1 /* Target-struct-independent code to start (run) and stop an inferior 2 process. 3 4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 6 2008, 2009, 2010 Free Software Foundation, Inc. 7 8 This file is part of GDB. 9 10 This program is free software; you can redistribute it and/or modify 11 it under the terms of the GNU General Public License as published by 12 the Free Software Foundation; either version 3 of the License, or 13 (at your option) any later version. 14 15 This program is distributed in the hope that it will be useful, 16 but WITHOUT ANY WARRANTY; without even the implied warranty of 17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 GNU General Public License for more details. 19 20 You should have received a copy of the GNU General Public License 21 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 22 23 #include "defs.h" 24 #include "gdb_string.h" 25 #include <ctype.h> 26 #include "symtab.h" 27 #include "frame.h" 28 #include "inferior.h" 29 #include "exceptions.h" 30 #include "breakpoint.h" 31 #include "gdb_wait.h" 32 #include "gdbcore.h" 33 #include "gdbcmd.h" 34 #include "cli/cli-script.h" 35 #include "target.h" 36 #include "gdbthread.h" 37 #include "annotate.h" 38 #include "symfile.h" 39 #include "top.h" 40 #include <signal.h> 41 #include "inf-loop.h" 42 #include "regcache.h" 43 #include "value.h" 44 #include "observer.h" 45 #include "language.h" 46 #include "solib.h" 47 #include "main.h" 48 #include "gdb_assert.h" 49 #include "mi/mi-common.h" 50 #include "event-top.h" 51 #include "record.h" 52 #include "inline-frame.h" 53 #include "jit.h" 54 #include "tracepoint.h" 55 56 /* Prototypes for local functions */ 57 58 static void signals_info (char *, int); 59 60 static void handle_command (char *, int); 61 62 static void sig_print_info (enum target_signal); 63 64 static void sig_print_header (void); 65 66 static void resume_cleanups (void *); 67 68 static int hook_stop_stub (void *); 69 70 static int restore_selected_frame (void *); 71 72 static int follow_fork (void); 73 74 static void set_schedlock_func (char *args, int from_tty, 75 struct cmd_list_element *c); 76 77 static int currently_stepping (struct thread_info *tp); 78 79 static int currently_stepping_or_nexting_callback (struct thread_info *tp, 80 void *data); 81 82 static void xdb_handle_command (char *args, int from_tty); 83 84 static int prepare_to_proceed (int); 85 86 void _initialize_infrun (void); 87 88 void nullify_last_target_wait_ptid (void); 89 90 /* When set, stop the 'step' command if we enter a function which has 91 no line number information. The normal behavior is that we step 92 over such function. */ 93 int step_stop_if_no_debug = 0; 94 static void 95 show_step_stop_if_no_debug (struct ui_file *file, int from_tty, 96 struct cmd_list_element *c, const char *value) 97 { 98 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value); 99 } 100 101 /* In asynchronous mode, but simulating synchronous execution. */ 102 103 int sync_execution = 0; 104 105 /* wait_for_inferior and normal_stop use this to notify the user 106 when the inferior stopped in a different thread than it had been 107 running in. */ 108 109 static ptid_t previous_inferior_ptid; 110 111 /* Default behavior is to detach newly forked processes (legacy). */ 112 int detach_fork = 1; 113 114 int debug_displaced = 0; 115 static void 116 show_debug_displaced (struct ui_file *file, int from_tty, 117 struct cmd_list_element *c, const char *value) 118 { 119 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value); 120 } 121 122 int debug_infrun = 0; 123 static void 124 show_debug_infrun (struct ui_file *file, int from_tty, 125 struct cmd_list_element *c, const char *value) 126 { 127 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value); 128 } 129 130 /* If the program uses ELF-style shared libraries, then calls to 131 functions in shared libraries go through stubs, which live in a 132 table called the PLT (Procedure Linkage Table). The first time the 133 function is called, the stub sends control to the dynamic linker, 134 which looks up the function's real address, patches the stub so 135 that future calls will go directly to the function, and then passes 136 control to the function. 137 138 If we are stepping at the source level, we don't want to see any of 139 this --- we just want to skip over the stub and the dynamic linker. 140 The simple approach is to single-step until control leaves the 141 dynamic linker. 142 143 However, on some systems (e.g., Red Hat's 5.2 distribution) the 144 dynamic linker calls functions in the shared C library, so you 145 can't tell from the PC alone whether the dynamic linker is still 146 running. In this case, we use a step-resume breakpoint to get us 147 past the dynamic linker, as if we were using "next" to step over a 148 function call. 149 150 in_solib_dynsym_resolve_code() says whether we're in the dynamic 151 linker code or not. Normally, this means we single-step. However, 152 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an 153 address where we can place a step-resume breakpoint to get past the 154 linker's symbol resolution function. 155 156 in_solib_dynsym_resolve_code() can generally be implemented in a 157 pretty portable way, by comparing the PC against the address ranges 158 of the dynamic linker's sections. 159 160 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since 161 it depends on internal details of the dynamic linker. It's usually 162 not too hard to figure out where to put a breakpoint, but it 163 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of 164 sanity checking. If it can't figure things out, returning zero and 165 getting the (possibly confusing) stepping behavior is better than 166 signalling an error, which will obscure the change in the 167 inferior's state. */ 168 169 /* This function returns TRUE if pc is the address of an instruction 170 that lies within the dynamic linker (such as the event hook, or the 171 dld itself). 172 173 This function must be used only when a dynamic linker event has 174 been caught, and the inferior is being stepped out of the hook, or 175 undefined results are guaranteed. */ 176 177 #ifndef SOLIB_IN_DYNAMIC_LINKER 178 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0 179 #endif 180 181 /* "Observer mode" is somewhat like a more extreme version of 182 non-stop, in which all GDB operations that might affect the 183 target's execution have been disabled. */ 184 185 static int non_stop_1 = 0; 186 187 int observer_mode = 0; 188 static int observer_mode_1 = 0; 189 190 static void 191 set_observer_mode (char *args, int from_tty, 192 struct cmd_list_element *c) 193 { 194 extern int pagination_enabled; 195 196 if (target_has_execution) 197 { 198 observer_mode_1 = observer_mode; 199 error (_("Cannot change this setting while the inferior is running.")); 200 } 201 202 observer_mode = observer_mode_1; 203 204 may_write_registers = !observer_mode; 205 may_write_memory = !observer_mode; 206 may_insert_breakpoints = !observer_mode; 207 may_insert_tracepoints = !observer_mode; 208 /* We can insert fast tracepoints in or out of observer mode, 209 but enable them if we're going into this mode. */ 210 if (observer_mode) 211 may_insert_fast_tracepoints = 1; 212 may_stop = !observer_mode; 213 update_target_permissions (); 214 215 /* Going *into* observer mode we must force non-stop, then 216 going out we leave it that way. */ 217 if (observer_mode) 218 { 219 target_async_permitted = 1; 220 pagination_enabled = 0; 221 non_stop = non_stop_1 = 1; 222 } 223 224 if (from_tty) 225 printf_filtered (_("Observer mode is now %s.\n"), 226 (observer_mode ? "on" : "off")); 227 } 228 229 static void 230 show_observer_mode (struct ui_file *file, int from_tty, 231 struct cmd_list_element *c, const char *value) 232 { 233 fprintf_filtered (file, _("Observer mode is %s.\n"), value); 234 } 235 236 /* This updates the value of observer mode based on changes in 237 permissions. Note that we are deliberately ignoring the values of 238 may-write-registers and may-write-memory, since the user may have 239 reason to enable these during a session, for instance to turn on a 240 debugging-related global. */ 241 242 void 243 update_observer_mode (void) 244 { 245 int newval; 246 247 newval = (!may_insert_breakpoints 248 && !may_insert_tracepoints 249 && may_insert_fast_tracepoints 250 && !may_stop 251 && non_stop); 252 253 /* Let the user know if things change. */ 254 if (newval != observer_mode) 255 printf_filtered (_("Observer mode is now %s.\n"), 256 (newval ? "on" : "off")); 257 258 observer_mode = observer_mode_1 = newval; 259 } 260 261 /* Tables of how to react to signals; the user sets them. */ 262 263 static unsigned char *signal_stop; 264 static unsigned char *signal_print; 265 static unsigned char *signal_program; 266 267 #define SET_SIGS(nsigs,sigs,flags) \ 268 do { \ 269 int signum = (nsigs); \ 270 while (signum-- > 0) \ 271 if ((sigs)[signum]) \ 272 (flags)[signum] = 1; \ 273 } while (0) 274 275 #define UNSET_SIGS(nsigs,sigs,flags) \ 276 do { \ 277 int signum = (nsigs); \ 278 while (signum-- > 0) \ 279 if ((sigs)[signum]) \ 280 (flags)[signum] = 0; \ 281 } while (0) 282 283 /* Value to pass to target_resume() to cause all threads to resume */ 284 285 #define RESUME_ALL minus_one_ptid 286 287 /* Command list pointer for the "stop" placeholder. */ 288 289 static struct cmd_list_element *stop_command; 290 291 /* Function inferior was in as of last step command. */ 292 293 static struct symbol *step_start_function; 294 295 /* Nonzero if we want to give control to the user when we're notified 296 of shared library events by the dynamic linker. */ 297 int stop_on_solib_events; 298 static void 299 show_stop_on_solib_events (struct ui_file *file, int from_tty, 300 struct cmd_list_element *c, const char *value) 301 { 302 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"), 303 value); 304 } 305 306 /* Nonzero means expecting a trace trap 307 and should stop the inferior and return silently when it happens. */ 308 309 int stop_after_trap; 310 311 /* Save register contents here when executing a "finish" command or are 312 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set. 313 Thus this contains the return value from the called function (assuming 314 values are returned in a register). */ 315 316 struct regcache *stop_registers; 317 318 /* Nonzero after stop if current stack frame should be printed. */ 319 320 static int stop_print_frame; 321 322 /* This is a cached copy of the pid/waitstatus of the last event 323 returned by target_wait()/deprecated_target_wait_hook(). This 324 information is returned by get_last_target_status(). */ 325 static ptid_t target_last_wait_ptid; 326 static struct target_waitstatus target_last_waitstatus; 327 328 static void context_switch (ptid_t ptid); 329 330 void init_thread_stepping_state (struct thread_info *tss); 331 332 void init_infwait_state (void); 333 334 static const char follow_fork_mode_child[] = "child"; 335 static const char follow_fork_mode_parent[] = "parent"; 336 337 static const char *follow_fork_mode_kind_names[] = { 338 follow_fork_mode_child, 339 follow_fork_mode_parent, 340 NULL 341 }; 342 343 static const char *follow_fork_mode_string = follow_fork_mode_parent; 344 static void 345 show_follow_fork_mode_string (struct ui_file *file, int from_tty, 346 struct cmd_list_element *c, const char *value) 347 { 348 fprintf_filtered (file, _("\ 349 Debugger response to a program call of fork or vfork is \"%s\".\n"), 350 value); 351 } 352 353 354 /* Tell the target to follow the fork we're stopped at. Returns true 355 if the inferior should be resumed; false, if the target for some 356 reason decided it's best not to resume. */ 357 358 static int 359 follow_fork (void) 360 { 361 int follow_child = (follow_fork_mode_string == follow_fork_mode_child); 362 int should_resume = 1; 363 struct thread_info *tp; 364 365 /* Copy user stepping state to the new inferior thread. FIXME: the 366 followed fork child thread should have a copy of most of the 367 parent thread structure's run control related fields, not just these. 368 Initialized to avoid "may be used uninitialized" warnings from gcc. */ 369 struct breakpoint *step_resume_breakpoint = NULL; 370 CORE_ADDR step_range_start = 0; 371 CORE_ADDR step_range_end = 0; 372 struct frame_id step_frame_id = { 0 }; 373 374 if (!non_stop) 375 { 376 ptid_t wait_ptid; 377 struct target_waitstatus wait_status; 378 379 /* Get the last target status returned by target_wait(). */ 380 get_last_target_status (&wait_ptid, &wait_status); 381 382 /* If not stopped at a fork event, then there's nothing else to 383 do. */ 384 if (wait_status.kind != TARGET_WAITKIND_FORKED 385 && wait_status.kind != TARGET_WAITKIND_VFORKED) 386 return 1; 387 388 /* Check if we switched over from WAIT_PTID, since the event was 389 reported. */ 390 if (!ptid_equal (wait_ptid, minus_one_ptid) 391 && !ptid_equal (inferior_ptid, wait_ptid)) 392 { 393 /* We did. Switch back to WAIT_PTID thread, to tell the 394 target to follow it (in either direction). We'll 395 afterwards refuse to resume, and inform the user what 396 happened. */ 397 switch_to_thread (wait_ptid); 398 should_resume = 0; 399 } 400 } 401 402 tp = inferior_thread (); 403 404 /* If there were any forks/vforks that were caught and are now to be 405 followed, then do so now. */ 406 switch (tp->pending_follow.kind) 407 { 408 case TARGET_WAITKIND_FORKED: 409 case TARGET_WAITKIND_VFORKED: 410 { 411 ptid_t parent, child; 412 413 /* If the user did a next/step, etc, over a fork call, 414 preserve the stepping state in the fork child. */ 415 if (follow_child && should_resume) 416 { 417 step_resume_breakpoint 418 = clone_momentary_breakpoint (tp->step_resume_breakpoint); 419 step_range_start = tp->step_range_start; 420 step_range_end = tp->step_range_end; 421 step_frame_id = tp->step_frame_id; 422 423 /* For now, delete the parent's sr breakpoint, otherwise, 424 parent/child sr breakpoints are considered duplicates, 425 and the child version will not be installed. Remove 426 this when the breakpoints module becomes aware of 427 inferiors and address spaces. */ 428 delete_step_resume_breakpoint (tp); 429 tp->step_range_start = 0; 430 tp->step_range_end = 0; 431 tp->step_frame_id = null_frame_id; 432 } 433 434 parent = inferior_ptid; 435 child = tp->pending_follow.value.related_pid; 436 437 /* Tell the target to do whatever is necessary to follow 438 either parent or child. */ 439 if (target_follow_fork (follow_child)) 440 { 441 /* Target refused to follow, or there's some other reason 442 we shouldn't resume. */ 443 should_resume = 0; 444 } 445 else 446 { 447 /* This pending follow fork event is now handled, one way 448 or another. The previous selected thread may be gone 449 from the lists by now, but if it is still around, need 450 to clear the pending follow request. */ 451 tp = find_thread_ptid (parent); 452 if (tp) 453 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS; 454 455 /* This makes sure we don't try to apply the "Switched 456 over from WAIT_PID" logic above. */ 457 nullify_last_target_wait_ptid (); 458 459 /* If we followed the child, switch to it... */ 460 if (follow_child) 461 { 462 switch_to_thread (child); 463 464 /* ... and preserve the stepping state, in case the 465 user was stepping over the fork call. */ 466 if (should_resume) 467 { 468 tp = inferior_thread (); 469 tp->step_resume_breakpoint = step_resume_breakpoint; 470 tp->step_range_start = step_range_start; 471 tp->step_range_end = step_range_end; 472 tp->step_frame_id = step_frame_id; 473 } 474 else 475 { 476 /* If we get here, it was because we're trying to 477 resume from a fork catchpoint, but, the user 478 has switched threads away from the thread that 479 forked. In that case, the resume command 480 issued is most likely not applicable to the 481 child, so just warn, and refuse to resume. */ 482 warning (_("\ 483 Not resuming: switched threads before following fork child.\n")); 484 } 485 486 /* Reset breakpoints in the child as appropriate. */ 487 follow_inferior_reset_breakpoints (); 488 } 489 else 490 switch_to_thread (parent); 491 } 492 } 493 break; 494 case TARGET_WAITKIND_SPURIOUS: 495 /* Nothing to follow. */ 496 break; 497 default: 498 internal_error (__FILE__, __LINE__, 499 "Unexpected pending_follow.kind %d\n", 500 tp->pending_follow.kind); 501 break; 502 } 503 504 return should_resume; 505 } 506 507 void 508 follow_inferior_reset_breakpoints (void) 509 { 510 struct thread_info *tp = inferior_thread (); 511 512 /* Was there a step_resume breakpoint? (There was if the user 513 did a "next" at the fork() call.) If so, explicitly reset its 514 thread number. 515 516 step_resumes are a form of bp that are made to be per-thread. 517 Since we created the step_resume bp when the parent process 518 was being debugged, and now are switching to the child process, 519 from the breakpoint package's viewpoint, that's a switch of 520 "threads". We must update the bp's notion of which thread 521 it is for, or it'll be ignored when it triggers. */ 522 523 if (tp->step_resume_breakpoint) 524 breakpoint_re_set_thread (tp->step_resume_breakpoint); 525 526 /* Reinsert all breakpoints in the child. The user may have set 527 breakpoints after catching the fork, in which case those 528 were never set in the child, but only in the parent. This makes 529 sure the inserted breakpoints match the breakpoint list. */ 530 531 breakpoint_re_set (); 532 insert_breakpoints (); 533 } 534 535 /* The child has exited or execed: resume threads of the parent the 536 user wanted to be executing. */ 537 538 static int 539 proceed_after_vfork_done (struct thread_info *thread, 540 void *arg) 541 { 542 int pid = * (int *) arg; 543 544 if (ptid_get_pid (thread->ptid) == pid 545 && is_running (thread->ptid) 546 && !is_executing (thread->ptid) 547 && !thread->stop_requested 548 && thread->stop_signal == TARGET_SIGNAL_0) 549 { 550 if (debug_infrun) 551 fprintf_unfiltered (gdb_stdlog, 552 "infrun: resuming vfork parent thread %s\n", 553 target_pid_to_str (thread->ptid)); 554 555 switch_to_thread (thread->ptid); 556 clear_proceed_status (); 557 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0); 558 } 559 560 return 0; 561 } 562 563 /* Called whenever we notice an exec or exit event, to handle 564 detaching or resuming a vfork parent. */ 565 566 static void 567 handle_vfork_child_exec_or_exit (int exec) 568 { 569 struct inferior *inf = current_inferior (); 570 571 if (inf->vfork_parent) 572 { 573 int resume_parent = -1; 574 575 /* This exec or exit marks the end of the shared memory region 576 between the parent and the child. If the user wanted to 577 detach from the parent, now is the time. */ 578 579 if (inf->vfork_parent->pending_detach) 580 { 581 struct thread_info *tp; 582 struct cleanup *old_chain; 583 struct program_space *pspace; 584 struct address_space *aspace; 585 586 /* follow-fork child, detach-on-fork on */ 587 588 old_chain = make_cleanup_restore_current_thread (); 589 590 /* We're letting loose of the parent. */ 591 tp = any_live_thread_of_process (inf->vfork_parent->pid); 592 switch_to_thread (tp->ptid); 593 594 /* We're about to detach from the parent, which implicitly 595 removes breakpoints from its address space. There's a 596 catch here: we want to reuse the spaces for the child, 597 but, parent/child are still sharing the pspace at this 598 point, although the exec in reality makes the kernel give 599 the child a fresh set of new pages. The problem here is 600 that the breakpoints module being unaware of this, would 601 likely chose the child process to write to the parent 602 address space. Swapping the child temporarily away from 603 the spaces has the desired effect. Yes, this is "sort 604 of" a hack. */ 605 606 pspace = inf->pspace; 607 aspace = inf->aspace; 608 inf->aspace = NULL; 609 inf->pspace = NULL; 610 611 if (debug_infrun || info_verbose) 612 { 613 target_terminal_ours (); 614 615 if (exec) 616 fprintf_filtered (gdb_stdlog, 617 "Detaching vfork parent process %d after child exec.\n", 618 inf->vfork_parent->pid); 619 else 620 fprintf_filtered (gdb_stdlog, 621 "Detaching vfork parent process %d after child exit.\n", 622 inf->vfork_parent->pid); 623 } 624 625 target_detach (NULL, 0); 626 627 /* Put it back. */ 628 inf->pspace = pspace; 629 inf->aspace = aspace; 630 631 do_cleanups (old_chain); 632 } 633 else if (exec) 634 { 635 /* We're staying attached to the parent, so, really give the 636 child a new address space. */ 637 inf->pspace = add_program_space (maybe_new_address_space ()); 638 inf->aspace = inf->pspace->aspace; 639 inf->removable = 1; 640 set_current_program_space (inf->pspace); 641 642 resume_parent = inf->vfork_parent->pid; 643 644 /* Break the bonds. */ 645 inf->vfork_parent->vfork_child = NULL; 646 } 647 else 648 { 649 struct cleanup *old_chain; 650 struct program_space *pspace; 651 652 /* If this is a vfork child exiting, then the pspace and 653 aspaces were shared with the parent. Since we're 654 reporting the process exit, we'll be mourning all that is 655 found in the address space, and switching to null_ptid, 656 preparing to start a new inferior. But, since we don't 657 want to clobber the parent's address/program spaces, we 658 go ahead and create a new one for this exiting 659 inferior. */ 660 661 /* Switch to null_ptid, so that clone_program_space doesn't want 662 to read the selected frame of a dead process. */ 663 old_chain = save_inferior_ptid (); 664 inferior_ptid = null_ptid; 665 666 /* This inferior is dead, so avoid giving the breakpoints 667 module the option to write through to it (cloning a 668 program space resets breakpoints). */ 669 inf->aspace = NULL; 670 inf->pspace = NULL; 671 pspace = add_program_space (maybe_new_address_space ()); 672 set_current_program_space (pspace); 673 inf->removable = 1; 674 clone_program_space (pspace, inf->vfork_parent->pspace); 675 inf->pspace = pspace; 676 inf->aspace = pspace->aspace; 677 678 /* Put back inferior_ptid. We'll continue mourning this 679 inferior. */ 680 do_cleanups (old_chain); 681 682 resume_parent = inf->vfork_parent->pid; 683 /* Break the bonds. */ 684 inf->vfork_parent->vfork_child = NULL; 685 } 686 687 inf->vfork_parent = NULL; 688 689 gdb_assert (current_program_space == inf->pspace); 690 691 if (non_stop && resume_parent != -1) 692 { 693 /* If the user wanted the parent to be running, let it go 694 free now. */ 695 struct cleanup *old_chain = make_cleanup_restore_current_thread (); 696 697 if (debug_infrun) 698 fprintf_unfiltered (gdb_stdlog, "infrun: resuming vfork parent process %d\n", 699 resume_parent); 700 701 iterate_over_threads (proceed_after_vfork_done, &resume_parent); 702 703 do_cleanups (old_chain); 704 } 705 } 706 } 707 708 /* Enum strings for "set|show displaced-stepping". */ 709 710 static const char follow_exec_mode_new[] = "new"; 711 static const char follow_exec_mode_same[] = "same"; 712 static const char *follow_exec_mode_names[] = 713 { 714 follow_exec_mode_new, 715 follow_exec_mode_same, 716 NULL, 717 }; 718 719 static const char *follow_exec_mode_string = follow_exec_mode_same; 720 static void 721 show_follow_exec_mode_string (struct ui_file *file, int from_tty, 722 struct cmd_list_element *c, const char *value) 723 { 724 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value); 725 } 726 727 /* EXECD_PATHNAME is assumed to be non-NULL. */ 728 729 static void 730 follow_exec (ptid_t pid, char *execd_pathname) 731 { 732 struct thread_info *th = inferior_thread (); 733 struct inferior *inf = current_inferior (); 734 735 /* This is an exec event that we actually wish to pay attention to. 736 Refresh our symbol table to the newly exec'd program, remove any 737 momentary bp's, etc. 738 739 If there are breakpoints, they aren't really inserted now, 740 since the exec() transformed our inferior into a fresh set 741 of instructions. 742 743 We want to preserve symbolic breakpoints on the list, since 744 we have hopes that they can be reset after the new a.out's 745 symbol table is read. 746 747 However, any "raw" breakpoints must be removed from the list 748 (e.g., the solib bp's), since their address is probably invalid 749 now. 750 751 And, we DON'T want to call delete_breakpoints() here, since 752 that may write the bp's "shadow contents" (the instruction 753 value that was overwritten witha TRAP instruction). Since 754 we now have a new a.out, those shadow contents aren't valid. */ 755 756 mark_breakpoints_out (); 757 758 update_breakpoints_after_exec (); 759 760 /* If there was one, it's gone now. We cannot truly step-to-next 761 statement through an exec(). */ 762 th->step_resume_breakpoint = NULL; 763 th->step_range_start = 0; 764 th->step_range_end = 0; 765 766 /* The target reports the exec event to the main thread, even if 767 some other thread does the exec, and even if the main thread was 768 already stopped --- if debugging in non-stop mode, it's possible 769 the user had the main thread held stopped in the previous image 770 --- release it now. This is the same behavior as step-over-exec 771 with scheduler-locking on in all-stop mode. */ 772 th->stop_requested = 0; 773 774 /* What is this a.out's name? */ 775 printf_unfiltered (_("%s is executing new program: %s\n"), 776 target_pid_to_str (inferior_ptid), 777 execd_pathname); 778 779 /* We've followed the inferior through an exec. Therefore, the 780 inferior has essentially been killed & reborn. */ 781 782 gdb_flush (gdb_stdout); 783 784 breakpoint_init_inferior (inf_execd); 785 786 if (gdb_sysroot && *gdb_sysroot) 787 { 788 char *name = alloca (strlen (gdb_sysroot) 789 + strlen (execd_pathname) 790 + 1); 791 792 strcpy (name, gdb_sysroot); 793 strcat (name, execd_pathname); 794 execd_pathname = name; 795 } 796 797 /* Reset the shared library package. This ensures that we get a 798 shlib event when the child reaches "_start", at which point the 799 dld will have had a chance to initialize the child. */ 800 /* Also, loading a symbol file below may trigger symbol lookups, and 801 we don't want those to be satisfied by the libraries of the 802 previous incarnation of this process. */ 803 no_shared_libraries (NULL, 0); 804 805 if (follow_exec_mode_string == follow_exec_mode_new) 806 { 807 struct program_space *pspace; 808 809 /* The user wants to keep the old inferior and program spaces 810 around. Create a new fresh one, and switch to it. */ 811 812 inf = add_inferior (current_inferior ()->pid); 813 pspace = add_program_space (maybe_new_address_space ()); 814 inf->pspace = pspace; 815 inf->aspace = pspace->aspace; 816 817 exit_inferior_num_silent (current_inferior ()->num); 818 819 set_current_inferior (inf); 820 set_current_program_space (pspace); 821 } 822 823 gdb_assert (current_program_space == inf->pspace); 824 825 /* That a.out is now the one to use. */ 826 exec_file_attach (execd_pathname, 0); 827 828 /* Load the main file's symbols. */ 829 symbol_file_add_main (execd_pathname, 0); 830 831 #ifdef SOLIB_CREATE_INFERIOR_HOOK 832 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid)); 833 #else 834 solib_create_inferior_hook (0); 835 #endif 836 837 jit_inferior_created_hook (); 838 839 /* Reinsert all breakpoints. (Those which were symbolic have 840 been reset to the proper address in the new a.out, thanks 841 to symbol_file_command...) */ 842 insert_breakpoints (); 843 844 /* The next resume of this inferior should bring it to the shlib 845 startup breakpoints. (If the user had also set bp's on 846 "main" from the old (parent) process, then they'll auto- 847 matically get reset there in the new process.) */ 848 } 849 850 /* Non-zero if we just simulating a single-step. This is needed 851 because we cannot remove the breakpoints in the inferior process 852 until after the `wait' in `wait_for_inferior'. */ 853 static int singlestep_breakpoints_inserted_p = 0; 854 855 /* The thread we inserted single-step breakpoints for. */ 856 static ptid_t singlestep_ptid; 857 858 /* PC when we started this single-step. */ 859 static CORE_ADDR singlestep_pc; 860 861 /* If another thread hit the singlestep breakpoint, we save the original 862 thread here so that we can resume single-stepping it later. */ 863 static ptid_t saved_singlestep_ptid; 864 static int stepping_past_singlestep_breakpoint; 865 866 /* If not equal to null_ptid, this means that after stepping over breakpoint 867 is finished, we need to switch to deferred_step_ptid, and step it. 868 869 The use case is when one thread has hit a breakpoint, and then the user 870 has switched to another thread and issued 'step'. We need to step over 871 breakpoint in the thread which hit the breakpoint, but then continue 872 stepping the thread user has selected. */ 873 static ptid_t deferred_step_ptid; 874 875 /* Displaced stepping. */ 876 877 /* In non-stop debugging mode, we must take special care to manage 878 breakpoints properly; in particular, the traditional strategy for 879 stepping a thread past a breakpoint it has hit is unsuitable. 