xref: /dflybsd-src/contrib/gdb-7/gdb/minsyms.c (revision f41d807a0c7c535d8f66f0593fb6e95fa20f82d4)
1 /* GDB routines for manipulating the minimal symbol tables.
2    Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
3    2002, 2003, 2004, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4    Contributed by Cygnus Support, using pieces from other GDB modules.
5 
6    This file is part of GDB.
7 
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License as published by
10    the Free Software Foundation; either version 3 of the License, or
11    (at your option) any later version.
12 
13    This program is distributed in the hope that it will be useful,
14    but WITHOUT ANY WARRANTY; without even the implied warranty of
15    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16    GNU General Public License for more details.
17 
18    You should have received a copy of the GNU General Public License
19    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
20 
21 
22 /* This file contains support routines for creating, manipulating, and
23    destroying minimal symbol tables.
24 
25    Minimal symbol tables are used to hold some very basic information about
26    all defined global symbols (text, data, bss, abs, etc).  The only two
27    required pieces of information are the symbol's name and the address
28    associated with that symbol.
29 
30    In many cases, even if a file was compiled with no special options for
31    debugging at all, as long as was not stripped it will contain sufficient
32    information to build useful minimal symbol tables using this structure.
33 
34    Even when a file contains enough debugging information to build a full
35    symbol table, these minimal symbols are still useful for quickly mapping
36    between names and addresses, and vice versa.  They are also sometimes used
37    to figure out what full symbol table entries need to be read in. */
38 
39 
40 #include "defs.h"
41 #include <ctype.h>
42 #include "gdb_string.h"
43 #include "symtab.h"
44 #include "bfd.h"
45 #include "symfile.h"
46 #include "objfiles.h"
47 #include "demangle.h"
48 #include "value.h"
49 #include "cp-abi.h"
50 #include "target.h"
51 #include "cp-support.h"
52 #include "language.h"
53 
54 /* Accumulate the minimal symbols for each objfile in bunches of BUNCH_SIZE.
55    At the end, copy them all into one newly allocated location on an objfile's
56    symbol obstack.  */
57 
58 #define BUNCH_SIZE 127
59 
60 struct msym_bunch
61   {
62     struct msym_bunch *next;
63     struct minimal_symbol contents[BUNCH_SIZE];
64   };
65 
66 /* Bunch currently being filled up.
67    The next field points to chain of filled bunches.  */
68 
69 static struct msym_bunch *msym_bunch;
70 
71 /* Number of slots filled in current bunch.  */
72 
73 static int msym_bunch_index;
74 
75 /* Total number of minimal symbols recorded so far for the objfile.  */
76 
77 static int msym_count;
78 
79 /* Compute a hash code based using the same criteria as `strcmp_iw'.  */
80 
81 unsigned int
82 msymbol_hash_iw (const char *string)
83 {
84   unsigned int hash = 0;
85 
86   while (*string && *string != '(')
87     {
88       while (isspace (*string))
89 	++string;
90       if (*string && *string != '(')
91 	{
92 	  hash = hash * 67 + *string - 113;
93 	  ++string;
94 	}
95     }
96   return hash;
97 }
98 
99 /* Compute a hash code for a string.  */
100 
101 unsigned int
102 msymbol_hash (const char *string)
103 {
104   unsigned int hash = 0;
105 
106   for (; *string; ++string)
107     hash = hash * 67 + *string - 113;
108   return hash;
109 }
110 
111 /* Add the minimal symbol SYM to an objfile's minsym hash table, TABLE.  */
112 void
113 add_minsym_to_hash_table (struct minimal_symbol *sym,
114 			  struct minimal_symbol **table)
115 {
116   if (sym->hash_next == NULL)
117     {
118       unsigned int hash
119 	= msymbol_hash (SYMBOL_LINKAGE_NAME (sym)) % MINIMAL_SYMBOL_HASH_SIZE;
120 
121       sym->hash_next = table[hash];
122       table[hash] = sym;
123     }
124 }
125 
126 /* Add the minimal symbol SYM to an objfile's minsym demangled hash table,
127    TABLE.  */
128 static void
129 add_minsym_to_demangled_hash_table (struct minimal_symbol *sym,
130                                   struct minimal_symbol **table)
131 {
132   if (sym->demangled_hash_next == NULL)
133     {
134       unsigned int hash
135 	= msymbol_hash_iw (SYMBOL_SEARCH_NAME (sym)) % MINIMAL_SYMBOL_HASH_SIZE;
136 
137       sym->demangled_hash_next = table[hash];
138       table[hash] = sym;
139     }
140 }
141 
142 
143 /* Return OBJFILE where minimal symbol SYM is defined.  */
144 struct objfile *
145 msymbol_objfile (struct minimal_symbol *sym)
146 {
147   struct objfile *objf;
148   struct minimal_symbol *tsym;
149 
150   unsigned int hash
151     = msymbol_hash (SYMBOL_LINKAGE_NAME (sym)) % MINIMAL_SYMBOL_HASH_SIZE;
152 
153   for (objf = object_files; objf; objf = objf->next)
154     for (tsym = objf->msymbol_hash[hash]; tsym; tsym = tsym->hash_next)
155       if (tsym == sym)
156 	return objf;
157 
158   /* We should always be able to find the objfile ...  */
159   internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
160 }
161 
162 
163 /* Look through all the current minimal symbol tables and find the
164    first minimal symbol that matches NAME.  If OBJF is non-NULL, limit
165    the search to that objfile.  If SFILE is non-NULL, the only file-scope
166    symbols considered will be from that source file (global symbols are
167    still preferred).  Returns a pointer to the minimal symbol that
168    matches, or NULL if no match is found.
169 
170    Note:  One instance where there may be duplicate minimal symbols with
171    the same name is when the symbol tables for a shared library and the
172    symbol tables for an executable contain global symbols with the same
173    names (the dynamic linker deals with the duplication).
174 
175    It's also possible to have minimal symbols with different mangled
176    names, but identical demangled names.  For example, the GNU C++ v3
177    ABI requires the generation of two (or perhaps three) copies of
178    constructor functions --- "in-charge", "not-in-charge", and
179    "allocate" copies; destructors may be duplicated as well.
