstack, 370 sizeof (objfile->msymbols[0]))); 371 372 { 373 struct minimal_symbol *m 374 = &objfile->msymbols[objfile->minimal_symbol_count]; 375 376 memset (m, 0, sizeof (*m)); 377 /* Don't rely on these enumeration values being 0's. */ 378 MSYMBOL_TYPE (m) = mst_unknown; 379 SYMBOL_INIT_LANGUAGE_SPECIFIC (m, language_unknown); 380 } 381 } 382 383 /* Iterator on PARENT and every separate debug objfile of PARENT. 384 The usage pattern is: 385 for (objfile = parent; 386 objfile; 387 objfile = objfile_separate_debug_iterate (parent, objfile)) 388 ... 389 */ 390 391 struct objfile * 392 objfile_separate_debug_iterate (const struct objfile *parent, 393 const struct objfile *objfile) 394 { 395 struct objfile *res; 396 397 /* If any, return the first child. */ 398 res = objfile->separate_debug_objfile; 399 if (res) 400 return res; 401 402 /* Common case where there is no separate debug objfile. */ 403 if (objfile == parent) 404 return NULL; 405 406 /* Return the brother if any. Note that we don't iterate on brothers of 407 the parents. */ 408 res = objfile->separate_debug_objfile_link; 409 if (res) 410 return res; 411 412 for (res = objfile->separate_debug_objfile_backlink; 413 res != parent; 414 res = res->separate_debug_objfile_backlink) 415 { 416 gdb_assert (res != NULL); 417 if (res->separate_debug_objfile_link) 418 return res->separate_debug_objfile_link; 419 } 420 return NULL; 421 } 422 423 /* Put one object file before a specified on in the global list. 424 This can be used to make sure an object file is destroyed before 425 another when using ALL_OBJFILES_SAFE to free all objfiles. */ 426 void 427 put_objfile_before (struct objfile *objfile, struct objfile *before_this) 428 { 429 struct objfile **objp; 430 431 unlink_objfile (objfile); 432 433 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next)) 434 { 435 if (*objp == before_this) 436 { 437 objfile->next = *objp; 438 *objp = objfile; 439 return; 440 } 441 } 442 443 internal_error (__FILE__, __LINE__, 444 _("put_objfile_before: before objfile not in list")); 445 } 446 447 /* Put OBJFILE at the front of the list. */ 448 449 void 450 objfile_to_front (struct objfile *objfile) 451 { 452 struct objfile **objp; 453 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next)) 454 { 455 if (*objp == objfile) 456 { 457 /* Unhook it from where it is. */ 458 *objp = objfile->next; 459 /* Put it in the front. */ 460 objfile->next = object_files; 461 object_files = objfile; 462 break; 463 } 464 } 465 } 466 467 /* Unlink OBJFILE from the list of known objfiles, if it is found in the 468 list. 469 470 It is not a bug, or error, to call this function if OBJFILE is not known 471 to be in the current list. This is done in the case of mapped objfiles, 472 for example, just to ensure that the mapped objfile doesn't appear twice 473 in the list. Since the list is threaded, linking in a mapped objfile 474 twice would create a circular list. 475 476 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after 477 unlinking it, just to ensure that we have completely severed any linkages 478 between the OBJFILE and the list. */ 479 480 void 481 unlink_objfile (struct objfile *objfile) 482 { 483 struct objfile **objpp; 484 485 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next)) 486 { 487 if (*objpp == objfile) 488 { 489 *objpp = (*objpp)->next; 490 objfile->next = NULL; 491 return; 492 } 493 } 494 495 internal_error (__FILE__, __LINE__, 496 _("unlink_objfile: objfile already unlinked")); 497 } 498 499 /* Add OBJFILE as a separate debug objfile of PARENT. */ 500 501 void 502 add_separate_debug_objfile (struct objfile *objfile, struct objfile *parent) 503 { 504 gdb_assert (objfile && parent); 505 506 /* Must not be already in a list. */ 507 gdb_assert (objfile->separate_debug_objfile_backlink == NULL); 508 gdb_assert (objfile->separate_debug_objfile_link == NULL); 509 510 objfile->separate_debug_objfile_backlink = parent; 511 objfile->separate_debug_objfile_link = parent->separate_debug_objfile; 512 parent->separate_debug_objfile = objfile; 513 514 /* Put the separate debug object before the normal one, this is so that 515 usage of the ALL_OBJFILES_SAFE macro will stay safe. */ 516 put_objfile_before (objfile, parent); 517 } 518 519 /* Free all separate debug objfile of OBJFILE, but don't free OBJFILE 520 itself. */ 521 522 void 523 free_objfile_separate_debug (struct objfile *objfile) 524 { 525 struct objfile *child; 526 527 for (child = objfile->separate_debug_objfile; child;) 528 { 529 struct objfile *next_child = child->separate_debug_objfile_link; 530 free_objfile (child); 531 child = next_child; 532 } 533 } 534 535 /* Destroy an objfile and all the symtabs and psymtabs under it. Note 536 that as much as possible is allocated on the objfile_obstack 537 so that the memory can be efficiently freed. 