880 'Displaced stepping' is a tactic for stepping one thread past a 881 breakpoint it has hit while ensuring that other threads running 882 concurrently will hit the breakpoint as they should. 883 884 The traditional way to step a thread T off a breakpoint in a 885 multi-threaded program in all-stop mode is as follows: 886 887 a0) Initially, all threads are stopped, and breakpoints are not 888 inserted. 889 a1) We single-step T, leaving breakpoints uninserted. 890 a2) We insert breakpoints, and resume all threads. 891 892 In non-stop debugging, however, this strategy is unsuitable: we 893 don't want to have to stop all threads in the system in order to 894 continue or step T past a breakpoint. Instead, we use displaced 895 stepping: 896 897 n0) Initially, T is stopped, other threads are running, and 898 breakpoints are inserted. 899 n1) We copy the instruction "under" the breakpoint to a separate 900 location, outside the main code stream, making any adjustments 901 to the instruction, register, and memory state as directed by 902 T's architecture. 903 n2) We single-step T over the instruction at its new location. 904 n3) We adjust the resulting register and memory state as directed 905 by T's architecture. This includes resetting T's PC to point 906 back into the main instruction stream. 907 n4) We resume T. 908 909 This approach depends on the following gdbarch methods: 910 911 - gdbarch_max_insn_length and gdbarch_displaced_step_location 912 indicate where to copy the instruction, and how much space must 913 be reserved there. We use these in step n1. 914 915 - gdbarch_displaced_step_copy_insn copies a instruction to a new 916 address, and makes any necessary adjustments to the instruction, 917 register contents, and memory. We use this in step n1. 918 919 - gdbarch_displaced_step_fixup adjusts registers and memory after 920 we have successfuly single-stepped the instruction, to yield the 921 same effect the instruction would have had if we had executed it 922 at its original address. We use this in step n3. 923 924 - gdbarch_displaced_step_free_closure provides cleanup. 925 926 The gdbarch_displaced_step_copy_insn and 927 gdbarch_displaced_step_fixup functions must be written so that 928 copying an instruction with gdbarch_displaced_step_copy_insn, 929 single-stepping across the copied instruction, and then applying 930 gdbarch_displaced_insn_fixup should have the same effects on the 931 thread's memory and registers as stepping the instruction in place 932 would have. Exactly which responsibilities fall to the copy and 933 which fall to the fixup is up to the author of those functions. 934 935 See the comments in gdbarch.sh for details. 936 937 Note that displaced stepping and software single-step cannot 938 currently be used in combination, although with some care I think 939 they could be made to. Software single-step works by placing 940 breakpoints on all possible subsequent instructions; if the 941 displaced instruction is a PC-relative jump, those breakpoints 942 could fall in very strange places --- on pages that aren't 943 executable, or at addresses that are not proper instruction 944 boundaries. (We do generally let other threads run while we wait 945 to hit the software single-step breakpoint, and they might 946 encounter such a corrupted instruction.) One way to work around 947 this would be to have gdbarch_displaced_step_copy_insn fully 948 simulate the effect of PC-relative instructions (and return NULL) 949 on architectures that use software single-stepping. 950 951 In non-stop mode, we can have independent and simultaneous step 952 requests, so more than one thread may need to simultaneously step 953 over a breakpoint. The current implementation assumes there is 954 only one scratch space per process. In this case, we have to 955 serialize access to the scratch space. If thread A wants to step 956 over a breakpoint, but we are currently waiting for some other 957 thread to complete a displaced step, we leave thread A stopped and 958 place it in the displaced_step_request_queue. Whenever a displaced 959 step finishes, we pick the next thread in the queue and start a new 960 displaced step operation on it. See displaced_step_prepare and 961 displaced_step_fixup for details. */ 962 963 struct displaced_step_request 964 { 965 ptid_t ptid; 966 struct displaced_step_request *next; 967 }; 968 969 /* Per-inferior displaced stepping state. */ 970 struct displaced_step_inferior_state 971 { 972 /* Pointer to next in linked list. */ 973 struct displaced_step_inferior_state *next; 974 975 /* The process this displaced step state refers to. */ 976 int pid; 977 978 /* A queue of pending displaced stepping requests. One entry per 979 thread that needs to do a displaced step. */ 980 struct displaced_step_request *step_request_queue; 981 982 /* If this is not null_ptid, this is the thread carrying out a 983 displaced single-step in process PID. This thread's state will 984 require fixing up once it has completed its step. */ 985 ptid_t step_ptid; 986 987 /* The architecture the thread had when we stepped it. */ 988 struct gdbarch *step_gdbarch; 989 990 /* The closure provided gdbarch_displaced_step_copy_insn, to be used 991 for post-step cleanup. */ 992 struct displaced_step_closure *step_closure; 993 994 /* The address of the original instruction, and the copy we 995 made. */ 996 CORE_ADDR step_original, step_copy; 997 998 /* Saved contents of copy area. */ 999 gdb_byte *step_saved_copy; 1000 }; 1001 1002 /* The list of states of processes involved in displaced stepping 1003 presently. */ 1004 static struct displaced_step_inferior_state *displaced_step_inferior_states; 1005 1006 /* Get the displaced stepping state of process PID. */ 1007 1008 static struct displaced_step_inferior_state * 1009 get_displaced_stepping_state (int pid) 1010 { 1011 struct displaced_step_inferior_state *state; 1012 1013 for (state = displaced_step_inferior_states; 1014 state != NULL; 1015 state = state->next) 1016 if (state->pid == pid) 1017 return state; 1018 1019 return NULL; 1020 } 1021 1022 /* Add a new displaced stepping state for process PID to the displaced 1023 stepping state list, or return a pointer to an already existing 1024 entry, if it already exists. Never returns NULL. */ 1025 1026 static struct displaced_step_inferior_state * 1027 add_displaced_stepping_state (int pid) 1028 { 1029 struct displaced_step_inferior_state *state; 1030 1031 for (state = displaced_step_inferior_states; 1032 state != NULL; 1033 state = state->next) 1034 if (state->pid == pid) 1035 return state; 1036 1037 state = xcalloc (1, sizeof (*state)); 1038 state->pid = pid; 1039 state->next = displaced_step_inferior_states; 1040 displaced_step_inferior_states = state; 1041 1042 return state; 1043 } 1044 1045 /* Remove the displaced stepping state of process PID. */ 1046 1047 static void 1048 remove_displaced_stepping_state (int pid) 1049 { 1050 struct displaced_step_inferior_state *it, **prev_next_p; 1051 1052 gdb_assert (kernel_debugger || (pid != 0)); 1053 1054 it = displaced_step_inferior_states; 1055 prev_next_p = &displaced_step_inferior_states; 1056 while (it) 1057 { 1058 if (it->pid == pid) 1059 { 1060 *prev_next_p = it->next; 1061 xfree (it); 1062 return; 1063 } 1064 1065 prev_next_p = &it->next; 1066 it = *prev_next_p; 1067 } 1068 } 1069 1070 static void 1071 infrun_inferior_exit (struct inferior *inf) 1072 { 1073 remove_displaced_stepping_state (inf->pid); 1074 } 1075 1076 /* Enum strings for "set|show displaced-stepping". */ 1077 1078 static const char can_use_displaced_stepping_auto[] = "auto"; 1079 static const char can_use_displaced_stepping_on[] = "on"; 1080 static const char can_use_displaced_stepping_off[] = "off"; 1081 static const char *can_use_displaced_stepping_enum[] = 1082 { 1083 can_use_displaced_stepping_auto, 1084 can_use_displaced_stepping_on, 1085 can_use_displaced_stepping_off, 1086 NULL, 1087 }; 1088 1089 /* If ON, and the architecture supports it, GDB will use displaced 1090 stepping to step over breakpoints. If OFF, or if the architecture 1091 doesn't support it, GDB will instead use the traditional 1092 hold-and-step approach. If AUTO (which is the default), GDB will 1093 decide which technique to use to step over breakpoints depending on 1094 which of all-stop or non-stop mode is active --- displaced stepping 1095 in non-stop mode; hold-and-step in all-stop mode. */ 1096 1097 static const char *can_use_displaced_stepping = 1098 can_use_displaced_stepping_auto; 1099 1100 static void 1101 show_can_use_displaced_stepping (struct ui_file *file, int from_tty, 1102 struct cmd_list_element *c, 1103 const char *value) 1104 { 1105 if (can_use_displaced_stepping == can_use_displaced_stepping_auto) 1106 fprintf_filtered (file, _("\ 1107 Debugger's willingness to use displaced stepping to step over \ 1108 breakpoints is %s (currently %s).\n"), 1109 value, non_stop ? "on" : "off"); 1110 else 1111 fprintf_filtered (file, _("\ 1112 Debugger's willingness to use displaced stepping to step over \ 1113 breakpoints is %s.\n"), value); 1114 } 1115 1116 /* Return non-zero if displaced stepping can/should be used to step 1117 over breakpoints. */ 1118 1119 static int 1120 use_displaced_stepping (struct gdbarch *gdbarch) 1121 { 1122 return (((can_use_displaced_stepping == can_use_displaced_stepping_auto 1123 && non_stop) 1124 || can_use_displaced_stepping == can_use_displaced_stepping_on) 1125 && gdbarch_displaced_step_copy_insn_p (gdbarch) 1126 && !RECORD_IS_USED); 1127 } 1128 1129 /* Clean out any stray displaced stepping state. */ 1130 static void 1131 displaced_step_clear (struct displaced_step_inferior_state *displaced) 1132 { 1133 /* Indicate that there is no cleanup pending. */ 1134 displaced->step_ptid = null_ptid; 1135 1136 if (displaced->step_closure) 1137 { 1138 gdbarch_displaced_step_free_closure (displaced->step_gdbarch, 1139 displaced->step_closure); 1140 displaced->step_closure = NULL; 1141 } 1142 } 1143 1144 static void 1145 displaced_step_clear_cleanup (void *arg) 1146 { 1147 struct displaced_step_inferior_state *state = arg; 1148 1149 displaced_step_clear (state); 1150 } 1151 1152 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */ 1153 void 1154 displaced_step_dump_bytes (struct ui_file *file, 1155 const gdb_byte *buf, 1156 size_t len) 1157 { 1158 int i; 1159 1160 for (i = 0; i < len; i++) 1161 fprintf_unfiltered (file, "%02x ", buf[i]); 1162 fputs_unfiltered ("\n", file); 1163 } 1164 1165 /* Prepare to single-step, using displaced stepping. 1166 1167 Note that we cannot use displaced stepping when we have a signal to 1168 deliver. If we have a signal to deliver and an instruction to step 1169 over, then after the step, there will be no indication from the 1170 target whether the thread entered a signal handler or ignored the 1171 signal and stepped over the instruction successfully --- both cases 1172 result in a simple SIGTRAP. In the first case we mustn't do a 1173 fixup, and in the second case we must --- but we can't tell which. 1174 Comments in the code for 'random signals' in handle_inferior_event 1175 explain how we handle this case instead. 1176 1177 Returns 1 if preparing was successful -- this thread is going to be 1178 stepped now; or 0 if displaced stepping this thread got queued. */ 1179 static int 1180 displaced_step_prepare (ptid_t ptid) 1181 { 1182 struct cleanup *old_cleanups, *ignore_cleanups; 1183 struct regcache *regcache = get_thread_regcache (ptid); 1184 struct gdbarch *gdbarch = get_regcache_arch (regcache); 1185 CORE_ADDR original, copy; 1186 ULONGEST len; 1187 struct displaced_step_closure *closure; 1188 struct displaced_step_inferior_state *displaced; 1189 1190 /* We should never reach this function if the architecture does not 1191 support displaced stepping. */ 1192 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch)); 1193 1194 /* We have to displaced step one thread at a time, as we only have 1195 access to a single scratch space per inferior. */ 1196 1197 displaced = add_displaced_stepping_state (ptid_get_pid (ptid)); 1198 1199 if (!ptid_equal (displaced->step_ptid, null_ptid)) 1200 { 1201 /* Already waiting for a displaced step to finish. Defer this 1202 request and place in queue. */ 1203 struct displaced_step_request *req, *new_req; 1204 1205 if (debug_displaced) 1206 fprintf_unfiltered (gdb_stdlog, 1207 "displaced: defering step of %s\n", 1208 target_pid_to_str (ptid)); 1209 1210 new_req = xmalloc (sizeof (*new_req)); 1211 new_req->ptid = ptid; 1212 new_req->next = NULL; 1213 1214 if (displaced->step_request_queue) 1215 { 1216 for (req = displaced->step_request_queue; 1217 req && req->next; 1218 req = req->next) 1219 ; 1220 req->next = new_req; 1221 } 1222 else 1223 displaced->step_request_queue = new_req; 1224 1225 return 0; 1226 } 1227 else 1228 { 1229 if (debug_displaced) 1230 fprintf_unfiltered (gdb_stdlog, 1231 "displaced: stepping %s now\n", 1232 target_pid_to_str (ptid)); 1233 } 1234 1235 displaced_step_clear (displaced); 1236 1237 old_cleanups = save_inferior_ptid (); 1238 inferior_ptid = ptid; 1239 1240 original = regcache_read_pc (regcache); 1241 1242 copy = gdbarch_displaced_step_location (gdbarch); 1243 len = gdbarch_max_insn_length (gdbarch); 1244 1245 /* Save the original contents of the copy area. */ 1246 displaced->step_saved_copy = xmalloc (len); 1247 ignore_cleanups = make_cleanup (free_current_contents, 1248 &displaced->step_saved_copy); 1249 read_memory (copy, displaced->step_saved_copy, len); 1250 if (debug_displaced) 1251 { 1252 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ", 1253 paddress (gdbarch, copy)); 1254 displaced_step_dump_bytes (gdb_stdlog, 1255 displaced->step_saved_copy, 1256 len); 1257 }; 1258 1259 closure = gdbarch_displaced_step_copy_insn (gdbarch, 1260 original, copy, regcache); 1261 1262 /* We don't support the fully-simulated case at present. */ 1263 gdb_assert (closure); 1264 1265 /* Save the information we need to fix things up if the step 1266 succeeds. */ 1267 displaced->step_ptid = ptid; 1268 displaced->step_gdbarch = gdbarch; 1269 displaced->step_closure = closure; 1270 displaced->step_original = original; 1271 displaced->step_copy = copy; 1272 1273 make_cleanup (displaced_step_clear_cleanup, displaced); 1274 1275 /* Resume execution at the copy. */ 1276 regcache_write_pc (regcache, copy); 1277 1278 discard_cleanups (ignore_cleanups); 1279 1280 do_cleanups (old_cleanups); 1281 1282 if (debug_displaced) 1283 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n", 1284 paddress (gdbarch, copy)); 1285 1286 return 1; 1287 } 1288 1289 static void 1290 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr, const gdb_byte *myaddr, int len) 1291 { 1292 struct cleanup *ptid_cleanup = save_inferior_ptid (); 1293 1294 inferior_ptid = ptid; 1295 write_memory (memaddr, myaddr, len); 1296 do_cleanups (ptid_cleanup); 1297 } 1298 1299 static void 1300 displaced_step_fixup (ptid_t event_ptid, enum target_signal signal) 1301 { 1302 struct cleanup *old_cleanups; 1303 struct displaced_step_inferior_state *displaced 1304 = get_displaced_stepping_state (ptid_get_pid (event_ptid)); 1305 1306 /* Was any thread of this process doing a displaced step? */ 1307 if (displaced == NULL) 1308 return; 1309 1310 /* Was this event for the pid we displaced? */ 1311 if (ptid_equal (displaced->step_ptid, null_ptid) 1312 || ! ptid_equal (displaced->step_ptid, event_ptid)) 1313 return; 1314 1315 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced); 1316 1317 /* Restore the contents of the copy area. */ 1318 { 1319 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch); 1320 1321 write_memory_ptid (displaced->step_ptid, displaced->step_copy, 1322 displaced->step_saved_copy, len); 1323 if (debug_displaced) 1324 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s\n", 1325 paddress (displaced->step_gdbarch, 1326 displaced->step_copy)); 1327 } 1328 1329 /* Did the instruction complete successfully? */ 1330 if (signal == TARGET_SIGNAL_TRAP) 1331 { 1332 /* Fix up the resulting state. */ 1333 gdbarch_displaced_step_fixup (displaced->step_gdbarch, 1334 displaced->step_closure, 1335 displaced->step_original, 1336 displaced->step_copy, 1337 get_thread_regcache (displaced->step_ptid)); 1338 } 1339 else 1340 { 1341 /* Since the instruction didn't complete, all we can do is 1342 relocate the PC. */ 1343 struct regcache *regcache = get_thread_regcache (event_ptid); 1344 CORE_ADDR pc = regcache_read_pc (regcache); 1345 1346 pc = displaced->step_original + (pc - displaced->step_copy); 1347 regcache_write_pc (regcache, pc); 1348 } 1349 1350 do_cleanups (old_cleanups); 1351 1352 displaced->step_ptid = null_ptid; 1353 1354 /* Are there any pending displaced stepping requests? If so, run 1355 one now. Leave the state object around, since we're likely to 1356 need it again soon. */ 1357 while (displaced->step_request_queue) 1358 { 1359 struct displaced_step_request *head; 1360 ptid_t ptid; 1361 struct regcache *regcache; 1362 struct gdbarch *gdbarch; 1363 CORE_ADDR actual_pc; 1364 struct address_space *aspace; 1365 1366 head = displaced->step_request_queue; 1367 ptid = head->ptid; 1368 displaced->step_request_queue = head->next; 1369 xfree (head); 1370 1371 context_switch (ptid); 1372 1373 regcache = get_thread_regcache (ptid); 1374 actual_pc = regcache_read_pc (regcache); 1375 aspace = get_regcache_aspace (regcache); 1376 1377 if (breakpoint_here_p (aspace, actual_pc)) 1378 { 1379 if (debug_displaced) 1380 fprintf_unfiltered (gdb_stdlog, 1381 "displaced: stepping queued %s now\n", 1382 target_pid_to_str (ptid)); 1383 1384 displaced_step_prepare (ptid); 1385 1386 gdbarch = get_regcache_arch (regcache); 1387 1388 if (debug_displaced) 1389 { 1390 CORE_ADDR actual_pc = regcache_read_pc (regcache); 1391 gdb_byte buf[4]; 1392 1393 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ", 1394 paddress (gdbarch, actual_pc)); 1395 read_memory (actual_pc, buf, sizeof (buf)); 1396 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf)); 1397 } 1398 1399 if (gdbarch_displaced_step_hw_singlestep (gdbarch, 1400 displaced->step_closure)) 1401 target_resume (ptid, 1, TARGET_SIGNAL_0); 1402 else 1403 target_resume (ptid, 0, TARGET_SIGNAL_0); 1404 1405 /* Done, we're stepping a thread. */ 1406 break; 1407 } 1408 else 1409 { 1410 int step; 1411 struct thread_info *tp = inferior_thread (); 1412 1413 /* The breakpoint we were sitting under has since been 1414 removed. */ 1415 tp->trap_expected = 0; 1416 1417 /* Go back to what we were trying to do. */ 1418 step = currently_stepping (tp); 1419 1420 if (debug_displaced) 1421 fprintf_unfiltered (gdb_stdlog, "breakpoint is gone %s: step(%d)\n", 1422 target_pid_to_str (tp->ptid), step); 1423 1424 target_resume (ptid, step, TARGET_SIGNAL_0); 1425 tp->stop_signal = TARGET_SIGNAL_0; 1426 1427 /* This request was discarded. See if there's any other 1428 thread waiting for its turn. */ 1429 } 1430 } 1431 } 1432 1433 /* Update global variables holding ptids to hold NEW_PTID if they were 1434 holding OLD_PTID. */ 1435 static void 1436 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid) 1437 { 1438 struct displaced_step_request *it; 1439 struct displaced_step_inferior_state *displaced; 1440 1441 if (ptid_equal (inferior_ptid, old_ptid)) 1442 inferior_ptid = new_ptid; 1443 1444 if (ptid_equal (singlestep_ptid, old_ptid)) 1445 singlestep_ptid = new_ptid; 1446 1447 if (ptid_equal (deferred_step_ptid, old_ptid)) 1448 deferred_step_ptid = new_ptid; 1449 1450 for (displaced = displaced_step_inferior_states; 1451 displaced; 1452 displaced = displaced->next) 1453 { 1454 if (ptid_equal (displaced->step_ptid, old_ptid)) 1455 displaced->step_ptid = new_ptid; 1456 1457 for (it = displaced->step_request_queue; it; it = it->next) 1458 if (ptid_equal (it->ptid, old_ptid)) 1459 it->ptid = new_ptid; 1460 } 1461 } 1462 1463 1464 /* Resuming. */ 1465 1466 /* Things to clean up if we QUIT out of resume (). */ 1467 static void 1468 resume_cleanups (void *ignore) 1469 { 1470 normal_stop (); 1471 } 1472 1473 static const char schedlock_off[] = "off"; 1474 static const char schedlock_on[] = "on"; 1475 static const char schedlock_step[] = "step"; 1476 static const char *scheduler_enums[] = { 1477 schedlock_off, 1478 schedlock_on, 1479 schedlock_step, 1480 NULL 1481 }; 1482 static const char *scheduler_mode = schedlock_off; 1483 static void 1484 show_scheduler_mode (struct ui_file *file, int from_tty, 1485 struct cmd_list_element *c, const char *value) 1486 { 1487 fprintf_filtered (file, _("\ 1488 Mode for locking scheduler during execution is \"%s\".\n"), 1489 value); 1490 } 1491 1492 static void 1493 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c) 1494 { 1495 if (!target_can_lock_scheduler) 1496 { 1497 scheduler_mode = schedlock_off; 1498 error (_("Target '%s' cannot support this command."), target_shortname); 1499 } 1500 } 1501 1502 /* True if execution commands resume all threads of all processes by 1503 default; otherwise, resume only threads of the current inferior 1504 process. */ 1505 int sched_multi = 0; 1506 1507 /* Try to setup for software single stepping over the specified location. 1508 Return 1 if target_resume() should use hardware single step. 1509 1510 GDBARCH the current gdbarch. 1511 PC the location to step over. */ 1512 1513 static int 1514 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc) 1515 { 1516 int hw_step = 1; 1517 1518 if (gdbarch_software_single_step_p (gdbarch) 1519 && gdbarch_software_single_step (gdbarch, get_current_frame ())) 1520 { 1521 hw_step = 0; 1522 /* Do not pull these breakpoints until after a `wait' in 1523 `wait_for_inferior' */ 1524 singlestep_breakpoints_inserted_p = 1; 1525 singlestep_ptid = inferior_ptid; 1526 singlestep_pc = pc; 1527 } 1528 return hw_step; 1529 } 1530 1531 /* Resume the inferior, but allow a QUIT. This is useful if the user 1532 wants to interrupt some lengthy single-stepping operation 1533 (for child processes, the SIGINT goes to the inferior, and so 1534 we get a SIGINT random_signal, but for remote debugging and perhaps 1535 other targets, that's not true). 1536 1537 STEP nonzero if we should step (zero to continue instead). 1538 SIG is the signal to give the inferior (zero for none). */ 1539 void 1540 resume (int step, enum target_signal sig) 1541 { 1542 int should_resume = 1; 1543 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0); 1544 struct regcache *regcache = get_current_regcache (); 1545 struct gdbarch *gdbarch = get_regcache_arch (regcache); 1546 struct thread_info *tp = inferior_thread (); 1547 CORE_ADDR pc = regcache_read_pc (regcache); 1548 struct address_space *aspace = get_regcache_aspace (regcache); 1549 1550 QUIT; 1551 1552 if (debug_infrun) 1553 fprintf_unfiltered (gdb_stdlog, 1554 "infrun: resume (step=%d, signal=%d), " 1555 "trap_expected=%d\n", 1556 step, sig, tp->trap_expected); 1557 1558 /* Normally, by the time we reach `resume', the breakpoints are either 1559 removed or inserted, as appropriate. The exception is if we're sitting 1560 at a permanent breakpoint; we need to step over it, but permanent 1561 breakpoints can't be removed. So we have to test for it here. */ 1562 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here) 1563 { 1564 if (gdbarch_skip_permanent_breakpoint_p (gdbarch)) 1565 gdbarch_skip_permanent_breakpoint (gdbarch, regcache); 1566 else 1567 error (_("\ 1568 The program is stopped at a permanent breakpoint, but GDB does not know\n\ 1569 how to step past a permanent breakpoint on this architecture. Try using\n\ 1570 a command like `return' or `jump' to continue execution.")); 1571 } 1572 1573 /* If enabled, step over breakpoints by executing a copy of the 1574 instruction at a different address. 