1 /* GDB routines for manipulating the minimal symbol tables. 2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 3 2002, 2003, 2004, 2007, 2008, 2009, 2010 Free Software Foundation, Inc. 4 Contributed by Cygnus Support, using pieces from other GDB modules. 5 6 This file is part of GDB. 7 8 This program is free software; you can redistribute it and/or modify 9 it under the terms of the GNU General Public License as published by 10 the Free Software Foundation; either version 3 of the License, or 11 (at your option) any later version. 12 13 This program is distributed in the hope that it will be useful, 14 but WITHOUT ANY WARRANTY; without even the implied warranty of 15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 GNU General Public License for more details. 17 18 You should have received a copy of the GNU General Public License 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 20 21 22 /* This file contains support routines for creating, manipulating, and 23 destroying minimal symbol tables. 24 25 Minimal symbol tables are used to hold some very basic information about 26 all defined global symbols (text, data, bss, abs, etc). The only two 27 required pieces of information are the symbol's name and the address 28 associated with that symbol. 29 30 In many cases, even if a file was compiled with no special options for 31 debugging at all, as long as was not stripped it will contain sufficient 32 information to build useful minimal symbol tables using this structure. 33 34 Even when a file contains enough debugging information to build a full 35 symbol table, these minimal symbols are still useful for quickly mapping 36 between names and addresses, and vice versa. They are also sometimes used 37 to figure out what full symbol table entries need to be read in. */ 38 39 40 #include "defs.h" 41 #include <ctype.h> 42 #include "gdb_string.h" 43 #include "symtab.h" 44 #include "bfd.h" 45 #include "symfile.h" 46 #include "objfiles.h" 47 #include "demangle.h" 48 #include "value.h" 49 #include "cp-abi.h" 50 #include "target.h" 51 #include "cp-support.h" 52 #include "language.h" 53 54 /* Accumulate the minimal symbols for each objfile in bunches of BUNCH_SIZE. 55 At the end, copy them all into one newly allocated location on an objfile's 56 symbol obstack. */ 57 58 #define BUNCH_SIZE 127 59 60 struct msym_bunch 61 { 62 struct msym_bunch *next; 63 struct minimal_symbol contents[BUNCH_SIZE]; 64 }; 65 66 /* Bunch currently being filled up. 67 The next field points to chain of filled bunches. */ 68 69 static struct msym_bunch *msym_bunch; 70 71 /* Number of slots filled in current bunch. */ 72 73 static int msym_bunch_index; 74 75 /* Total number of minimal symbols recorded so far for the objfile. */ 76 77 static int msym_count; 78 79 /* Compute a hash code based using the same criteria as `strcmp_iw'. */ 80 81 unsigned int 82 msymbol_hash_iw (const char *string) 83 { 84 unsigned int hash = 0; 85 86 while (*string && *string != '(') 87 { 88 while (isspace (*string)) 89 ++string; 90 if (*string && *string != '(') 91 { 92 hash = hash * 67 + *string - 113; 93 ++string; 94 } 95 } 96 return hash; 97 } 98 99 /* Compute a hash code for a string. */ 100 101 unsigned int 102 msymbol_hash (const char *string) 103 { 104 unsigned int hash = 0; 105 106 for (; *string; ++string) 107 hash = hash * 67 + *string - 113; 108 return hash; 109 } 110 111 /* Add the minimal symbol SYM to an objfile's minsym hash table, TABLE. */ 112 void 113 add_minsym_to_hash_table (struct minimal_symbol *sym, 114 struct minimal_symbol **table) 115 { 116 if (sym->hash_next == NULL) 117 { 118 unsigned int hash 119 = msymbol_hash (SYMBOL_LINKAGE_NAME (sym)) % MINIMAL_SYMBOL_HASH_SIZE; 120 121 sym->hash_next = table[hash]; 122 table[hash] = sym; 123 } 124 } 125 126 /* Add the minimal symbol SYM to an objfile's minsym demangled hash table, 127 TABLE. */ 128 static void 129 add_minsym_to_demangled_hash_table (struct minimal_symbol *sym, 130 struct minimal_symbol **table) 131 { 132 if (sym->demangled_hash_next == NULL) 133 { 134 unsigned int hash 135 = msymbol_hash_iw (SYMBOL_SEARCH_NAME (sym)) % MINIMAL_SYMBOL_HASH_SIZE; 136 137 sym->demangled_hash_next = table[hash]; 138 table[hash] = sym; 139 } 140 } 141 142 143 /* Return OBJFILE where minimal symbol SYM is defined. */ 144 struct objfile * 145 msymbol_objfile (struct minimal_symbol *sym) 146 { 147 struct objfile *objf; 148 struct minimal_symbol *tsym; 149 150 unsigned int hash 151 = msymbol_hash (SYMBOL_LINKAGE_NAME (sym)) % MINIMAL_SYMBOL_HASH_SIZE; 152 153 for (objf = object_files; objf; objf = objf->next) 154 for (tsym = objf->msymbol_hash[hash]; tsym; tsym = tsym->hash_next) 155 if (tsym == sym) 156 return objf; 157 158 /* We should always be able to find the objfile ... */ 159 internal_error (__FILE__, __LINE__, _("failed internal consistency check")); 160 } 161 162 163 /* Look through all the current minimal symbol tables and find the 164 first minimal symbol that matches NAME. If OBJF is non-NULL, limit 165 the search to that objfile. If SFILE is non-NULL, the only file-scope 166 symbols considered will be from that source file (global symbols are 167 still preferred). Returns a pointer to the minimal symbol that 168 matches, or NULL if no match is found. 