538 539 Things which we do NOT free because they are not in malloc'd memory 540 or not in memory specific to the objfile include: 541 542 objfile -> sf 543 544 FIXME: If the objfile is using reusable symbol information (via mmalloc), 545 then we need to take into account the fact that more than one process 546 may be using the symbol information at the same time (when mmalloc is 547 extended to support cooperative locking). When more than one process 548 is using the mapped symbol info, we need to be more careful about when 549 we free objects in the reusable area. */ 550 551 void 552 free_objfile (struct objfile *objfile) 553 { 554 /* Free all separate debug objfiles. */ 555 free_objfile_separate_debug (objfile); 556 557 if (objfile->separate_debug_objfile_backlink) 558 { 559 /* We freed the separate debug file, make sure the base objfile 560 doesn't reference it. */ 561 struct objfile *child; 562 563 child = objfile->separate_debug_objfile_backlink->separate_debug_objfile; 564 565 if (child == objfile) 566 { 567 /* OBJFILE is the first child. */ 568 objfile->separate_debug_objfile_backlink->separate_debug_objfile = 569 objfile->separate_debug_objfile_link; 570 } 571 else 572 { 573 /* Find OBJFILE in the list. */ 574 while (1) 575 { 576 if (child->separate_debug_objfile_link == objfile) 577 { 578 child->separate_debug_objfile_link = 579 objfile->separate_debug_objfile_link; 580 break; 581 } 582 child = child->separate_debug_objfile_link; 583 gdb_assert (child); 584 } 585 } 586 } 587 588 /* Remove any references to this objfile in the global value 589 lists. */ 590 preserve_values (objfile); 591 592 /* First do any symbol file specific actions required when we are 593 finished with a particular symbol file. Note that if the objfile 594 is using reusable symbol information (via mmalloc) then each of 595 these routines is responsible for doing the correct thing, either 596 freeing things which are valid only during this particular gdb 597 execution, or leaving them to be reused during the next one. */ 598 599 if (objfile->sf != NULL) 600 { 601 (*objfile->sf->sym_finish) (objfile); 602 } 603 604 /* Discard any data modules have associated with the objfile. */ 605 objfile_free_data (objfile); 606 607 gdb_bfd_unref (objfile->obfd); 608 609 /* Remove it from the chain of all objfiles. */ 610 611 unlink_objfile (objfile); 612 613 if (objfile == symfile_objfile) 614 symfile_objfile = NULL; 615 616 if (objfile == rt_common_objfile) 617 rt_common_objfile = NULL; 618 619 /* Before the symbol table code was redone to make it easier to 620 selectively load and remove information particular to a specific 621 linkage unit, gdb used to do these things whenever the monolithic 622 symbol table was blown away. How much still needs to be done 623 is unknown, but we play it safe for now and keep each action until 624 it is shown to be no longer needed. */ 625 626 /* Not all our callers call clear_symtab_users (objfile_purge_solibs, 627 for example), so we need to call this here. */ 628 clear_pc_function_cache (); 629 630 /* Clear globals which might have pointed into a removed objfile. 631 FIXME: It's not clear which of these are supposed to persist 632 between expressions and which ought to be reset each time. */ 633 expression_context_block = NULL; 634 innermost_block = NULL; 635 636 /* Check to see if the current_source_symtab belongs to this objfile, 637 and if so, call clear_current_source_symtab_and_line. */ 638 639 { 640 struct symtab_and_line cursal = get_current_source_symtab_and_line (); 641 struct symtab *s; 642 643 ALL_OBJFILE_SYMTABS (objfile, s) 644 { 645 if (s == cursal.symtab) 646 clear_current_source_symtab_and_line (); 647 } 648 } 649 650 /* The last thing we do is free the objfile struct itself. */ 651 652 if (objfile->name != NULL) 653 { 654 xfree (objfile->name); 655 } 656 if (objfile->global_psymbols.list) 657 xfree (objfile->global_psymbols.list); 658 if (objfile->static_psymbols.list) 659 xfree (objfile->static_psymbols.list); 660 /* Free the obstacks for non-reusable objfiles */ 661 bcache_xfree (objfile->psymbol_cache); 662 bcache_xfree (objfile->macro_cache); 663 bcache_xfree (objfile->filename_cache); 664 if (objfile->demangled_names_hash) 665 htab_delete (objfile->demangled_names_hash); 666 obstack_free (&objfile->objfile_obstack, 0); 667 668 /* Rebuild section map next time we need it. */ 669 get_objfile_pspace_data (objfile->pspace)->objfiles_changed_p = 1; 670 671 xfree (objfile); 672 } 673 674 static void 675 do_free_objfile_cleanup (void *obj) 676 { 677 free_objfile (obj); 678 } 679 680 struct cleanup * 681 make_cleanup_free_objfile (struct objfile *obj) 682 { 683 return make_cleanup (do_free_objfile_cleanup, obj); 684 } 685 686 /* Free all the object files at once and clean up their users. */ 687 688 void 689 free_all_objfiles (void) 690 { 691 struct objfile *objfile, *temp; 692 struct so_list *so; 693 694 /* Any objfile referencewould become stale. */ 695 for (so = master_so_list (); so; so = so->next) 696 gdb_assert (so->objfile == NULL); 697 698 ALL_OBJFILES_SAFE (objfile, temp) 699 { 700 free_objfile (objfile); 701 } 702 clear_symtab_users (); 703 } 704 705 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS 706 entries in new_offsets. SEPARATE_DEBUG_OBJFILE is not touched here. 707 Return non-zero iff any change happened. */ 708 709 static int 710 objfile_relocate1 (struct objfile *objfile, 711 struct section_offsets *new_offsets) 712 { 713 struct obj_section *s; 714 struct section_offsets *delta = 715 ((struct section_offsets *) 716 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections))); 717 718 int i; 719 int something_changed = 0; 720 721 for (i = 0; i < objfile->num_sections; ++i) 722 { 723 delta->offsets[i] = 724 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i); 725 if (ANOFFSET (delta, i) != 0) 726 something_changed = 1; 727 } 728 if (!something_changed) 729 return 0; 730 731 /* OK, get all the symtabs. */ 732 { 733 struct symtab *s; 734 735 ALL_OBJFILE_SYMTABS (objfile, s) 736 { 737 struct linetable *l; 738 struct blockvector *bv; 739 int i; 740 741 /* First the line table. */ 742 l = LINETABLE (s); 743 if (l) 744 { 745 for (i = 0; i < l->nitems; ++i) 746 l->item[i].pc += ANOFFSET (delta, s->block_line_section); 747 } 748 749 /* Don't relocate a shared blockvector more than once. */ 750 if (!s->primary) 751 continue; 752 753 bv = BLOCKVECTOR (s); 754 if (BLOCKVECTOR_MAP (bv)) 755 addrmap_relocate (BLOCKVECTOR_MAP (bv), 756 ANOFFSET (delta, s->block_line_section)); 757 758 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i) 759 { 760 struct block *b; 761 struct symbol *sym; 762 struct dict_iterator iter; 763 764 b = BLOCKVECTOR_BLOCK (bv, i); 765 BLOCK_START (b) += ANOFFSET (delta, s->block_line_section); 766 BLOCK_END (b) += ANOFFSET (delta, s->block_line_section); 767 768 ALL_BLOCK_SYMBOLS (b, iter, sym) 769 { 770 fixup_symbol_section (sym, objfile); 771 772 /* The RS6000 code from which this was taken skipped 773 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN. 774 But I'm leaving out that test, on the theory that 775 they can't possibly pass the tests below. */ 776 if ((SYMBOL_CLASS (sym) == LOC_LABEL 777 || SYMBOL_CLASS (sym) == LOC_STATIC) 778 && SYMBOL_SECTION (sym) >= 0) 779 { 780 SYMBOL_VALUE_ADDRESS (sym) += 781 ANOFFSET (delta, SYMBOL_SECTION (sym)); 782 } 783 } 784 } 785 } 786 } 787 788 if (objfile->psymtabs_addrmap) 789 addrmap_relocate (objfile->psymtabs_addrmap, 790 ANOFFSET (delta, SECT_OFF_TEXT (objfile))); 791 792 if (objfile->sf) 793 objfile->sf->qf->relocate (objfile, new_offsets, delta); 794 795 { 796 struct minimal_symbol *msym; 797 798 ALL_OBJFILE_MSYMBOLS (objfile, msym) 799 if (SYMBOL_SECTION (msym) >= 0) 800 SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym)); 801 } 802 /* Relocating different sections by different amounts may cause the symbols 803 to be out of order. */ 804 msymbols_sort (objfile); 805 806 if (objfile->ei.entry_point_p) 807 { 808 /* Relocate ei.entry_point with its section offset, use SECT_OFF_TEXT 809 only as a fallback. */ 810 struct