1575 1576 We can't use displaced stepping when we have a signal to deliver; 1577 the comments for displaced_step_prepare explain why. The 1578 comments in the handle_inferior event for dealing with 'random 1579 signals' explain what we do instead. */ 1580 if (use_displaced_stepping (gdbarch) 1581 && (tp->trap_expected 1582 || (step && gdbarch_software_single_step_p (gdbarch))) 1583 && sig == TARGET_SIGNAL_0) 1584 { 1585 struct displaced_step_inferior_state *displaced; 1586 1587 if (!displaced_step_prepare (inferior_ptid)) 1588 { 1589 /* Got placed in displaced stepping queue. Will be resumed 1590 later when all the currently queued displaced stepping 1591 requests finish. The thread is not executing at this point, 1592 and the call to set_executing will be made later. But we 1593 need to call set_running here, since from frontend point of view, 1594 the thread is running. */ 1595 set_running (inferior_ptid, 1); 1596 discard_cleanups (old_cleanups); 1597 return; 1598 } 1599 1600 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid)); 1601 step = gdbarch_displaced_step_hw_singlestep (gdbarch, 1602 displaced->step_closure); 1603 } 1604 1605 /* Do we need to do it the hard way, w/temp breakpoints? */ 1606 else if (step) 1607 step = maybe_software_singlestep (gdbarch, pc); 1608 1609 if (should_resume) 1610 { 1611 ptid_t resume_ptid; 1612 1613 /* If STEP is set, it's a request to use hardware stepping 1614 facilities. But in that case, we should never 1615 use singlestep breakpoint. */ 1616 gdb_assert (!(singlestep_breakpoints_inserted_p && step)); 1617 1618 /* Decide the set of threads to ask the target to resume. Start 1619 by assuming everything will be resumed, than narrow the set 1620 by applying increasingly restricting conditions. */ 1621 1622 /* By default, resume all threads of all processes. */ 1623 resume_ptid = RESUME_ALL; 1624 1625 /* Maybe resume only all threads of the current process. */ 1626 if (!sched_multi && target_supports_multi_process ()) 1627 { 1628 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid)); 1629 } 1630 1631 /* Maybe resume a single thread after all. */ 1632 if (singlestep_breakpoints_inserted_p 1633 && stepping_past_singlestep_breakpoint) 1634 { 1635 /* The situation here is as follows. In thread T1 we wanted to 1636 single-step. Lacking hardware single-stepping we've 1637 set breakpoint at the PC of the next instruction -- call it 1638 P. After resuming, we've hit that breakpoint in thread T2. 1639 Now we've removed original breakpoint, inserted breakpoint 1640 at P+1, and try to step to advance T2 past breakpoint. 1641 We need to step only T2, as if T1 is allowed to freely run, 1642 it can run past P, and if other threads are allowed to run, 1643 they can hit breakpoint at P+1, and nested hits of single-step 1644 breakpoints is not something we'd want -- that's complicated 1645 to support, and has no value. */ 1646 resume_ptid = inferior_ptid; 1647 } 1648 else if ((step || singlestep_breakpoints_inserted_p) 1649 && tp->trap_expected) 1650 { 1651 /* We're allowing a thread to run past a breakpoint it has 1652 hit, by single-stepping the thread with the breakpoint 1653 removed. In which case, we need to single-step only this 1654 thread, and keep others stopped, as they can miss this 1655 breakpoint if allowed to run. 1656 1657 The current code actually removes all breakpoints when 1658 doing this, not just the one being stepped over, so if we 1659 let other threads run, we can actually miss any 1660 breakpoint, not just the one at PC. */ 1661 resume_ptid = inferior_ptid; 1662 } 1663 else if (non_stop) 1664 { 1665 /* With non-stop mode on, threads are always handled 1666 individually. */ 1667 resume_ptid = inferior_ptid; 1668 } 1669 else if ((scheduler_mode == schedlock_on) 1670 || (scheduler_mode == schedlock_step 1671 && (step || singlestep_breakpoints_inserted_p))) 1672 { 1673 /* User-settable 'scheduler' mode requires solo thread resume. */ 1674 resume_ptid = inferior_ptid; 1675 } 1676 1677 if (gdbarch_cannot_step_breakpoint (gdbarch)) 1678 { 1679 /* Most targets can step a breakpoint instruction, thus 1680 executing it normally. But if this one cannot, just 1681 continue and we will hit it anyway. */ 1682 if (step && breakpoint_inserted_here_p (aspace, pc)) 1683 step = 0; 1684 } 1685 1686 if (debug_displaced 1687 && use_displaced_stepping (gdbarch) 1688 && tp->trap_expected) 1689 { 1690 struct regcache *resume_regcache = get_thread_regcache (resume_ptid); 1691 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache); 1692 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache); 1693 gdb_byte buf[4]; 1694 1695 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ", 1696 paddress (resume_gdbarch, actual_pc)); 1697 read_memory (actual_pc, buf, sizeof (buf)); 1698 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf)); 1699 } 1700 1701 /* Install inferior's terminal modes. */ 1702 target_terminal_inferior (); 1703 1704 /* Avoid confusing the next resume, if the next stop/resume 1705 happens to apply to another thread. */ 1706 tp->stop_signal = TARGET_SIGNAL_0; 1707 1708 target_resume (resume_ptid, step, sig); 1709 } 1710 1711 discard_cleanups (old_cleanups); 1712 } 1713 1714 /* Proceeding. */ 1715 1716 /* Clear out all variables saying what to do when inferior is continued. 1717 First do this, then set the ones you want, then call `proceed'. */ 1718 1719 static void 1720 clear_proceed_status_thread (struct thread_info *tp) 1721 { 1722 if (debug_infrun) 1723 fprintf_unfiltered (gdb_stdlog, 1724 "infrun: clear_proceed_status_thread (%s)\n", 1725 target_pid_to_str (tp->ptid)); 1726 1727 tp->trap_expected = 0; 1728 tp->step_range_start = 0; 1729 tp->step_range_end = 0; 1730 tp->step_frame_id = null_frame_id; 1731 tp->step_stack_frame_id = null_frame_id; 1732 tp->step_over_calls = STEP_OVER_UNDEBUGGABLE; 1733 tp->stop_requested = 0; 1734 1735 tp->stop_step = 0; 1736 1737 tp->proceed_to_finish = 0; 1738 1739 /* Discard any remaining commands or status from previous stop. */ 1740 bpstat_clear (&tp->stop_bpstat); 1741 } 1742 1743 static int 1744 clear_proceed_status_callback (struct thread_info *tp, void *data) 1745 { 1746 if (is_exited (tp->ptid)) 1747 return 0; 1748 1749 clear_proceed_status_thread (tp); 1750 return 0; 1751 } 1752 1753 void 1754 clear_proceed_status (void) 1755 { 1756 if (!non_stop) 1757 { 1758 /* In all-stop mode, delete the per-thread status of all 1759 threads, even if inferior_ptid is null_ptid, there may be 1760 threads on the list. E.g., we may be launching a new 1761 process, while selecting the executable. */ 1762 iterate_over_threads (clear_proceed_status_callback, NULL); 1763 } 1764 1765 if (!ptid_equal (inferior_ptid, null_ptid)) 1766 { 1767 struct inferior *inferior; 1768 1769 if (non_stop) 1770 { 1771 /* If in non-stop mode, only delete the per-thread status of 1772 the current thread. */ 1773 clear_proceed_status_thread (inferior_thread ()); 1774 } 1775 1776 inferior = current_inferior (); 1777 inferior->stop_soon = NO_STOP_QUIETLY; 1778 } 1779 1780 stop_after_trap = 0; 1781 1782 observer_notify_about_to_proceed (); 1783 1784 if (stop_registers) 1785 { 1786 regcache_xfree (stop_registers); 1787 stop_registers = NULL; 1788 } 1789 } 1790 1791 /* Check the current thread against the thread that reported the most recent 1792 event. If a step-over is required return TRUE and set the current thread 1793 to the old thread. Otherwise return FALSE. 1794 1795 This should be suitable for any targets that support threads. */ 1796 1797 static int 1798 prepare_to_proceed (int step) 1799 { 1800 ptid_t wait_ptid; 1801 struct target_waitstatus wait_status; 1802 int schedlock_enabled; 1803 1804 /* With non-stop mode on, threads are always handled individually. */ 1805 gdb_assert (! non_stop); 1806 1807 /* Get the last target status returned by target_wait(). */ 1808 get_last_target_status (&wait_ptid, &wait_status); 1809 1810 /* Make sure we were stopped at a breakpoint. */ 1811 if (wait_status.kind != TARGET_WAITKIND_STOPPED 1812 || (wait_status.value.sig != TARGET_SIGNAL_TRAP 1813 && wait_status.value.sig != TARGET_SIGNAL_ILL 1814 && wait_status.value.sig != TARGET_SIGNAL_SEGV 1815 && wait_status.value.sig != TARGET_SIGNAL_EMT)) 1816 { 1817 return 0; 1818 } 1819 1820 schedlock_enabled = (scheduler_mode == schedlock_on 1821 || (scheduler_mode == schedlock_step 1822 && step)); 1823 1824 /* Don't switch over to WAIT_PTID if scheduler locking is on. */ 1825 if (schedlock_enabled) 1826 return 0; 1827 1828 /* Don't switch over if we're about to resume some other process 1829 other than WAIT_PTID's, and schedule-multiple is off. */ 1830 if (!sched_multi 1831 && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid)) 1832 return 0; 1833 1834 /* Switched over from WAIT_PID. */ 1835 if (!ptid_equal (wait_ptid, minus_one_ptid) 1836 && !ptid_equal (inferior_ptid, wait_ptid)) 1837 { 1838 struct regcache *regcache = get_thread_regcache (wait_ptid); 1839 1840 if (breakpoint_here_p (get_regcache_aspace (regcache), 1841 regcache_read_pc (regcache))) 1842 { 1843 /* If stepping, remember current thread to switch back to. */ 1844 if (step) 1845 deferred_step_ptid = inferior_ptid; 1846 1847 /* Switch back to WAIT_PID thread. */ 1848 switch_to_thread (wait_ptid); 1849 1850 /* We return 1 to indicate that there is a breakpoint here, 1851 so we need to step over it before continuing to avoid 1852 hitting it straight away. */ 1853 return 1; 1854 } 1855 } 1856 1857 return 0; 1858 } 1859 1860 /* Basic routine for continuing the program in various fashions. 1861 1862 ADDR is the address to resume at, or -1 for resume where stopped. 1863 SIGGNAL is the signal to give it, or 0 for none, 1864 or -1 for act according to how it stopped. 1865 STEP is nonzero if should trap after one instruction. 1866 -1 means return after that and print nothing. 1867 You should probably set various step_... variables 1868 before calling here, if you are stepping. 1869 1870 You should call clear_proceed_status before calling proceed. */ 1871 1872 void 1873 proceed (CORE_ADDR addr, enum target_signal siggnal, int step) 1874 { 1875 struct regcache *regcache; 1876 struct gdbarch *gdbarch; 1877 struct thread_info *tp; 1878 CORE_ADDR pc; 1879 struct address_space *aspace; 1880 int oneproc = 0; 1881 1882 /* If we're stopped at a fork/vfork, follow the branch set by the 1883 "set follow-fork-mode" command; otherwise, we'll just proceed 1884 resuming the current thread. */ 1885 if (!follow_fork ()) 1886 { 1887 /* The target for some reason decided not to resume. */ 1888 normal_stop (); 1889 return; 1890 } 1891 1892 regcache = get_current_regcache (); 1893 gdbarch = get_regcache_arch (regcache); 1894 aspace = get_regcache_aspace (regcache); 1895 pc = regcache_read_pc (regcache); 1896 1897 if (step > 0) 1898 step_start_function = find_pc_function (pc); 1899 if (step < 0) 1900 stop_after_trap = 1; 1901 1902 if (addr == (CORE_ADDR) -1) 1903 { 1904 if (pc == stop_pc && breakpoint_here_p (aspace, pc) 1905 && execution_direction != EXEC_REVERSE) 1906 /* There is a breakpoint at the address we will resume at, 1907 step one instruction before inserting breakpoints so that 1908 we do not stop right away (and report a second hit at this 1909 breakpoint). 1910 1911 Note, we don't do this in reverse, because we won't 1912 actually be executing the breakpoint insn anyway. 1913 We'll be (un-)executing the previous instruction. */ 1914 1915 oneproc = 1; 1916 else if (gdbarch_single_step_through_delay_p (gdbarch) 1917 && gdbarch_single_step_through_delay (gdbarch, 1918 get_current_frame ())) 1919 /* We stepped onto an instruction that needs to be stepped 1920 again before re-inserting the breakpoint, do so. */ 1921 oneproc = 1; 1922 } 1923 else 1924 { 1925 regcache_write_pc (regcache, addr); 1926 } 1927 1928 if (debug_infrun) 1929 fprintf_unfiltered (gdb_stdlog, 1930 "infrun: proceed (addr=%s, signal=%d, step=%d)\n", 1931 paddress (gdbarch, addr), siggnal, step); 1932 1933 /* We're handling a live event, so make sure we're doing live 1934 debugging. If we're looking at traceframes while the target is 1935 running, we're going to need to get back to that mode after 1936 handling the event. */ 1937 if (non_stop) 1938 { 1939 make_cleanup_restore_current_traceframe (); 1940 set_traceframe_number (-1); 1941 } 1942 1943 if (non_stop) 1944 /* In non-stop, each thread is handled individually. The context 1945 must already be set to the right thread here. */ 1946 ; 1947 else 1948 { 1949 /* In a multi-threaded task we may select another thread and 1950 then continue or step. 1951 1952 But if the old thread was stopped at a breakpoint, it will 1953 immediately cause another breakpoint stop without any 1954 execution (i.e. it will report a breakpoint hit incorrectly). 1955 So we must step over it first. 1956 1957 prepare_to_proceed checks the current thread against the 1958 thread that reported the most recent event. If a step-over 1959 is required it returns TRUE and sets the current thread to 1960 the old thread. */ 1961 if (prepare_to_proceed (step)) 1962 oneproc = 1; 1963 } 1964 1965 /* prepare_to_proceed may change the current thread. */ 1966 tp = inferior_thread (); 1967 1968 if (oneproc) 1969 { 1970 tp->trap_expected = 1; 1971 /* If displaced stepping is enabled, we can step over the 1972 breakpoint without hitting it, so leave all breakpoints 1973 inserted. Otherwise we need to disable all breakpoints, step 1974 one instruction, and then re-add them when that step is 1975 finished. */ 1976 if (!use_displaced_stepping (gdbarch)) 1977 remove_breakpoints (); 1978 } 1979 1980 /* We can insert breakpoints if we're not trying to step over one, 1981 or if we are stepping over one but we're using displaced stepping 1982 to do so. */ 1983 if (! tp->trap_expected || use_displaced_stepping (gdbarch)) 1984 insert_breakpoints (); 1985 1986 if (!non_stop) 1987 { 1988 /* Pass the last stop signal to the thread we're resuming, 1989 irrespective of whether the current thread is the thread that 1990 got the last event or not. This was historically GDB's 1991 behaviour before keeping a stop_signal per thread. */ 1992 1993 struct thread_info *last_thread; 1994 ptid_t last_ptid; 1995 struct target_waitstatus last_status; 1996 1997 get_last_target_status (&last_ptid, &last_status); 1998 if (!ptid_equal (inferior_ptid, last_ptid) 1999 && !ptid_equal (last_ptid, null_ptid) 2000 && !ptid_equal (last_ptid, minus_one_ptid)) 2001 { 2002 last_thread = find_thread_ptid (last_ptid); 2003 if (last_thread) 2004 { 2005 tp->stop_signal = last_thread->stop_signal; 2006 last_thread->stop_signal = TARGET_SIGNAL_0; 2007 } 2008 } 2009 } 2010 2011 if (siggnal != TARGET_SIGNAL_DEFAULT) 2012 tp->stop_signal = siggnal; 2013 /* If this signal should not be seen by program, 2014 give it zero. Used for debugging signals. */ 2015 else if (!signal_program[tp->stop_signal]) 2016 tp->stop_signal = TARGET_SIGNAL_0; 2017 2018 annotate_starting (); 2019 2020 /* Make sure that output from GDB appears before output from the 2021 inferior. */ 2022 gdb_flush (gdb_stdout); 2023 2024 /* Refresh prev_pc value just prior to resuming. This used to be 2025 done in stop_stepping, however, setting prev_pc there did not handle 2026 scenarios such as inferior function calls or returning from 2027 a function via the return command. In those cases, the prev_pc 2028 value was not set properly for subsequent commands. The prev_pc value 2029 is used to initialize the starting line number in the ecs. With an 2030 invalid value, the gdb next command ends up stopping at the position 2031 represented by the next line table entry past our start position. 2032 On platforms that generate one line table entry per line, this 2033 is not a problem. However, on the ia64, the compiler generates 2034 extraneous line table entries that do not increase the line number. 2035 When we issue the gdb next command on the ia64 after an inferior call 2036 or a return command, we often end up a few instructions forward, still 2037 within the original line we started. 2038 2039 An attempt was made to refresh the prev_pc at the same time the 2040 execution_control_state is initialized (for instance, just before 2041 waiting for an inferior event). But this approach did not work 2042 because of platforms that use ptrace, where the pc register cannot 2043 be read unless the inferior is stopped. At that point, we are not 2044 guaranteed the inferior is stopped and so the regcache_read_pc() call 2045 can fail. Setting the prev_pc value here ensures the value is updated 2046 correctly when the inferior is stopped. */ 2047 tp->prev_pc = regcache_read_pc (get_current_regcache ()); 2048 2049 /* Fill in with reasonable starting values. */ 2050 init_thread_stepping_state (tp); 2051 2052 /* Reset to normal state. */ 2053 init_infwait_state (); 2054 2055 /* Resume inferior. */ 2056 resume (oneproc || step || bpstat_should_step (), tp->stop_signal); 2057 2058 /* Wait for it to stop (if not standalone) 2059 and in any case decode why it stopped, and act accordingly. */ 2060 /* Do this only if we are not using the event loop, or if the target 2061 does not support asynchronous execution. */ 2062 if (!target_can_async_p ()) 2063 { 2064 wait_for_inferior (0); 2065 normal_stop (); 2066 } 2067 } 2068 2069 2070 /* Start remote-debugging of a machine over a serial link. */ 2071 2072 void 2073 start_remote (int from_tty) 2074 { 2075 struct inferior *inferior; 2076 2077 init_wait_for_inferior (); 2078 inferior = current_inferior (); 2079 inferior->stop_soon = STOP_QUIETLY_REMOTE; 2080 2081 /* Always go on waiting for the target, regardless of the mode. */ 2082 /* FIXME: cagney/1999-09-23: At present it isn't possible to 2083 indicate to wait_for_inferior that a target should timeout if 2084 nothing is returned (instead of just blocking). Because of this, 2085 targets expecting an immediate response need to, internally, set 2086 things up so that the target_wait() is forced to eventually 2087 timeout. */ 2088 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to 2089 differentiate to its caller what the state of the target is after 2090 the initial open has been performed. Here we're assuming that 2091 the target has stopped. It should be possible to eventually have 2092 target_open() return to the caller an indication that the target 2093 is currently running and GDB state should be set to the same as 2094 for an async run. */ 2095 wait_for_inferior (0); 2096 2097 /* Now that the inferior has stopped, do any bookkeeping like 2098 loading shared libraries. We want to do this before normal_stop, 2099 so that the displayed frame is up to date. */ 2100 post_create_inferior (¤t_target, from_tty); 2101 2102 normal_stop (); 2103 } 2104 2105 /* Initialize static vars when a new inferior begins. */ 2106 2107 void 2108 init_wait_for_inferior (void) 2109 { 2110 /* These are meaningless until the first time through wait_for_inferior. */ 2111 2112 breakpoint_init_inferior (inf_starting); 2113 2114 clear_proceed_status (); 2115 2116 stepping_past_singlestep_breakpoint = 0; 2117 deferred_step_ptid = null_ptid; 2118 2119 target_last_wait_ptid = minus_one_ptid; 2120 2121 previous_inferior_ptid = null_ptid; 2122 init_infwait_state (); 2123 2124 /* Discard any skipped inlined frames. */ 2125 clear_inline_frame_state (minus_one_ptid); 2126 } 2127 2128 2129 /* This enum encodes possible reasons for doing a target_wait, so that 2130 wfi can call target_wait in one place. (Ultimately the call will be 2131 moved out of the infinite loop entirely.) */ 2132 2133 enum infwait_states 2134 { 2135 infwait_normal_state, 2136 infwait_thread_hop_state, 2137 infwait_step_watch_state, 2138 infwait_nonstep_watch_state 2139 }; 2140 2141 /* Why did the inferior stop? Used to print the appropriate messages 2142 to the interface from within handle_inferior_event(). */ 2143 enum inferior_stop_reason 2144 { 2145 /* Step, next, nexti, stepi finished. */ 2146 END_STEPPING_RANGE, 2147 /* Inferior terminated by signal. */ 2148 SIGNAL_EXITED, 2149 /* Inferior exited. */ 2150 EXITED, 2151 /* Inferior received signal, and user asked to be notified. */ 2152 SIGNAL_RECEIVED, 2153 /* Reverse execution -- target ran out of history info. */ 2154 NO_HISTORY 2155 }; 2156 2157 /* The PTID we'll do a target_wait on.*/ 2158 ptid_t waiton_ptid; 2159 2160 /* Current inferior wait state. */ 2161 enum infwait_states infwait_state; 2162 2163 /* Data to be passed around while handling an event. This data is 2164 discarded between events. */ 2165 struct execution_control_state 2166 { 2167 ptid_t ptid; 2168 /* The thread that got the event, if this was a thread event; NULL 2169 otherwise. */ 2170 struct thread_info *event_thread; 2171 2172 struct target_waitstatus ws; 2173 int random_signal; 2174 CORE_ADDR stop_func_start; 2175 CORE_ADDR stop_func_end; 2176 char *stop_func_name; 2177 int new_thread_event; 2178 int wait_some_more; 2179 }; 2180 2181 static void handle_inferior_event (struct execution_control_state *ecs); 2182 2183 static void handle_step_into_function (struct gdbarch *gdbarch, 2184 struct execution_control_state *ecs); 2185 static void handle_step_into_function_backward (struct gdbarch *gdbarch, 2186 struct execution_control_state *ecs); 2187 static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame); 2188 static void insert_step_resume_breakpoint_at_caller (struct frame_info *); 2189 static void insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch, 2190 struct symtab_and_line sr_sal, 2191 struct frame_id sr_id); 2192 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR); 2193 2194 static void stop_stepping (struct execution_control_state *ecs); 2195 static void prepare_to_wait (struct execution_control_state *ecs); 2196 static void keep_going (struct execution_control_state *ecs); 2197 static void print_stop_reason (enum inferior_stop_reason stop_reason, 2198 int stop_info); 2199 2200 /* Callback for iterate over threads. If the thread is stopped, but 2201 the user/frontend doesn't know about that yet, go through 2202 normal_stop, as if the thread had just stopped now. ARG points at 2203 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If 2204 ptid_is_pid(PTID) is true, applies to all threads of the process 2205 pointed at by PTID. Otherwise, apply only to the thread pointed by 2206 PTID. */ 2207 2208 static int 2209 infrun_thread_stop_requested_callback (struct thread_info *info, void *arg) 2210 { 2211 ptid_t ptid = * (ptid_t *) arg; 2212 2213 if ((ptid_equal (info->ptid, ptid) 2214 || ptid_equal (minus_one_ptid, ptid) 2215 || (ptid_is_pid (ptid) 2216 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid))) 2217 && is_running (info->ptid) 2218 && !is_executing (info->ptid)) 2219 { 2220 struct cleanup *old_chain; 2221 struct execution_control_state ecss; 2222 struct execution_control_state *ecs = &ecss; 2223 2224 memset (ecs, 0, sizeof (*ecs)); 2225 2226 old_chain = make_cleanup_restore_current_thread (); 2227 2228 switch_to_thread (info->ptid); 2229 2230 /* Go through handle_inferior_event/normal_stop, so we always 2231 have consistent output as if the stop event had been 2232 reported. */ 2233 ecs->ptid = info->ptid; 2234 ecs->event_thread = find_thread_ptid (info->ptid); 2235 ecs->ws.kind = TARGET_WAITKIND_STOPPED; 2236 ecs->ws.value.sig = TARGET_SIGNAL_0; 2237 2238 handle_inferior_event (ecs); 2239 2240 if (!ecs->wait_some_more) 2241 { 2242 struct thread_info *tp; 2243 2244 normal_stop (); 2245 2246 /* Finish off the continuations. The continations 2247 themselves are responsible for realising the thread 2248 didn't finish what it was supposed to do. */ 2249 tp = inferior_thread (); 2250 do_all_intermediate_continuations_thread (tp); 2251 do_all_continuations_thread (tp); 2252 } 2253 2254 do_cleanups (old_chain); 2255 } 2256 2257 return 0; 2258 } 2259 2260 /* This function is attached as a "thread_stop_requested" observer. 