180    Obviously, there must be distinct mangled names for each of these,
181    but the demangled names are all the same: S::S or S::~S.  */
182 
183 struct minimal_symbol *
184 lookup_minimal_symbol (const char *name, const char *sfile,
185 		       struct objfile *objf)
186 {
187   struct objfile *objfile;
188   struct minimal_symbol *msymbol;
189   struct minimal_symbol *found_symbol = NULL;
190   struct minimal_symbol *found_file_symbol = NULL;
191   struct minimal_symbol *trampoline_symbol = NULL;
192 
193   unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
194   unsigned int dem_hash = msymbol_hash_iw (name) % MINIMAL_SYMBOL_HASH_SIZE;
195 
196   int needtofreename = 0;
197   const char *modified_name;
198 
199   if (sfile != NULL)
200     {
201       char *p = strrchr (sfile, '/');
202 
203       if (p != NULL)
204 	sfile = p + 1;
205     }
206 
207   /* For C++, canonicalize the input name. */
208   modified_name = name;
209   if (current_language->la_language == language_cplus)
210     {
211       char *cname = cp_canonicalize_string (name);
212 
213       if (cname)
214 	{
215 	  modified_name = cname;
216 	  needtofreename = 1;
217 	}
218     }
219 
220   for (objfile = object_files;
221        objfile != NULL && found_symbol == NULL;
222        objfile = objfile->next)
223     {
224       if (objf == NULL || objf == objfile
225 	  || objf == objfile->separate_debug_objfile_backlink)
226 	{
227 	  /* Do two passes: the first over the ordinary hash table,
228 	     and the second over the demangled hash table.  */
229         int pass;
230 
231         for (pass = 1; pass <= 2 && found_symbol == NULL; pass++)
232 	    {
233             /* Select hash list according to pass.  */
234             if (pass == 1)
235               msymbol = objfile->msymbol_hash[hash];
236             else
237               msymbol = objfile->msymbol_demangled_hash[dem_hash];
238 
239             while (msymbol != NULL && found_symbol == NULL)
240 		{
241 		  int match;
242 
243 		  if (pass == 1)
244 		    {
245 		      match = strcmp (SYMBOL_LINKAGE_NAME (msymbol),
246 				      modified_name) == 0;
247 		    }
248 		  else
249 		    {
250 		      match = SYMBOL_MATCHES_SEARCH_NAME (msymbol,
251 							  modified_name);
252 		    }
253 
254 		  if (match)
255 		    {
256                     switch (MSYMBOL_TYPE (msymbol))
257                       {
258                       case mst_file_text:
259                       case mst_file_data:
260                       case mst_file_bss:
261                         if (sfile == NULL
262 			    || strcmp (msymbol->filename, sfile) == 0)
263                           found_file_symbol = msymbol;
264                         break;
265 
266                       case mst_solib_trampoline:
267 
268                         /* If a trampoline symbol is found, we prefer to
269                            keep looking for the *real* symbol. If the
270                            actual symbol is not found, then we'll use the
271                            trampoline entry. */
272                         if (trampoline_symbol == NULL)
273                           trampoline_symbol = msymbol;
274                         break;
275 
276                       case mst_unknown:
277                       default:
278                         found_symbol = msymbol;
279                         break;
280                       }
281 		    }
282 
283                 /* Find the next symbol on the hash chain.  */
284                 if (pass == 1)
285                   msymbol = msymbol->hash_next;
286                 else
287                   msymbol = msymbol->demangled_hash_next;
288 		}
289 	    }
290 	}
291     }
292 
293   if (needtofreename)
294     xfree ((void *) modified_name);
295 
296   /* External symbols are best.  */
297   if (found_symbol)
298     return found_symbol;
299 
300   /* File-local symbols are next best.  */
301   if (found_file_symbol)
302     return found_file_symbol;
303 
304   /* Symbols for shared library trampolines are next best.  */
305   if (trampoline_symbol)
306     return trampoline_symbol;
307 
308   return NULL;
309 }
310 
311 /* Look through all the current minimal symbol tables and find the
312    first minimal symbol that matches NAME and has text type.  If OBJF
313    is non-NULL, limit the search to that objfile.  Returns a pointer
314    to the minimal symbol that matches, or NULL if no match is found.
315 
316    This function only searches the mangled (linkage) names.  */
317 
318 struct minimal_symbol *
319 lookup_minimal_symbol_text (const char *name, struct objfile *objf)
320 {
321   struct objfile *objfile;
322   struct minimal_symbol *msymbol;
323   struct minimal_symbol *found_symbol = NULL;
324   struct minimal_symbol *found_file_symbol = NULL;
325 
326   unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
327 
328   for (objfile = object_files;
329        objfile != NULL && found_symbol == NULL;
330        objfile = objfile->next)
331     {
332       if (objf == NULL || objf == objfile
333 	  || objf == objfile->separate_debug_objfile_backlink)
334 	{
335 	  for (msymbol = objfile->msymbol_hash[hash];
336 	       msymbol != NULL && found_symbol == NULL;
337 	       msymbol = msymbol->hash_next)
338 	    {
339 	      if (strcmp (SYMBOL_LINKAGE_NAME (msymbol), name) == 0 &&
340 		  (MSYMBOL_TYPE (msymbol) == mst_text ||
341 		   MSYMBOL_TYPE (msymbol) == mst_file_text))
342 		{
343 		  switch (MSYMBOL_TYPE (msymbol))
344 		    {
345 		    case mst_file_text:
346 		      found_file_symbol = msymbol;
347 		      break;
348 		    default:
349 		      found_symbol = msymbol;
350 		      break;
351 		    }
352 		}
353 	    }
354 	}
355     }
356   /* External symbols are best.  */
357   if (found_symbol)
358     return found_symbol;
359 
360   /* File-local symbols are next best.  */
361   if (found_file_symbol)
362     return found_file_symbol;
363 
364   return NULL;
365 }
366 
367 /* Look through all the current minimal symbol tables and find the
368    first minimal symbol that matches NAME and PC.  If OBJF is non-NULL,
369    limit the search to that objfile.  Returns a pointer to the minimal
370    symbol that matches, or NULL if no match is found.  */
371 
372 struct minimal_symbol *
373 lookup_minimal_symbol_by_pc_name (CORE_ADDR pc, const char *name,
374 				  struct objfile *objf)
375 {
376   struct objfile *objfile;
377   struct minimal_symbol *msymbol;
378 
379   unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
380 
381   for (objfile = object_files;
382        objfile != NULL;
383        objfile = objfile->next)
384     {
385       if (objf == NULL || objf == objfile
386 	  || objf == objfile->separate_debug_objfile_backlink)
387 	{
388 	  for (msymbol = objfile->msymbol_hash[hash];
389 	       msymbol != NULL;
390 	       msymbol = msymbol->hash_next)
391 	    {
392 	      if (SYMBOL_VALUE_ADDRESS (msymbol) == pc
393 		  && strcmp (SYMBOL_LINKAGE_NAME (msymbol), name) == 0)
394 		return msymbol;
395 	    }
396 	}
397     }
398 
399   return NULL;
400 }
401 
402 /* Look through all the current minimal symbol tables and find the
403    first minimal symbol that matches NAME and is a solib trampoline.