169 170 Note: One instance where there may be duplicate minimal symbols with 171 the same name is when the symbol tables for a shared library and the 172 symbol tables for an executable contain global symbols with the same 173 names (the dynamic linker deals with the duplication). 174 175 It's also possible to have minimal symbols with different mangled 176 names, but identical demangled names. For example, the GNU C++ v3 177 ABI requires the generation of two (or perhaps three) copies of 178 constructor functions --- "in-charge", "not-in-charge", and 179 "allocate" copies; destructors may be duplicated as well. 180 Obviously, there must be distinct mangled names for each of these, 181 but the demangled names are all the same: S::S or S::~S. */ 182 183 struct minimal_symbol * 184 lookup_minimal_symbol (const char *name, const char *sfile, 185 struct objfile *objf) 186 { 187 struct objfile *objfile; 188 struct minimal_symbol *msymbol; 189 struct minimal_symbol *found_symbol = NULL; 190 struct minimal_symbol *found_file_symbol = NULL; 191 struct minimal_symbol *trampoline_symbol = NULL; 192 193 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE; 194 unsigned int dem_hash = msymbol_hash_iw (name) % MINIMAL_SYMBOL_HASH_SIZE; 195 196 int needtofreename = 0; 197 const char *modified_name; 198 199 if (sfile != NULL) 200 { 201 char *p = strrchr (sfile, '/'); 202 203 if (p != NULL) 204 sfile = p + 1; 205 } 206 207 /* For C++, canonicalize the input name. */ 208 modified_name = name; 209 if (current_language->la_language == language_cplus) 210 { 211 char *cname = cp_canonicalize_string (name); 212 213 if (cname) 214 { 215 modified_name = cname; 216 needtofreename = 1; 217 } 218 } 219 220 for (objfile = object_files; 221 objfile != NULL && found_symbol == NULL; 222 objfile = objfile->next) 223 { 224 if (objf == NULL || objf == objfile 225 || objf == objfile->separate_debug_objfile_backlink) 226 { 227 /* Do two passes: the first over the ordinary hash table, 228 and the second over the demangled hash table. */ 229 int pass; 230 231 for (pass = 1; pass <= 2 && found_symbol == NULL; pass++) 232 { 233 /* Select hash list according to pass. */ 234 if (pass == 1) 235 msymbol = objfile->msymbol_hash[hash]; 236 else 237 msymbol = objfile->msymbol_demangled_hash[dem_hash]; 238 239 while (msymbol != NULL && found_symbol == NULL) 240 { 241 int match; 242 243 if (pass == 1) 244 { 245 match = strcmp (SYMBOL_LINKAGE_NAME (msymbol), 246 modified_name) == 0; 247 } 248 else 249 { 250 match = SYMBOL_MATCHES_SEARCH_NAME (msymbol, 251 modified_name); 252 } 253 254 if (match) 255 { 256 switch (MSYMBOL_TYPE (msymbol)) 257 { 258 case mst_file_text: 259 case mst_file_data: 260 case mst_file_bss: 261 if (sfile == NULL 262 || strcmp (msymbol->filename, sfile) == 0) 263 found_file_symbol = msymbol; 264 break; 265 266 case mst_solib_trampoline: 267 268 /* If a trampoline symbol is found, we prefer to 269 keep looking for the *real* symbol. If the 270 actual symbol is not found, then we'll use the 271 trampoline entry. */ 272 if (trampoline_symbol == NULL) 273 trampoline_symbol = msymbol; 274 break; 275 276 case mst_unknown: 277 default: 278 found_symbol = msymbol; 279 break; 280 } 281 } 282 283 /* Find the next symbol on the hash chain. */ 284 if (pass == 1) 285 msymbol = msymbol->hash_next; 286 else 287 msymbol = msymbol->demangled_hash_next; 288 } 289 } 290 } 291 } 292 293 if (needtofreename) 294 xfree ((void *) modified_name); 295 296 /* External symbols are best. */ 297 if (found_symbol) 298 return found_symbol; 299 300 /* File-local symbols are next best. */ 301 if (found_file_symbol) 302 return found_file_symbol; 303 304 /* Symbols for shared library trampolines are next best. */ 305 if (trampoline_symbol) 306 return trampoline_symbol; 307 308 return NULL; 309 } 310 311 /* Look through all the current minimal symbol tables and find the 312 first minimal symbol that matches NAME and has text type. If OBJF 313 is non-NULL, limit the search to that objfile. Returns a pointer 314 to the minimal symbol that matches, or NULL if no match is found. 315 316 This function only searches the mangled (linkage) names. */ 317 318 struct minimal_symbol * 319 lookup_minimal_symbol_text (const char *name, struct objfile *objf) 320 { 321 struct objfile *objfile; 322 struct minimal_symbol *msymbol; 323 struct minimal_symbol *found_symbol = NULL; 324 struct minimal_symbol *found_file_symbol = NULL; 325 326 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE; 327 328 for (objfile = object_files; 329 objfile != NULL && found_symbol == NULL; 330 objfile = objfile->next) 331 { 332 if (objf == NULL || objf == objfile 333 || objf == objfile->separate_debug_objfile_backlink) 334 { 335 for (msymbol = objfile->msymbol_hash[hash]; 336 msymbol != NULL && found_symbol == NULL; 337 msymbol = msymbol->hash_next) 338 { 339 if (strcmp (SYMBOL_LINKAGE_NAME (msymbol), name) == 0 && 340 (MSYMBOL_TYPE (msymbol) == mst_text || 341 MSYMBOL_TYPE (msymbol) == mst_file_text)) 342 { 343 switch (MSYMBOL_TYPE (msymbol)) 344 { 345 case mst_file_text: 346 found_file_symbol = msymbol; 347 break; 348 default: 