2261 Cleanup local state that assumed the PTID was to be resumed, and 2262 report the stop to the frontend. */ 2263 2264 static void 2265 infrun_thread_stop_requested (ptid_t ptid) 2266 { 2267 struct displaced_step_inferior_state *displaced; 2268 2269 /* PTID was requested to stop. Remove it from the displaced 2270 stepping queue, so we don't try to resume it automatically. */ 2271 2272 for (displaced = displaced_step_inferior_states; 2273 displaced; 2274 displaced = displaced->next) 2275 { 2276 struct displaced_step_request *it, **prev_next_p; 2277 2278 it = displaced->step_request_queue; 2279 prev_next_p = &displaced->step_request_queue; 2280 while (it) 2281 { 2282 if (ptid_match (it->ptid, ptid)) 2283 { 2284 *prev_next_p = it->next; 2285 it->next = NULL; 2286 xfree (it); 2287 } 2288 else 2289 { 2290 prev_next_p = &it->next; 2291 } 2292 2293 it = *prev_next_p; 2294 } 2295 } 2296 2297 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid); 2298 } 2299 2300 static void 2301 infrun_thread_thread_exit (struct thread_info *tp, int silent) 2302 { 2303 if (ptid_equal (target_last_wait_ptid, tp->ptid)) 2304 nullify_last_target_wait_ptid (); 2305 } 2306 2307 /* Callback for iterate_over_threads. */ 2308 2309 static int 2310 delete_step_resume_breakpoint_callback (struct thread_info *info, void *data) 2311 { 2312 if (is_exited (info->ptid)) 2313 return 0; 2314 2315 delete_step_resume_breakpoint (info); 2316 return 0; 2317 } 2318 2319 /* In all-stop, delete the step resume breakpoint of any thread that 2320 had one. In non-stop, delete the step resume breakpoint of the 2321 thread that just stopped. */ 2322 2323 static void 2324 delete_step_thread_step_resume_breakpoint (void) 2325 { 2326 if (!target_has_execution 2327 || ptid_equal (inferior_ptid, null_ptid)) 2328 /* If the inferior has exited, we have already deleted the step 2329 resume breakpoints out of GDB's lists. */ 2330 return; 2331 2332 if (non_stop) 2333 { 2334 /* If in non-stop mode, only delete the step-resume or 2335 longjmp-resume breakpoint of the thread that just stopped 2336 stepping. */ 2337 struct thread_info *tp = inferior_thread (); 2338 2339 delete_step_resume_breakpoint (tp); 2340 } 2341 else 2342 /* In all-stop mode, delete all step-resume and longjmp-resume 2343 breakpoints of any thread that had them. */ 2344 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL); 2345 } 2346 2347 /* A cleanup wrapper. */ 2348 2349 static void 2350 delete_step_thread_step_resume_breakpoint_cleanup (void *arg) 2351 { 2352 delete_step_thread_step_resume_breakpoint (); 2353 } 2354 2355 /* Pretty print the results of target_wait, for debugging purposes. */ 2356 2357 static void 2358 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid, 2359 const struct target_waitstatus *ws) 2360 { 2361 char *status_string = target_waitstatus_to_string (ws); 2362 struct ui_file *tmp_stream = mem_fileopen (); 2363 char *text; 2364 2365 /* The text is split over several lines because it was getting too long. 2366 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still 2367 output as a unit; we want only one timestamp printed if debug_timestamp 2368 is set. */ 2369 2370 fprintf_unfiltered (tmp_stream, 2371 "infrun: target_wait (%d", PIDGET (waiton_ptid)); 2372 if (PIDGET (waiton_ptid) != -1) 2373 fprintf_unfiltered (tmp_stream, 2374 " [%s]", target_pid_to_str (waiton_ptid)); 2375 fprintf_unfiltered (tmp_stream, ", status) =\n"); 2376 fprintf_unfiltered (tmp_stream, 2377 "infrun: %d [%s],\n", 2378 PIDGET (result_ptid), target_pid_to_str (result_ptid)); 2379 fprintf_unfiltered (tmp_stream, 2380 "infrun: %s\n", 2381 status_string); 2382 2383 text = ui_file_xstrdup (tmp_stream, NULL); 2384 2385 /* This uses %s in part to handle %'s in the text, but also to avoid 2386 a gcc error: the format attribute requires a string literal. */ 2387 fprintf_unfiltered (gdb_stdlog, "%s", text); 2388 2389 xfree (status_string); 2390 xfree (text); 2391 ui_file_delete (tmp_stream); 2392 } 2393 2394 /* Prepare and stabilize the inferior for detaching it. E.g., 2395 detaching while a thread is displaced stepping is a recipe for 2396 crashing it, as nothing would readjust the PC out of the scratch 2397 pad. */ 2398 2399 void 2400 prepare_for_detach (void) 2401 { 2402 struct inferior *inf = current_inferior (); 2403 ptid_t pid_ptid = pid_to_ptid (inf->pid); 2404 struct cleanup *old_chain_1; 2405 struct displaced_step_inferior_state *displaced; 2406 2407 displaced = get_displaced_stepping_state (inf->pid); 2408 2409 /* Is any thread of this process displaced stepping? If not, 2410 there's nothing else to do. */ 2411 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid)) 2412 return; 2413 2414 if (debug_infrun) 2415 fprintf_unfiltered (gdb_stdlog, 2416 "displaced-stepping in-process while detaching"); 2417 2418 old_chain_1 = make_cleanup_restore_integer (&inf->detaching); 2419 inf->detaching = 1; 2420 2421 while (!ptid_equal (displaced->step_ptid, null_ptid)) 2422 { 2423 struct cleanup *old_chain_2; 2424 struct execution_control_state ecss; 2425 struct execution_control_state *ecs; 2426 2427 ecs = &ecss; 2428 memset (ecs, 0, sizeof (*ecs)); 2429 2430 overlay_cache_invalid = 1; 2431 2432 /* We have to invalidate the registers BEFORE calling 2433 target_wait because they can be loaded from the target while 2434 in target_wait. This makes remote debugging a bit more 2435 efficient for those targets that provide critical registers 2436 as part of their normal status mechanism. */ 2437 2438 registers_changed (); 2439 2440 if (deprecated_target_wait_hook) 2441 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0); 2442 else 2443 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0); 2444 2445 if (debug_infrun) 2446 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws); 2447 2448 /* If an error happens while handling the event, propagate GDB's 2449 knowledge of the executing state to the frontend/user running 2450 state. */ 2451 old_chain_2 = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid); 2452 2453 /* In non-stop mode, each thread is handled individually. 2454 Switch early, so the global state is set correctly for this 2455 thread. */ 2456 if (non_stop 2457 && ecs->ws.kind != TARGET_WAITKIND_EXITED 2458 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED) 2459 context_switch (ecs->ptid); 2460 2461 /* Now figure out what to do with the result of the result. */ 2462 handle_inferior_event (ecs); 2463 2464 /* No error, don't finish the state yet. */ 2465 discard_cleanups (old_chain_2); 2466 2467 /* Breakpoints and watchpoints are not installed on the target 2468 at this point, and signals are passed directly to the 2469 inferior, so this must mean the process is gone. */ 2470 if (!ecs->wait_some_more) 2471 { 2472 discard_cleanups (old_chain_1); 2473 error (_("Program exited while detaching")); 2474 } 2475 } 2476 2477 discard_cleanups (old_chain_1); 2478 } 2479 2480 /* Wait for control to return from inferior to debugger. 2481 2482 If TREAT_EXEC_AS_SIGTRAP is non-zero, then handle EXEC signals 2483 as if they were SIGTRAP signals. This can be useful during 2484 the startup sequence on some targets such as HP/UX, where 2485 we receive an EXEC event instead of the expected SIGTRAP. 2486 2487 If inferior gets a signal, we may decide to start it up again 2488 instead of returning. That is why there is a loop in this function. 2489 When this function actually returns it means the inferior 2490 should be left stopped and GDB should read more commands. */ 2491 2492 void 2493 wait_for_inferior (int treat_exec_as_sigtrap) 2494 { 2495 struct cleanup *old_cleanups; 2496 struct execution_control_state ecss; 2497 struct execution_control_state *ecs; 2498 2499 if (debug_infrun) 2500 fprintf_unfiltered 2501 (gdb_stdlog, "infrun: wait_for_inferior (treat_exec_as_sigtrap=%d)\n", 2502 treat_exec_as_sigtrap); 2503 2504 old_cleanups = 2505 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL); 2506 2507 ecs = &ecss; 2508 memset (ecs, 0, sizeof (*ecs)); 2509 2510 /* We'll update this if & when we switch to a new thread. */ 2511 previous_inferior_ptid = inferior_ptid; 2512 2513 while (1) 2514 { 2515 struct cleanup *old_chain; 2516 2517 /* We have to invalidate the registers BEFORE calling target_wait 2518 because they can be loaded from the target while in target_wait. 2519 This makes remote debugging a bit more efficient for those 2520 targets that provide critical registers as part of their normal 2521 status mechanism. */ 2522 2523 overlay_cache_invalid = 1; 2524 registers_changed (); 2525 2526 if (deprecated_target_wait_hook) 2527 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0); 2528 else 2529 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0); 2530 2531 if (debug_infrun) 2532 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws); 2533 2534 if (treat_exec_as_sigtrap && ecs->ws.kind == TARGET_WAITKIND_EXECD) 2535 { 2536 xfree (ecs->ws.value.execd_pathname); 2537 ecs->ws.kind = TARGET_WAITKIND_STOPPED; 2538 ecs->ws.value.sig = TARGET_SIGNAL_TRAP; 2539 } 2540 2541 /* If an error happens while handling the event, propagate GDB's 2542 knowledge of the executing state to the frontend/user running 2543 state. */ 2544 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid); 2545 2546 if (ecs->ws.kind == TARGET_WAITKIND_SYSCALL_ENTRY 2547 || ecs->ws.kind == TARGET_WAITKIND_SYSCALL_RETURN) 2548 ecs->ws.value.syscall_number = UNKNOWN_SYSCALL; 2549 2550 /* Now figure out what to do with the result of the result. */ 2551 handle_inferior_event (ecs); 2552 2553 /* No error, don't finish the state yet. */ 2554 discard_cleanups (old_chain); 2555 2556 if (!ecs->wait_some_more) 2557 break; 2558 } 2559 2560 do_cleanups (old_cleanups); 2561 } 2562 2563 /* Asynchronous version of wait_for_inferior. It is called by the 2564 event loop whenever a change of state is detected on the file 2565 descriptor corresponding to the target. It can be called more than 2566 once to complete a single execution command. In such cases we need 2567 to keep the state in a global variable ECSS. If it is the last time 2568 that this function is called for a single execution command, then 2569 report to the user that the inferior has stopped, and do the 2570 necessary cleanups. */ 2571 2572 void 2573 fetch_inferior_event (void *client_data) 2574 { 2575 struct execution_control_state ecss; 2576 struct execution_control_state *ecs = &ecss; 2577 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL); 2578 struct cleanup *ts_old_chain; 2579 int was_sync = sync_execution; 2580 2581 memset (ecs, 0, sizeof (*ecs)); 2582 2583 /* We'll update this if & when we switch to a new thread. */ 2584 previous_inferior_ptid = inferior_ptid; 2585 2586 if (non_stop) 2587 /* In non-stop mode, the user/frontend should not notice a thread 2588 switch due to internal events. Make sure we reverse to the 2589 user selected thread and frame after handling the event and 2590 running any breakpoint commands. */ 2591 make_cleanup_restore_current_thread (); 2592 2593 /* We have to invalidate the registers BEFORE calling target_wait 2594 because they can be loaded from the target while in target_wait. 2595 This makes remote debugging a bit more efficient for those 2596 targets that provide critical registers as part of their normal 2597 status mechanism. */ 2598 2599 overlay_cache_invalid = 1; 2600 registers_changed (); 2601 2602 if (deprecated_target_wait_hook) 2603 ecs->ptid = 2604 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG); 2605 else 2606 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG); 2607 2608 if (debug_infrun) 2609 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws); 2610 2611 if (non_stop 2612 && ecs->ws.kind != TARGET_WAITKIND_IGNORE 2613 && ecs->ws.kind != TARGET_WAITKIND_EXITED 2614 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED) 2615 /* In non-stop mode, each thread is handled individually. Switch 2616 early, so the global state is set correctly for this 2617 thread. */ 2618 context_switch (ecs->ptid); 2619 2620 /* If an error happens while handling the event, propagate GDB's 2621 knowledge of the executing state to the frontend/user running 2622 state. */ 2623 if (!non_stop) 2624 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid); 2625 else 2626 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid); 2627 2628 /* Now figure out what to do with the result of the result. */ 2629 handle_inferior_event (ecs); 2630 2631 if (!ecs->wait_some_more) 2632 { 2633 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid)); 2634 2635 delete_step_thread_step_resume_breakpoint (); 2636 2637 /* We may not find an inferior if this was a process exit. */ 2638 if (inf == NULL || inf->stop_soon == NO_STOP_QUIETLY) 2639 normal_stop (); 2640 2641 if (target_has_execution 2642 && ecs->ws.kind != TARGET_WAITKIND_EXITED 2643 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED 2644 && ecs->event_thread->step_multi 2645 && ecs->event_thread->stop_step) 2646 inferior_event_handler (INF_EXEC_CONTINUE, NULL); 2647 else 2648 inferior_event_handler (INF_EXEC_COMPLETE, NULL); 2649 } 2650 2651 /* No error, don't finish the thread states yet. */ 2652 discard_cleanups (ts_old_chain); 2653 2654 /* Revert thread and frame. */ 2655 do_cleanups (old_chain); 2656 2657 /* If the inferior was in sync execution mode, and now isn't, 2658 restore the prompt. */ 2659 if (was_sync && !sync_execution) 2660 display_gdb_prompt (0); 2661 } 2662 2663 /* Record the frame and location we're currently stepping through. */ 2664 void 2665 set_step_info (struct frame_info *frame, struct symtab_and_line sal) 2666 { 2667 struct thread_info *tp = inferior_thread (); 2668 2669 tp->step_frame_id = get_frame_id (frame); 2670 tp->step_stack_frame_id = get_stack_frame_id (frame); 2671 2672 tp->current_symtab = sal.symtab; 2673 tp->current_line = sal.line; 2674 } 2675 2676 /* Clear context switchable stepping state. */ 2677 2678 void 2679 init_thread_stepping_state (struct thread_info *tss) 2680 { 2681 tss->stepping_over_breakpoint = 0; 2682 tss->step_after_step_resume_breakpoint = 0; 2683 tss->stepping_through_solib_after_catch = 0; 2684 tss->stepping_through_solib_catchpoints = NULL; 2685 } 2686 2687 /* Return the cached copy of the last pid/waitstatus returned by 2688 target_wait()/deprecated_target_wait_hook(). The data is actually 2689 cached by handle_inferior_event(), which gets called immediately 2690 after target_wait()/deprecated_target_wait_hook(). */ 2691 2692 void 2693 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status) 2694 { 2695 *ptidp = target_last_wait_ptid; 2696 *status = target_last_waitstatus; 2697 } 2698 2699 void 2700 nullify_last_target_wait_ptid (void) 2701 { 2702 target_last_wait_ptid = minus_one_ptid; 2703 } 2704 2705 /* Switch thread contexts. */ 2706 2707 static void 2708 context_switch (ptid_t ptid) 2709 { 2710 if (debug_infrun) 2711 { 2712 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ", 2713 target_pid_to_str (inferior_ptid)); 2714 fprintf_unfiltered (gdb_stdlog, "to %s\n", 2715 target_pid_to_str (ptid)); 2716 } 2717 2718 switch_to_thread (ptid); 2719 } 2720 2721 static void 2722 adjust_pc_after_break (struct execution_control_state *ecs) 2723 { 2724 struct regcache *regcache; 2725 struct gdbarch *gdbarch; 2726 struct address_space *aspace; 2727 CORE_ADDR breakpoint_pc; 2728 2729 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If 2730 we aren't, just return. 2731 2732 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not 2733 affected by gdbarch_decr_pc_after_break. Other waitkinds which are 2734 implemented by software breakpoints should be handled through the normal 2735 breakpoint layer. 2736 2737 NOTE drow/2004-01-31: On some targets, breakpoints may generate 2738 different signals (SIGILL or SIGEMT for instance), but it is less 2739 clear where the PC is pointing afterwards. It may not match 2740 gdbarch_decr_pc_after_break. I don't know any specific target that 2741 generates these signals at breakpoints (the code has been in GDB since at 2742 least 1992) so I can not guess how to handle them here. 2743 2744 In earlier versions of GDB, a target with 2745 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a 2746 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any 2747 target with both of these set in GDB history, and it seems unlikely to be 2748 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */ 2749 2750 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED) 2751 return; 2752 2753 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP) 2754 return; 2755 2756 /* In reverse execution, when a breakpoint is hit, the instruction 2757 under it has already been de-executed. The reported PC always 2758 points at the breakpoint address, so adjusting it further would 2759 be wrong. E.g., consider this case on a decr_pc_after_break == 1 2760 architecture: 2761 2762 B1 0x08000000 : INSN1 2763 B2 0x08000001 : INSN2 2764 0x08000002 : INSN3 2765 PC -> 0x08000003 : INSN4 2766 2767 Say you're stopped at 0x08000003 as above. Reverse continuing 2768 from that point should hit B2 as below. Reading the PC when the 2769 SIGTRAP is reported should read 0x08000001 and INSN2 should have 2770 been de-executed already. 2771 2772 B1 0x08000000 : INSN1 2773 B2 PC -> 0x08000001 : INSN2 2774 0x08000002 : INSN3 2775 0x08000003 : INSN4 2776 2777 We can't apply the same logic as for forward execution, because 2778 we would wrongly adjust the PC to 0x08000000, since there's a 2779 breakpoint at PC - 1. We'd then report a hit on B1, although 2780 INSN1 hadn't been de-executed yet. Doing nothing is the correct 2781 behaviour. */ 2782 if (execution_direction == EXEC_REVERSE) 2783 return; 2784 2785 /* If this target does not decrement the PC after breakpoints, then 2786 we have nothing to do. */ 2787 regcache = get_thread_regcache (ecs->ptid); 2788 gdbarch = get_regcache_arch (regcache); 2789 if (gdbarch_decr_pc_after_break (gdbarch) == 0) 2790 return; 2791 2792 aspace = get_regcache_aspace (regcache); 2793 2794 /* Find the location where (if we've hit a breakpoint) the 2795 breakpoint would be. */ 2796 breakpoint_pc = regcache_read_pc (regcache) 2797 - gdbarch_decr_pc_after_break (gdbarch); 2798 2799 /* Check whether there actually is a software breakpoint inserted at 2800 that location. 2801 2802 If in non-stop mode, a race condition is possible where we've 2803 removed a breakpoint, but stop events for that breakpoint were 2804 already queued and arrive later. To suppress those spurious 2805 SIGTRAPs, we keep a list of such breakpoint locations for a bit, 2806 and retire them after a number of stop events are reported. */ 2807 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc) 2808 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc))) 2809 { 2810 struct cleanup *old_cleanups = NULL; 2811 2812 if (RECORD_IS_USED) 2813 old_cleanups = record_gdb_operation_disable_set (); 2814 2815 /* When using hardware single-step, a SIGTRAP is reported for both 2816 a completed single-step and a software breakpoint. Need to 2817 differentiate between the two, as the latter needs adjusting 2818 but the former does not. 2819 2820 The SIGTRAP can be due to a completed hardware single-step only if 2821 - we didn't insert software single-step breakpoints 2822 - the thread to be examined is still the current thread 2823 - this thread is currently being stepped 2824 2825 If any of these events did not occur, we must have stopped due 2826 to hitting a software breakpoint, and have to back up to the 2827 breakpoint address. 2828 2829 As a special case, we could have hardware single-stepped a 2830 software breakpoint. In this case (prev_pc == breakpoint_pc), 2831 we also need to back up to the breakpoint address. */ 2832 2833 if (singlestep_breakpoints_inserted_p 2834 || !ptid_equal (ecs->ptid, inferior_ptid) 2835 || !currently_stepping (ecs->event_thread) 2836 || ecs->event_thread->prev_pc == breakpoint_pc) 2837 regcache_write_pc (regcache, breakpoint_pc); 2838 2839 if (RECORD_IS_USED) 2840 do_cleanups (old_cleanups); 2841 } 2842 } 2843 2844 void 2845 init_infwait_state (void) 2846 { 2847 waiton_ptid = pid_to_ptid (-1); 2848 infwait_state = infwait_normal_state; 2849 } 2850 2851 void 2852 error_is_running (void) 2853 { 2854 error (_("\ 2855 Cannot execute this command while the selected thread is running.")); 2856 } 2857 2858 void 2859 ensure_not_running (void) 2860 { 2861 if (is_running (inferior_ptid)) 2862 error_is_running (); 2863 } 2864 2865 static int 2866 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id) 2867 { 2868 for (frame = get_prev_frame (frame); 2869 frame != NULL; 2870 frame = get_prev_frame (frame)) 2871 { 2872 if (frame_id_eq (get_frame_id (frame), step_frame_id)) 2873 return 1; 2874 if (get_frame_type (frame) != INLINE_FRAME) 2875 break; 2876 } 2877 2878 return 0; 2879 } 2880 2881 /* Auxiliary function that handles syscall entry/return events. 2882 It returns 1 if the inferior should keep going (and GDB 2883 should ignore the event), or 0 if the event deserves to be 2884 processed. */ 2885 2886 static int 2887 handle_syscall_event (struct execution_control_state *ecs) 2888 { 2889 struct regcache *regcache; 2890 struct gdbarch *gdbarch; 2891 int syscall_number; 2892 2893 if (!ptid_equal (ecs->ptid, inferior_ptid)) 2894 context_switch (ecs->ptid); 2895 2896 regcache = get_thread_regcache (ecs->ptid); 2897 gdbarch = get_regcache_arch (regcache); 2898 syscall_number = gdbarch_get_syscall_number (gdbarch, ecs->ptid); 2899 stop_pc = regcache_read_pc (regcache); 2900 2901 target_last_waitstatus.value.syscall_number = syscall_number; 2902 2903 if (catch_syscall_enabled () > 0 2904 && catching_syscall_number (syscall_number) > 0) 2905 { 2906 if (debug_infrun) 2907 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n", 2908 syscall_number); 2909 2910 ecs->event_thread->stop_bpstat 2911 = bpstat_stop_status (get_regcache_aspace (regcache), 2912 stop_pc, ecs->ptid); 2913 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat); 2914 2915 if (!ecs->random_signal) 2916 { 2917 /* Catchpoint hit. */ 2918 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP; 2919 return 0; 2920 } 2921 } 2922 2923 /* If no catchpoint triggered for this, then keep going. */ 2924 ecs->event_thread->stop_signal = TARGET_SIGNAL_0; 2925 keep_going (ecs); 2926 return 1; 2927 } 2928 2929 /* Given an execution control state that has been freshly filled in 2930 by an event from the inferior, figure out what it means and take 2931 appropriate action. */ 2932 2933 static void 2934 handle_inferior_event (struct execution_control_state *ecs) 2935 { 2936 struct frame_info *frame; 2937 struct gdbarch *gdbarch; 2938 int sw_single_step_trap_p = 0; 2939 int stopped_by_watchpoint; 2940 int stepped_after_stopped_by_watchpoint = 0; 2941 struct symtab_and_line stop_pc_sal; 2942 enum stop_kind stop_soon; 2943 2944 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE) 2945 { 2946 /* We had an event in the inferior, but we are not interested in 2947 handling it at this level. The lower layers have already 2948 done what needs to be done, if anything. 2949 2950 One of the possible circumstances for this is when the 2951 inferior produces output for the console. The inferior has 2952 not stopped, and we are ignoring the event. Another possible 2953 circumstance is any event which the lower level knows will be 2954 reported multiple times without an intervening resume. */ 2955 if (debug_infrun) 2956 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n"); 2957 prepare_to_wait (ecs); 2958 return; 2959 } 2960 2961 if (ecs->ws.kind != TARGET_WAITKIND_EXITED 2962 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED) 2963 { 2964 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid)); 2965 2966 gdb_assert (inf); 2967 stop_soon = inf->stop_soon; 2968 } 2969 else 2970 stop_soon = NO_STOP_QUIETLY; 2971 2972 /* Cache the last pid/waitstatus. */ 2973 target_last_wait_ptid = ecs->ptid; 2974 target_last_waitstatus = ecs->ws; 2975 2976 /* Always clear state belonging to the previous time we stopped. */ 2977 stop_stack_dummy = STOP_NONE; 2978 2979 /* If it's a new process, add it to the thread database */ 2980 2981 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid) 2982 && !ptid_equal (ecs->ptid, minus_one_ptid) 2983 && !in_thread_list (ecs->ptid)); 2984 2985 if (ecs->ws.kind != TARGET_WAITKIND_EXITED 2986 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event) 2987 add_thread (ecs->ptid); 2988 2989 ecs->event_thread = find_thread_ptid (ecs->ptid); 2990 2991 /* Dependent on valid ECS->EVENT_THREAD. */ 2992 adjust_pc_after_break (ecs); 2993 2994 /* Dependent on the current PC value modified by adjust_pc_after_break. */ 2995 reinit_frame_cache (); 2996 2997 breakpoint_retire_moribund (); 2998 2999 /* First, distinguish signals caused by the debugger from signals 3000 that have to do with the program's own actions. Note that 3001 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending 3002 on the operating system version. Here we detect when a SIGILL or 3003 SIGEMT is really a breakpoint and change it to SIGTRAP. We do 3004 something similar for SIGSEGV, since a SIGSEGV will be generated 3005 when we're trying to execute a breakpoint instruction on a 3006 non-executable stack. This happens for call dummy breakpoints 3007 for architectures like SPARC that place call dummies on the 3008 stack. */ 3009 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED 3010 && (ecs->ws.value.sig == TARGET_SIGNAL_ILL 3011 || ecs->ws.value.sig == TARGET_SIGNAL_SEGV 3012 || ecs->ws.value.sig == TARGET_SIGNAL_EMT)) 3013 { 3014 struct regcache *regcache = get_thread_regcache (ecs->ptid); 3015 3016 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), 3017 regcache_read_pc (regcache))) 3018 { 3019 if (debug_infrun) 3020 fprintf_unfiltered (gdb_stdlog, 3021 "infrun: Treating signal as SIGTRAP\n"); 3022 ecs->ws.value.sig = TARGET_SIGNAL_TRAP; 3023 } 3024 } 3025 3026 /* Mark the non-executing threads accordingly. In all-stop, all 3027 threads of all processes are stopped when we get any event 3028 reported. In non-stop mode, only the event thread stops. If 3029 we're handling a process exit in non-stop mode, there's nothing 3030 to do, as threads of the dead process are gone, and threads of 3031 any other process were left running. */ 3032 if (!non_stop) 3033 set_executing (minus_one_ptid, 0); 3034 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED 3035 && ecs->ws.kind != TARGET_WAITKIND_EXITED) 3036 set_executing (inferior_ptid, 0); 3037 3038 switch (infwait_state) 3039 { 3040 case infwait_thread_hop_state: 3041 if (debug_infrun) 3042 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n"); 3043 break; 3044 3045 case infwait_normal_state: 3046 if (debug_infrun) 3047 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n"); 3048 break; 3049 3050 case infwait_step_watch_state: 3051 if (debug_infrun) 3052 fprintf_unfiltered (gdb_stdlog, 3053 "infrun: infwait_step_watch_state\n"); 3054 3055 stepped_after_stopped_by_watchpoint = 1; 3056 break; 3057 3058 case infwait_nonstep_watch_state: 3059 if (debug_infrun) 3060 fprintf_unfiltered (gdb_stdlog, 3061 "infrun: infwait_nonstep_watch_state\n"); 3062 insert_breakpoints (); 3063 3064 /* FIXME-maybe: is this cleaner than setting a flag? Does it 3065 handle things like signals arriving and other things happening 3066 in combination correctly? */ 3067 stepped_after_stopped_by_watchpoint = 1; 3068 break; 3069 3070 default: 3071 internal_error (__FILE__, __LINE__, _("bad switch")); 3072 } 3073 3074 infwait_state = infwait_normal_state; 3075 waiton_ptid = pid_to_ptid (-1); 3076 3077 switch (ecs->ws.kind) 3078 { 3079 case TARGET_WAITKIND_LOADED: 3080 if (debug_infrun) 3081 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n"); 3082 /* Ignore gracefully during startup of the inferior, as it might 3083 be the shell which has just loaded some objects, otherwise 3084 add the symbols for the newly loaded objects. Also ignore at 3085 the beginning of an attach or remote session; we will query 3086 the full list of libraries once the connection is 3087 established. */ 3088 if (stop_soon == NO_STOP_QUIETLY) 3089 { 3090 /* Check for any newly added shared libraries if we're 3091 supposed to be adding them automatically. Switch 3092 terminal for any messages produced by 3093 breakpoint_re_set. */ 3094 target_terminal_ours_for_output (); 3095 /* NOTE: cagney/2003-11-25: Make certain that the target 3096 stack's section table is kept up-to-date. Architectures, 3097 (e.g., PPC64), use the section table to perform 3098 operations such as address => section name and hence 3099 require the table to contain all sections (including 3100 those found in shared libraries). */ 3101 #ifdef SOLIB_ADD 3102 SOLIB_ADD (NULL, 0, ¤t_target, auto_solib_add); 3103 #else 3104 solib_add (NULL, 0, ¤t_target, auto_solib_add); 3105 #endif 3106 target_terminal_inferior (); 3107 3108 /* If requested, stop when the dynamic linker notifies 3109 gdb of events. This allows the user to get control 3110 and place breakpoints in initializer routines for 3111 dynamically loaded objects (among other things). */ 3112 if (stop_on_solib_events) 3113 { 3114 /* Make sure we print "Stopped due to solib-event" in 3115 normal_stop. */ 3116 stop_print_frame = 1; 3117 3118 stop_stepping (ecs); 3119 return; 3120 } 3121 3122 /* NOTE drow/2007-05-11: This might be a good place to check 3123 for "catch load". */ 3124 } 3125 3126 /* If we are skipping through a shell, or through shared library 3127 loading that we aren't interested in, resume the program. If 3128 we're running the program normally, also resume. But stop if 3129 we're attaching or setting up a remote connection. */ 3130 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY) 3131 { 3132 /* Loading of shared libraries might have changed breakpoint 3133 addresses. Make sure new breakpoints are inserted. */ 3134 if (stop_soon == NO_STOP_QUIETLY 3135 && !breakpoints_always_inserted_mode ()) 3136 insert_breakpoints (); 3137 resume (0, TARGET_SIGNAL_0); 3138 prepare_to_wait (ecs); 3139 return; 3140 } 3141 3142 break; 3143 3144 case TARGET_WAITKIND_SPURIOUS: 3145 if (debug_infrun) 3146 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n"); 3147 resume (0, TARGET_SIGNAL_0); 3148 prepare_to_wait (ecs); 3149 return; 3150 3151 case TARGET_WAITKIND_EXITED: 3152 if (debug_infrun) 3153 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n"); 3154 inferior_ptid = ecs->ptid; 3155 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid))); 3156 set_current_program_space (current_inferior ()->pspace); 3157 handle_vfork_child_exec_or_exit (0); 3158 target_terminal_ours (); /* Must do this before mourn anyway */ 3159 print_stop_reason (EXITED, ecs->ws.value.integer); 3160 3161 /* Record the exit code in the convenience variable $_exitcode, so 3162 that the user can inspect this again later. */ 3163 set_internalvar_integer (lookup_internalvar ("_exitcode"), 3164 (LONGEST) ecs->ws.value.integer); 3165 gdb_flush (gdb_stdout); 3166 target_mourn_inferior (); 3167 singlestep_breakpoints_inserted_p = 0; 3168 cancel_single_step_breakpoints (); 3169 stop_print_frame = 0; 3170 stop_stepping (ecs); 3171 return; 3172 3173 case TARGET_WAITKIND_SIGNALLED: 3174 if (debug_infrun) 3175 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n"); 3176 inferior_ptid = ecs->ptid; 3177 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid))); 3178 set_current_program_space (current_inferior ()->pspace); 3179 handle_vfork_child_exec_or_exit (0); 3180 stop_print_frame = 0; 3181 target_terminal_ours (); /* Must do this before mourn anyway */ 3182 3183 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't 3184 reach here unless the inferior is dead. However, for years 3185 target_kill() was called here, which hints that fatal signals aren't 3186 really fatal on some systems. If that's true, then some changes 3187 may be needed. */ 3188 target_mourn_inferior (); 3189 3190 print_stop_reason (SIGNAL_EXITED, ecs->ws.value.sig); 3191 singlestep_breakpoints_inserted_p = 0; 3192 cancel_single_step_breakpoints (); 3193 stop_stepping (ecs); 3194 return; 3195 3196 /* The following are the only cases in which we keep going; 3197 the above cases end in a continue or goto. */ 3198 case TARGET_WAITKIND_FORKED: 3199 case TARGET_WAITKIND_VFORKED: 3200 if (debug_infrun) 3201 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n"); 3202 3203 if (!ptid_equal (ecs->ptid, inferior_ptid)) 3204 { 3205 context_switch (ecs->ptid); 3206 reinit_frame_cache (); 3207 } 3208 3209 /* Immediately detach breakpoints from the child before there's 3210 any chance of letting the user delete breakpoints from the 3211 breakpoint lists. If we don't do this early, it's easy to 3212 leave left over traps in the child, vis: "break foo; catch 3213 fork; c; <fork>; del; c; <child calls foo>". We only follow 3214 the fork on the last `continue', and by that time the 3215 breakpoint at "foo" is long gone from the breakpoint table. 