404    If OBJF is non-NULL, limit the search to that objfile.  Returns a
405    pointer to the minimal symbol that matches, or NULL if no match is
406    found.
407 
408    This function only searches the mangled (linkage) names.  */
409 
410 struct minimal_symbol *
411 lookup_minimal_symbol_solib_trampoline (const char *name,
412 					struct objfile *objf)
413 {
414   struct objfile *objfile;
415   struct minimal_symbol *msymbol;
416   struct minimal_symbol *found_symbol = NULL;
417 
418   unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
419 
420   for (objfile = object_files;
421        objfile != NULL && found_symbol == NULL;
422        objfile = objfile->next)
423     {
424       if (objf == NULL || objf == objfile
425 	  || objf == objfile->separate_debug_objfile_backlink)
426 	{
427 	  for (msymbol = objfile->msymbol_hash[hash];
428 	       msymbol != NULL && found_symbol == NULL;
429 	       msymbol = msymbol->hash_next)
430 	    {
431 	      if (strcmp (SYMBOL_LINKAGE_NAME (msymbol), name) == 0 &&
432 		  MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
433 		return msymbol;
434 	    }
435 	}
436     }
437 
438   return NULL;
439 }
440 
441 /* Search through the minimal symbol table for each objfile and find
442    the symbol whose address is the largest address that is still less
443    than or equal to PC, and matches SECTION (which is not NULL).
444    Returns a pointer to the minimal symbol if such a symbol is found,
445    or NULL if PC is not in a suitable range.
446    Note that we need to look through ALL the minimal symbol tables
447    before deciding on the symbol that comes closest to the specified PC.
448    This is because objfiles can overlap, for example objfile A has .text
449    at 0x100 and .data at 0x40000 and objfile B has .text at 0x234 and
450    .data at 0x40048.
451 
452    If WANT_TRAMPOLINE is set, prefer mst_solib_trampoline symbols when
453    there are text and trampoline symbols at the same address.
454    Otherwise prefer mst_text symbols.  */
455 
456 static struct minimal_symbol *
457 lookup_minimal_symbol_by_pc_section_1 (CORE_ADDR pc,
458 				       struct obj_section *section,
459 				       int want_trampoline)
460 {
461   int lo;
462   int hi;
463   int new;
464   struct objfile *objfile;
465   struct minimal_symbol *msymbol;
466   struct minimal_symbol *best_symbol = NULL;
467   enum minimal_symbol_type want_type, other_type;
468 
469   want_type = want_trampoline ? mst_solib_trampoline : mst_text;
470   other_type = want_trampoline ? mst_text : mst_solib_trampoline;
471 
472   /* We can not require the symbol found to be in section, because
473      e.g. IRIX 6.5 mdebug relies on this code returning an absolute
474      symbol - but find_pc_section won't return an absolute section and
475      hence the code below would skip over absolute symbols.  We can
476      still take advantage of the call to find_pc_section, though - the
477      object file still must match.  In case we have separate debug
478      files, search both the file and its separate debug file.  There's
479      no telling which one will have the minimal symbols.  */
480 
481   gdb_assert (section != NULL);
482 
483   for (objfile = section->objfile;
484        objfile != NULL;
485        objfile = objfile_separate_debug_iterate (section->objfile, objfile))
486     {
487       /* If this objfile has a minimal symbol table, go search it using
488          a binary search.  Note that a minimal symbol table always consists
489          of at least two symbols, a "real" symbol and the terminating
490          "null symbol".  If there are no real symbols, then there is no
491          minimal symbol table at all. */
492 
493       if (objfile->minimal_symbol_count > 0)
494 	{
495 	  int best_zero_sized = -1;
496 
497           msymbol = objfile->msymbols;
498 	  lo = 0;
499 	  hi = objfile->minimal_symbol_count - 1;
500 
501 	  /* This code assumes that the minimal symbols are sorted by
502 	     ascending address values.  If the pc value is greater than or
503 	     equal to the first symbol's address, then some symbol in this
504 	     minimal symbol table is a suitable candidate for being the
505 	     "best" symbol.  This includes the last real symbol, for cases
506 	     where the pc value is larger than any address in this vector.
507 
508 	     By iterating until the address associated with the current
509 	     hi index (the endpoint of the test interval) is less than
510 	     or equal to the desired pc value, we accomplish two things:
511 	     (1) the case where the pc value is larger than any minimal
512 	     symbol address is trivially solved, (2) the address associated
513 	     with the hi index is always the one we want when the interation
514 	     terminates.  In essence, we are iterating the test interval
515 	     down until the pc value is pushed out of it from the high end.