obj_section *s; 811 s = find_pc_section (objfile->ei.entry_point); 812 if (s) 813 objfile->ei.entry_point += ANOFFSET (delta, s->the_bfd_section->index); 814 else 815 objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT (objfile)); 816 } 817 818 { 819 int i; 820 821 for (i = 0; i < objfile->num_sections; ++i) 822 (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i); 823 } 824 825 /* Rebuild section map next time we need it. */ 826 get_objfile_pspace_data (objfile->pspace)->objfiles_changed_p = 1; 827 828 /* Update the table in exec_ops, used to read memory. */ 829 ALL_OBJFILE_OSECTIONS (objfile, s) 830 { 831 int idx = s->the_bfd_section->index; 832 833 exec_set_section_address (bfd_get_filename (objfile->obfd), idx, 834 obj_section_addr (s)); 835 } 836 837 /* Data changed. */ 838 return 1; 839 } 840 841 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS 842 entries in new_offsets. Process also OBJFILE's SEPARATE_DEBUG_OBJFILEs. 843 844 The number and ordering of sections does differ between the two objfiles. 845 Only their names match. Also the file offsets will differ (objfile being 846 possibly prelinked but separate_debug_objfile is probably not prelinked) but 847 the in-memory absolute address as specified by NEW_OFFSETS must match both 848 files. */ 849 850 void 851 objfile_relocate (struct objfile *objfile, struct section_offsets *new_offsets) 852 { 853 struct objfile *debug_objfile; 854 int changed = 0; 855 856 changed |= objfile_relocate1 (objfile, new_offsets); 857 858 for (debug_objfile = objfile->separate_debug_objfile; 859 debug_objfile; 860 debug_objfile = objfile_separate_debug_iterate (objfile, debug_objfile)) 861 { 862 struct section_addr_info *objfile_addrs; 863 struct section_offsets *new_debug_offsets; 864 struct cleanup *my_cleanups; 865 866 objfile_addrs = build_section_addr_info_from_objfile (objfile); 867 my_cleanups = make_cleanup (xfree, objfile_addrs); 868 869 /* Here OBJFILE_ADDRS contain the correct absolute addresses, the 870 relative ones must be already created according to debug_objfile. */ 871 872 addr_info_make_relative (objfile_addrs, debug_objfile->obfd); 873 874 gdb_assert (debug_objfile->num_sections 875 == bfd_count_sections (debug_objfile->obfd)); 876 new_debug_offsets = 877 xmalloc (SIZEOF_N_SECTION_OFFSETS (debug_objfile->num_sections)); 878 make_cleanup (xfree, new_debug_offsets); 879 relative_addr_info_to_section_offsets (new_debug_offsets, 880 debug_objfile->num_sections, 881 objfile_addrs); 882 883 changed |= objfile_relocate1 (debug_objfile, new_debug_offsets); 884 885 do_cleanups (my_cleanups); 886 } 887 888 /* Relocate breakpoints as necessary, after things are relocated. */ 889 if (changed) 890 breakpoint_re_set (); 891 } 892 893 /* Return non-zero if OBJFILE has partial symbols. */ 894 895 int 896 objfile_has_partial_symbols (struct objfile *objfile) 897 { 898 return objfile->sf ? objfile->sf->qf->has_symbols (objfile) : 0; 899 } 900 901 /* Return non-zero if OBJFILE has full symbols. */ 902 903 int 904 objfile_has_full_symbols (struct objfile *objfile) 905 { 906 return objfile->symtabs != NULL; 907 } 908 909 /* Return non-zero if OBJFILE has full or partial symbols, either directly 910 or through a separate debug file. */ 911 912 int 913 objfile_has_symbols (struct objfile *objfile) 914 { 915 struct objfile *o; 916 917 for (o = objfile; o; o = objfile_separate_debug_iterate (objfile, o)) 918 if (objfile_has_partial_symbols (o) || objfile_has_full_symbols (o)) 919 return 1; 920 return 0; 921 } 922 923 924 /* Many places in gdb want to test just to see if we have any partial 925 symbols available. This function returns zero if none are currently 926 available, nonzero otherwise. */ 927 928 int 929 have_partial_symbols (void) 930 { 931 struct objfile *ofp; 932 933 ALL_OBJFILES (ofp) 934 { 935 if (objfile_has_partial_symbols (ofp)) 936 return 1; 937 } 938 return 0; 939 } 940 941 /* Many places in gdb want to test just to see if we have any full 942 symbols available. This function returns zero if none are currently 943 available, nonzero otherwise. */ 944 945 int 946 have_full_symbols (void) 947 { 948 struct objfile *ofp; 949 950 ALL_OBJFILES (ofp) 951 { 952 if (objfile_has_full_symbols (ofp)) 953 return 1; 954 } 955 return 0; 956 } 957 958 959 /* This operations deletes all objfile entries that represent solibs that 960 weren't explicitly loaded by the user, via e.g., the add-symbol-file 961 command. 