3216 If we vforked, then we don't need to unpatch here, since both 3217 parent and child are sharing the same memory pages; we'll 3218 need to unpatch at follow/detach time instead to be certain 3219 that new breakpoints added between catchpoint hit time and 3220 vfork follow are detached. */ 3221 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED) 3222 { 3223 int child_pid = ptid_get_pid (ecs->ws.value.related_pid); 3224 3225 /* This won't actually modify the breakpoint list, but will 3226 physically remove the breakpoints from the child. */ 3227 detach_breakpoints (child_pid); 3228 } 3229 3230 if (singlestep_breakpoints_inserted_p) 3231 { 3232 /* Pull the single step breakpoints out of the target. */ 3233 remove_single_step_breakpoints (); 3234 singlestep_breakpoints_inserted_p = 0; 3235 } 3236 3237 /* In case the event is caught by a catchpoint, remember that 3238 the event is to be followed at the next resume of the thread, 3239 and not immediately. */ 3240 ecs->event_thread->pending_follow = ecs->ws; 3241 3242 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid)); 3243 3244 ecs->event_thread->stop_bpstat 3245 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()), 3246 stop_pc, ecs->ptid); 3247 3248 /* Note that we're interested in knowing the bpstat actually 3249 causes a stop, not just if it may explain the signal. 3250 Software watchpoints, for example, always appear in the 3251 bpstat. */ 3252 ecs->random_signal = !bpstat_causes_stop (ecs->event_thread->stop_bpstat); 3253 3254 /* If no catchpoint triggered for this, then keep going. */ 3255 if (ecs->random_signal) 3256 { 3257 ptid_t parent; 3258 ptid_t child; 3259 int should_resume; 3260 int follow_child = (follow_fork_mode_string == follow_fork_mode_child); 3261 3262 ecs->event_thread->stop_signal = TARGET_SIGNAL_0; 3263 3264 should_resume = follow_fork (); 3265 3266 parent = ecs->ptid; 3267 child = ecs->ws.value.related_pid; 3268 3269 /* In non-stop mode, also resume the other branch. */ 3270 if (non_stop && !detach_fork) 3271 { 3272 if (follow_child) 3273 switch_to_thread (parent); 3274 else 3275 switch_to_thread (child); 3276 3277 ecs->event_thread = inferior_thread (); 3278 ecs->ptid = inferior_ptid; 3279 keep_going (ecs); 3280 } 3281 3282 if (follow_child) 3283 switch_to_thread (child); 3284 else 3285 switch_to_thread (parent); 3286 3287 ecs->event_thread = inferior_thread (); 3288 ecs->ptid = inferior_ptid; 3289 3290 if (should_resume) 3291 keep_going (ecs); 3292 else 3293 stop_stepping (ecs); 3294 return; 3295 } 3296 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP; 3297 goto process_event_stop_test; 3298 3299 case TARGET_WAITKIND_VFORK_DONE: 3300 /* Done with the shared memory region. Re-insert breakpoints in 3301 the parent, and keep going. */ 3302 3303 if (debug_infrun) 3304 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORK_DONE\n"); 3305 3306 if (!ptid_equal (ecs->ptid, inferior_ptid)) 3307 context_switch (ecs->ptid); 3308 3309 current_inferior ()->waiting_for_vfork_done = 0; 3310 current_inferior ()->pspace->breakpoints_not_allowed = 0; 3311 /* This also takes care of reinserting breakpoints in the 3312 previously locked inferior. */ 3313 keep_going (ecs); 3314 return; 3315 3316 case TARGET_WAITKIND_EXECD: 3317 if (debug_infrun) 3318 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n"); 3319 3320 if (!ptid_equal (ecs->ptid, inferior_ptid)) 3321 { 3322 context_switch (ecs->ptid); 3323 reinit_frame_cache (); 3324 } 3325 3326 singlestep_breakpoints_inserted_p = 0; 3327 cancel_single_step_breakpoints (); 3328 3329 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid)); 3330 3331 /* Do whatever is necessary to the parent branch of the vfork. */ 3332 handle_vfork_child_exec_or_exit (1); 3333 3334 /* This causes the eventpoints and symbol table to be reset. 3335 Must do this now, before trying to determine whether to 3336 stop. */ 3337 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname); 3338 3339 ecs->event_thread->stop_bpstat 3340 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()), 3341 stop_pc, ecs->ptid); 3342 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat); 3343 3344 /* Note that this may be referenced from inside 3345 bpstat_stop_status above, through inferior_has_execd. */ 3346 xfree (ecs->ws.value.execd_pathname); 3347 ecs->ws.value.execd_pathname = NULL; 3348 3349 /* If no catchpoint triggered for this, then keep going. */ 3350 if (ecs->random_signal) 3351 { 3352 ecs->event_thread->stop_signal = TARGET_SIGNAL_0; 3353 keep_going (ecs); 3354 return; 3355 } 3356 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP; 3357 goto process_event_stop_test; 3358 3359 /* Be careful not to try to gather much state about a thread 3360 that's in a syscall. It's frequently a losing proposition. */ 3361 case TARGET_WAITKIND_SYSCALL_ENTRY: 3362 if (debug_infrun) 3363 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n"); 3364 /* Getting the current syscall number */ 3365 if (handle_syscall_event (ecs) != 0) 3366 return; 3367 goto process_event_stop_test; 3368 3369 /* Before examining the threads further, step this thread to 3370 get it entirely out of the syscall. (We get notice of the 3371 event when the thread is just on the verge of exiting a 3372 syscall. Stepping one instruction seems to get it back 3373 into user code.) */ 3374 case TARGET_WAITKIND_SYSCALL_RETURN: 3375 if (debug_infrun) 3376 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n"); 3377 if (handle_syscall_event (ecs) != 0) 3378 return; 3379 goto process_event_stop_test; 3380 3381 case TARGET_WAITKIND_STOPPED: 3382 if (debug_infrun) 3383 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n"); 3384 ecs->event_thread->stop_signal = ecs->ws.value.sig; 3385 break; 3386 3387 case TARGET_WAITKIND_NO_HISTORY: 3388 /* Reverse execution: target ran out of history info. */ 3389 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid)); 3390 print_stop_reason (NO_HISTORY, 0); 3391 stop_stepping (ecs); 3392 return; 3393 } 3394 3395 if (ecs->new_thread_event) 3396 { 3397 if (non_stop) 3398 /* Non-stop assumes that the target handles adding new threads 3399 to the thread list. */ 3400 internal_error (__FILE__, __LINE__, "\ 3401 targets should add new threads to the thread list themselves in non-stop mode."); 3402 3403 /* We may want to consider not doing a resume here in order to 3404 give the user a chance to play with the new thread. It might 3405 be good to make that a user-settable option. */ 3406 3407 /* At this point, all threads are stopped (happens automatically 3408 in either the OS or the native code). Therefore we need to 3409 continue all threads in order to make progress. */ 3410 3411 if (!ptid_equal (ecs->ptid, inferior_ptid)) 3412 context_switch (ecs->ptid); 3413 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0); 3414 prepare_to_wait (ecs); 3415 return; 3416 } 3417 3418 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED) 3419 { 3420 /* Do we need to clean up the state of a thread that has 3421 completed a displaced single-step? (Doing so usually affects 3422 the PC, so do it here, before we set stop_pc.) */ 3423 displaced_step_fixup (ecs->ptid, ecs->event_thread->stop_signal); 3424 3425 /* If we either finished a single-step or hit a breakpoint, but 3426 the user wanted this thread to be stopped, pretend we got a 3427 SIG0 (generic unsignaled stop). */ 3428 3429 if (ecs->event_thread->stop_requested 3430 && ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP) 3431 ecs->event_thread->stop_signal = TARGET_SIGNAL_0; 3432 } 3433 3434 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid)); 3435 3436 if (debug_infrun) 3437 { 3438 struct regcache *regcache = get_thread_regcache (ecs->ptid); 3439 struct gdbarch *gdbarch = get_regcache_arch (regcache); 3440 struct cleanup *old_chain = save_inferior_ptid (); 3441 3442 inferior_ptid = ecs->ptid; 3443 3444 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n", 3445 paddress (gdbarch, stop_pc)); 3446 if (target_stopped_by_watchpoint ()) 3447 { 3448 CORE_ADDR addr; 3449 3450 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n"); 3451 3452 if (target_stopped_data_address (¤t_target, &addr)) 3453 fprintf_unfiltered (gdb_stdlog, 3454 "infrun: stopped data address = %s\n", 3455 paddress (gdbarch, addr)); 3456 else 3457 fprintf_unfiltered (gdb_stdlog, 3458 "infrun: (no data address available)\n"); 3459 } 3460 3461 do_cleanups (old_chain); 3462 } 3463 3464 if (stepping_past_singlestep_breakpoint) 3465 { 3466 gdb_assert (singlestep_breakpoints_inserted_p); 3467 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid)); 3468 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid)); 3469 3470 stepping_past_singlestep_breakpoint = 0; 3471 3472 /* We've either finished single-stepping past the single-step 3473 breakpoint, or stopped for some other reason. It would be nice if 3474 we could tell, but we can't reliably. */ 3475 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP) 3476 { 3477 if (debug_infrun) 3478 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n"); 3479 /* Pull the single step breakpoints out of the target. */ 3480 remove_single_step_breakpoints (); 3481 singlestep_breakpoints_inserted_p = 0; 3482 3483 ecs->random_signal = 0; 3484 ecs->event_thread->trap_expected = 0; 3485 3486 context_switch (saved_singlestep_ptid); 3487 if (deprecated_context_hook) 3488 deprecated_context_hook (pid_to_thread_id (ecs->ptid)); 3489 3490 resume (1, TARGET_SIGNAL_0); 3491 prepare_to_wait (ecs); 3492 return; 3493 } 3494 } 3495 3496 if (!ptid_equal (deferred_step_ptid, null_ptid)) 3497 { 3498 /* In non-stop mode, there's never a deferred_step_ptid set. */ 3499 gdb_assert (!non_stop); 3500 3501 /* If we stopped for some other reason than single-stepping, ignore 3502 the fact that we were supposed to switch back. */ 3503 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP) 3504 { 3505 if (debug_infrun) 3506 fprintf_unfiltered (gdb_stdlog, 3507 "infrun: handling deferred step\n"); 3508 3509 /* Pull the single step breakpoints out of the target. */ 3510 if (singlestep_breakpoints_inserted_p) 3511 { 3512 remove_single_step_breakpoints (); 3513 singlestep_breakpoints_inserted_p = 0; 3514 } 3515 3516 /* Note: We do not call context_switch at this point, as the 3517 context is already set up for stepping the original thread. */ 3518 switch_to_thread (deferred_step_ptid); 3519 deferred_step_ptid = null_ptid; 3520 /* Suppress spurious "Switching to ..." message. */ 3521 previous_inferior_ptid = inferior_ptid; 3522 3523 resume (1, TARGET_SIGNAL_0); 3524 prepare_to_wait (ecs); 3525 return; 3526 } 3527 3528 deferred_step_ptid = null_ptid; 3529 } 3530 3531 /* See if a thread hit a thread-specific breakpoint that was meant for 3532 another thread. If so, then step that thread past the breakpoint, 3533 and continue it. */ 3534 3535 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP) 3536 { 3537 int thread_hop_needed = 0; 3538 struct address_space *aspace = 3539 get_regcache_aspace (get_thread_regcache (ecs->ptid)); 3540 3541 /* Check if a regular breakpoint has been hit before checking 3542 for a potential single step breakpoint. Otherwise, GDB will 3543 not see this breakpoint hit when stepping onto breakpoints. */ 3544 if (regular_breakpoint_inserted_here_p (aspace, stop_pc)) 3545 { 3546 ecs->random_signal = 0; 3547 if (!breakpoint_thread_match (aspace, stop_pc, ecs->ptid)) 3548 thread_hop_needed = 1; 3549 } 3550 else if (singlestep_breakpoints_inserted_p) 3551 { 3552 /* We have not context switched yet, so this should be true 3553 no matter which thread hit the singlestep breakpoint. */ 3554 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid)); 3555 if (debug_infrun) 3556 fprintf_unfiltered (gdb_stdlog, "infrun: software single step " 3557 "trap for %s\n", 3558 target_pid_to_str (ecs->ptid)); 3559 3560 ecs->random_signal = 0; 3561 /* The call to in_thread_list is necessary because PTIDs sometimes 3562 change when we go from single-threaded to multi-threaded. If 3563 the singlestep_ptid is still in the list, assume that it is 3564 really different from ecs->ptid. */ 3565 if (!ptid_equal (singlestep_ptid, ecs->ptid) 3566 && in_thread_list (singlestep_ptid)) 3567 { 3568 /* If the PC of the thread we were trying to single-step 3569 has changed, discard this event (which we were going 3570 to ignore anyway), and pretend we saw that thread 3571 trap. This prevents us continuously moving the 3572 single-step breakpoint forward, one instruction at a 3573 time. If the PC has changed, then the thread we were 3574 trying to single-step has trapped or been signalled, 3575 but the event has not been reported to GDB yet. 3576 3577 There might be some cases where this loses signal 3578 information, if a signal has arrived at exactly the 3579 same time that the PC changed, but this is the best 3580 we can do with the information available. Perhaps we 3581 should arrange to report all events for all threads 3582 when they stop, or to re-poll the remote looking for 3583 this particular thread (i.e. temporarily enable 3584 schedlock). */ 3585 3586 CORE_ADDR new_singlestep_pc 3587 = regcache_read_pc (get_thread_regcache (singlestep_ptid)); 3588 3589 if (new_singlestep_pc != singlestep_pc) 3590 { 3591 enum target_signal stop_signal; 3592 3593 if (debug_infrun) 3594 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread," 3595 " but expected thread advanced also\n"); 3596 3597 /* The current context still belongs to 3598 singlestep_ptid. Don't swap here, since that's 3599 the context we want to use. Just fudge our 3600 state and continue. */ 3601 stop_signal = ecs->event_thread->stop_signal; 3602 ecs->event_thread->stop_signal = TARGET_SIGNAL_0; 3603 ecs->ptid = singlestep_ptid; 3604 ecs->event_thread = find_thread_ptid (ecs->ptid); 3605 ecs->event_thread->stop_signal = stop_signal; 3606 stop_pc = new_singlestep_pc; 3607 } 3608 else 3609 { 3610 if (debug_infrun) 3611 fprintf_unfiltered (gdb_stdlog, 3612 "infrun: unexpected thread\n"); 3613 3614 thread_hop_needed = 1; 3615 stepping_past_singlestep_breakpoint = 1; 3616 saved_singlestep_ptid = singlestep_ptid; 3617 } 3618 } 3619 } 3620 3621 if (thread_hop_needed) 3622 { 3623 struct regcache *thread_regcache; 3624 int remove_status = 0; 3625 3626 if (debug_infrun) 3627 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n"); 3628 3629 /* Switch context before touching inferior memory, the 3630 previous thread may have exited. */ 3631 if (!ptid_equal (inferior_ptid, ecs->ptid)) 3632 context_switch (ecs->ptid); 3633 3634 /* Saw a breakpoint, but it was hit by the wrong thread. 3635 Just continue. */ 3636 3637 if (singlestep_breakpoints_inserted_p) 3638 { 3639 /* Pull the single step breakpoints out of the target. */ 3640 remove_single_step_breakpoints (); 3641 singlestep_breakpoints_inserted_p = 0; 3642 } 3643 3644 /* If the arch can displace step, don't remove the 3645 breakpoints. */ 3646 thread_regcache = get_thread_regcache (ecs->ptid); 3647 if (!use_displaced_stepping (get_regcache_arch (thread_regcache))) 3648 remove_status = remove_breakpoints (); 3649 3650 /* Did we fail to remove breakpoints? If so, try 3651 to set the PC past the bp. (There's at least 3652 one situation in which we can fail to remove 3653 the bp's: On HP-UX's that use ttrace, we can't 3654 change the address space of a vforking child 3655 process until the child exits (well, okay, not 3656 then either :-) or execs. */ 3657 if (remove_status != 0) 3658 error (_("Cannot step over breakpoint hit in wrong thread")); 3659 else 3660 { /* Single step */ 3661 if (!non_stop) 3662 { 3663 /* Only need to require the next event from this 3664 thread in all-stop mode. */ 3665 waiton_ptid = ecs->ptid; 3666 infwait_state = infwait_thread_hop_state; 3667 } 3668 3669 ecs->event_thread->stepping_over_breakpoint = 1; 3670 keep_going (ecs); 3671 return; 3672 } 3673 } 3674 else if (singlestep_breakpoints_inserted_p) 3675 { 3676 sw_single_step_trap_p = 1; 3677 ecs->random_signal = 0; 3678 } 3679 } 3680 else 3681 ecs->random_signal = 1; 3682 3683 /* See if something interesting happened to the non-current thread. If 3684 so, then switch to that thread. */ 3685 if (!ptid_equal (ecs->ptid, inferior_ptid)) 3686 { 3687 if (debug_infrun) 3688 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n"); 3689 3690 context_switch (ecs->ptid); 3691 3692 if (deprecated_context_hook) 3693 deprecated_context_hook (pid_to_thread_id (ecs->ptid)); 3694 } 3695 3696 /* At this point, get hold of the now-current thread's frame. */ 3697 frame = get_current_frame (); 3698 gdbarch = get_frame_arch (frame); 3699 3700 if (singlestep_breakpoints_inserted_p) 3701 { 3702 /* Pull the single step breakpoints out of the target. */ 3703 remove_single_step_breakpoints (); 3704 singlestep_breakpoints_inserted_p = 0; 3705 } 3706 3707 if (stepped_after_stopped_by_watchpoint) 3708 stopped_by_watchpoint = 0; 3709 else 3710 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws); 3711 3712 /* If necessary, step over this watchpoint. We'll be back to display 3713 it in a moment. */ 3714 if (stopped_by_watchpoint 3715 && (target_have_steppable_watchpoint 3716 || gdbarch_have_nonsteppable_watchpoint (gdbarch))) 3717 { 3718 /* At this point, we are stopped at an instruction which has 3719 attempted to write to a piece of memory under control of 3720 a watchpoint. The instruction hasn't actually executed 3721 yet. If we were to evaluate the watchpoint expression 3722 now, we would get the old value, and therefore no change 3723 would seem to have occurred. 3724 3725 In order to make watchpoints work `right', we really need 3726 to complete the memory write, and then evaluate the 3727 watchpoint expression. We do this by single-stepping the 3728 target. 3729 3730 It may not be necessary to disable the watchpoint to stop over 3731 it. For example, the PA can (with some kernel cooperation) 3732 single step over a watchpoint without disabling the watchpoint. 3733 3734 It is far more common to need to disable a watchpoint to step 3735 the inferior over it. If we have non-steppable watchpoints, 3736 we must disable the current watchpoint; it's simplest to 3737 disable all watchpoints and breakpoints. */ 3738 int hw_step = 1; 3739 3740 if (!target_have_steppable_watchpoint) 3741 remove_breakpoints (); 3742 /* Single step */ 3743 hw_step = maybe_software_singlestep (gdbarch, stop_pc); 3744 target_resume (ecs->ptid, hw_step, TARGET_SIGNAL_0); 3745 waiton_ptid = ecs->ptid; 3746 if (target_have_steppable_watchpoint) 3747 infwait_state = infwait_step_watch_state; 3748 else 3749 infwait_state = infwait_nonstep_watch_state; 3750 prepare_to_wait (ecs); 3751 return; 3752 } 3753 3754 ecs->stop_func_start = 0; 3755 ecs->stop_func_end = 0; 3756 ecs->stop_func_name = 0; 3757 /* Don't care about return value; stop_func_start and stop_func_name 3758 will both be 0 if it doesn't work. */ 3759 find_pc_partial_function (stop_pc, &ecs->stop_func_name, 3760 &ecs->stop_func_start, &ecs->stop_func_end); 3761 ecs->stop_func_start 3762 += gdbarch_deprecated_function_start_offset (gdbarch); 3763 ecs->event_thread->stepping_over_breakpoint = 0; 3764 bpstat_clear (&ecs->event_thread->stop_bpstat); 3765 ecs->event_thread->stop_step = 0; 3766 stop_print_frame = 1; 3767 ecs->random_signal = 0; 3768 stopped_by_random_signal = 0; 3769 3770 /* Hide inlined functions starting here, unless we just performed stepi or 3771 nexti. After stepi and nexti, always show the innermost frame (not any 3772 inline function call sites). */ 3773 if (ecs->event_thread->step_range_end != 1) 3774 skip_inline_frames (ecs->ptid); 3775 3776 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP 3777 && ecs->event_thread->trap_expected 3778 && gdbarch_single_step_through_delay_p (gdbarch) 3779 && currently_stepping (ecs->event_thread)) 3780 { 3781 /* We're trying to step off a breakpoint. Turns out that we're 3782 also on an instruction that needs to be stepped multiple 3783 times before it's been fully executing. E.g., architectures 3784 with a delay slot. It needs to be stepped twice, once for 3785 the instruction and once for the delay slot. */ 3786 int step_through_delay 3787 = gdbarch_single_step_through_delay (gdbarch, frame); 3788 3789 if (debug_infrun && step_through_delay) 3790 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n"); 3791 if (ecs->event_thread->step_range_end == 0 && step_through_delay) 3792 { 3793 /* The user issued a continue when stopped at a breakpoint. 3794 Set up for another trap and get out of here. */ 3795 ecs->event_thread->stepping_over_breakpoint = 1; 3796 keep_going (ecs); 3797 return; 3798 } 3799 else if (step_through_delay) 3800 { 3801 /* The user issued a step when stopped at a breakpoint. 3802 Maybe we should stop, maybe we should not - the delay 3803 slot *might* correspond to a line of source. In any 3804 case, don't decide that here, just set 3805 ecs->stepping_over_breakpoint, making sure we 3806 single-step again before breakpoints are re-inserted. */ 3807 ecs->event_thread->stepping_over_breakpoint = 1; 3808 } 3809 } 3810 3811 /* Look at the cause of the stop, and decide what to do. 3812 The alternatives are: 3813 1) stop_stepping and return; to really stop and return to the debugger, 3814 2) keep_going and return to start up again 3815 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once) 3816 3) set ecs->random_signal to 1, and the decision between 1 and 2 3817 will be made according to the signal handling tables. */ 3818 3819 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP 3820 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP 3821 || stop_soon == STOP_QUIETLY_REMOTE) 3822 { 3823 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap) 3824 { 3825 if (debug_infrun) 3826 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n"); 3827 stop_print_frame = 0; 3828 stop_stepping (ecs); 3829 return; 3830 } 3831 3832 /* This is originated from start_remote(), start_inferior() and 3833 shared libraries hook functions. */ 3834 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE) 3835 { 3836 if (debug_infrun) 3837 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n"); 3838 stop_stepping (ecs); 3839 return; 3840 } 3841 3842 /* This originates from attach_command(). We need to overwrite 3843 the stop_signal here, because some kernels don't ignore a 3844 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call. 3845 See more comments in inferior.h. On the other hand, if we 3846 get a non-SIGSTOP, report it to the user - assume the backend 3847 will handle the SIGSTOP if it should show up later. 3848 3849 Also consider that the attach is complete when we see a 3850 SIGTRAP. Some systems (e.g. Windows), and stubs supporting 3851 target extended-remote report it instead of a SIGSTOP 3852 (e.g. gdbserver). We already rely on SIGTRAP being our 3853 signal, so this is no exception. 