516 
517 	     Warning: this code is trickier than it would appear at first. */
518 
519 	  /* Should also require that pc is <= end of objfile.  FIXME! */
520 	  if (pc >= SYMBOL_VALUE_ADDRESS (&msymbol[lo]))
521 	    {
522 	      while (SYMBOL_VALUE_ADDRESS (&msymbol[hi]) > pc)
523 		{
524 		  /* pc is still strictly less than highest address */
525 		  /* Note "new" will always be >= lo */
526 		  new = (lo + hi) / 2;
527 		  if ((SYMBOL_VALUE_ADDRESS (&msymbol[new]) >= pc) ||
528 		      (lo == new))
529 		    {
530 		      hi = new;
531 		    }
532 		  else
533 		    {
534 		      lo = new;
535 		    }
536 		}
537 
538 	      /* If we have multiple symbols at the same address, we want
539 	         hi to point to the last one.  That way we can find the
540 	         right symbol if it has an index greater than hi.  */
541 	      while (hi < objfile->minimal_symbol_count - 1
542 		     && (SYMBOL_VALUE_ADDRESS (&msymbol[hi])
543 			 == SYMBOL_VALUE_ADDRESS (&msymbol[hi + 1])))
544 		hi++;
545 
546 	      /* Skip various undesirable symbols.  */
547 	      while (hi >= 0)
548 		{
549 		  /* Skip any absolute symbols.  This is apparently
550 		     what adb and dbx do, and is needed for the CM-5.
551 		     There are two known possible problems: (1) on
552 		     ELF, apparently end, edata, etc. are absolute.
553 		     Not sure ignoring them here is a big deal, but if
554 		     we want to use them, the fix would go in
555 		     elfread.c.  (2) I think shared library entry
556 		     points on the NeXT are absolute.  If we want
557 		     special handling for this it probably should be
558 		     triggered by a special mst_abs_or_lib or some
559 		     such.  */
560 
561 		  if (MSYMBOL_TYPE (&msymbol[hi]) == mst_abs)
562 		    {
563 		      hi--;
564 		      continue;
565 		    }
566 
567 		  /* If SECTION was specified, skip any symbol from
568 		     wrong section.  */
569 		  if (section
570 		      /* Some types of debug info, such as COFF,
571 			 don't fill the bfd_section member, so don't
572 			 throw away symbols on those platforms.  */
573 		      && SYMBOL_OBJ_SECTION (&msymbol[hi]) != NULL
574 		      && (!matching_obj_sections
575 			  (SYMBOL_OBJ_SECTION (&msymbol[hi]), section)))
576 		    {
577 		      hi--;
578 		      continue;
579 		    }
580 
581 		  /* If we are looking for a trampoline and this is a
582 		     text symbol, or the other way around, check the
583 		     preceeding symbol too.  If they are otherwise
584 		     identical prefer that one.  */
585 		  if (hi > 0
586 		      && MSYMBOL_TYPE (&msymbol[hi]) == other_type
587 		      && MSYMBOL_TYPE (&msymbol[hi - 1]) == want_type
588 		      && (MSYMBOL_SIZE (&msymbol[hi])
589 			  == MSYMBOL_SIZE (&msymbol[hi - 1]))
590 		      && (SYMBOL_VALUE_ADDRESS (&msymbol[hi])
591 			  == SYMBOL_VALUE_ADDRESS (&msymbol[hi - 1]))
592 		      && (SYMBOL_OBJ_SECTION (&msymbol[hi])
593 			  == SYMBOL_OBJ_SECTION (&msymbol[hi - 1])))
594 		    {
595 		      hi--;
596 		      continue;
597 		    }
598 
599 		  /* If the minimal symbol has a zero size, save it
600 		     but keep scanning backwards looking for one with
601 		     a non-zero size.  A zero size may mean that the
602 		     symbol isn't an object or function (e.g. a
603 		     label), or it may just mean that the size was not
604 		     specified.  */
605 		  if (MSYMBOL_SIZE (&msymbol[hi]) == 0
606 		      && best_zero_sized == -1)
607 		    {
608 		      best_zero_sized = hi;
609 		      hi--;
610 		      continue;
611 		    }
612 
613 		  /* If we are past the end of the current symbol, try
614 		     the previous symbol if it has a larger overlapping
615 		     size.  This happens on i686-pc-linux-gnu with glibc;
616 		     the nocancel variants of system calls are inside
617 		     the cancellable variants, but both have sizes.  */
618 		  if (hi > 0
619 		      && MSYMBOL_SIZE (&msymbol[hi]) != 0
620 		      && pc >= (SYMBOL_VALUE_ADDRESS (&msymbol[hi])
621 				+ MSYMBOL_SIZE (&msymbol[hi]))
622 		      && pc < (SYMBOL_VALUE_ADDRESS (&msymbol[hi - 1])
623 			       + MSYMBOL_SIZE (&msymbol[hi - 1])))
624 		    {
625 		      hi--;
626 		      continue;
627 		    }
628 
629 		  /* Otherwise, this symbol must be as good as we're going
630 		     to get.  */
631 		  break;
632 		}
633 
634 	      /* If HI has a zero size, and best_zero_sized is set,
635 		 then we had two or more zero-sized symbols; prefer
636 		 the first one we found (which may have a higher
637 		 address).  Also, if we ran off the end, be sure
638 		 to back up.  */
639 	      if (best_zero_sized != -1
640 		  && (hi < 0 || MSYMBOL_SIZE (&msymbol[hi]) == 0))
641 		hi = best_zero_sized;
642 
643 	      /* If the minimal symbol has a non-zero size, and this
644 		 PC appears to be outside the symbol's contents, then
645 		 refuse to use this symbol.  If we found a zero-sized
646 		 symbol with an address greater than this symbol's,
647 		 use that instead.  We assume that if symbols have
648 		 specified sizes, they do not overlap.  */
649 
650 	      if (hi >= 0
651 		  && MSYMBOL_SIZE (&msymbol[hi]) != 0
652 		  && pc >= (SYMBOL_VALUE_ADDRESS (&msymbol[hi])
653 			    + MSYMBOL_SIZE (&msymbol[hi])))
654 		{
655 		  if (best_zero_sized != -1)
656 		    hi = best_zero_sized;
657 		  else
658 		    /* Go on to the next object file.  */
659 		    continue;
660 		}
661 
662 	      /* The minimal symbol indexed by hi now is the best one in this