349 found_symbol = msymbol; 350 break; 351 } 352 } 353 } 354 } 355 } 356 /* External symbols are best. */ 357 if (found_symbol) 358 return found_symbol; 359 360 /* File-local symbols are next best. */ 361 if (found_file_symbol) 362 return found_file_symbol; 363 364 return NULL; 365 } 366 367 /* Look through all the current minimal symbol tables and find the 368 first minimal symbol that matches NAME and PC. If OBJF is non-NULL, 369 limit the search to that objfile. Returns a pointer to the minimal 370 symbol that matches, or NULL if no match is found. */ 371 372 struct minimal_symbol * 373 lookup_minimal_symbol_by_pc_name (CORE_ADDR pc, const char *name, 374 struct objfile *objf) 375 { 376 struct objfile *objfile; 377 struct minimal_symbol *msymbol; 378 379 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE; 380 381 for (objfile = object_files; 382 objfile != NULL; 383 objfile = objfile->next) 384 { 385 if (objf == NULL || objf == objfile 386 || objf == objfile->separate_debug_objfile_backlink) 387 { 388 for (msymbol = objfile->msymbol_hash[hash]; 389 msymbol != NULL; 390 msymbol = msymbol->hash_next) 391 { 392 if (SYMBOL_VALUE_ADDRESS (msymbol) == pc 393 && strcmp (SYMBOL_LINKAGE_NAME (msymbol), name) == 0) 394 return msymbol; 395 } 396 } 397 } 398 399 return NULL; 400 } 401 402 /* Look through all the current minimal symbol tables and find the 403 first minimal symbol that matches NAME and is a solib trampoline. 404 If OBJF is non-NULL, limit the search to that objfile. Returns a 405 pointer to the minimal symbol that matches, or NULL if no match is 406 found. 407 408 This function only searches the mangled (linkage) names. */ 409 410 struct minimal_symbol * 411 lookup_minimal_symbol_solib_trampoline (const char *name, 412 struct objfile *objf) 413 { 414 struct objfile *objfile; 415 struct minimal_symbol *msymbol; 416 struct minimal_symbol *found_symbol = NULL; 417 418 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE; 419 420 for (objfile = object_files; 421 objfile != NULL && found_symbol == NULL; 422 objfile = objfile->next) 423 { 424 if (objf == NULL || objf == objfile 425 || objf == objfile->separate_debug_objfile_backlink) 426 { 427 for (msymbol = objfile->msymbol_hash[hash]; 428 msymbol != NULL && found_symbol == NULL; 429 msymbol = msymbol->hash_next) 430 { 431 if (strcmp (SYMBOL_LINKAGE_NAME (msymbol), name) == 0 && 432 MSYMBOL_TYPE (msymbol) == mst_solib_trampoline) 433 return msymbol; 434 } 435 } 436 } 437 438 return NULL; 439 } 440 441 /* Search through the minimal symbol table for each objfile and find 442 the symbol whose address is the largest address that is still less 443 than or equal to PC, and matches SECTION (which is not NULL). 444 Returns a pointer to the minimal symbol if such a symbol is found, 445 or NULL if PC is not in a suitable range. 446 Note that we need to look through ALL the minimal symbol tables 447 before deciding on the symbol that comes closest to the specified PC. 448 This is because objfiles can overlap, for example objfile A has .text 449 at 0x100 and .data at 0x40000 and objfile B has .text at 0x234 and 450 .data at 0x40048. 451 452 If WANT_TRAMPOLINE is set, prefer mst_solib_trampoline symbols when 453 there are text and trampoline symbols at the same address. 454 Otherwise prefer mst_text symbols. */ 455 456 static struct minimal_symbol * 457 lookup_minimal_symbol_by_pc_section_1 (CORE_ADDR pc, 458 struct obj_section *section, 459 int want_trampoline) 460 { 461 int lo; 462 int hi; 463 int new; 464 struct objfile *objfile; 465 struct minimal_symbol *msymbol; 466 struct minimal_symbol *best_symbol = NULL; 467 enum minimal_symbol_type want_type, other_type; 468 469 want_type = want_trampoline ? mst_solib_trampoline : mst_text; 470 other_type = want_trampoline ? mst_text : mst_solib_trampoline; 471 472 /* We can not require the symbol found to be in section, because 473 e.g. IRIX 6.5 mdebug relies on this code returning an absolute 474 symbol - but find_pc_section won't return an absolute section and 475 hence the code below would skip over absolute symbols. We can 476 still take advantage of the call to find_pc_section, though - the 477 object file still must match. In case we have separate debug 478 files, search both the file and its separate debug file. There's 479 no telling which one will have the minimal symbols. */ 480 481 gdb_assert (section != NULL); 482 483 for (objfile = section->objfile; 484 objfile != NULL; 485 objfile = objfile_separate_debug_iterate (section->objfile, objfile)) 486 { 487 /* If this objfile has a minimal symbol table, go search it using 488 a binary search. Note that a minimal symbol table always consists 489 of at least two symbols, a "real" symbol and the terminating 490 "null symbol". If there are no real symbols, then there is no 491 minimal symbol table at all. */ 492 493 if (objfile->minimal_symbol_count > 0) 494 { 495 int best_zero_sized = -1; 496 497 msymbol = objfile->msymbols; 498 lo = 0; 499 hi = objfile->minimal_symbol_count - 1; 500 501 /* This code assumes that the minimal symbols are sorted by 502 ascending address values. If the pc value is greater than or 503 equal to the first symbol's address, then some symbol in this 504 minimal symbol table is a suitable candidate for being the 505 "best" symbol. This includes the last real symbol, for cases 506 where the pc value is larger than any address in this vector. 