3854 3855 Also consider that the attach is complete when we see a 3856 TARGET_SIGNAL_0. In non-stop mode, GDB will explicitly tell 3857 the target to stop all threads of the inferior, in case the 3858 low level attach operation doesn't stop them implicitly. If 3859 they weren't stopped implicitly, then the stub will report a 3860 TARGET_SIGNAL_0, meaning: stopped for no particular reason 3861 other than GDB's request. */ 3862 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP 3863 && (ecs->event_thread->stop_signal == TARGET_SIGNAL_STOP 3864 || ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP 3865 || ecs->event_thread->stop_signal == TARGET_SIGNAL_0)) 3866 { 3867 stop_stepping (ecs); 3868 ecs->event_thread->stop_signal = TARGET_SIGNAL_0; 3869 return; 3870 } 3871 3872 /* See if there is a breakpoint at the current PC. */ 3873 ecs->event_thread->stop_bpstat 3874 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()), 3875 stop_pc, ecs->ptid); 3876 3877 /* Following in case break condition called a 3878 function. */ 3879 stop_print_frame = 1; 3880 3881 /* This is where we handle "moribund" watchpoints. Unlike 3882 software breakpoints traps, hardware watchpoint traps are 3883 always distinguishable from random traps. If no high-level 3884 watchpoint is associated with the reported stop data address 3885 anymore, then the bpstat does not explain the signal --- 3886 simply make sure to ignore it if `stopped_by_watchpoint' is 3887 set. */ 3888 3889 if (debug_infrun 3890 && ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP 3891 && !bpstat_explains_signal (ecs->event_thread->stop_bpstat) 3892 && stopped_by_watchpoint) 3893 fprintf_unfiltered (gdb_stdlog, "\ 3894 infrun: no user watchpoint explains watchpoint SIGTRAP, ignoring\n"); 3895 3896 /* NOTE: cagney/2003-03-29: These two checks for a random signal 3897 at one stage in the past included checks for an inferior 3898 function call's call dummy's return breakpoint. The original 3899 comment, that went with the test, read: 3900 3901 ``End of a stack dummy. Some systems (e.g. Sony news) give 3902 another signal besides SIGTRAP, so check here as well as 3903 above.'' 3904 3905 If someone ever tries to get call dummys on a 3906 non-executable stack to work (where the target would stop 3907 with something like a SIGSEGV), then those tests might need 3908 to be re-instated. Given, however, that the tests were only 3909 enabled when momentary breakpoints were not being used, I 3910 suspect that it won't be the case. 3911 3912 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to 3913 be necessary for call dummies on a non-executable stack on 3914 SPARC. */ 3915 3916 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP) 3917 ecs->random_signal 3918 = !(bpstat_explains_signal (ecs->event_thread->stop_bpstat) 3919 || stopped_by_watchpoint 3920 || ecs->event_thread->trap_expected 3921 || (ecs->event_thread->step_range_end 3922 && ecs->event_thread->step_resume_breakpoint == NULL)); 3923 else 3924 { 3925 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat); 3926 if (!ecs->random_signal) 3927 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP; 3928 } 3929 } 3930 3931 /* When we reach this point, we've pretty much decided 3932 that the reason for stopping must've been a random 3933 (unexpected) signal. */ 3934 3935 else 3936 ecs->random_signal = 1; 3937 3938 process_event_stop_test: 3939 3940 /* Re-fetch current thread's frame in case we did a 3941 "goto process_event_stop_test" above. */ 3942 frame = get_current_frame (); 3943 gdbarch = get_frame_arch (frame); 3944 3945 /* For the program's own signals, act according to 3946 the signal handling tables. */ 3947 3948 if (ecs->random_signal) 3949 { 3950 /* Signal not for debugging purposes. */ 3951 int printed = 0; 3952 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid)); 3953 3954 if (debug_infrun) 3955 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n", 3956 ecs->event_thread->stop_signal); 3957 3958 stopped_by_random_signal = 1; 3959 3960 if (signal_print[ecs->event_thread->stop_signal]) 3961 { 3962 printed = 1; 3963 target_terminal_ours_for_output (); 3964 print_stop_reason (SIGNAL_RECEIVED, ecs->event_thread->stop_signal); 3965 } 3966 /* Always stop on signals if we're either just gaining control 3967 of the program, or the user explicitly requested this thread 3968 to remain stopped. */ 3969 if (stop_soon != NO_STOP_QUIETLY 3970 || ecs->event_thread->stop_requested 3971 || (!inf->detaching 3972 && signal_stop_state (ecs->event_thread->stop_signal))) 3973 { 3974 stop_stepping (ecs); 3975 return; 3976 } 3977 /* If not going to stop, give terminal back 3978 if we took it away. */ 3979 else if (printed) 3980 target_terminal_inferior (); 3981 3982 /* Clear the signal if it should not be passed. */ 3983 if (signal_program[ecs->event_thread->stop_signal] == 0) 3984 ecs->event_thread->stop_signal = TARGET_SIGNAL_0; 3985 3986 if (ecs->event_thread->prev_pc == stop_pc 3987 && ecs->event_thread->trap_expected 3988 && ecs->event_thread->step_resume_breakpoint == NULL) 3989 { 3990 /* We were just starting a new sequence, attempting to 3991 single-step off of a breakpoint and expecting a SIGTRAP. 3992 Instead this signal arrives. This signal will take us out 3993 of the stepping range so GDB needs to remember to, when 3994 the signal handler returns, resume stepping off that 3995 breakpoint. */ 3996 /* To simplify things, "continue" is forced to use the same 3997 code paths as single-step - set a breakpoint at the 3998 signal return address and then, once hit, step off that 3999 breakpoint. */ 4000 if (debug_infrun) 4001 fprintf_unfiltered (gdb_stdlog, 4002 "infrun: signal arrived while stepping over " 4003 "breakpoint\n"); 4004 4005 insert_step_resume_breakpoint_at_frame (frame); 4006 ecs->event_thread->step_after_step_resume_breakpoint = 1; 4007 keep_going (ecs); 4008 return; 4009 } 4010 4011 if (ecs->event_thread->step_range_end != 0 4012 && ecs->event_thread->stop_signal != TARGET_SIGNAL_0 4013 && (ecs->event_thread->step_range_start <= stop_pc 4014 && stop_pc < ecs->event_thread->step_range_end) 4015 && frame_id_eq (get_stack_frame_id (frame), 4016 ecs->event_thread->step_stack_frame_id) 4017 && ecs->event_thread->step_resume_breakpoint == NULL) 4018 { 4019 /* The inferior is about to take a signal that will take it 4020 out of the single step range. Set a breakpoint at the 4021 current PC (which is presumably where the signal handler 4022 will eventually return) and then allow the inferior to 4023 run free. 4024 4025 Note that this is only needed for a signal delivered 4026 while in the single-step range. Nested signals aren't a 4027 problem as they eventually all return. */ 4028 if (debug_infrun) 4029 fprintf_unfiltered (gdb_stdlog, 4030 "infrun: signal may take us out of " 4031 "single-step range\n"); 4032 4033 insert_step_resume_breakpoint_at_frame (frame); 4034 keep_going (ecs); 4035 return; 4036 } 4037 4038 /* Note: step_resume_breakpoint may be non-NULL. This occures 4039 when either there's a nested signal, or when there's a 4040 pending signal enabled just as the signal handler returns 4041 (leaving the inferior at the step-resume-breakpoint without 4042 actually executing it). Either way continue until the 4043 breakpoint is really hit. */ 4044 keep_going (ecs); 4045 return; 4046 } 4047 4048 /* Handle cases caused by hitting a breakpoint. */ 4049 { 4050 CORE_ADDR jmp_buf_pc; 4051 struct bpstat_what what; 4052 4053 what = bpstat_what (ecs->event_thread->stop_bpstat); 4054 4055 if (what.call_dummy) 4056 { 4057 stop_stack_dummy = what.call_dummy; 4058 } 4059 4060 /* If we hit an internal event that triggers symbol changes, the 4061 current frame will be invalidated within bpstat_what (e.g., if 4062 we hit an internal solib event). Re-fetch it. */ 4063 frame = get_current_frame (); 4064 gdbarch = get_frame_arch (frame); 4065 4066 switch (what.main_action) 4067 { 4068 case BPSTAT_WHAT_SET_LONGJMP_RESUME: 4069 /* If we hit the breakpoint at longjmp while stepping, we 4070 install a momentary breakpoint at the target of the 4071 jmp_buf. */ 4072 4073 if (debug_infrun) 4074 fprintf_unfiltered (gdb_stdlog, 4075 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n"); 4076 4077 ecs->event_thread->stepping_over_breakpoint = 1; 4078 4079 if (!gdbarch_get_longjmp_target_p (gdbarch) 4080 || !gdbarch_get_longjmp_target (gdbarch, frame, &jmp_buf_pc)) 4081 { 4082 if (debug_infrun) 4083 fprintf_unfiltered (gdb_stdlog, "\ 4084 infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME (!gdbarch_get_longjmp_target)\n"); 4085 keep_going (ecs); 4086 return; 4087 } 4088 4089 /* We're going to replace the current step-resume breakpoint 4090 with a longjmp-resume breakpoint. */ 4091 delete_step_resume_breakpoint (ecs->event_thread); 4092 4093 /* Insert a breakpoint at resume address. */ 4094 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc); 4095 4096 keep_going (ecs); 4097 return; 4098 4099 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME: 4100 if (debug_infrun) 4101 fprintf_unfiltered (gdb_stdlog, 4102 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n"); 4103 4104 gdb_assert (ecs->event_thread->step_resume_breakpoint != NULL); 4105 delete_step_resume_breakpoint (ecs->event_thread); 4106 4107 ecs->event_thread->stop_step = 1; 4108 print_stop_reason (END_STEPPING_RANGE, 0); 4109 stop_stepping (ecs); 4110 return; 4111 4112 case BPSTAT_WHAT_SINGLE: 4113 if (debug_infrun) 4114 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n"); 4115 ecs->event_thread->stepping_over_breakpoint = 1; 4116 /* Still need to check other stuff, at least the case 4117 where we are stepping and step out of the right range. */ 4118 break; 4119 4120 case BPSTAT_WHAT_STOP_NOISY: 4121 if (debug_infrun) 4122 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n"); 4123 stop_print_frame = 1; 4124 4125 /* We are about to nuke the step_resume_breakpointt via the 4126 cleanup chain, so no need to worry about it here. */ 4127 4128 stop_stepping (ecs); 4129 return; 4130 4131 case BPSTAT_WHAT_STOP_SILENT: 4132 if (debug_infrun) 4133 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n"); 4134 stop_print_frame = 0; 4135 4136 /* We are about to nuke the step_resume_breakpoin via the 4137 cleanup chain, so no need to worry about it here. */ 4138 4139 stop_stepping (ecs); 4140 return; 4141 4142 case BPSTAT_WHAT_STEP_RESUME: 4143 if (debug_infrun) 4144 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n"); 4145 4146 delete_step_resume_breakpoint (ecs->event_thread); 4147 if (ecs->event_thread->step_after_step_resume_breakpoint) 4148 { 4149 /* Back when the step-resume breakpoint was inserted, we 4150 were trying to single-step off a breakpoint. Go back 4151 to doing that. */ 4152 ecs->event_thread->step_after_step_resume_breakpoint = 0; 4153 ecs->event_thread->stepping_over_breakpoint = 1; 4154 keep_going (ecs); 4155 return; 4156 } 4157 if (stop_pc == ecs->stop_func_start 4158 && execution_direction == EXEC_REVERSE) 4159 { 4160 /* We are stepping over a function call in reverse, and 4161 just hit the step-resume breakpoint at the start 4162 address of the function. Go back to single-stepping, 4163 which should take us back to the function call. */ 4164 ecs->event_thread->stepping_over_breakpoint = 1; 4165 keep_going (ecs); 4166 return; 4167 } 4168 break; 4169 4170 case BPSTAT_WHAT_KEEP_CHECKING: 4171 break; 4172 } 4173 } 4174 4175 /* We come here if we hit a breakpoint but should not 4176 stop for it. Possibly we also were stepping 4177 and should stop for that. So fall through and 4178 test for stepping. But, if not stepping, 4179 do not stop. */ 4180 4181 /* In all-stop mode, if we're currently stepping but have stopped in 4182 some other thread, we need to switch back to the stepped thread. */ 4183 if (!non_stop) 4184 { 4185 struct thread_info *tp; 4186 4187 tp = iterate_over_threads (currently_stepping_or_nexting_callback, 4188 ecs->event_thread); 4189 if (tp) 4190 { 4191 /* However, if the current thread is blocked on some internal 4192 breakpoint, and we simply need to step over that breakpoint 4193 to get it going again, do that first. */ 4194 if ((ecs->event_thread->trap_expected 4195 && ecs->event_thread->stop_signal != TARGET_SIGNAL_TRAP) 4196 || ecs->event_thread->stepping_over_breakpoint) 4197 { 4198 keep_going (ecs); 4199 return; 4200 } 4201 4202 /* If the stepping thread exited, then don't try to switch 4203 back and resume it, which could fail in several different 4204 ways depending on the target. Instead, just keep going. 4205 4206 We can find a stepping dead thread in the thread list in 4207 two cases: 4208 4209 - The target supports thread exit events, and when the 4210 target tries to delete the thread from the thread list, 4211 inferior_ptid pointed at the exiting thread. In such 4212 case, calling delete_thread does not really remove the 4213 thread from the list; instead, the thread is left listed, 4214 with 'exited' state. 4215 4216 - The target's debug interface does not support thread 4217 exit events, and so we have no idea whatsoever if the 4218 previously stepping thread is still alive. For that 4219 reason, we need to synchronously query the target 4220 now. */ 4221 if (is_exited (tp->ptid) 4222 || !target_thread_alive (tp->ptid)) 4223 { 4224 if (debug_infrun) 4225 fprintf_unfiltered (gdb_stdlog, "\ 4226 infrun: not switching back to stepped thread, it has vanished\n"); 4227 4228 delete_thread (tp->ptid); 4229 keep_going (ecs); 4230 return; 4231 } 4232 4233 /* Otherwise, we no longer expect a trap in the current thread. 4234 Clear the trap_expected flag before switching back -- this is 4235 what keep_going would do as well, if we called it. */ 4236 ecs->event_thread->trap_expected = 0; 4237 4238 if (debug_infrun) 4239 fprintf_unfiltered (gdb_stdlog, 4240 "infrun: switching back to stepped thread\n"); 4241 4242 ecs->event_thread = tp; 4243 ecs->ptid = tp->ptid; 4244 context_switch (ecs->ptid); 4245 keep_going (ecs); 4246 return; 4247 } 4248 } 4249 4250 /* Are we stepping to get the inferior out of the dynamic linker's 4251 hook (and possibly the dld itself) after catching a shlib 4252 event? */ 4253 if (ecs->event_thread->stepping_through_solib_after_catch) 4254 { 4255 #if defined(SOLIB_ADD) 4256 /* Have we reached our destination? If not, keep going. */ 4257 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc)) 4258 { 4259 if (debug_infrun) 4260 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n"); 4261 ecs->event_thread->stepping_over_breakpoint = 1; 4262 keep_going (ecs); 4263 return; 4264 } 4265 #endif 4266 if (debug_infrun) 4267 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n"); 4268 /* Else, stop and report the catchpoint(s) whose triggering 4269 caused us to begin stepping. */ 4270 ecs->event_thread->stepping_through_solib_after_catch = 0; 4271 bpstat_clear (&ecs->event_thread->stop_bpstat); 4272 ecs->event_thread->stop_bpstat 4273 = bpstat_copy (ecs->event_thread->stepping_through_solib_catchpoints); 4274 bpstat_clear (&ecs->event_thread->stepping_through_solib_catchpoints); 4275 stop_print_frame = 1; 4276 stop_stepping (ecs); 4277 return; 4278 } 4279 4280 if (ecs->event_thread->step_resume_breakpoint) 4281 { 4282 if (debug_infrun) 4283 fprintf_unfiltered (gdb_stdlog, 4284 "infrun: step-resume breakpoint is inserted\n"); 4285 4286 /* Having a step-resume breakpoint overrides anything 4287 else having to do with stepping commands until 4288 that breakpoint is reached. */ 4289 keep_going (ecs); 4290 return; 4291 } 4292 4293 if (ecs->event_thread->step_range_end == 0) 4294 { 4295 if (debug_infrun) 4296 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n"); 4297 /* Likewise if we aren't even stepping. */ 4298 keep_going (ecs); 4299 return; 4300 } 4301 4302 /* Re-fetch current thread's frame in case the code above caused 4303 the frame cache to be re-initialized, making our FRAME variable 4304 a dangling pointer. */ 4305 frame = get_current_frame (); 4306 gdbarch = get_frame_arch (frame); 4307 4308 /* If stepping through a line, keep going if still within it. 4309 4310 Note that step_range_end is the address of the first instruction 4311 beyond the step range, and NOT the address of the last instruction 4312 within it! 4313 4314 Note also that during reverse execution, we may be stepping 4315 through a function epilogue and therefore must detect when 4316 the current-frame changes in the middle of a line. */ 4317 4318 if (stop_pc >= ecs->event_thread->step_range_start 4319 && stop_pc < ecs->event_thread->step_range_end 4320 && (execution_direction != EXEC_REVERSE 4321 || frame_id_eq (get_frame_id (frame), 4322 ecs->event_thread->step_frame_id))) 4323 { 4324 if (debug_infrun) 4325 fprintf_unfiltered 4326 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n", 4327 paddress (gdbarch, ecs->event_thread->step_range_start), 4328 paddress (gdbarch, ecs->event_thread->step_range_end)); 4329 4330 /* When stepping backward, stop at beginning of line range 4331 (unless it's the function entry point, in which case 4332 keep going back to the call point). */ 4333 if (stop_pc == ecs->event_thread->step_range_start 4334 && stop_pc != ecs->stop_func_start 4335 && execution_direction == EXEC_REVERSE) 4336 { 4337 ecs->event_thread->stop_step = 1; 4338 print_stop_reason (END_STEPPING_RANGE, 0); 4339 stop_stepping (ecs); 4340 } 4341 else 4342 keep_going (ecs); 4343 4344 return; 4345 } 4346 4347 /* We stepped out of the stepping range. */ 4348 4349 /* If we are stepping at the source level and entered the runtime 4350 loader dynamic symbol resolution code... 4351 4352 EXEC_FORWARD: we keep on single stepping until we exit the run 4353 time loader code and reach the callee's address. 4354 4355 EXEC_REVERSE: we've already executed the callee (backward), and 4356 the runtime loader code is handled just like any other 4357 undebuggable function call. Now we need only keep stepping 4358 backward through the trampoline code, and that's handled further 4359 down, so there is nothing for us to do here. */ 4360 4361 if (execution_direction != EXEC_REVERSE 4362 && ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE 4363 && in_solib_dynsym_resolve_code (stop_pc)) 4364 { 4365 CORE_ADDR pc_after_resolver = 4366 gdbarch_skip_solib_resolver (gdbarch, stop_pc); 4367 4368 if (debug_infrun) 4369 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n"); 4370 4371 if (pc_after_resolver) 4372 { 4373 /* Set up a step-resume breakpoint at the address 4374 indicated by SKIP_SOLIB_RESOLVER. */ 4375 struct symtab_and_line sr_sal; 4376 4377 init_sal (&sr_sal); 4378 sr_sal.pc = pc_after_resolver; 4379 sr_sal.pspace = get_frame_program_space (frame); 4380 4381 insert_step_resume_breakpoint_at_sal (gdbarch, 4382 sr_sal, null_frame_id); 4383 } 4384 4385 keep_going (ecs); 4386 return; 4387 } 4388 4389 if (ecs->event_thread->step_range_end != 1 4390 && (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE 4391 || ecs->event_thread->step_over_calls == STEP_OVER_ALL) 4392 && get_frame_type (frame) == SIGTRAMP_FRAME) 4393 { 4394 if (debug_infrun) 4395 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n"); 4396 /* The inferior, while doing a "step" or "next", has ended up in 4397 a signal trampoline (either by a signal being delivered or by 4398 the signal handler returning). Just single-step until the 4399 inferior leaves the trampoline (either by calling the handler 4400 or returning). */ 4401 keep_going (ecs); 4402 return; 4403 } 4404 4405 /* Check for subroutine calls. The check for the current frame 4406 equalling the step ID is not necessary - the check of the 4407 previous frame's ID is sufficient - but it is a common case and 4408 cheaper than checking the previous frame's ID. 4409 4410 NOTE: frame_id_eq will never report two invalid frame IDs as 4411 being equal, so to get into this block, both the current and 4412 previous frame must have valid frame IDs. */ 4413 /* The outer_frame_id check is a heuristic to detect stepping 4414 through startup code. If we step over an instruction which 4415 sets the stack pointer from an invalid value to a valid value, 4416 we may detect that as a subroutine call from the mythical 4417 "outermost" function. This could be fixed by marking 4418 outermost frames as !stack_p,code_p,special_p. Then the 4419 initial outermost frame, before sp was valid, would 4420 have code_addr == &_start. See the comment in frame_id_eq 4421 for more. */ 4422 if (!frame_id_eq (get_stack_frame_id (frame), 4423 ecs->event_thread->step_stack_frame_id) 4424 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()), 4425 ecs->event_thread->step_stack_frame_id) 4426 && (!frame_id_eq (ecs->event_thread->step_stack_frame_id, 4427 outer_frame_id) 4428 || step_start_function != find_pc_function (stop_pc)))) 4429 { 4430 CORE_ADDR real_stop_pc; 4431 4432 if (debug_infrun) 4433 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n"); 4434 4435 if ((ecs->event_thread->step_over_calls == STEP_OVER_NONE) 4436 || ((ecs->event_thread->step_range_end == 1) 4437 && in_prologue (gdbarch, ecs->event_thread->prev_pc, 4438 ecs->stop_func_start))) 4439 { 4440 /* I presume that step_over_calls is only 0 when we're 4441 supposed to be stepping at the assembly language level 4442 ("stepi"). Just stop. */ 4443 /* Also, maybe we just did a "nexti" inside a prolog, so we 4444 thought it was a subroutine call but it was not. Stop as 4445 well. FENN */ 4446 /* And this works the same backward as frontward. MVS */ 4447 ecs->event_thread->stop_step = 1; 4448 print_stop_reason (END_STEPPING_RANGE, 0); 4449 stop_stepping (ecs); 4450 return; 4451 } 4452 4453 /* Reverse stepping through solib trampolines. */ 4454 4455 if (execution_direction == EXEC_REVERSE 4456 && ecs->event_thread->step_over_calls != STEP_OVER_NONE 4457 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc) 4458 || (ecs->stop_func_start == 0 4459 && in_solib_dynsym_resolve_code (stop_pc)))) 4460 { 4461 /* Any solib trampoline code can be handled in reverse 4462 by simply continuing to single-step. We have already 4463 executed the solib function (backwards), and a few 4464 steps will take us back through the trampoline to the 4465 caller. */ 4466 keep_going (ecs); 4467 return; 4468 } 4469 4470 if (ecs->event_thread->step_over_calls == STEP_OVER_ALL) 4471 { 4472 /* We're doing a "next". 4473 4474 Normal (forward) execution: set a breakpoint at the 4475 callee's return address (the address at which the caller 4476 will resume). 4477 4478 Reverse (backward) execution. set the step-resume 4479 breakpoint at the start of the function that we just 4480 stepped into (backwards), and continue to there. When we 4481 get there, we'll need to single-step back to the caller. */ 4482 4483 if (execution_direction == EXEC_REVERSE) 4484 { 4485 struct symtab_and_line sr_sal; 4486 4487 /* Normal function call return (static or dynamic). */ 4488 init_sal (&sr_sal); 4489 sr_sal.pc = ecs->stop_func_start; 4490 sr_sal.pspace = get_frame_program_space (frame); 4491 insert_step_resume_breakpoint_at_sal (gdbarch, 4492 sr_sal, null_frame_id); 4493 } 4494 else 4495 insert_step_resume_breakpoint_at_caller (frame); 4496 4497 keep_going (ecs); 4498 return; 4499 } 4500 4501 /* If we are in a function call trampoline (a stub between the 4502 calling routine and the real function), locate the real 4503 function. That's what tells us (a) whether we want to step 4504 into it at all, and (b) what prologue we want to run to the 4505 end of, if we do step into it. */ 4506 real_stop_pc = skip_language_trampoline (frame, stop_pc); 4507 if (real_stop_pc == 0) 4508 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc); 4509 if (real_stop_pc != 0) 4510 ecs->stop_func_start = real_stop_pc; 4511 4512 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc)) 4513 { 4514 struct symtab_and_line sr_sal; 4515 4516 init_sal (&sr_sal); 4517 sr_sal.pc = ecs->stop_func_start; 4518 sr_sal.pspace = get_frame_program_space (frame); 4519 4520 insert_step_resume_breakpoint_at_sal (gdbarch, 4521 sr_sal, null_frame_id); 4522 keep_going (ecs); 4523 return; 4524 } 4525 4526 /* If we have line number information for the function we are 4527 thinking of stepping into, step into it. 4528 4529 If there are several symtabs at that PC (e.g. with include 4530 files), just want to know whether *any* of them have line 4531 numbers. find_pc_line handles this. */ 4532 { 4533 struct symtab_and_line tmp_sal; 4534 4535 tmp_sal = find_pc_line (ecs->stop_func_start, 0); 4536 tmp_sal.pspace = get_frame_program_space (frame); 4537 if (tmp_sal.line != 0) 4538 { 4539 if (execution_direction == EXEC_REVERSE) 4540 handle_step_into_function_backward (gdbarch, ecs); 4541 else 4542 handle_step_into_function (gdbarch, ecs); 4543 return; 4544 } 4545 } 4546 4547 /* If we have no line number and the step-stop-if-no-debug is 4548 set, we stop the step so that the user has a chance to switch 4549 in assembly mode. */ 4550 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE 4551 && step_stop_if_no_debug) 4552 { 4553 ecs->event_thread->stop_step = 1; 4554 print_stop_reason (END_STEPPING_RANGE, 0); 4555 stop_stepping (ecs); 4556 return; 4557 } 4558 4559 if (execution_direction == EXEC_REVERSE) 4560 { 4561 /* Set a breakpoint at callee's start address. 4562 From there we can step once and be back in the caller. */ 4563 struct symtab_and_line sr_sal; 4564 4565 init_sal (&sr_sal); 4566 sr_sal.pc = ecs->stop_func_start; 4567 sr_sal.pspace = get_frame_program_space (frame); 4568 insert_step_resume_breakpoint_at_sal (gdbarch, 4569 sr_sal, null_frame_id); 4570 } 4571 else 4572 /* Set a breakpoint at callee's return address (the address 4573 at which the caller will resume). */ 4574 insert_step_resume_breakpoint_at_caller (frame); 4575 4576 keep_going (ecs); 4577 return; 4578 } 4579 4580 /* Reverse stepping through solib trampolines. */ 4581 4582 if (execution_direction == EXEC_REVERSE 4583 && ecs->event_thread->step_over_calls != STEP_OVER_NONE) 4584 { 4585 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc) 4586 || (ecs->stop_func_start == 0 4587 && in_solib_dynsym_resolve_code (stop_pc))) 4588 { 4589 /* Any solib trampoline code can be handled in reverse 4590 by simply continuing to single-step. We have already 4591 executed the solib function (backwards), and a few 4592 steps will take us back through the trampoline to the 4593 caller. */ 4594 keep_going (ecs); 4595 return; 4596 } 4597 else if (in_solib_dynsym_resolve_code (stop_pc)) 4598 { 4599 /* Stepped backward into the solib dynsym resolver. 