663 	         objfile's minimal symbol table.  See if it is the best one
664 	         overall. */
665 
666 	      if (hi >= 0
667 		  && ((best_symbol == NULL) ||
668 		      (SYMBOL_VALUE_ADDRESS (best_symbol) <
669 		       SYMBOL_VALUE_ADDRESS (&msymbol[hi]))))
670 		{
671 		  best_symbol = &msymbol[hi];
672 		}
673 	    }
674 	}
675     }
676   return (best_symbol);
677 }
678 
679 struct minimal_symbol *
680 lookup_minimal_symbol_by_pc_section (CORE_ADDR pc, struct obj_section *section)
681 {
682   if (section == NULL)
683     {
684       /* NOTE: cagney/2004-01-27: This was using find_pc_mapped_section to
685 	 force the section but that (well unless you're doing overlay
686 	 debugging) always returns NULL making the call somewhat useless.  */
687       section = find_pc_section (pc);
688       if (section == NULL)
689 	return NULL;
690     }
691   return lookup_minimal_symbol_by_pc_section_1 (pc, section, 0);
692 }
693 
694 /* Backward compatibility: search through the minimal symbol table
695    for a matching PC (no section given) */
696 
697 struct minimal_symbol *
698 lookup_minimal_symbol_by_pc (CORE_ADDR pc)
699 {
700   return lookup_minimal_symbol_by_pc_section (pc, NULL);
701 }
702 
703 /* Find the minimal symbol named NAME, and return both the minsym
704    struct and its objfile.  This only checks the linkage name.  Sets
705    *OBJFILE_P and returns the minimal symbol, if it is found.  If it
706    is not found, returns NULL.  */
707 
708 struct minimal_symbol *
709 lookup_minimal_symbol_and_objfile (const char *name,
710 				   struct objfile **objfile_p)
711 {
712   struct objfile *objfile;
713   unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
714 
715   ALL_OBJFILES (objfile)
716     {
717       struct minimal_symbol *msym;
718 
719       for (msym = objfile->msymbol_hash[hash];
720 	   msym != NULL;
721 	   msym = msym->hash_next)
722 	{
723 	  if (strcmp (SYMBOL_LINKAGE_NAME (msym), name) == 0)
724 	    {
725 	      *objfile_p = objfile;
726 	      return msym;
727 	    }
728 	}
729     }
730 
731   return 0;
732 }
733 
734 
735 /* Return leading symbol character for a BFD. If BFD is NULL,
736    return the leading symbol character from the main objfile.  */
737 
738 static int get_symbol_leading_char (bfd *);
739 
740 static int
741 get_symbol_leading_char (bfd *abfd)
742 {
743   if (abfd != NULL)
744     return bfd_get_symbol_leading_char (abfd);
745   if (symfile_objfile != NULL && symfile_objfile->obfd != NULL)
746     return bfd_get_symbol_leading_char (symfile_objfile->obfd);
747   return 0;
748 }
749 
750 /* Prepare to start collecting minimal symbols.  Note that presetting
751    msym_bunch_index to BUNCH_SIZE causes the first call to save a minimal
752    symbol to allocate the memory for the first bunch. */
753 
754 void
755 init_minimal_symbol_collection (void)
756 {
757   msym_count = 0;
758   msym_bunch = NULL;
759   msym_bunch_index = BUNCH_SIZE;
760 }
761 
762 void
763 prim_record_minimal_symbol (const char *name, CORE_ADDR address,
764 			    enum minimal_symbol_type ms_type,
765 			    struct objfile *objfile)
766 {
767   int section;
768 
769   switch (ms_type)
770     {
771     case mst_text:
772     case mst_file_text:
773     case mst_solib_trampoline:
774       section = SECT_OFF_TEXT (objfile);
775       break;
776     case mst_data:
777     case mst_file_data:
778       section = SECT_OFF_DATA (objfile);
779       break;
780     case mst_bss:
781     case mst_file_bss:
782       section = SECT_OFF_BSS (objfile);
783       break;
784     default:
785       section = -1;
786     }
787 
788   prim_record_minimal_symbol_and_info (name, address, ms_type,
789 				       section, NULL, objfile);
790 }
791 
792 /* Record a minimal symbol in the msym bunches.  Returns the symbol
793    newly created.  */
794 
795 struct minimal_symbol *
796 prim_record_minimal_symbol_full (const char *name, int name_len, int copy_name,
797 				 CORE_ADDR address,
798 				 enum minimal_symbol_type ms_type,
799 				 int section,
800 				 asection *bfd_section,
801 				 struct objfile *objfile)
802 {
803   struct obj_section *obj_section;
804   struct msym_bunch *new;
805   struct minimal_symbol *msymbol;
806 
807   /* Don't put gcc_compiled, __gnu_compiled_cplus, and friends into
808      the minimal symbols, because if there is also another symbol
809      at the same address (e.g. the first function of the file),
810      lookup_minimal_symbol_by_pc would have no way of getting the
811      right one.  */
812   if (ms_type == mst_file_text && name[0] == 'g'
813       && (strcmp (name, GCC_COMPILED_FLAG_SYMBOL) == 0
814 	  || strcmp (name, GCC2_COMPILED_FLAG_SYMBOL) == 0))
815     return (NULL);
816 
817   /* It's safe to strip the leading char here once, since the name
818      is also stored stripped in the minimal symbol table. */
819   if (name[0] == get_symbol_leading_char (objfile->obfd))
820     {
821       ++name;
822       --name_len;
823     }
824 
825   if (ms_type == mst_file_text && strncmp (name, "__gnu_compiled", 14) == 0)
826     return (NULL);
827 
828   if (msym_bunch_index == BUNCH_SIZE)
829     {
830       new = XCALLOC (1, struct msym_bunch);
831       msym_bunch_index = 0;
832       new->next = msym_bunch;
833       msym_bunch = new;
834     }
835   msymbol = &msym_bunch->contents[msym_bunch_index];
836   SYMBOL_INIT_LANGUAGE_SPECIFIC (msymbol, language_unknown);
837   SYMBOL_LANGUAGE (msymbol) = language_auto;