507 508 By iterating until the address associated with the current 509 hi index (the endpoint of the test interval) is less than 510 or equal to the desired pc value, we accomplish two things: 511 (1) the case where the pc value is larger than any minimal 512 symbol address is trivially solved, (2) the address associated 513 with the hi index is always the one we want when the interation 514 terminates. In essence, we are iterating the test interval 515 down until the pc value is pushed out of it from the high end. 516 517 Warning: this code is trickier than it would appear at first. */ 518 519 /* Should also require that pc is <= end of objfile. FIXME! */ 520 if (pc >= SYMBOL_VALUE_ADDRESS (&msymbol[lo])) 521 { 522 while (SYMBOL_VALUE_ADDRESS (&msymbol[hi]) > pc) 523 { 524 /* pc is still strictly less than highest address */ 525 /* Note "new" will always be >= lo */ 526 new = (lo + hi) / 2; 527 if ((SYMBOL_VALUE_ADDRESS (&msymbol[new]) >= pc) || 528 (lo == new)) 529 { 530 hi = new; 531 } 532 else 533 { 534 lo = new; 535 } 536 } 537 538 /* If we have multiple symbols at the same address, we want 539 hi to point to the last one. That way we can find the 540 right symbol if it has an index greater than hi. */ 541 while (hi < objfile->minimal_symbol_count - 1 542 && (SYMBOL_VALUE_ADDRESS (&msymbol[hi]) 543 == SYMBOL_VALUE_ADDRESS (&msymbol[hi + 1]))) 544 hi++; 545 546 /* Skip various undesirable symbols. */ 547 while (hi >= 0) 548 { 549 /* Skip any absolute symbols. This is apparently 550 what adb and dbx do, and is needed for the CM-5. 551 There are two known possible problems: (1) on 552 ELF, apparently end, edata, etc. are absolute. 553 Not sure ignoring them here is a big deal, but if 554 we want to use them, the fix would go in 555 elfread.c. (2) I think shared library entry 556 points on the NeXT are absolute. If we want 557 special handling for this it probably should be 558 triggered by a special mst_abs_or_lib or some 559 such. */ 560 561 if (MSYMBOL_TYPE (&msymbol[hi]) == mst_abs) 562 { 563 hi--; 564 continue; 565 } 566 567 /* If SECTION was specified, skip any symbol from 568 wrong section. */ 569 if (section 570 /* Some types of debug info, such as COFF, 571 don't fill the bfd_section member, so don't 572 throw away symbols on those platforms. */ 573 && SYMBOL_OBJ_SECTION (&msymbol[hi]) != NULL 574 && (!matching_obj_sections 575 (SYMBOL_OBJ_SECTION (&msymbol[hi]), section))) 576 { 577 hi--; 578 continue; 579 } 580 581 /* If we are looking for a trampoline and this is a 582 text symbol, or the other way around, check the 583 preceeding symbol too. If they are otherwise 584 identical prefer that one. */ 585 if (hi > 0 586 && MSYMBOL_TYPE (&msymbol[hi]) == other_type 587 && MSYMBOL_TYPE (&msymbol[hi - 1]) == want_type 588 && (MSYMBOL_SIZE (&msymbol[hi]) 589 == MSYMBOL_SIZE (&msymbol[hi - 1])) 590 && (SYMBOL_VALUE_ADDRESS (&msymbol[hi]) 591 == SYMBOL_VALUE_ADDRESS (&msymbol[hi - 1])) 592 && (SYMBOL_OBJ_SECTION (&msymbol[hi]) 593 == SYMBOL_OBJ_SECTION (&msymbol[hi - 1]))) 594 { 595 hi--; 596 continue; 597 } 598 599 /* If the minimal symbol has a zero size, save it 600 but keep scanning backwards looking for one with 601 a non-zero size. A zero size may mean that the 602 symbol isn't an object or function (e.g. a 603 label), or it may just mean that the size was not 604 specified. */ 605 if (MSYMBOL_SIZE (&msymbol[hi]) == 0 606 && best_zero_sized == -1) 607 { 608 best_zero_sized = hi; 609 hi--; 610 continue; 611 } 612 613 /* If we are past the end of the current symbol, try 614 the previous symbol if it has a larger overlapping 615 size. This happens on i686-pc-linux-gnu with glibc; 616 the nocancel variants of system calls are inside 617 the cancellable variants, but both have sizes. */ 618 if (hi > 0 619 && MSYMBOL_SIZE (&msymbol[hi]) != 0 620 && pc >= (SYMBOL_VALUE_ADDRESS (&msymbol[hi]) 621 + MSYMBOL_SIZE (&msymbol[hi])) 622 && pc < (SYMBOL_VALUE_ADDRESS (&msymbol[hi - 1]) 623 + MSYMBOL_SIZE (&msymbol[hi - 1]))) 624 { 625 hi--; 626 continue; 627 } 628 629 /* Otherwise, this symbol must be as good as we're going 630 to get. */ 631 break; 632 } 633 634 /* If HI has a zero size, and best_zero_sized is set, 635 then we had two or more zero-sized symbols; prefer 636 the first one we found (which may have a higher 637 address). Also, if we ran off the end, be sure 638 to back up. */ 639 if (best_zero_sized != -1 640 && (hi < 0 || MSYMBOL_SIZE (&msymbol[hi]) == 0)) 641 hi = best_zero_sized; 642 643 /* If the minimal symbol has a non-zero size, and this 644 PC appears to be outside the symbol's contents, then 645 refuse to use this symbol. If we found a zero-sized 646 symbol with an address greater than this symbol's, 647 use that instead. We assume that if symbols have 648 specified sizes, they do not overlap. */ 649 650 if (hi >= 0 651 && MSYMBOL_SIZE (&msymbol[hi]) != 0 652 && pc >= (SYMBOL_VALUE_ADDRESS (&msymbol[hi]) 653 + MSYMBOL_SIZE (&msymbol[hi]))) 654 { 655 if (best_zero_sized != -1) 656 