4600 Set a breakpoint at its start and continue, then 4601 one more step will take us out. */ 4602 struct symtab_and_line sr_sal; 4603 4604 init_sal (&sr_sal); 4605 sr_sal.pc = ecs->stop_func_start; 4606 sr_sal.pspace = get_frame_program_space (frame); 4607 insert_step_resume_breakpoint_at_sal (gdbarch, 4608 sr_sal, null_frame_id); 4609 keep_going (ecs); 4610 return; 4611 } 4612 } 4613 4614 /* If we're in the return path from a shared library trampoline, 4615 we want to proceed through the trampoline when stepping. */ 4616 if (gdbarch_in_solib_return_trampoline (gdbarch, 4617 stop_pc, ecs->stop_func_name)) 4618 { 4619 /* Determine where this trampoline returns. */ 4620 CORE_ADDR real_stop_pc; 4621 4622 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc); 4623 4624 if (debug_infrun) 4625 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n"); 4626 4627 /* Only proceed through if we know where it's going. */ 4628 if (real_stop_pc) 4629 { 4630 /* And put the step-breakpoint there and go until there. */ 4631 struct symtab_and_line sr_sal; 4632 4633 init_sal (&sr_sal); /* initialize to zeroes */ 4634 sr_sal.pc = real_stop_pc; 4635 sr_sal.section = find_pc_overlay (sr_sal.pc); 4636 sr_sal.pspace = get_frame_program_space (frame); 4637 4638 /* Do not specify what the fp should be when we stop since 4639 on some machines the prologue is where the new fp value 4640 is established. */ 4641 insert_step_resume_breakpoint_at_sal (gdbarch, 4642 sr_sal, null_frame_id); 4643 4644 /* Restart without fiddling with the step ranges or 4645 other state. */ 4646 keep_going (ecs); 4647 return; 4648 } 4649 } 4650 4651 stop_pc_sal = find_pc_line (stop_pc, 0); 4652 4653 /* NOTE: tausq/2004-05-24: This if block used to be done before all 4654 the trampoline processing logic, however, there are some trampolines 4655 that have no names, so we should do trampoline handling first. */ 4656 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE 4657 && ecs->stop_func_name == NULL 4658 && stop_pc_sal.line == 0) 4659 { 4660 if (debug_infrun) 4661 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n"); 4662 4663 /* The inferior just stepped into, or returned to, an 4664 undebuggable function (where there is no debugging information 4665 and no line number corresponding to the address where the 4666 inferior stopped). Since we want to skip this kind of code, 4667 we keep going until the inferior returns from this 4668 function - unless the user has asked us not to (via 4669 set step-mode) or we no longer know how to get back 4670 to the call site. */ 4671 if (step_stop_if_no_debug 4672 || !frame_id_p (frame_unwind_caller_id (frame))) 4673 { 4674 /* If we have no line number and the step-stop-if-no-debug 4675 is set, we stop the step so that the user has a chance to 4676 switch in assembly mode. */ 4677 ecs->event_thread->stop_step = 1; 4678 print_stop_reason (END_STEPPING_RANGE, 0); 4679 stop_stepping (ecs); 4680 return; 4681 } 4682 else 4683 { 4684 /* Set a breakpoint at callee's return address (the address 4685 at which the caller will resume). */ 4686 insert_step_resume_breakpoint_at_caller (frame); 4687 keep_going (ecs); 4688 return; 4689 } 4690 } 4691 4692 if (ecs->event_thread->step_range_end == 1) 4693 { 4694 /* It is stepi or nexti. We always want to stop stepping after 4695 one instruction. */ 4696 if (debug_infrun) 4697 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n"); 4698 ecs->event_thread->stop_step = 1; 4699 print_stop_reason (END_STEPPING_RANGE, 0); 4700 stop_stepping (ecs); 4701 return; 4702 } 4703 4704 if (stop_pc_sal.line == 0) 4705 { 4706 /* We have no line number information. That means to stop 4707 stepping (does this always happen right after one instruction, 4708 when we do "s" in a function with no line numbers, 4709 or can this happen as a result of a return or longjmp?). */ 4710 if (debug_infrun) 4711 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n"); 4712 ecs->event_thread->stop_step = 1; 4713 print_stop_reason (END_STEPPING_RANGE, 0); 4714 stop_stepping (ecs); 4715 return; 4716 } 4717 4718 /* Look for "calls" to inlined functions, part one. If the inline 4719 frame machinery detected some skipped call sites, we have entered 4720 a new inline function. */ 4721 4722 if (frame_id_eq (get_frame_id (get_current_frame ()), 4723 ecs->event_thread->step_frame_id) 4724 && inline_skipped_frames (ecs->ptid)) 4725 { 4726 struct symtab_and_line call_sal; 4727 4728 if (debug_infrun) 4729 fprintf_unfiltered (gdb_stdlog, 4730 "infrun: stepped into inlined function\n"); 4731 4732 find_frame_sal (get_current_frame (), &call_sal); 4733 4734 if (ecs->event_thread->step_over_calls != STEP_OVER_ALL) 4735 { 4736 /* For "step", we're going to stop. But if the call site 4737 for this inlined function is on the same source line as 4738 we were previously stepping, go down into the function 4739 first. Otherwise stop at the call site. */ 4740 4741 if (call_sal.line == ecs->event_thread->current_line 4742 && call_sal.symtab == ecs->event_thread->current_symtab) 4743 step_into_inline_frame (ecs->ptid); 4744 4745 ecs->event_thread->stop_step = 1; 4746 print_stop_reason (END_STEPPING_RANGE, 0); 4747 stop_stepping (ecs); 4748 return; 4749 } 4750 else 4751 { 4752 /* For "next", we should stop at the call site if it is on a 4753 different source line. Otherwise continue through the 4754 inlined function. */ 4755 if (call_sal.line == ecs->event_thread->current_line 4756 && call_sal.symtab == ecs->event_thread->current_symtab) 4757 keep_going (ecs); 4758 else 4759 { 4760 ecs->event_thread->stop_step = 1; 4761 print_stop_reason (END_STEPPING_RANGE, 0); 4762 stop_stepping (ecs); 4763 } 4764 return; 4765 } 4766 } 4767 4768 /* Look for "calls" to inlined functions, part two. If we are still 4769 in the same real function we were stepping through, but we have 4770 to go further up to find the exact frame ID, we are stepping 4771 through a more inlined call beyond its call site. */ 4772 4773 if (get_frame_type (get_current_frame ()) == INLINE_FRAME 4774 && !frame_id_eq (get_frame_id (get_current_frame ()), 4775 ecs->event_thread->step_frame_id) 4776 && stepped_in_from (get_current_frame (), 4777 ecs->event_thread->step_frame_id)) 4778 { 4779 if (debug_infrun) 4780 fprintf_unfiltered (gdb_stdlog, 4781 "infrun: stepping through inlined function\n"); 4782 4783 if (ecs->event_thread->step_over_calls == STEP_OVER_ALL) 4784 keep_going (ecs); 4785 else 4786 { 4787 ecs->event_thread->stop_step = 1; 4788 print_stop_reason (END_STEPPING_RANGE, 0); 4789 stop_stepping (ecs); 4790 } 4791 return; 4792 } 4793 4794 if ((stop_pc == stop_pc_sal.pc) 4795 && (ecs->event_thread->current_line != stop_pc_sal.line 4796 || ecs->event_thread->current_symtab != stop_pc_sal.symtab)) 4797 { 4798 /* We are at the start of a different line. So stop. Note that 4799 we don't stop if we step into the middle of a different line. 4800 That is said to make things like for (;;) statements work 4801 better. */ 4802 if (debug_infrun) 4803 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n"); 4804 ecs->event_thread->stop_step = 1; 4805 print_stop_reason (END_STEPPING_RANGE, 0); 4806 stop_stepping (ecs); 4807 return; 4808 } 4809 4810 /* We aren't done stepping. 4811 4812 Optimize by setting the stepping range to the line. 4813 (We might not be in the original line, but if we entered a 4814 new line in mid-statement, we continue stepping. This makes 4815 things like for(;;) statements work better.) */ 4816 4817 ecs->event_thread->step_range_start = stop_pc_sal.pc; 4818 ecs->event_thread->step_range_end = stop_pc_sal.end; 4819 set_step_info (frame, stop_pc_sal); 4820 4821 if (debug_infrun) 4822 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n"); 4823 keep_going (ecs); 4824 } 4825 4826 /* Is thread TP in the middle of single-stepping? */ 4827 4828 static int 4829 currently_stepping (struct thread_info *tp) 4830 { 4831 return ((tp->step_range_end && tp->step_resume_breakpoint == NULL) 4832 || tp->trap_expected 4833 || tp->stepping_through_solib_after_catch 4834 || bpstat_should_step ()); 4835 } 4836 4837 /* Returns true if any thread *but* the one passed in "data" is in the 4838 middle of stepping or of handling a "next". */ 4839 4840 static int 4841 currently_stepping_or_nexting_callback (struct thread_info *tp, void *data) 4842 { 4843 if (tp == data) 4844 return 0; 4845 4846 return (tp->step_range_end 4847 || tp->trap_expected 4848 || tp->stepping_through_solib_after_catch); 4849 } 4850 4851 /* Inferior has stepped into a subroutine call with source code that 4852 we should not step over. Do step to the first line of code in 4853 it. */ 4854 4855 static void 4856 handle_step_into_function (struct gdbarch *gdbarch, 4857 struct execution_control_state *ecs) 4858 { 4859 struct symtab *s; 4860 struct symtab_and_line stop_func_sal, sr_sal; 4861 4862 s = find_pc_symtab (stop_pc); 4863 if (s && s->language != language_asm) 4864 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch, 4865 ecs->stop_func_start); 4866 4867 stop_func_sal = find_pc_line (ecs->stop_func_start, 0); 4868 /* Use the step_resume_break to step until the end of the prologue, 4869 even if that involves jumps (as it seems to on the vax under 4870 4.2). */ 4871 /* If the prologue ends in the middle of a source line, continue to 4872 the end of that source line (if it is still within the function). 4873 Otherwise, just go to end of prologue. */ 4874 if (stop_func_sal.end 4875 && stop_func_sal.pc != ecs->stop_func_start 4876 && stop_func_sal.end < ecs->stop_func_end) 4877 ecs->stop_func_start = stop_func_sal.end; 4878 4879 /* Architectures which require breakpoint adjustment might not be able 4880 to place a breakpoint at the computed address. If so, the test 4881 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust 4882 ecs->stop_func_start to an address at which a breakpoint may be 4883 legitimately placed. 4884 4885 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not 4886 made, GDB will enter an infinite loop when stepping through 4887 optimized code consisting of VLIW instructions which contain 4888 subinstructions corresponding to different source lines. On 4889 FR-V, it's not permitted to place a breakpoint on any but the 4890 first subinstruction of a VLIW instruction. When a breakpoint is 4891 set, GDB will adjust the breakpoint address to the beginning of 4892 the VLIW instruction. Thus, we need to make the corresponding 4893 adjustment here when computing the stop address. */ 4894 4895 if (gdbarch_adjust_breakpoint_address_p (gdbarch)) 4896 { 4897 ecs->stop_func_start 4898 = gdbarch_adjust_breakpoint_address (gdbarch, 4899 ecs->stop_func_start); 4900 } 4901 4902 if (ecs->stop_func_start == stop_pc) 4903 { 4904 /* We are already there: stop now. */ 4905 ecs->event_thread->stop_step = 1; 4906 print_stop_reason (END_STEPPING_RANGE, 0); 4907 stop_stepping (ecs); 4908 return; 4909 } 4910 else 4911 { 4912 /* Put the step-breakpoint there and go until there. */ 4913 init_sal (&sr_sal); /* initialize to zeroes */ 4914 sr_sal.pc = ecs->stop_func_start; 4915 sr_sal.section = find_pc_overlay (ecs->stop_func_start); 4916 sr_sal.pspace = get_frame_program_space (get_current_frame ()); 4917 4918 /* Do not specify what the fp should be when we stop since on 4919 some machines the prologue is where the new fp value is 4920 established. */ 4921 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id); 4922 4923 /* And make sure stepping stops right away then. */ 4924 ecs->event_thread->step_range_end = ecs->event_thread->step_range_start; 4925 } 4926 keep_going (ecs); 4927 } 4928 4929 /* Inferior has stepped backward into a subroutine call with source 4930 code that we should not step over. Do step to the beginning of the 4931 last line of code in it. */ 4932 4933 static void 4934 handle_step_into_function_backward (struct gdbarch *gdbarch, 4935 struct execution_control_state *ecs) 4936 { 4937 struct symtab *s; 4938 struct symtab_and_line stop_func_sal; 4939 4940 s = find_pc_symtab (stop_pc); 4941 if (s && s->language != language_asm) 4942 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch, 4943 ecs->stop_func_start); 4944 4945 stop_func_sal = find_pc_line (stop_pc, 0); 4946 4947 /* OK, we're just going to keep stepping here. */ 4948 if (stop_func_sal.pc == stop_pc) 4949 { 4950 /* We're there already. Just stop stepping now. */ 4951 ecs->event_thread->stop_step = 1; 4952 print_stop_reason (END_STEPPING_RANGE, 0); 4953 stop_stepping (ecs); 4954 } 4955 else 4956 { 4957 /* Else just reset the step range and keep going. 4958 No step-resume breakpoint, they don't work for 4959 epilogues, which can have multiple entry paths. */ 4960 ecs->event_thread->step_range_start = stop_func_sal.pc; 4961 ecs->event_thread->step_range_end = stop_func_sal.end; 4962 keep_going (ecs); 4963 } 4964 return; 4965 } 4966 4967 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID. 4968 This is used to both functions and to skip over code. */ 4969 4970 static void 4971 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch, 4972 struct symtab_and_line sr_sal, 4973 struct frame_id sr_id) 4974 { 4975 /* There should never be more than one step-resume or longjmp-resume 4976 breakpoint per thread, so we should never be setting a new 4977 step_resume_breakpoint when one is already active. */ 4978 gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL); 4979 4980 if (debug_infrun) 4981 fprintf_unfiltered (gdb_stdlog, 4982 "infrun: inserting step-resume breakpoint at %s\n", 4983 paddress (gdbarch, sr_sal.pc)); 4984 4985 inferior_thread ()->step_resume_breakpoint 4986 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, bp_step_resume); 4987 } 4988 4989 /* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used 4990 to skip a potential signal handler. 4991 4992 This is called with the interrupted function's frame. The signal 4993 handler, when it returns, will resume the interrupted function at 4994 RETURN_FRAME.pc. */ 4995 4996 static void 4997 insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame) 4998 { 4999 struct symtab_and_line sr_sal; 5000 struct gdbarch *gdbarch; 5001 5002 gdb_assert (return_frame != NULL); 5003 init_sal (&sr_sal); /* initialize to zeros */ 5004 5005 gdbarch = get_frame_arch (return_frame); 5006 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame)); 5007 sr_sal.section = find_pc_overlay (sr_sal.pc); 5008 sr_sal.pspace = get_frame_program_space (return_frame); 5009 5010 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, 5011 get_stack_frame_id (return_frame)); 5012 } 5013 5014 /* Similar to insert_step_resume_breakpoint_at_frame, except 5015 but a breakpoint at the previous frame's PC. This is used to 5016 skip a function after stepping into it (for "next" or if the called 5017 function has no debugging information). 5018 5019 The current function has almost always been reached by single 5020 stepping a call or return instruction. NEXT_FRAME belongs to the 5021 current function, and the breakpoint will be set at the caller's 5022 resume address. 5023 5024 This is a separate function rather than reusing 5025 insert_step_resume_breakpoint_at_frame in order to avoid 5026 get_prev_frame, which may stop prematurely (see the implementation 5027 of frame_unwind_caller_id for an example). */ 5028 5029 static void 5030 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame) 5031 { 5032 struct symtab_and_line sr_sal; 5033 struct gdbarch *gdbarch; 5034 5035 /* We shouldn't have gotten here if we don't know where the call site 5036 is. */ 5037 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame))); 5038 5039 init_sal (&sr_sal); /* initialize to zeros */ 5040 5041 gdbarch = frame_unwind_caller_arch (next_frame); 5042 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, 5043 frame_unwind_caller_pc (next_frame)); 5044 sr_sal.section = find_pc_overlay (sr_sal.pc); 5045 sr_sal.pspace = frame_unwind_program_space (next_frame); 5046 5047 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, 5048 frame_unwind_caller_id (next_frame)); 5049 } 5050 5051 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a 5052 new breakpoint at the target of a jmp_buf. The handling of 5053 longjmp-resume uses the same mechanisms used for handling 5054 "step-resume" breakpoints. */ 5055 5056 static void 5057 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc) 5058 { 5059 /* There should never be more than one step-resume or longjmp-resume 5060 breakpoint per thread, so we should never be setting a new 5061 longjmp_resume_breakpoint when one is already active. */ 5062 gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL); 5063 5064 if (debug_infrun) 5065 fprintf_unfiltered (gdb_stdlog, 5066 "infrun: inserting longjmp-resume breakpoint at %s\n", 5067 paddress (gdbarch, pc)); 5068 5069 inferior_thread ()->step_resume_breakpoint = 5070 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume); 5071 } 5072 5073 static void 5074 stop_stepping (struct execution_control_state *ecs) 5075 { 5076 if (debug_infrun) 5077 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n"); 5078 5079 /* Let callers know we don't want to wait for the inferior anymore. */ 5080 ecs->wait_some_more = 0; 5081 } 5082 5083 /* This function handles various cases where we need to continue 5084 waiting for the inferior. */ 5085 /* (Used to be the keep_going: label in the old wait_for_inferior) */ 5086 5087 static void 5088 keep_going (struct execution_control_state *ecs) 5089 { 5090 /* Make sure normal_stop is called if we get a QUIT handled before 5091 reaching resume. */ 5092 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0); 5093 5094 /* Save the pc before execution, to compare with pc after stop. */ 5095 ecs->event_thread->prev_pc 5096 = regcache_read_pc (get_thread_regcache (ecs->ptid)); 5097 5098 /* If we did not do break;, it means we should keep running the 5099 inferior and not return to debugger. */ 5100 5101 if (ecs->event_thread->trap_expected 5102 && ecs->event_thread->stop_signal != TARGET_SIGNAL_TRAP) 5103 { 5104 /* We took a signal (which we are supposed to pass through to 5105 the inferior, else we'd not get here) and we haven't yet 5106 gotten our trap. Simply continue. */ 5107 5108 discard_cleanups (old_cleanups); 5109 resume (currently_stepping (ecs->event_thread), 5110 ecs->event_thread->stop_signal); 5111 } 5112 else 5113 { 5114 /* Either the trap was not expected, but we are continuing 5115 anyway (the user asked that this signal be passed to the 5116 child) 5117 -- or -- 5118 The signal was SIGTRAP, e.g. it was our signal, but we 5119 decided we should resume from it. 5120 5121 We're going to run this baby now! 5122 5123 Note that insert_breakpoints won't try to re-insert 5124 already inserted breakpoints. Therefore, we don't 5125 care if breakpoints were already inserted, or not. */ 5126 5127 if (ecs->event_thread->stepping_over_breakpoint) 5128 { 5129 struct regcache *thread_regcache = get_thread_regcache (ecs->ptid); 5130 5131 if (!use_displaced_stepping (get_regcache_arch (thread_regcache))) 5132 /* Since we can't do a displaced step, we have to remove 5133 the breakpoint while we step it. To keep things 5134 simple, we remove them all. */ 5135 remove_breakpoints (); 5136 } 5137 else 5138 { 5139 struct gdb_exception e; 5140 5141 /* Stop stepping when inserting breakpoints 5142 has failed. */ 5143 TRY_CATCH (e, RETURN_MASK_ERROR) 5144 { 5145 insert_breakpoints (); 5146 } 5147 if (e.reason < 0) 5148 { 5149 exception_print (gdb_stderr, e); 5150 stop_stepping (ecs); 5151 return; 5152 } 5153 } 5154 5155 ecs->event_thread->trap_expected = ecs->event_thread->stepping_over_breakpoint; 5156 5157 /* Do not deliver SIGNAL_TRAP (except when the user explicitly 5158 specifies that such a signal should be delivered to the 5159 target program). 5160 5161 Typically, this would occure when a user is debugging a 5162 target monitor on a simulator: the target monitor sets a 5163 breakpoint; the simulator encounters this break-point and 5164 halts the simulation handing control to GDB; GDB, noteing 5165 that the break-point isn't valid, returns control back to the 5166 simulator; the simulator then delivers the hardware 5167 equivalent of a SIGNAL_TRAP to the program being debugged. */ 5168 5169 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP 5170 && !signal_program[ecs->event_thread->stop_signal]) 5171 ecs->event_thread->stop_signal = TARGET_SIGNAL_0; 5172 5173 discard_cleanups (old_cleanups); 5174 resume (currently_stepping (ecs->event_thread), 5175 ecs->event_thread->stop_signal); 5176 } 5177 5178 prepare_to_wait (ecs); 5179 } 5180 5181 /* This function normally comes after a resume, before 5182 handle_inferior_event exits. It takes care of any last bits of 5183 housekeeping, and sets the all-important wait_some_more flag. */ 5184 5185 static void 5186 prepare_to_wait (struct execution_control_state *ecs) 5187 { 5188 if (debug_infrun) 5189 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n"); 5190 5191 /* This is the old end of the while loop. Let everybody know we 5192 want to wait for the inferior some more and get called again 5193 soon. */ 5194 ecs->wait_some_more = 1; 5195 } 5196 5197 /* Print why the inferior has stopped. We always print something when 5198 the inferior exits, or receives a signal. The rest of the cases are 5199 dealt with later on in normal_stop() and print_it_typical(). Ideally 5200 there should be a call to this function from handle_inferior_event() 5201 each time stop_stepping() is called.*/ 5202 static void 5203 print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info) 5204 { 5205 switch (stop_reason) 5206 { 5207 case END_STEPPING_RANGE: 5208 /* We are done with a step/next/si/ni command. */ 5209 /* For now print nothing. */ 5210 /* Print a message only if not in the middle of doing a "step n" 5211 operation for n > 1 */ 5212 if (!inferior_thread ()->step_multi 5213 || !inferior_thread ()->stop_step) 5214 if (ui_out_is_mi_like_p (uiout)) 5215 ui_out_field_string 5216 (uiout, "reason", 5217 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE)); 5218 break; 5219 case SIGNAL_EXITED: 5220 /* The inferior was terminated by a signal. */ 5221 annotate_signalled (); 5222 if (ui_out_is_mi_like_p (uiout)) 5223 ui_out_field_string 5224 (uiout, "reason", 5225 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED)); 5226 ui_out_text (uiout, "\nProgram terminated with signal "); 5227 annotate_signal_name (); 5228 ui_out_field_string (uiout, "signal-name", 5229 target_signal_to_name (stop_info)); 5230 annotate_signal_name_end (); 5231 ui_out_text (uiout, ", "); 5232 annotate_signal_string (); 5233 ui_out_field_string (uiout, "signal-meaning", 5234 target_signal_to_string (stop_info)); 5235 annotate_signal_string_end (); 5236 ui_out_text (uiout, ".\n"); 5237 ui_out_text (uiout, "The program no longer exists.\n"); 5238 break; 5239 case EXITED: 5240 /* The inferior program is finished. */ 5241 annotate_exited (stop_info); 5242 if (stop_info) 5243 { 5244 if (ui_out_is_mi_like_p (uiout)) 5245 ui_out_field_string (uiout, "reason", 5246 async_reason_lookup (EXEC_ASYNC_EXITED)); 5247 ui_out_text (uiout, "\nProgram exited with code "); 5248 ui_out_field_fmt (uiout, "exit-code", "0%o", 5249 (unsigned int) stop_info); 5250 ui_out_text (uiout, ".\n"); 5251 } 5252 else 5253 { 5254 if (ui_out_is_mi_like_p (uiout)) 5255 ui_out_field_string 5256 (uiout, "reason", 5257 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY)); 5258 ui_out_text (uiout, "\nProgram exited normally.\n"); 5259 } 5260 /* Support the --return-child-result option. */ 5261 return_child_result_value = stop_info; 5262 break; 5263 case SIGNAL_RECEIVED: 5264 /* Signal received. The signal table tells us to print about 5265 it. */ 5266 annotate_signal (); 5267 5268 if (stop_info == TARGET_SIGNAL_0 && !ui_out_is_mi_like_p (uiout)) 5269 { 5270 struct thread_info *t = inferior_thread (); 5271 5272 ui_out_text (uiout, "\n["); 5273 ui_out_field_string (uiout, "thread-name", 5274 target_pid_to_str (t->ptid)); 5275 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num); 5276 ui_out_text (uiout, " stopped"); 5277 } 5278 else 5279 { 5280 ui_out_text (uiout, "\nProgram received signal "); 5281 annotate_signal_name (); 5282 if (ui_out_is_mi_like_p (uiout)) 5283 ui_out_field_string 5284 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED)); 5285 ui_out_field_string (uiout, "signal-name", 5286 target_signal_to_name (stop_info)); 5287 annotate_signal_name_end (); 5288 ui_out_text (uiout, ", "); 5289 annotate_signal_string (); 5290 ui_out_field_string (uiout, "signal-meaning", 5291 target_signal_to_string (stop_info)); 5292 annotate_signal_string_end (); 5293 } 5294 ui_out_text (uiout, ".\n"); 5295 break; 5296 case NO_HISTORY: 5297 /* Reverse execution: target ran out of history info. */ 5298 ui_out_text (uiout, "\nNo more reverse-execution history.\n"); 5299 break; 5300 default: 5301 internal_error (__FILE__, __LINE__, 5302 _("print_stop_reason: unrecognized enum value")); 5303 break; 5304 } 5305 } 5306 5307 5308 /* Here to return control to GDB when the inferior stops for real. 5309 Print appropriate messages, remove breakpoints, give terminal our modes. 5310 5311 STOP_PRINT_FRAME nonzero means print the executing frame 5312 (pc, function, args, file, line number and line text). 5313 BREAKPOINTS_FAILED nonzero means stop was due to error 5314 attempting to insert breakpoints. */ 5315 5316 void 5317 normal_stop (void) 5318 { 5319 struct target_waitstatus last; 5320 ptid_t last_ptid; 5321 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL); 5322 5323 get_last_target_status (&last_ptid, &last); 5324 5325 /* If an exception is thrown from this point on, make sure to 5326 propagate GDB's knowledge of the executing state to the 5327 frontend/user running state. A QUIT is an easy exception to see 5328 here, so do this before any filtered output. */ 5329 if (!non_stop) 5330 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid); 5331 else if (last.kind != TARGET_WAITKIND_SIGNALLED 5332 && last.kind != TARGET_WAITKIND_EXITED) 5333 make_cleanup (finish_thread_state_cleanup, &inferior_ptid); 5334 5335 /* In non-stop mode, we don't want GDB to switch threads behind the 5336 user's back, to avoid races where the user is typing a command to 5337 apply to thread x, but GDB switches to thread y before the user 5338 finishes entering the command. */ 5339 5340 /* As with the notification of thread events, we want to delay 5341 notifying the user that we've switched thread context until 5342 the inferior actually stops. 5343 5344 There's no point in saying anything if the inferior has exited. 