962 */ 963 void 964 objfile_purge_solibs (void) 965 { 966 struct objfile *objf; 967 struct objfile *temp; 968 969 ALL_OBJFILES_SAFE (objf, temp) 970 { 971 /* We assume that the solib package has been purged already, or will 972 be soon. 973 */ 974 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED)) 975 free_objfile (objf); 976 } 977 } 978 979 980 /* Many places in gdb want to test just to see if we have any minimal 981 symbols available. This function returns zero if none are currently 982 available, nonzero otherwise. */ 983 984 int 985 have_minimal_symbols (void) 986 { 987 struct objfile *ofp; 988 989 ALL_OBJFILES (ofp) 990 { 991 if (ofp->minimal_symbol_count > 0) 992 { 993 return 1; 994 } 995 } 996 return 0; 997 } 998 999 /* Qsort comparison function. */ 1000 1001 static int 1002 qsort_cmp (const void *a, const void *b) 1003 { 1004 const struct obj_section *sect1 = *(const struct obj_section **) a; 1005 const struct obj_section *sect2 = *(const struct obj_section **) b; 1006 const CORE_ADDR sect1_addr = obj_section_addr (sect1); 1007 const CORE_ADDR sect2_addr = obj_section_addr (sect2); 1008 1009 if (sect1_addr < sect2_addr) 1010 return -1; 1011 else if (sect1_addr > sect2_addr) 1012 return 1; 1013 else 1014 { 1015 /* Sections are at the same address. This could happen if 1016 A) we have an objfile and a separate debuginfo. 1017 B) we are confused, and have added sections without proper relocation, 1018 or something like that. */ 1019 1020 const struct objfile *const objfile1 = sect1->objfile; 1021 const struct objfile *const objfile2 = sect2->objfile; 1022 1023 if (objfile1->separate_debug_objfile == objfile2 1024 || objfile2->separate_debug_objfile == objfile1) 1025 { 1026 /* Case A. The ordering doesn't matter: separate debuginfo files 1027 will be filtered out later. */ 1028 1029 return 0; 1030 } 1031 1032 /* Case B. Maintain stable sort order, so bugs in GDB are easier to 1033 triage. This section could be slow (since we iterate over all 1034 objfiles in each call to qsort_cmp), but this shouldn't happen 1035 very often (GDB is already in a confused state; one hopes this 1036 doesn't happen at all). If you discover that significant time is 1037 spent in the loops below, do 'set complaints 100' and examine the 1038 resulting complaints. */ 1039 1040 if (objfile1 == objfile2) 1041 { 1042 /* Both sections came from the same objfile. We are really confused. 1043 Sort on sequence order of sections within the objfile. */ 1044 1045 const struct obj_section *osect; 1046 1047 ALL_OBJFILE_OSECTIONS (objfile1, osect) 1048 if (osect == sect1) 1049 return -1; 1050 else if (osect == sect2) 1051 return 1; 1052 1053 /* We should have found one of the sections before getting here. */ 1054 gdb_assert (0); 1055 } 1056 else 1057 { 1058 /* Sort on sequence number of the objfile in the chain. */ 1059 1060 const struct objfile *objfile; 1061 1062 ALL_OBJFILES (objfile) 1063 if (objfile == objfile1) 1064 return -1; 1065 else if (objfile == objfile2) 1066 return 1; 1067 1068 /* We should have found one of the objfiles before getting here. */ 1069 gdb_assert (0); 1070 } 1071 } 1072 1073 /* Unreachable. */ 1074 gdb_assert (0); 1075 return 0; 1076 } 1077 1078 /* Select "better" obj_section to keep. We prefer the one that came from 1079 the real object, rather than the one from separate debuginfo. 1080 Most of the time the two sections are exactly identical, but with 1081 prelinking the .rel.dyn section in the real object may have different 1082 size. */ 1083 1084 static struct obj_section * 1085 preferred_obj_section (struct obj_section *a, struct obj_section *b) 1086 { 1087 gdb_assert (obj_section_addr (a) == obj_section_addr (b)); 1088 gdb_assert ((a->objfile->separate_debug_objfile == b->objfile) 1089 || (b->objfile->separate_debug_objfile == a->objfile)); 1090 gdb_assert ((a->objfile->separate_debug_objfile_backlink == b->objfile) 1091 || (b->objfile->separate_debug_objfile_backlink == a->objfile)); 1092 1093 if (a->objfile->separate_debug_objfile != NULL) 1094 return a; 1095 return b; 1096 } 1097 1098 /* Return 1 if SECTION should be inserted into the section map. 1099 We want to insert only non-overlay