hi = best_zero_sized; 657 else 658 /* Go on to the next object file. */ 659 continue; 660 } 661 662 /* The minimal symbol indexed by hi now is the best one in this 663 objfile's minimal symbol table. See if it is the best one 664 overall. */ 665 666 if (hi >= 0 667 && ((best_symbol == NULL) || 668 (SYMBOL_VALUE_ADDRESS (best_symbol) < 669 SYMBOL_VALUE_ADDRESS (&msymbol[hi])))) 670 { 671 best_symbol = &msymbol[hi]; 672 } 673 } 674 } 675 } 676 return (best_symbol); 677 } 678 679 struct minimal_symbol * 680 lookup_minimal_symbol_by_pc_section (CORE_ADDR pc, struct obj_section *section) 681 { 682 if (section == NULL) 683 { 684 /* NOTE: cagney/2004-01-27: This was using find_pc_mapped_section to 685 force the section but that (well unless you're doing overlay 686 debugging) always returns NULL making the call somewhat useless. */ 687 section = find_pc_section (pc); 688 if (section == NULL) 689 return NULL; 690 } 691 return lookup_minimal_symbol_by_pc_section_1 (pc, section, 0); 692 } 693 694 /* Backward compatibility: search through the minimal symbol table 695 for a matching PC (no section given) */ 696 697 struct minimal_symbol * 698 lookup_minimal_symbol_by_pc (CORE_ADDR pc) 699 { 700 return lookup_minimal_symbol_by_pc_section (pc, NULL); 701 } 702 703 /* Find the minimal symbol named NAME, and return both the minsym 704 struct and its objfile. This only checks the linkage name. Sets 705 *OBJFILE_P and returns the minimal symbol, if it is found. If it 706 is not found, returns NULL. */ 707 708 struct minimal_symbol * 709 lookup_minimal_symbol_and_objfile (const char *name, 710 struct objfile **objfile_p) 711 { 712 struct objfile *objfile; 713 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE; 714 715 ALL_OBJFILES (objfile) 716 { 717 struct minimal_symbol *msym; 718 719 for (msym = objfile->msymbol_hash[hash]; 720 msym != NULL; 721 msym = msym->hash_next) 722 { 723 if (strcmp (SYMBOL_LINKAGE_NAME (msym), name) == 0) 724 { 725 *objfile_p = objfile; 726 return msym; 727 } 728 } 729 } 730 731 return 0; 732 } 733 734 735 /* Return leading symbol character for a BFD. If BFD is NULL, 736 return the leading symbol character from the main objfile. */ 737 738 static int get_symbol_leading_char (bfd *); 739 740 static int 741 get_symbol_leading_char (bfd *abfd) 742 { 743 if (abfd != NULL) 744 return bfd_get_symbol_leading_char (abfd); 745 if (symfile_objfile != NULL && symfile_objfile->obfd != NULL) 746 return bfd_get_symbol_leading_char (symfile_objfile->obfd); 747 return 0; 748 } 749 750 /* Prepare to start collecting minimal symbols. Note that presetting 751 msym_bunch_index to BUNCH_SIZE causes the first call to save a minimal 752 symbol to allocate the memory for the first bunch. */ 753 754 void 755 init_minimal_symbol_collection (void) 756 { 757 msym_count = 0; 758 msym_bunch = NULL; 759 msym_bunch_index = BUNCH_SIZE; 760 } 761 762 void 763 prim_record_minimal_symbol (const char *name, CORE_ADDR address, 764 enum minimal_symbol_type ms_type, 765 struct objfile *objfile) 766 { 767 int section; 768 769 switch (ms_type) 770 { 771 case mst_text: 772 case mst_file_text: 773 case mst_solib_trampoline: 774 section = SECT_OFF_TEXT (objfile); 775 break; 776 case mst_data: 777 case mst_file_data: 778 section = SECT_OFF_DATA (objfile); 779 break; 780 case mst_bss: 781 case mst_file_bss: 782 section = SECT_OFF_BSS (objfile); 783 break; 784 default: 785 section = -1; 786 } 787 788 prim_record_minimal_symbol_and_info (name, address, ms_type, 789 section, NULL, objfile); 790 } 791 792 /* Record a minimal symbol in the msym bunches. Returns the symbol 793 newly created. */ 794 795 struct minimal_symbol * 796 prim_record_minimal_symbol_full (const char *name, int name_len, int copy_name, 797 CORE_ADDR address, 798 enum minimal_symbol_type ms_type, 799 int section, 800 asection *bfd_section, 801 struct objfile *objfile) 802 { 803 struct obj_section *obj_section; 804 struct msym_bunch *new; 805 struct minimal_symbol *msymbol; 806 807 /* Don't put gcc_compiled, __gnu_compiled_cplus, and friends into 808 the minimal symbols, because if there is also another symbol 809 at the same address (e.g. the first function of the file), 810 lookup_minimal_symbol_by_pc would have no way of getting the 811 right one. */ 812 if (ms_type == mst_file_text && name[0] == 'g' 813 && (strcmp (name, GCC_COMPILED_FLAG_SYMBOL) == 0 814 || strcmp (name, GCC2_COMPILED_FLAG_SYMBOL) == 0)) 815 return (NULL); 816 817 /* It's safe to strip the leading char here once, since the name 818 is also stored stripped in the minimal symbol table. */ 819 if (name[0] == get_symbol_leading_char (objfile->obfd)) 820 { 821 ++name; 822 --name_len; 823 } 824 825 if (ms_type == mst_file_text && strncmp (name, "__gnu_compiled", 14) == 0) 826 return (NULL); 827 828 if (msym_bunch_index == BUNCH_SIZE) 829 { 830 new = XCALLOC (1, struct msym_bunch); 831 msym_bunch_index = 0; 832 new->next = msym_bunch; 833 msym_bunch = new; 834 } 835 msymbol = &msym_bunch->contents[msym_bunch_index]; 836 SYMBOL_INIT_LANGUAGE_SPECIFIC (msymbol, language_unknown); 837 SYMBOL_LANGUAGE (msymbol) = language_auto; 838 SYMBOL_SET_NAMES (msymbol, name, name_len, copy_name, objfile); 839 840 