838   SYMBOL_SET_NAMES (msymbol, name, name_len, copy_name, objfile);
839 
840   SYMBOL_VALUE_ADDRESS (msymbol) = address;
841   SYMBOL_SECTION (msymbol) = section;
842   SYMBOL_OBJ_SECTION (msymbol) = NULL;
843 
844   /* Find obj_section corresponding to bfd_section.  */
845   if (bfd_section)
846     ALL_OBJFILE_OSECTIONS (objfile, obj_section)
847       {
848 	if (obj_section->the_bfd_section == bfd_section)
849 	  {
850 	    SYMBOL_OBJ_SECTION (msymbol) = obj_section;
851 	    break;
852 	  }
853       }
854 
855   MSYMBOL_TYPE (msymbol) = ms_type;
856   MSYMBOL_TARGET_FLAG_1 (msymbol) = 0;
857   MSYMBOL_TARGET_FLAG_2 (msymbol) = 0;
858   MSYMBOL_SIZE (msymbol) = 0;
859 
860   /* The hash pointers must be cleared! If they're not,
861      add_minsym_to_hash_table will NOT add this msymbol to the hash table. */
862   msymbol->hash_next = NULL;
863   msymbol->demangled_hash_next = NULL;
864 
865   msym_bunch_index++;
866   msym_count++;
867   OBJSTAT (objfile, n_minsyms++);
868   return msymbol;
869 }
870 
871 /* Record a minimal symbol in the msym bunches.  Returns the symbol
872    newly created.  */
873 
874 struct minimal_symbol *
875 prim_record_minimal_symbol_and_info (const char *name, CORE_ADDR address,
876 				     enum minimal_symbol_type ms_type,
877 				     int section,
878 				     asection *bfd_section,
879 				     struct objfile *objfile)
880 {
881   return prim_record_minimal_symbol_full (name, strlen (name), 1,
882 					  address, ms_type, section,
883 					  bfd_section, objfile);
884 }
885 
886 /* Compare two minimal symbols by address and return a signed result based
887    on unsigned comparisons, so that we sort into unsigned numeric order.
888    Within groups with the same address, sort by name.  */
889 
890 static int
891 compare_minimal_symbols (const void *fn1p, const void *fn2p)
892 {
893   const struct minimal_symbol *fn1;
894   const struct minimal_symbol *fn2;
895 
896   fn1 = (const struct minimal_symbol *) fn1p;
897   fn2 = (const struct minimal_symbol *) fn2p;
898 
899   if (SYMBOL_VALUE_ADDRESS (fn1) < SYMBOL_VALUE_ADDRESS (fn2))
900     {
901       return (-1);		/* addr 1 is less than addr 2 */
902     }
903   else if (SYMBOL_VALUE_ADDRESS (fn1) > SYMBOL_VALUE_ADDRESS (fn2))
904     {
905       return (1);		/* addr 1 is greater than addr 2 */
906     }
907   else
908     /* addrs are equal: sort by name */
909     {
910       char *name1 = SYMBOL_LINKAGE_NAME (fn1);
911       char *name2 = SYMBOL_LINKAGE_NAME (fn2);
912 
913       if (name1 && name2)	/* both have names */
914 	return strcmp (name1, name2);
915       else if (name2)
916 	return 1;		/* fn1 has no name, so it is "less" */
917       else if (name1)		/* fn2 has no name, so it is "less" */
918 	return -1;
919       else
920 	return (0);		/* neither has a name, so they're equal. */
921     }
922 }
923 
924 /* Discard the currently collected minimal symbols, if any.  If we wish
925    to save them for later use, we must have already copied them somewhere
926    else before calling this function.
927 
928    FIXME:  We could allocate the minimal symbol bunches on their own
929    obstack and then simply blow the obstack away when we are done with
930    it.  Is it worth the extra trouble though? */
931 
932 static void
933 do_discard_minimal_symbols_cleanup (void *arg)
934 {
935   struct msym_bunch *next;
936 
937   while (msym_bunch != NULL)
938     {
939       next = msym_bunch->next;
940       xfree (msym_bunch);
941       msym_bunch = next;
942     }
943 }
944 
945 struct cleanup *
946 make_cleanup_discard_minimal_symbols (void)
947 {
948   return make_cleanup (do_discard_minimal_symbols_cleanup, 0);
949 }
950 
951 
952 
953 /* Compact duplicate entries out of a minimal symbol table by walking
954    through the table and compacting out entries with duplicate addresses
955    and matching names.  Return the number of entries remaining.
956 
957    On entry, the table resides between msymbol[0] and msymbol[mcount].
958    On exit, it resides between msymbol[0] and msymbol[result_count].
959 
960    When files contain multiple sources of symbol information, it is
961    possible for the minimal symbol table to contain many duplicate entries.
962    As an example, SVR4 systems use ELF formatted object files, which
963    usually contain at least two different types of symbol tables (a
964    standard ELF one and a smaller dynamic linking table), as well as
965    DWARF debugging information for files compiled with -g.
966 
967    Without compacting, the minimal symbol table for gdb itself contains
968    over a 1000 duplicates, about a third of the total table size.  Aside
969    from the potential trap of not noticing that two successive entries
970    identify the same location, this duplication impacts the time required
971    to linearly scan the table, which is done in a number of places.  So we
972    just do one linear scan here and toss out the duplicates.
973 
974    Note that we are not concerned here about recovering the space that
975    is potentially freed up, because the strings themselves are allocated
976    on the objfile_obstack, and will get automatically freed when the symbol
977    table is freed.  The caller can free up the unused minimal symbols at
978    the end of the compacted region if their allocation strategy allows it.
979 
980    Also note we only go up to the next to last entry within the loop
981    and then copy the last entry explicitly after the loop terminates.