and non-TLS section. */ 1100 1101 static int 1102 insert_section_p (const struct bfd *abfd, 1103 const struct bfd_section *section) 1104 { 1105 const bfd_vma lma = bfd_section_lma (abfd, section); 1106 1107 if (lma != 0 && lma != bfd_section_vma (abfd, section) 1108 && (bfd_get_file_flags (abfd) & BFD_IN_MEMORY) == 0) 1109 /* This is an overlay section. IN_MEMORY check is needed to avoid 1110 discarding sections from the "system supplied DSO" (aka vdso) 1111 on some Linux systems (e.g. Fedora 11). */ 1112 return 0; 1113 if ((bfd_get_section_flags (abfd, section) & SEC_THREAD_LOCAL) != 0) 1114 /* This is a TLS section. */ 1115 return 0; 1116 1117 return 1; 1118 } 1119 1120 /* Filter out overlapping sections where one section came from the real 1121 objfile, and the other from a separate debuginfo file. 1122 Return the size of table after redundant sections have been eliminated. */ 1123 1124 static int 1125 filter_debuginfo_sections (struct obj_section **map, int map_size) 1126 { 1127 int i, j; 1128 1129 for (i = 0, j = 0; i < map_size - 1; i++) 1130 { 1131 struct obj_section *const sect1 = map[i]; 1132 struct obj_section *const sect2 = map[i + 1]; 1133 const struct objfile *const objfile1 = sect1->objfile; 1134 const struct objfile *const objfile2 = sect2->objfile; 1135 const CORE_ADDR sect1_addr = obj_section_addr (sect1); 1136 const CORE_ADDR sect2_addr = obj_section_addr (sect2); 1137 1138 if (sect1_addr == sect2_addr 1139 && (objfile1->separate_debug_objfile == objfile2 1140 || objfile2->separate_debug_objfile == objfile1)) 1141 { 1142 map[j++] = preferred_obj_section (sect1, sect2); 1143 ++i; 1144 } 1145 else 1146 map[j++] = sect1; 1147 } 1148 1149 if (i < map_size) 1150 { 1151 gdb_assert (i == map_size - 1); 1152 map[j++] = map[i]; 1153 } 1154 1155 /* The map should not have shrunk to less than half the original size. */ 1156 gdb_assert (map_size / 2 <= j); 1157 1158 return j; 1159 } 1160 1161 /* Filter out overlapping sections, issuing a warning if any are found. 1162 Overlapping sections could really be overlay sections which we didn't 1163 classify as such in insert_section_p, or we could be dealing with a 1164 corrupt binary. */ 1165 1166 static int 1167 filter_overlapping_sections (struct obj_section **map, int map_size) 1168 { 1169 int i, j; 1170 1171 for (i = 0, j = 0; i < map_size - 1; ) 1172 { 1173 int k; 1174 1175 map[j++] = map[i]; 1176 for (k = i + 1; k < map_size; k++) 1177 { 1178 struct obj_section *const sect1 = map[i]; 1179 struct obj_section *const sect2 = map[k]; 1180 const CORE_ADDR sect1_addr = obj_section_addr (sect1); 1181 const CORE_ADDR sect2_addr = obj_section_addr (sect2); 1182 const CORE_ADDR sect1_endaddr = obj_section_endaddr (sect1); 1183 1184 gdb_assert (sect1_addr <= sect2_addr); 1185 1186 if (sect1_endaddr <= sect2_addr) 1187 break; 1188 else 1189 { 1190 /* We have an overlap. Report it. */ 1191 1192 struct objfile *const objf1 = sect1->objfile; 1193 struct objfile *const objf2 = sect2->objfile; 1194 1195 const struct bfd *const abfd1 = objf1->obfd; 1196 const struct bfd *const abfd2 = objf2->obfd; 1197 1198 const struct bfd_section *const bfds1 = sect1->the_bfd_section; 1199 const struct bfd_section *const bfds2 = sect2->the_bfd_section; 1200 1201 const CORE_ADDR sect2_endaddr = obj_section_endaddr (sect2); 1202 1203 struct gdbarch *const gdbarch = get_objfile_arch (objf1); 1204 1205 complaint (&symfile_complaints, 1206 _("unexpected overlap between:\n" 1207 " (A) section `%s' from `%s' [%s, %s)\n" 1208 " (B) section `%s' from `%s' [%s, %s).\n" 1209 "Will ignore section B"), 1210 bfd_section_name (abfd1, bfds1), objf1->name, 1211 paddress (gdbarch, sect1_addr), 1212 paddress (gdbarch, sect1_endaddr), 1213 bfd_section_name (abfd2, bfds2), objf2->name, 1214 paddress (gdbarch, sect2_addr), 1215 paddress (gdbarch, sect2_endaddr)); 1216 } 1217 } 1218 i = k; 1219 } 1220 1221 if (i < map_size) 1222 { 1223 gdb_assert (i == map_size - 1); 1224 map[j++] = map[i]; 1225 } 1226 1227 return j; 1228 } 1229 1230 1231 /* Update PMAP, PMAP_SIZE with sections from all objfiles, excluding any 1232 TLS, overlay and overlapping sections. */ 1233 1234 static void 1235 update_section_map (struct program_space *pspace, 1236 struct obj_section ***pmap, int *pmap_size) 1237 { 1238 int alloc_size, map_size, i; 