SYMBOL_VALUE_ADDRESS (msymbol) = address; 841 SYMBOL_SECTION (msymbol) = section; 842 SYMBOL_OBJ_SECTION (msymbol) = NULL; 843 844 /* Find obj_section corresponding to bfd_section. */ 845 if (bfd_section) 846 ALL_OBJFILE_OSECTIONS (objfile, obj_section) 847 { 848 if (obj_section->the_bfd_section == bfd_section) 849 { 850 SYMBOL_OBJ_SECTION (msymbol) = obj_section; 851 break; 852 } 853 } 854 855 MSYMBOL_TYPE (msymbol) = ms_type; 856 MSYMBOL_TARGET_FLAG_1 (msymbol) = 0; 857 MSYMBOL_TARGET_FLAG_2 (msymbol) = 0; 858 MSYMBOL_SIZE (msymbol) = 0; 859 860 /* The hash pointers must be cleared! If they're not, 861 add_minsym_to_hash_table will NOT add this msymbol to the hash table. */ 862 msymbol->hash_next = NULL; 863 msymbol->demangled_hash_next = NULL; 864 865 msym_bunch_index++; 866 msym_count++; 867 OBJSTAT (objfile, n_minsyms++); 868 return msymbol; 869 } 870 871 /* Record a minimal symbol in the msym bunches. Returns the symbol 872 newly created. */ 873 874 struct minimal_symbol * 875 prim_record_minimal_symbol_and_info (const char *name, CORE_ADDR address, 876 enum minimal_symbol_type ms_type, 877 int section, 878 asection *bfd_section, 879 struct objfile *objfile) 880 { 881 return prim_record_minimal_symbol_full (name, strlen (name), 1, 882 address, ms_type, section, 883 bfd_section, objfile); 884 } 885 886 /* Compare two minimal symbols by address and return a signed result based 887 on unsigned comparisons, so that we sort into unsigned numeric order. 888 Within groups with the same address, sort by name. */ 889 890 static int 891 compare_minimal_symbols (const void *fn1p, const void *fn2p) 892 { 893 const struct minimal_symbol *fn1; 894 const struct minimal_symbol *fn2; 895 896 fn1 = (const struct minimal_symbol *) fn1p; 897 fn2 = (const struct minimal_symbol *) fn2p; 898 899 if (SYMBOL_VALUE_ADDRESS (fn1) < SYMBOL_VALUE_ADDRESS (fn2)) 900 { 901 return (-1); /* addr 1 is less than addr 2 */ 902 } 903 else if (SYMBOL_VALUE_ADDRESS (fn1) > SYMBOL_VALUE_ADDRESS (fn2)) 904 { 905 return (1); /* addr 1 is greater than addr 2 */ 906 } 907 else 908 /* addrs are equal: sort by name */ 909 { 910 char *name1 = SYMBOL_LINKAGE_NAME (fn1); 911 char *name2 = SYMBOL_LINKAGE_NAME (fn2); 912 913 if (name1 && name2) /* both have names */ 914 return strcmp (name1, name2); 915 else if (name2) 916 return 1; /* fn1 has no name, so it is "less" */ 917 else if (name1) /* fn2 has no name, so it is "less" */ 918 return -1; 919 else 920 return (0); /* neither has a name, so they're equal. */ 921 } 922 } 923 924 /* Discard the currently collected minimal symbols, if any. If we wish 925 to save them for later use, we must have already copied them somewhere 926 else before calling this function. 927 928 FIXME: We could allocate the minimal symbol bunches on their own 929 obstack and then simply blow the obstack away when we are done with 930 it. Is it worth the extra trouble though? */ 931 932 static void 933 do_discard_minimal_symbols_cleanup (void *arg) 934 { 935 struct msym_bunch *next; 936 937 while (msym_bunch != NULL) 938 { 939 next = msym_bunch->next; 940 xfree (msym_bunch); 941 msym_bunch = next; 942 } 943 } 944 945 struct cleanup * 946 make_cleanup_discard_minimal_symbols (void) 947 { 948 return make_cleanup (do_discard_minimal_symbols_cleanup, 0); 949 } 950 951 952 953 /* Compact duplicate entries out of a minimal symbol table by walking 954 through the table and compacting out entries with duplicate addresses 955 and matching names. Return the number of entries remaining. 956 957 On entry, the table resides between msymbol[0] and msymbol[mcount]. 958 On exit, it resides between msymbol[0] and msymbol[result_count]. 959 960 When files contain multiple sources of symbol information, it is 961 possible for the minimal symbol table to contain many duplicate entries. 962 As an example, SVR4 systems use ELF formatted object files, which 963 usually contain at least two different types of symbol tables (a 964 standard ELF one and a smaller dynamic linking table), as well as 965 DWARF debugging information for files compiled with -g. 966 967 Without compacting, the minimal symbol table for gdb itself contains 968 over a 1000 duplicates, about a third of the total table size. Aside 969 from the potential trap of not noticing that two successive entries 970 identify the same location, this duplication impacts the time required 971 to linearly scan the table, which is done in a number of places. So we 972 just do one linear scan here and toss out the duplicates. 973 974 Note that we are not concerned here about recovering the space that 975 is potentially freed up, because the strings themselves are allocated 976 on the objfile_obstack, and will get automatically freed when the symbol 977 table is freed. The caller can free up the unused minimal symbols at 978 the end of the compacted region if their allocation strategy allows it. 979 980 Also note we only go up to the next to last entry within the loop 981 and then copy the last entry explicitly after the loop terminates. 