982 
983    Since the different sources of information for each symbol may
984    have different levels of "completeness", we may have duplicates
985    that have one entry with type "mst_unknown" and the other with a
986    known type.  So if the one we are leaving alone has type mst_unknown,
987    overwrite its type with the type from the one we are compacting out.  */
988 
989 static int
990 compact_minimal_symbols (struct minimal_symbol *msymbol, int mcount,
991 			 struct objfile *objfile)
992 {
993   struct minimal_symbol *copyfrom;
994   struct minimal_symbol *copyto;
995 
996   if (mcount > 0)
997     {
998       copyfrom = copyto = msymbol;
999       while (copyfrom < msymbol + mcount - 1)
1000 	{
1001 	  if (SYMBOL_VALUE_ADDRESS (copyfrom)
1002 	      == SYMBOL_VALUE_ADDRESS ((copyfrom + 1))
1003 	      && strcmp (SYMBOL_LINKAGE_NAME (copyfrom),
1004 			 SYMBOL_LINKAGE_NAME ((copyfrom + 1))) == 0)
1005 	    {
1006 	      if (MSYMBOL_TYPE ((copyfrom + 1)) == mst_unknown)
1007 		{
1008 		  MSYMBOL_TYPE ((copyfrom + 1)) = MSYMBOL_TYPE (copyfrom);
1009 		}
1010 	      copyfrom++;
1011 	    }
1012 	  else
1013 	    *copyto++ = *copyfrom++;
1014 	}
1015       *copyto++ = *copyfrom++;
1016       mcount = copyto - msymbol;
1017     }
1018   return (mcount);
1019 }
1020 
1021 /* Build (or rebuild) the minimal symbol hash tables.  This is necessary
1022    after compacting or sorting the table since the entries move around
1023    thus causing the internal minimal_symbol pointers to become jumbled. */
1024 
1025 static void
1026 build_minimal_symbol_hash_tables (struct objfile *objfile)
1027 {
1028   int i;
1029   struct minimal_symbol *msym;
1030 
1031   /* Clear the hash tables. */
1032   for (i = 0; i < MINIMAL_SYMBOL_HASH_SIZE; i++)
1033     {
1034       objfile->msymbol_hash[i] = 0;
1035       objfile->msymbol_demangled_hash[i] = 0;
1036     }
1037 
1038   /* Now, (re)insert the actual entries. */
1039   for (i = objfile->minimal_symbol_count, msym = objfile->msymbols;
1040        i > 0;
1041        i--, msym++)
1042     {
1043       msym->hash_next = 0;
1044       add_minsym_to_hash_table (msym, objfile->msymbol_hash);
1045 
1046       msym->demangled_hash_next = 0;
1047       if (SYMBOL_SEARCH_NAME (msym) != SYMBOL_LINKAGE_NAME (msym))
1048 	add_minsym_to_demangled_hash_table (msym,
1049                                             objfile->msymbol_demangled_hash);
1050     }
1051 }
1052 
1053 /* Add the minimal symbols in the existing bunches to the objfile's official
1054    minimal symbol table.  In most cases there is no minimal symbol table yet
1055    for this objfile, and the existing bunches are used to create one.  Once
1056    in a while (for shared libraries for example), we add symbols (e.g. common
1057    symbols) to an existing objfile.
1058 
1059    Because of the way minimal symbols are collected, we generally have no way
1060    of knowing what source language applies to any particular minimal symbol.
1061    Specifically, we have no way of knowing if the minimal symbol comes from a
1062    C++ compilation unit or not.  So for the sake of supporting cached
1063    demangled C++ names, we have no choice but to try and demangle each new one
1064    that comes in.  If the demangling succeeds, then we assume it is a C++
1065    symbol and set the symbol's language and demangled name fields
1066    appropriately.  Note that in order to avoid unnecessary demanglings, and
1067    allocating obstack space that subsequently can't be freed for the demangled
1068    names, we mark all newly added symbols with language_auto.  After
1069    compaction of the minimal symbols, we go back and scan the entire minimal
1070    symbol table looking for these new symbols.  For each new symbol we attempt
1071    to demangle it, and if successful, record it as a language_cplus symbol
1072    and cache the demangled form on the symbol obstack.  Symbols which don't
1073    demangle are marked as language_unknown symbols, which inhibits future
1074    attempts to demangle them if we later add more minimal symbols. */
1075 
1076 void
1077 install_minimal_symbols (struct objfile *objfile)
1078 {
1079   int bindex;
1080   int mcount;
1081   struct msym_bunch *bunch;
1082   struct minimal_symbol *msymbols;
1083   int alloc_count;
1084 
1085   if (msym_count > 0)
1086     {
1087       /* Allocate enough space in the obstack, into which we will gather the
1088          bunches of new and existing minimal symbols, sort them, and then
1089          compact out the duplicate entries.  Once we have a final table,
1090          we will give back the excess space.  */
1091 
1092       alloc_count = msym_count + objfile->minimal_symbol_count + 1;
1093       obstack_blank (&objfile->objfile_obstack,
1094 		     alloc_count * sizeof (struct minimal_symbol));
1095       msymbols = (struct minimal_symbol *)
1096 	obstack_base (&objfile->objfile_obstack);
1097 
1098       /* Copy in the existing minimal symbols, if there are any.  */
1099 
1100       if (objfile->minimal_symbol_count)
1101 	memcpy ((char *) msymbols, (char *) objfile->msymbols,
1102 	    objfile->minimal_symbol_count * sizeof (struct minimal_symbol));
1103 
1104       /* Walk through the list of minimal symbol bunches, adding each symbol
1105          to the new contiguous array of symbols.  Note that we start with the
1106          current, possibly partially filled bunch (thus we use the current
1107          msym_bunch_index for the first bunch we copy over), and thereafter
1108          each bunch is full. */
1109 
1110       mcount = objfile->minimal_symbol_count;
1111 
1112       for (bunch = msym_bunch; bunch != NULL; bunch = bunch->next)
1113 	{
1114 	  for (bindex = 0; bindex < msym_bunch_index; bindex++, mcount++)
1115 	    msymbols[mcount] = bunch->contents[bindex];
1116 	  msym_bunch_index = BUNCH_SIZE;
1117 	}
1118 
1119       /* Sort the minimal symbols by address.  */
1120 
1121       qsort (msymbols, mcount, sizeof (struct minimal_symbol),
1122 	     compare_minimal_symbols);
1123 
1124       /* Compact out any duplicates, and free up whatever space we are
1125          no longer using.  */
1126 
1127       mcount = compact_minimal_symbols (msymbols, mcount, objfile);
1128 
1129       obstack_blank (&objfile->objfile_obstack,
1130 	       (mcount + 1 - alloc_count) * sizeof (struct minimal_symbol));
1131       msymbols = (struct minimal_symbol *)
1132 	obstack_finish (&objfile->objfile_obstack);
1133 
1134       /* We also terminate the minimal symbol table with a "null symbol",
1135          which is *not* included in the size of the table.  This makes it
1136          easier to find the end of the table when we are handed a pointer
1137          to some symbol in the middle of it.  Zero out the fields in the
1138          "null symbol" allocated at the end of the array.  Note that the
1139          symbol count does *not* include this null symbol, which is why it
1140          is indexed by mcount and not mcount-1. */
1141 
1142       SYMBOL_LINKAGE_NAME (&msymbols[mcount]) = NULL;
1143       SYMBOL_VALUE_ADDRESS (&msymbols[mcount]) = 0;
1144       MSYMBOL_TARGET_FLAG_1 (&msymbols[mcount]) = 0;
1145       MSYMBOL_TARGET_FLAG_2 (&msymbols[mcount]) = 0;
1146       MSYMBOL_SIZE (&msymbols[mcount]) = 0;
1147       MSYMBOL_TYPE (&msymbols[mcount]) = mst_unknown;
1148       SYMBOL_INIT_LANGUAGE_SPECIFIC (&msymbols[mcount], language_unknown);
1149 
1150       /* Attach the minimal symbol table to the specified objfile.