1239 struct obj_section *s, **map; 1240 struct objfile *objfile; 1241 1242 gdb_assert (get_objfile_pspace_data (pspace)->objfiles_changed_p != 0); 1243 1244 map = *pmap; 1245 xfree (map); 1246 1247 alloc_size = 0; 1248 ALL_PSPACE_OBJFILES (pspace, objfile) 1249 ALL_OBJFILE_OSECTIONS (objfile, s) 1250 if (insert_section_p (objfile->obfd, s->the_bfd_section)) 1251 alloc_size += 1; 1252 1253 /* This happens on detach/attach (e.g. in gdb.base/attach.exp). */ 1254 if (alloc_size == 0) 1255 { 1256 *pmap = NULL; 1257 *pmap_size = 0; 1258 return; 1259 } 1260 1261 map = xmalloc (alloc_size * sizeof (*map)); 1262 1263 i = 0; 1264 ALL_PSPACE_OBJFILES (pspace, objfile) 1265 ALL_OBJFILE_OSECTIONS (objfile, s) 1266 if (insert_section_p (objfile->obfd, s->the_bfd_section)) 1267 map[i++] = s; 1268 1269 qsort (map, alloc_size, sizeof (*map), qsort_cmp); 1270 map_size = filter_debuginfo_sections(map, alloc_size); 1271 map_size = filter_overlapping_sections(map, map_size); 1272 1273 if (map_size < alloc_size) 1274 /* Some sections were eliminated. Trim excess space. */ 1275 map = xrealloc (map, map_size * sizeof (*map)); 1276 else 1277 gdb_assert (alloc_size == map_size); 1278 1279 *pmap = map; 1280 *pmap_size = map_size; 1281 } 1282 1283 /* Bsearch comparison function. */ 1284 1285 static int 1286 bsearch_cmp (const void *key, const void *elt) 1287 { 1288 const CORE_ADDR pc = *(CORE_ADDR *) key; 1289 const struct obj_section *section = *(const struct obj_section **) elt; 1290 1291 if (pc < obj_section_addr (section)) 1292 return -1; 1293 if (pc < obj_section_endaddr (section)) 1294 return 0; 1295 return 1; 1296 } 1297 1298 /* Returns a section whose range includes PC or NULL if none found. */ 1299 1300 struct obj_section * 1301 find_pc_section (CORE_ADDR pc) 1302 { 1303 struct objfile_pspace_info *pspace_info; 1304 struct obj_section *s, **sp; 1305 1306 /* Check for mapped overlay section first. */ 1307 s = find_pc_mapped_section (pc); 1308 if (s) 1309 return s; 1310 1311 pspace_info = get_objfile_pspace_data (current_program_space); 1312 if (pspace_info->objfiles_changed_p != 0) 1313 { 1314 update_section_map (current_program_space, 1315 &pspace_info->sections, 1316 &pspace_info->num_sections); 1317 1318 /* Don't need updates to section map until objfiles are added, 1319 removed or relocated. */ 1320 pspace_info->objfiles_changed_p = 0; 1321 } 1322 1323 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to 1324 bsearch be non-NULL. */ 1325 if (pspace_info->sections == NULL) 1326 { 1327 gdb_assert (pspace_info->num_sections == 0); 1328 return NULL; 1329 } 1330 1331 sp = (struct obj_section **) bsearch (&pc, 1332 pspace_info->sections, 1333 pspace_info->num_sections, 1334 sizeof (*pspace_info->sections), 1335 bsearch_cmp); 1336 if (sp != NULL) 1337 return *sp; 1338 return NULL; 1339 } 1340 1341 1342 /* In SVR4, we recognize a trampoline by it's section name. 1343 That is, if the pc is in a section named ".plt" then we are in 1344 a trampoline. */ 1345 1346 int 1347 in_plt_section (CORE_ADDR pc, char *name) 1348 { 1349 struct obj_section *s; 1350 int retval = 0; 1351 1352 s = find_pc_section (pc); 1353 1354 retval = (s != NULL 1355 && s->the_bfd_section->name != NULL 1356 && strcmp (s->the_bfd_section->name, ".plt") == 0); 1357 return (retval); 1358 } 1359 1360 1361 /* Keep a registry of per-objfile data-pointers required by other GDB 1362 modules. */ 1363 1364 struct objfile_data 1365 { 1366 unsigned index; 1367 void (*save) (struct objfile *, void *); 1368 void (*free) (struct objfile *, void *); 1369 }; 1370 1371 struct objfile_data_registration 1372 { 1373 struct objfile_data *data; 1374 struct objfile_data_registration *next; 1375 }; 1376 1377 struct objfile_data_registry 1378 { 1379 struct objfile_data_registration *registrations; 1380 unsigned num_registrations; 1381 }; 1382 1383 static struct objfile_data_registry objfile_data_registry = { NULL, 0 }; 1384 1385 const struct objfile_data * 1386 register_objfile_data_with_cleanup (void (*save) (struct objfile *, void *), 1387 void (*free) (struct objfile *, void *)) 1388 { 1389 struct objfile_data_registration **curr; 1390 1391 /* Append new registration. */ 1392 for (curr = &objfile_data_registry.registrations; 1393 *curr != NULL; curr = &(*curr)->next); 1394 1395 *curr = XMALLOC (struct