982 983 Since the different sources of information for each symbol may 984 have different levels of "completeness", we may have duplicates 985 that have one entry with type "mst_unknown" and the other with a 986 known type. So if the one we are leaving alone has type mst_unknown, 987 overwrite its type with the type from the one we are compacting out. */ 988 989 static int 990 compact_minimal_symbols (struct minimal_symbol *msymbol, int mcount, 991 struct objfile *objfile) 992 { 993 struct minimal_symbol *copyfrom; 994 struct minimal_symbol *copyto; 995 996 if (mcount > 0) 997 { 998 copyfrom = copyto = msymbol; 999 while (copyfrom < msymbol + mcount - 1) 1000 { 1001 if (SYMBOL_VALUE_ADDRESS (copyfrom) 1002 == SYMBOL_VALUE_ADDRESS ((copyfrom + 1)) 1003 && strcmp (SYMBOL_LINKAGE_NAME (copyfrom), 1004 SYMBOL_LINKAGE_NAME ((copyfrom + 1))) == 0) 1005 { 1006 if (MSYMBOL_TYPE ((copyfrom + 1)) == mst_unknown) 1007 { 1008 MSYMBOL_TYPE ((copyfrom + 1)) = MSYMBOL_TYPE (copyfrom); 1009 } 1010 copyfrom++; 1011 } 1012 else 1013 *copyto++ = *copyfrom++; 1014 } 1015 *copyto++ = *copyfrom++; 1016 mcount = copyto - msymbol; 1017 } 1018 return (mcount); 1019 } 1020 1021 /* Build (or rebuild) the minimal symbol hash tables. This is necessary 1022 after compacting or sorting the table since the entries move around 1023 thus causing the internal minimal_symbol pointers to become jumbled. */ 1024 1025 static void 1026 build_minimal_symbol_hash_tables (struct objfile *objfile) 1027 { 1028 int i; 1029 struct minimal_symbol *msym; 1030 1031 /* Clear the hash tables. */ 1032 for (i = 0; i < MINIMAL_SYMBOL_HASH_SIZE; i++) 1033 { 1034 objfile->msymbol_hash[i] = 0; 1035 objfile->msymbol_demangled_hash[i] = 0; 1036 } 1037 1038 /* Now, (re)insert the actual entries. */ 1039 for (i = objfile->minimal_symbol_count, msym = objfile->msymbols; 1040 i > 0; 1041 i--, msym++) 1042 { 1043 msym->hash_next = 0; 1044 add_minsym_to_hash_table (msym, objfile->msymbol_hash); 1045 1046 msym->demangled_hash_next = 0; 1047 if (SYMBOL_SEARCH_NAME (msym) != SYMBOL_LINKAGE_NAME (msym)) 1048 add_minsym_to_demangled_hash_table (msym, 1049 objfile->msymbol_demangled_hash); 1050 } 1051 } 1052 1053 /* Add the minimal symbols in the existing bunches to the objfile's official 1054 minimal symbol table. In most cases there is no minimal symbol table yet 1055 for this objfile, and the existing bunches are used to create one. Once 1056 in a while (for shared libraries for example), we add symbols (e.g. common 1057 symbols) to an existing objfile. 1058 1059 Because of the way minimal symbols are collected, we generally have no way 1060 of knowing what source language applies to any particular minimal symbol. 1061 Specifically, we have no way of knowing if the minimal symbol comes from a 1062 C++ compilation unit or not. So for the sake of supporting cached 1063 demangled C++ names, we have no choice but to try and demangle each new one 1064 that comes in. If the demangling succeeds, then we assume it is a C++ 1065 symbol and set the symbol's language and demangled name fields 1066 appropriately. Note that in order to avoid unnecessary demanglings, and 1067 allocating obstack space that subsequently can't be freed for the demangled 1068 names, we mark all newly added symbols with language_auto. After 1069 compaction of the minimal symbols, we go back and scan the entire minimal 1070 symbol table looking for these new symbols. For each new symbol we attempt 1071 to demangle it, and if successful, record it as a language_cplus symbol 1072 and cache the demangled form on the symbol obstack. Symbols which don't 1073 demangle are marked as language_unknown symbols, which inhibits future 1074 attempts to demangle them if we later add more minimal symbols. */ 1075 1076 void 1077 install_minimal_symbols (struct objfile *objfile) 1078 { 1079 int bindex; 1080 int mcount; 1081 struct msym_bunch *bunch; 1082 struct minimal_symbol *msymbols; 1083 int alloc_count; 1084 1085 if (msym_count > 0) 1086 { 1087 /* Allocate enough space in the obstack, into which we will gather the 1088 bunches of new and existing minimal symbols, sort them, and then 1089 compact out the duplicate entries. Once we have a final table, 1090 we will give back the excess space. */ 1091 1092 alloc_count = msym_count + objfile->minimal_symbol_count + 1; 1093 obstack_blank (&objfile->objfile_obstack, 1094 alloc_count * sizeof (struct minimal_symbol)); 1095 msymbols = (struct minimal_symbol *) 1096 obstack_base (&objfile->objfile_obstack); 1097 1098 /* Copy in the existing minimal symbols, if there are any. */ 1099 1100 if (objfile->minimal_symbol_count) 1101 memcpy ((char *) msymbols, (char *) objfile->msymbols, 1102 objfile->minimal_symbol_count * sizeof (struct minimal_symbol)); 1103 1104 /* Walk through the list of minimal symbol bunches, adding each symbol 1105 to the new contiguous array of symbols. Note that we start with the 1106 current, possibly partially filled bunch (thus we use the current 1107 msym_bunch_index for the first bunch we copy over), and thereafter 1108 each bunch is full. */ 1109 1110 mcount = objfile->minimal_symbol_count; 1111 1112 for (bunch = msym_bunch; bunch != NULL; bunch = bunch->next) 1113 { 1114 for (bindex = 0; bindex < msym_bunch_index; bindex++, mcount++) 1115 msymbols[mcount] = bunch->contents[bindex]; 1116 msym_bunch_index = BUNCH_SIZE; 