1151          The strings themselves are also located in the objfile_obstack
1152          of this objfile.  */
1153 
1154       objfile->minimal_symbol_count = mcount;
1155       objfile->msymbols = msymbols;
1156 
1157       /* Try to guess the appropriate C++ ABI by looking at the names
1158 	 of the minimal symbols in the table.  */
1159       {
1160 	int i;
1161 
1162 	for (i = 0; i < mcount; i++)
1163 	  {
1164 	    /* If a symbol's name starts with _Z and was successfully
1165 	       demangled, then we can assume we've found a GNU v3 symbol.
1166 	       For now we set the C++ ABI globally; if the user is
1167 	       mixing ABIs then the user will need to "set cp-abi"
1168 	       manually.  */
1169 	    const char *name = SYMBOL_LINKAGE_NAME (&objfile->msymbols[i]);
1170 
1171 	    if (name[0] == '_' && name[1] == 'Z'
1172 		&& SYMBOL_DEMANGLED_NAME (&objfile->msymbols[i]) != NULL)
1173 	      {
1174 		set_cp_abi_as_auto_default ("gnu-v3");
1175 		break;
1176 	      }
1177 	  }
1178       }
1179 
1180       /* Now build the hash tables; we can't do this incrementally
1181          at an earlier point since we weren't finished with the obstack
1182 	 yet.  (And if the msymbol obstack gets moved, all the internal
1183 	 pointers to other msymbols need to be adjusted.) */
1184       build_minimal_symbol_hash_tables (objfile);
1185     }
1186 }
1187 
1188 /* Sort all the minimal symbols in OBJFILE.  */
1189 
1190 void
1191 msymbols_sort (struct objfile *objfile)
1192 {
1193   qsort (objfile->msymbols, objfile->minimal_symbol_count,
1194 	 sizeof (struct minimal_symbol), compare_minimal_symbols);
1195   build_minimal_symbol_hash_tables (objfile);
1196 }
1197 
1198 /* Check if PC is in a shared library trampoline code stub.
1199    Return minimal symbol for the trampoline entry or NULL if PC is not
1200    in a trampoline code stub.  */
1201 
1202 struct minimal_symbol *
1203 lookup_solib_trampoline_symbol_by_pc (CORE_ADDR pc)
1204 {
1205   struct obj_section *section = find_pc_section (pc);
1206   struct minimal_symbol *msymbol;
1207 
1208   if (section == NULL)
1209     return NULL;
1210   msymbol = lookup_minimal_symbol_by_pc_section_1 (pc, section, 1);
1211 
1212   if (msymbol != NULL && MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
1213     return msymbol;
1214   return NULL;
1215 }
1216 
1217 /* If PC is in a shared library trampoline code stub, return the
1218    address of the `real' function belonging to the stub.
1219    Return 0 if PC is not in a trampoline code stub or if the real
1220    function is not found in the minimal symbol table.
1221 
1222    We may fail to find the right function if a function with the
1223    same name is defined in more than one shared library, but this
1224    is considered bad programming style. We could return 0 if we find
1225    a duplicate function in case this matters someday.  */
1226 
1227 CORE_ADDR
1228 find_solib_trampoline_target (struct frame_info *frame, CORE_ADDR pc)
1229 {
1230   struct objfile *objfile;
1231   struct minimal_symbol *msymbol;
1232   struct minimal_symbol *tsymbol = lookup_solib_trampoline_symbol_by_pc (pc);
1233 
1234   if (tsymbol != NULL)
1235     {
1236       ALL_MSYMBOLS (objfile, msymbol)
1237       {
1238 	if (MSYMBOL_TYPE (msymbol) == mst_text
1239 	    && strcmp (SYMBOL_LINKAGE_NAME (msymbol),
1240 		       SYMBOL_LINKAGE_NAME (tsymbol)) == 0)
1241 	  return SYMBOL_VALUE_ADDRESS (msymbol);
1242 
1243 	/* Also handle minimal symbols pointing to function descriptors.  */
1244 	if (MSYMBOL_TYPE (msymbol) == mst_data
1245 	    && strcmp (SYMBOL_LINKAGE_NAME (msymbol),
1246 		       SYMBOL_LINKAGE_NAME (tsymbol)) == 0)
1247 	  {
1248 	    CORE_ADDR func;
1249 
1250 	    func = gdbarch_convert_from_func_ptr_addr
1251 		    (get_objfile_arch (objfile),
1252 		     SYMBOL_VALUE_ADDRESS (msymbol),
1253 		     &current_target);
1254 
1255 	    /* Ignore data symbols that are not function descriptors.  */
1256 	    if (func != SYMBOL_VALUE_ADDRESS (msymbol))
1257 	      return func;
1258 	  }
1259       }
1260     }
1261   return 0;
1262 }
1263