objfile_data_registration); 1396 (*curr)->next = NULL; 1397 (*curr)->data = XMALLOC (struct objfile_data); 1398 (*curr)->data->index = objfile_data_registry.num_registrations++; 1399 (*curr)->data->save = save; 1400 (*curr)->data->free = free; 1401 1402 return (*curr)->data; 1403 } 1404 1405 const struct objfile_data * 1406 register_objfile_data (void) 1407 { 1408 return register_objfile_data_with_cleanup (NULL, NULL); 1409 } 1410 1411 static void 1412 objfile_alloc_data (struct objfile *objfile) 1413 { 1414 gdb_assert (objfile->data == NULL); 1415 objfile->num_data = objfile_data_registry.num_registrations; 1416 objfile->data = XCALLOC (objfile->num_data, void *); 1417 } 1418 1419 static void 1420 objfile_free_data (struct objfile *objfile) 1421 { 1422 gdb_assert (objfile->data != NULL); 1423 clear_objfile_data (objfile); 1424 xfree (objfile->data); 1425 objfile->data = NULL; 1426 } 1427 1428 void 1429 clear_objfile_data (struct objfile *objfile) 1430 { 1431 struct objfile_data_registration *registration; 1432 int i; 1433 1434 gdb_assert (objfile->data != NULL); 1435 1436 /* Process all the save handlers. */ 1437 1438 for (registration = objfile_data_registry.registrations, i = 0; 1439 i < objfile->num_data; 1440 registration = registration->next, i++) 1441 if (objfile->data[i] != NULL && registration->data->save != NULL) 1442 registration->data->save (objfile, objfile->data[i]); 1443 1444 /* Now process all the free handlers. */ 1445 1446 for (registration = objfile_data_registry.registrations, i = 0; 1447 i < objfile->num_data; 1448 registration = registration->next, i++) 1449 if (objfile->data[i] != NULL && registration->data->free != NULL) 1450 registration->data->free (objfile, objfile->data[i]); 1451 1452 memset (objfile->data, 0, objfile->num_data * sizeof (void *)); 1453 } 1454 1455 void 1456 set_objfile_data (struct objfile *objfile, const struct objfile_data *data, 1457 void *value) 1458 { 1459 gdb_assert (data->index < objfile->num_data); 1460 objfile->data[data->index] = value; 1461 } 1462 1463 void * 1464 objfile_data (struct objfile *objfile, const struct objfile_data *data) 1465 { 1466 gdb_assert (data->index < objfile->num_data); 1467 return objfile->data[data->index]; 1468 } 1469 1470 /* Set objfiles_changed_p so section map will be rebuilt next time it 1471 is used. Called by reread_symbols. */ 1472 1473 void 1474 objfiles_changed (void) 1475 { 1476 /* Rebuild section map next time we need it. */ 1477 get_objfile_pspace_data (current_program_space)->objfiles_changed_p = 1; 1478 } 1479 1480 /* Close ABFD, and warn if that fails. */ 1481 1482 int 1483 gdb_bfd_close_or_warn (struct bfd *abfd) 1484 { 1485 int ret; 1486 char *name = bfd_get_filename (abfd); 1487 1488 ret = bfd_close (abfd); 1489 1490 if (!ret) 1491 warning (_("cannot close \"%s\": %s"), 1492 name, bfd_errmsg (bfd_get_error ())); 1493 1494 return ret; 1495 } 1496 1497 /* Add reference to ABFD. Returns ABFD. */ 1498 struct bfd * 1499 gdb_bfd_ref (struct bfd *abfd) 1500 { 1501 int *p_refcount; 1502 1503 if (abfd == NULL) 1504 return NULL; 1505 1506 p_refcount = bfd_usrdata (abfd); 1507 1508 if (p_refcount != NULL) 1509 { 1510 *p_refcount += 1; 1511 return abfd; 1512 } 1513 1514 p_refcount = xmalloc (sizeof (*p_refcount)); 1515 *p_refcount = 1; 1516 bfd_usrdata (abfd) = p_refcount; 1517 1518 return abfd; 1519 } 1520 1521 /* Unreference and possibly close ABFD. */ 1522 void 1523 gdb_bfd_unref (struct bfd *abfd) 1524 { 1525 int *p_refcount; 1526 char *name; 1527 1528 if (abfd == NULL) 1529 return; 1530 1531 p_refcount = bfd_usrdata (abfd); 1532 1533 /* Valid range for p_refcount: a pointer to int counter, which has a 1534 value of 1 (single owner) or 2 (shared). */ 1535 gdb_assert (*p_refcount == 1 || *p_refcount == 2); 1536 1537 *p_refcount -= 1; 1538 if (*p_refcount > 0) 1539 return; 1540 1541 xfree (p_refcount); 1542 bfd_usrdata (abfd) = NULL; /* Paranoia. */ 1543 1544 name = bfd_get_filename (abfd); 1545 gdb_bfd_close_or_warn (abfd); 1546 xfree (name); 1547 } 1548 1549 /* Provide a prototype to silence -Wmissing-prototypes. */ 1550 extern initialize_file_ftype _initialize_objfiles; 1551 1552 void 1553 _initialize_objfiles (void) 1554 { 1555 objfiles_pspace_data 1556 = register_program_space_data_with_cleanup (objfiles_pspace_data_cleanup); 1557 } 1558