1117 } 1118 1119 /* Sort the minimal symbols by address. */ 1120 1121 qsort (msymbols, mcount, sizeof (struct minimal_symbol), 1122 compare_minimal_symbols); 1123 1124 /* Compact out any duplicates, and free up whatever space we are 1125 no longer using. */ 1126 1127 mcount = compact_minimal_symbols (msymbols, mcount, objfile); 1128 1129 obstack_blank (&objfile->objfile_obstack, 1130 (mcount + 1 - alloc_count) * sizeof (struct minimal_symbol)); 1131 msymbols = (struct minimal_symbol *) 1132 obstack_finish (&objfile->objfile_obstack); 1133 1134 /* We also terminate the minimal symbol table with a "null symbol", 1135 which is *not* included in the size of the table. This makes it 1136 easier to find the end of the table when we are handed a pointer 1137 to some symbol in the middle of it. Zero out the fields in the 1138 "null symbol" allocated at the end of the array. Note that the 1139 symbol count does *not* include this null symbol, which is why it 1140 is indexed by mcount and not mcount-1. */ 1141 1142 SYMBOL_LINKAGE_NAME (&msymbols[mcount]) = NULL; 1143 SYMBOL_VALUE_ADDRESS (&msymbols[mcount]) = 0; 1144 MSYMBOL_TARGET_FLAG_1 (&msymbols[mcount]) = 0; 1145 MSYMBOL_TARGET_FLAG_2 (&msymbols[mcount]) = 0; 1146 MSYMBOL_SIZE (&msymbols[mcount]) = 0; 1147 MSYMBOL_TYPE (&msymbols[mcount]) = mst_unknown; 1148 SYMBOL_INIT_LANGUAGE_SPECIFIC (&msymbols[mcount], language_unknown); 1149 1150 /* Attach the minimal symbol table to the specified objfile. 1151 The strings themselves are also located in the objfile_obstack 1152 of this objfile. */ 1153 1154 objfile->minimal_symbol_count = mcount; 1155 objfile->msymbols = msymbols; 1156 1157 /* Try to guess the appropriate C++ ABI by looking at the names 1158 of the minimal symbols in the table. */ 1159 { 1160 int i; 1161 1162 for (i = 0; i < mcount; i++) 1163 { 1164 /* If a symbol's name starts with _Z and was successfully 1165 demangled, then we can assume we've found a GNU v3 symbol. 1166 For now we set the C++ ABI globally; if the user is 1167 mixing ABIs then the user will need to "set cp-abi" 1168 manually. */ 1169 const char *name = SYMBOL_LINKAGE_NAME (&objfile->msymbols[i]); 1170 1171 if (name[0] == '_' && name[1] == 'Z' 1172 && SYMBOL_DEMANGLED_NAME (&objfile->msymbols[i]) != NULL) 1173 { 1174 set_cp_abi_as_auto_default ("gnu-v3"); 1175 break; 1176 } 1177 } 1178 } 1179 1180 /* Now build the hash tables; we can't do this incrementally 1181 at an earlier point since we weren't finished with the obstack 1182 yet. (And if the msymbol obstack gets moved, all the internal 1183 pointers to other msymbols need to be adjusted.) */ 1184 build_minimal_symbol_hash_tables (objfile); 1185 } 1186 } 1187 1188 /* Sort all the minimal symbols in OBJFILE. */ 1189 1190 void 1191 msymbols_sort (struct objfile *objfile) 1192 { 1193 qsort (objfile->msymbols, objfile->minimal_symbol_count, 1194 sizeof (struct minimal_symbol), compare_minimal_symbols); 1195 build_minimal_symbol_hash_tables (objfile); 1196 } 1197 1198 /* Check if PC is in a shared library trampoline code stub. 1199 Return minimal symbol for the trampoline entry or NULL if PC is not 1200 in a trampoline code stub. */ 1201 1202 struct minimal_symbol * 1203 lookup_solib_trampoline_symbol_by_pc (CORE_ADDR pc) 1204 { 1205 struct obj_section *section = find_pc_section (pc); 1206 struct minimal_symbol *msymbol; 1207 1208 if (section == NULL) 1209 return NULL; 1210 msymbol = lookup_minimal_symbol_by_pc_section_1 (pc, section, 1); 1211 1212 if (msymbol != NULL && MSYMBOL_TYPE (msymbol) == mst_solib_trampoline) 1213 return msymbol; 1214 return NULL; 1215 } 1216 1217 /* If PC is in a shared library trampoline code stub, return the 1218 address of the `real' function belonging to the stub. 1219 Return 0 if PC is not in a trampoline code stub or if the real 1220 function is not found in the minimal symbol table. 1221 1222 We may fail to find the right function if a function with the 1223 same name is defined in more than one shared library, but this 1224 is considered bad programming style. We could return 0 if we find 1225 a duplicate function in case this matters someday. */ 1226 1227 CORE_ADDR 1228 find_solib_trampoline_target (struct frame_info *frame, CORE_ADDR pc) 1229 { 1230 struct objfile *objfile; 1231 struct minimal_symbol *msymbol; 1232 struct minimal_symbol *tsymbol = lookup_solib_trampoline_symbol_by_pc (pc); 1233 1234 if (tsymbol != NULL) 1235 { 1236 ALL_MSYMBOLS (objfile, msymbol) 1237 { 1238 if (MSYMBOL_TYPE (msymbol) == mst_text 1239 && strcmp (SYMBOL_LINKAGE_NAME (msymbol), 1240 SYMBOL_LINKAGE_NAME (tsymbol)) == 0) 1241 return SYMBOL_VALUE_ADDRESS (msymbol); 1242 1243 /* Also handle minimal symbols pointing to function descriptors. */ 1244 if (MSYMBOL_TYPE (msymbol) == mst_data 1245 && strcmp (SYMBOL_LINKAGE_NAME (msymbol), 1246 SYMBOL_LINKAGE_NAME (tsymbol)) == 0) 1247 { 1248 CORE_ADDR func; 1249 1250 func = gdbarch_convert_from_func_ptr_addr 1251 (get_objfile_arch (objfile), 1252 SYMBOL_VALUE_ADDRESS (msymbol), 1253 ¤t_target); 1254 1255 /* Ignore data symbols that are not function descriptors. */ 1256 if (func != SYMBOL_VALUE_ADDRESS (msymbol)) 1257 return func; 1258 } 1259 } 1260 } 1261 return 0; 1262 } 1263