5345 Note that SIGNALLED here means "exited with a signal", not 5346 "received a signal". */ 5347 if (!non_stop 5348 && !ptid_equal (previous_inferior_ptid, inferior_ptid) 5349 && target_has_execution 5350 && last.kind != TARGET_WAITKIND_SIGNALLED 5351 && last.kind != TARGET_WAITKIND_EXITED) 5352 { 5353 target_terminal_ours_for_output (); 5354 printf_filtered (_("[Switching to %s]\n"), 5355 target_pid_to_str (inferior_ptid)); 5356 annotate_thread_changed (); 5357 previous_inferior_ptid = inferior_ptid; 5358 } 5359 5360 if (!breakpoints_always_inserted_mode () && target_has_execution) 5361 { 5362 if (remove_breakpoints ()) 5363 { 5364 target_terminal_ours_for_output (); 5365 printf_filtered (_("\ 5366 Cannot remove breakpoints because program is no longer writable.\n\ 5367 Further execution is probably impossible.\n")); 5368 } 5369 } 5370 5371 /* If an auto-display called a function and that got a signal, 5372 delete that auto-display to avoid an infinite recursion. */ 5373 5374 if (stopped_by_random_signal) 5375 disable_current_display (); 5376 5377 /* Don't print a message if in the middle of doing a "step n" 5378 operation for n > 1 */ 5379 if (target_has_execution 5380 && last.kind != TARGET_WAITKIND_SIGNALLED 5381 && last.kind != TARGET_WAITKIND_EXITED 5382 && inferior_thread ()->step_multi 5383 && inferior_thread ()->stop_step) 5384 goto done; 5385 5386 target_terminal_ours (); 5387 5388 /* Set the current source location. This will also happen if we 5389 display the frame below, but the current SAL will be incorrect 5390 during a user hook-stop function. */ 5391 if (has_stack_frames () && !stop_stack_dummy) 5392 set_current_sal_from_frame (get_current_frame (), 1); 5393 5394 /* Let the user/frontend see the threads as stopped. */ 5395 do_cleanups (old_chain); 5396 5397 /* Look up the hook_stop and run it (CLI internally handles problem 5398 of stop_command's pre-hook not existing). */ 5399 if (stop_command) 5400 catch_errors (hook_stop_stub, stop_command, 5401 "Error while running hook_stop:\n", RETURN_MASK_ALL); 5402 5403 if (!has_stack_frames ()) 5404 goto done; 5405 5406 if (last.kind == TARGET_WAITKIND_SIGNALLED 5407 || last.kind == TARGET_WAITKIND_EXITED) 5408 goto done; 5409 5410 /* Select innermost stack frame - i.e., current frame is frame 0, 5411 and current location is based on that. 5412 Don't do this on return from a stack dummy routine, 5413 or if the program has exited. */ 5414 5415 if (!stop_stack_dummy) 5416 { 5417 select_frame (get_current_frame ()); 5418 5419 /* Print current location without a level number, if 5420 we have changed functions or hit a breakpoint. 5421 Print source line if we have one. 5422 bpstat_print() contains the logic deciding in detail 5423 what to print, based on the event(s) that just occurred. */ 5424 5425 /* If --batch-silent is enabled then there's no need to print the current 5426 source location, and to try risks causing an error message about 5427 missing source files. */ 5428 if (stop_print_frame && !batch_silent) 5429 { 5430 int bpstat_ret; 5431 int source_flag; 5432 int do_frame_printing = 1; 5433 struct thread_info *tp = inferior_thread (); 5434 5435 bpstat_ret = bpstat_print (tp->stop_bpstat); 5436 switch (bpstat_ret) 5437 { 5438 case PRINT_UNKNOWN: 5439 /* If we had hit a shared library event breakpoint, 5440 bpstat_print would print out this message. If we hit 5441 an OS-level shared library event, do the same 5442 thing. */ 5443 if (last.kind == TARGET_WAITKIND_LOADED) 5444 { 5445 printf_filtered (_("Stopped due to shared library event\n")); 5446 source_flag = SRC_LINE; /* something bogus */ 5447 do_frame_printing = 0; 5448 break; 5449 } 5450 5451 /* FIXME: cagney/2002-12-01: Given that a frame ID does 5452 (or should) carry around the function and does (or 5453 should) use that when doing a frame comparison. */ 5454 if (tp->stop_step 5455 && frame_id_eq (tp->step_frame_id, 5456 get_frame_id (get_current_frame ())) 5457 && step_start_function == find_pc_function (stop_pc)) 5458 source_flag = SRC_LINE; /* finished step, just print source line */ 5459 else 5460 source_flag = SRC_AND_LOC; /* print location and source line */ 5461 break; 5462 case PRINT_SRC_AND_LOC: 5463 source_flag = SRC_AND_LOC; /* print location and source line */ 5464 break; 5465 case PRINT_SRC_ONLY: 5466 source_flag = SRC_LINE; 5467 break; 5468 case PRINT_NOTHING: 5469 source_flag = SRC_LINE; /* something bogus */ 5470 do_frame_printing = 0; 5471 break; 5472 default: 5473 internal_error (__FILE__, __LINE__, _("Unknown value.")); 5474 } 5475 5476 /* The behavior of this routine with respect to the source 5477 flag is: 5478 SRC_LINE: Print only source line 5479 LOCATION: Print only location 5480 SRC_AND_LOC: Print location and source line */ 5481 if (do_frame_printing) 5482 print_stack_frame (get_selected_frame (NULL), 0, source_flag); 5483 5484 /* Display the auto-display expressions. */ 5485 do_displays (); 5486 } 5487 } 5488 5489 /* Save the function value return registers, if we care. 5490 We might be about to restore their previous contents. */ 5491 if (inferior_thread ()->proceed_to_finish) 5492 { 5493 /* This should not be necessary. */ 5494 if (stop_registers) 5495 regcache_xfree (stop_registers); 5496 5497 /* NB: The copy goes through to the target picking up the value of 5498 all the registers. */ 5499 stop_registers = regcache_dup (get_current_regcache ()); 5500 } 5501 5502 if (stop_stack_dummy == STOP_STACK_DUMMY) 5503 { 5504 /* Pop the empty frame that contains the stack dummy. 5505 This also restores inferior state prior to the call 5506 (struct inferior_thread_state). */ 5507 struct frame_info *frame = get_current_frame (); 5508 5509 gdb_assert (get_frame_type (frame) == DUMMY_FRAME); 5510 frame_pop (frame); 5511 /* frame_pop() calls reinit_frame_cache as the last thing it does 5512 which means there's currently no selected frame. We don't need 5513 to re-establish a selected frame if the dummy call returns normally, 5514 that will be done by restore_inferior_status. However, we do have 5515 to handle the case where the dummy call is returning after being 5516 stopped (e.g. the dummy call previously hit a breakpoint). We 5517 can't know which case we have so just always re-establish a 5518 selected frame here. */ 5519 select_frame (get_current_frame ()); 5520 } 5521 5522 done: 5523 annotate_stopped (); 5524 5525 /* Suppress the stop observer if we're in the middle of: 5526 5527 - a step n (n > 1), as there still more steps to be done. 5528 5529 - a "finish" command, as the observer will be called in 5530 finish_command_continuation, so it can include the inferior 5531 function's return value. 5532 5533 - calling an inferior function, as we pretend we inferior didn't 5534 run at all. The return value of the call is handled by the 5535 expression evaluator, through call_function_by_hand. */ 5536 5537 if (!target_has_execution 5538 || last.kind == TARGET_WAITKIND_SIGNALLED 5539 || last.kind == TARGET_WAITKIND_EXITED 5540 || (!inferior_thread ()->step_multi 5541 && !(inferior_thread ()->stop_bpstat 5542 && inferior_thread ()->proceed_to_finish) 5543 && !inferior_thread ()->in_infcall)) 5544 { 5545 if (!ptid_equal (inferior_ptid, null_ptid)) 5546 observer_notify_normal_stop (inferior_thread ()->stop_bpstat, 5547 stop_print_frame); 5548 else 5549 observer_notify_normal_stop (NULL, stop_print_frame); 5550 } 5551 5552 if (target_has_execution) 5553 { 5554 if (last.kind != TARGET_WAITKIND_SIGNALLED 5555 && last.kind != TARGET_WAITKIND_EXITED) 5556 /* Delete the breakpoint we stopped at, if it wants to be deleted. 5557 Delete any breakpoint that is to be deleted at the next stop. */ 5558 breakpoint_auto_delete (inferior_thread ()->stop_bpstat); 5559 } 5560 5561 /* Try to get rid of automatically added inferiors that are no 5562 longer needed. Keeping those around slows down things linearly. 5563 Note that this never removes the current inferior. */ 5564 prune_inferiors (); 5565 } 5566 5567 static int 5568 hook_stop_stub (void *cmd) 5569 { 5570 execute_cmd_pre_hook ((struct cmd_list_element *) cmd); 5571 return (0); 5572 } 5573 5574 int 5575 signal_stop_state (int signo) 5576 { 5577 return signal_stop[signo]; 5578 } 5579 5580 int 5581 signal_print_state (int signo) 5582 { 5583 return signal_print[signo]; 5584 } 5585 5586 int 5587 signal_pass_state (int signo) 5588 { 5589 return signal_program[signo]; 5590 } 5591 5592 int 5593 signal_stop_update (int signo, int state) 5594 { 5595 int ret = signal_stop[signo]; 5596 5597 signal_stop[signo] = state; 5598 return ret; 5599 } 5600 5601 int 5602 signal_print_update (int signo, int state) 5603 { 5604 int ret = signal_print[signo]; 5605 5606 signal_print[signo] = state; 5607 return ret; 5608 } 5609 5610 int 5611 signal_pass_update (int signo, int state) 5612 { 5613 int ret = signal_program[signo]; 5614 5615 signal_program[signo] = state; 5616 return ret; 5617 } 5618 5619 static void 5620 sig_print_header (void) 5621 { 5622 printf_filtered (_("\ 5623 Signal Stop\tPrint\tPass to program\tDescription\n")); 5624 } 5625 5626 static void 5627 sig_print_info (enum target_signal oursig) 5628 { 5629 const char *name = target_signal_to_name (oursig); 5630 int name_padding = 13 - strlen (name); 5631 5632 if (name_padding <= 0) 5633 name_padding = 0; 5634 5635 printf_filtered ("%s", name); 5636 printf_filtered ("%*.*s ", name_padding, name_padding, " "); 5637 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No"); 5638 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No"); 5639 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No"); 5640 printf_filtered ("%s\n", target_signal_to_string (oursig)); 5641 } 5642 5643 /* Specify how various signals in the inferior should be handled. */ 5644 5645 static void 5646 handle_command (char *args, int from_tty) 5647 { 5648 char **argv; 5649 int digits, wordlen; 5650 int sigfirst, signum, siglast; 5651 enum target_signal oursig; 5652 int allsigs; 5653 int nsigs; 5654 unsigned char *sigs; 5655 struct cleanup *old_chain; 5656 5657 if (args == NULL) 5658 { 5659 error_no_arg (_("signal to handle")); 5660 } 5661 5662 /* Allocate and zero an array of flags for which signals to handle. */ 5663 5664 nsigs = (int) TARGET_SIGNAL_LAST; 5665 sigs = (unsigned char *) alloca (nsigs); 5666 memset (sigs, 0, nsigs); 5667 5668 /* Break the command line up into args. */ 5669 5670 argv = gdb_buildargv (args); 5671 old_chain = make_cleanup_freeargv (argv); 5672 5673 /* Walk through the args, looking for signal oursigs, signal names, and 5674 actions. Signal numbers and signal names may be interspersed with 5675 actions, with the actions being performed for all signals cumulatively 5676 specified. Signal ranges can be specified as <LOW>-<HIGH>. */ 5677 5678 while (*argv != NULL) 5679 { 5680 wordlen = strlen (*argv); 5681 for (digits = 0; isdigit ((*argv)[digits]); digits++) 5682 {; 5683 } 5684 allsigs = 0; 5685 sigfirst = siglast = -1; 5686 5687 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen)) 5688 { 5689 /* Apply action to all signals except those used by the 5690 debugger. Silently skip those. */ 5691 allsigs = 1; 5692 sigfirst = 0; 5693 siglast = nsigs - 1; 5694 } 5695 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen)) 5696 { 5697 SET_SIGS (nsigs, sigs, signal_stop); 5698 SET_SIGS (nsigs, sigs, signal_print); 5699 } 5700 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen)) 5701 { 5702 UNSET_SIGS (nsigs, sigs, signal_program); 5703 } 5704 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen)) 5705 { 5706 SET_SIGS (nsigs, sigs, signal_print); 5707 } 5708 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen)) 5709 { 5710 SET_SIGS (nsigs, sigs, signal_program); 5711 } 5712 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen)) 5713 { 5714 UNSET_SIGS (nsigs, sigs, signal_stop); 5715 } 5716 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen)) 5717 { 5718 SET_SIGS (nsigs, sigs, signal_program); 5719 } 5720 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen)) 5721 { 5722 UNSET_SIGS (nsigs, sigs, signal_print); 5723 UNSET_SIGS (nsigs, sigs, signal_stop); 5724 } 5725 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen)) 5726 { 5727 UNSET_SIGS (nsigs, sigs, signal_program); 5728 } 5729 else if (digits > 0) 5730 { 5731 /* It is numeric. The numeric signal refers to our own 5732 internal signal numbering from target.h, not to host/target 5733 signal number. This is a feature; users really should be 5734 using symbolic names anyway, and the common ones like 5735 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */ 5736 5737 sigfirst = siglast = (int) 5738 target_signal_from_command (atoi (*argv)); 5739 if ((*argv)[digits] == '-') 5740 { 5741 siglast = (int) 5742 target_signal_from_command (atoi ((*argv) + digits + 1)); 5743 } 5744 if (sigfirst > siglast) 5745 { 5746 /* Bet he didn't figure we'd think of this case... */ 5747 signum = sigfirst; 5748 sigfirst = siglast; 5749 siglast = signum; 5750 } 5751 } 5752 else 5753 { 5754 oursig = target_signal_from_name (*argv); 5755 if (oursig != TARGET_SIGNAL_UNKNOWN) 5756 { 5757 sigfirst = siglast = (int) oursig; 5758 } 5759 else 5760 { 5761 /* Not a number and not a recognized flag word => complain. */ 5762 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv); 5763 } 5764 } 5765 5766 /* If any signal numbers or symbol names were found, set flags for 5767 which signals to apply actions to. */ 5768 5769 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++) 5770 { 5771 switch ((enum target_signal) signum) 5772 { 5773 case TARGET_SIGNAL_TRAP: 5774 case TARGET_SIGNAL_INT: 5775 if (!allsigs && !sigs[signum]) 5776 { 5777 if (query (_("%s is used by the debugger.\n\ 5778 Are you sure you want to change it? "), target_signal_to_name ((enum target_signal) signum))) 5779 { 5780 sigs[signum] = 1; 5781 } 5782 else 5783 { 5784 printf_unfiltered (_("Not confirmed, unchanged.\n")); 5785 gdb_flush (gdb_stdout); 5786 } 5787 } 5788 break; 5789 case TARGET_SIGNAL_0: 5790 case TARGET_SIGNAL_DEFAULT: 5791 case TARGET_SIGNAL_UNKNOWN: 5792 /* Make sure that "all" doesn't print these. */ 5793 break; 5794 default: 5795 sigs[signum] = 1; 5796 break; 5797 } 5798 } 5799 5800 argv++; 5801 } 5802 5803 for (signum = 0; signum < nsigs; signum++) 5804 if (sigs[signum]) 5805 { 5806 target_notice_signals (inferior_ptid); 5807 5808 if (from_tty) 5809 { 5810 /* Show the results. */ 5811 sig_print_header (); 5812 for (; signum < nsigs; signum++) 5813 if (sigs[signum]) 5814 sig_print_info (signum); 5815 } 5816 5817 break; 5818 } 5819 5820 do_cleanups (old_chain); 5821 } 5822 5823 static void 5824 xdb_handle_command (char *args, int from_tty) 5825 { 5826 char **argv; 5827 struct cleanup *old_chain; 5828 5829 if (args == NULL) 5830 error_no_arg (_("xdb command")); 5831 5832 /* Break the command line up into args. */ 5833 5834 argv = gdb_buildargv (args); 5835 old_chain = make_cleanup_freeargv (argv); 5836 if (argv[1] != (char *) NULL) 5837 { 5838 char *argBuf; 5839 int bufLen; 5840 5841 bufLen = strlen (argv[0]) + 20; 5842 argBuf = (char *) xmalloc (bufLen); 5843 if (argBuf) 5844 { 5845 int validFlag = 1; 5846 enum target_signal oursig; 5847 5848 oursig = target_signal_from_name (argv[0]); 5849 memset (argBuf, 0, bufLen); 5850 if (strcmp (argv[1], "Q") == 0) 5851 sprintf (argBuf, "%s %s", argv[0], "noprint"); 5852 else 5853 { 5854 if (strcmp (argv[1], "s") == 0) 5855 { 5856 if (!signal_stop[oursig]) 5857 sprintf (argBuf, "%s %s", argv[0], "stop"); 5858 else 5859 sprintf (argBuf, "%s %s", argv[0], "nostop"); 5860 } 5861 else if (strcmp (argv[1], "i") == 0) 5862 { 5863 if (!signal_program[oursig]) 5864 sprintf (argBuf, "%s %s", argv[0], "pass"); 5865 else 5866 sprintf (argBuf, "%s %s", argv[0], "nopass"); 5867 } 5868 else if (strcmp (argv[1], "r") == 0) 5869 { 5870 if (!signal_print[oursig]) 5871 sprintf (argBuf, "%s %s", argv[0], "print"); 5872 else 5873 sprintf (argBuf, "%s %s", argv[0], "noprint"); 5874 } 5875 else 5876 validFlag = 0; 5877 } 5878 if (validFlag) 5879 handle_command (argBuf, from_tty); 5880 else 5881 printf_filtered (_("Invalid signal handling flag.\n")); 5882 if (argBuf) 5883 xfree (argBuf); 5884 } 5885 } 5886 do_cleanups (old_chain); 5887 } 5888 5889 /* Print current contents of the tables set by the handle command. 5890 It is possible we should just be printing signals actually used 5891 by the current target (but for things to work right when switching 5892 targets, all signals should be in the signal tables). */ 5893 5894 static void 5895 signals_info (char *signum_exp, int from_tty) 5896 { 5897 enum target_signal oursig; 5898 5899 sig_print_header (); 5900 5901 if (signum_exp) 5902 { 5903 /* First see if this is a symbol name. */ 5904 oursig = target_signal_from_name (signum_exp); 5905 if (oursig == TARGET_SIGNAL_UNKNOWN) 5906 { 5907 /* No, try numeric. */ 5908 oursig = 5909 target_signal_from_command (parse_and_eval_long (signum_exp)); 5910 } 5911 sig_print_info (oursig); 5912 return; 5913 } 5914 5915 printf_filtered ("\n"); 5916 /* These ugly casts brought to you by the native VAX compiler. */ 5917 for (oursig = TARGET_SIGNAL_FIRST; 5918 (int) oursig < (int) TARGET_SIGNAL_LAST; 5919 oursig = (enum target_signal) ((int) oursig + 1)) 5920 { 5921 QUIT; 5922 5923 if (oursig != TARGET_SIGNAL_UNKNOWN 5924 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0) 5925 sig_print_info (oursig); 5926 } 5927 5928 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n")); 5929 } 5930 5931 /* The $_siginfo convenience variable is a bit special. We don't know 5932 for sure the type of the value until we actually have a chance to 5933 fetch the data. The type can change depending on gdbarch, so it it 5934 also dependent on which thread you have selected. 5935 5936 1. making $_siginfo be an internalvar that creates a new value on 5937 access. 5938 5939 2. making the value of $_siginfo be an lval_computed value. */ 5940 5941 /* This function implements the lval_computed support for reading a 5942 $_siginfo value. */ 5943 5944 static void 5945 siginfo_value_read (struct value *v) 5946 { 5947 LONGEST transferred; 5948 5949 transferred = 5950 target_read (¤t_target, TARGET_OBJECT_SIGNAL_INFO, 5951 NULL, 5952 value_contents_all_raw (v), 5953 value_offset (v), 5954 TYPE_LENGTH (value_type (v))); 5955 5956 if (transferred != TYPE_LENGTH (value_type (v))) 5957 error (_("Unable to read siginfo")); 5958 } 5959 5960 /* This function implements the lval_computed support for writing a 5961 $_siginfo value. */ 5962 5963 static void 5964 siginfo_value_write (struct value *v, struct value *fromval) 5965 { 5966 LONGEST transferred; 5967 5968 transferred = target_write (¤t_target, 5969 TARGET_OBJECT_SIGNAL_INFO, 5970 NULL, 5971 value_contents_all_raw (fromval), 5972 value_offset (v), 5973 TYPE_LENGTH (value_type (fromval))); 5974 5975 if (transferred != TYPE_LENGTH (value_type (fromval))) 5976 error (_("Unable to write siginfo")); 5977 } 5978 5979 static struct lval_funcs siginfo_value_funcs = 5980 { 5981 siginfo_value_read, 5982 siginfo_value_write 5983 }; 5984 5985 /* Return a new value with the correct type for the siginfo object of 5986 the current thread using architecture GDBARCH. Return a void value 5987 if there's no object available. */ 5988 5989 static struct value * 5990 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var) 5991 { 5992 if (target_has_stack 5993 && !ptid_equal (inferior_ptid, null_ptid) 5994 && gdbarch_get_siginfo_type_p (gdbarch)) 5995 { 5996 struct type *type = gdbarch_get_siginfo_type (gdbarch); 5997 5998 return allocate_computed_value (type, &siginfo_value_funcs, NULL); 5999 } 6000 6001 return allocate_value (builtin_type (gdbarch)->builtin_void); 6002 } 6003 6004 6005 /* Inferior thread state. 6006 These are details related to the inferior itself, and don't include 6007 things like what frame the user had selected or what gdb was doing 6008 with the target at the time. 6009 For inferior function calls these are things we want to restore 6010 regardless of whether the function call successfully completes 6011 or the dummy frame has to be manually popped. */ 6012 6013 struct inferior_thread_state 6014 { 6015 enum target_signal stop_signal; 6016 CORE_ADDR stop_pc; 6017 struct regcache *registers; 6018 }; 6019 6020 struct inferior_thread_state * 6021 save_inferior_thread_state (void) 6022 { 6023 struct inferior_thread_state *inf_state = XMALLOC (struct inferior_thread_state); 6024 struct thread_info *tp = inferior_thread (); 6025 6026 inf_state->stop_signal = tp->stop_signal; 6027 inf_state->stop_pc = stop_pc; 6028 6029 inf_state->registers = regcache_dup (get_current_regcache ()); 6030 6031 return inf_state; 6032 } 6033 6034 /* Restore inferior session state to INF_STATE. */ 6035 6036 void 6037 restore_inferior_thread_state (struct inferior_thread_state *inf_state) 6038 { 6039 struct thread_info *tp = inferior_thread (); 6040 6041 tp->stop_signal = inf_state->stop_signal; 6042 stop_pc = inf_state->stop_pc; 6043 6044 /* The inferior can be gone if the user types "print exit(0)" 6045 (and perhaps other times). */ 6046 if (target_has_execution) 6047 /* NB: The register write goes through to the target. */ 6048 regcache_cpy (get_current_regcache (), inf_state->registers); 6049 regcache_xfree (inf_state->registers); 6050 xfree (inf_state); 6051 } 6052 6053 static void 6054 do_restore_inferior_thread_state_cleanup (void *state) 6055 { 6056 restore_inferior_thread_state (state); 6057 } 6058 6059 struct cleanup * 6060 make_cleanup_restore_inferior_thread_state (struct inferior_thread_state *inf_state) 6061 { 6062 return make_cleanup (do_restore_inferior_thread_state_cleanup, inf_state); 6063 } 6064 6065 void 6066 discard_inferior_thread_state (struct inferior_thread_state *inf_state) 6067 { 6068 regcache_xfree (inf_state->registers); 6069 xfree (inf_state); 6070 } 6071 6072 struct regcache * 6073 get_inferior_thread_state_regcache (struct inferior_thread_state *inf_state) 6074 { 6075 return inf_state->registers; 6076 } 6077 6078 /* Session related state for inferior function calls. 6079 These are the additional bits of state that need to be restored 6080 when an inferior function call successfully completes. */ 6081 6082 struct inferior_status 6083 { 6084 bpstat stop_bpstat; 6085 int stop_step; 6086 enum stop_stack_kind stop_stack_dummy; 6087 int stopped_by_random_signal; 6088 int stepping_over_breakpoint; 6089 CORE_ADDR step_range_start; 6090 CORE_ADDR step_range_end; 6091 struct frame_id step_frame_id; 6092 struct frame_id step_stack_frame_id; 6093 enum step_over_calls_kind step_over_calls; 6094 CORE_ADDR step_resume_break_address; 6095 int stop_after_trap; 6096 int stop_soon; 6097 6098 /* ID if the selected frame when the inferior function call was made. */ 6099 struct frame_id selected_frame_id; 6100 6101 int proceed_to_finish; 6102 int in_infcall; 6103 }; 6104 6105 /* Save all of the information associated with the inferior<==>gdb 6106 connection. */ 6107 6108 struct inferior_status * 6109 save_inferior_status (void) 6110 { 6111 struct inferior_status *inf_status = XMALLOC (struct inferior_status); 6112 struct thread_info *tp = inferior_thread (); 6113 struct inferior *inf = current_inferior (); 6114 6115 inf_status->stop_step = tp->stop_step; 6116 inf_status->stop_stack_dummy = stop_stack_dummy; 6117 inf_status->stopped_by_random_signal = stopped_by_random_signal; 6118 inf_status->stepping_over_breakpoint = tp->trap_expected; 6119 inf_status->step_range_start = tp->step_range_start; 6120 inf_status->step_range_end = tp->step_range_end; 6121 inf_status->step_frame_id = tp->step_frame_id; 6122 inf_status->step_stack_frame_id = tp->step_stack_frame_id; 6123 inf_status->step_over_calls = tp->step_over_calls; 6124 inf_status->stop_after_trap = stop_after_trap; 6125 inf_status->stop_soon = inf->stop_soon; 6126 /* Save original bpstat chain here; replace it with copy of chain. 6127 If caller's caller is walking the chain, they'll be happier if we 6128 hand them back the original chain when restore_inferior_status is 6129 called. */ 6130 inf_status->stop_bpstat = tp->stop_bpstat; 6131 tp->stop_bpstat = bpstat_copy (tp->stop_bpstat); 6132 inf_status->proceed_to_finish = tp->proceed_to_finish; 6133 inf_status->in_infcall = tp->in_infcall; 6134 6135 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL)); 6136 6137 return inf_status; 6138 } 6139 6140 static int 6141 restore_selected_frame (void *args) 6142 { 6143 struct frame_id *fid = (struct frame_id *) args; 6144 struct frame_info *frame; 6145 6146 frame = frame_find_by_id (*fid); 6147 6148 /* If inf_status->selected_frame_id is NULL, there was no previously 6149 selected frame. */ 6150 if (frame == NULL) 6151 { 6152 warning (_("Unable to restore previously selected frame.")); 6153 return 0; 6154 } 6155 6156 select_frame (frame); 6157 6158 return (1); 6159 } 6160 6161 /* Restore inferior session state to INF_STATUS. */ 6162 6163 void 6164 restore_inferior_status (struct inferior_status *inf_status) 6165 { 6166 struct thread_info *tp = inferior_thread (); 6167 struct inferior *inf = current_inferior (); 6168 6169 tp->stop_step = inf_status->stop_step; 6170 stop_stack_dummy = inf_status->stop_stack_dummy; 6171 stopped_by_random_signal = inf_status->stopped_by_random_signal; 6172 tp->trap_expected = inf_status->stepping_over_breakpoint; 6173 tp->step_range_start = inf_status->step_range_start; 6174 tp->step_range_end = inf_status->step_range_end; 6175 tp->step_frame_id = inf_status->step_frame_id; 6176 tp->step_stack_frame_id = inf_status->step_stack_frame_id; 6177 tp->step_over_calls = inf_status->step_over_calls; 6178 stop_after_trap = inf_status->stop_after_trap; 6179 inf->stop_soon = inf_status->stop_soon; 6180 bpstat_clear (&tp->stop_bpstat); 6181 tp->stop_bpstat = inf_status->stop_bpstat; 6182 inf_status->stop_bpstat = NULL; 6183 tp->proceed_to_finish = inf_status->proceed_to_finish; 6184 tp->in_infcall = inf_status->in_infcall; 6185 6186 if (target_has_stack) 6187 { 6188 /* The point of catch_errors is that if the stack is clobbered, 6189 walking the stack might encounter a garbage pointer and 6190 error() trying to dereference it. */ 6191 if (catch_errors 6192 (restore_selected_frame, &inf_status->selected_frame_id, 6193 "Unable to restore previously selected frame:\n", 6194 RETURN_MASK_ERROR) == 0) 6195 /* Error in restoring the selected frame. Select the innermost 6196 frame. */ 6197 select_frame (get_current_frame ()); 6198 } 6199 6200 xfree (inf_status); 6201 } 6202 6203 static void 6204 do_restore_inferior_status_cleanup (void *sts) 6205 { 6206 restore_inferior_status (sts); 6207 } 6208 6209 struct cleanup * 6210 make_cleanup_restore_inferior_status (struct inferior_status *inf_status) 6211 { 6212 return make_cleanup (do_restore_inferior_status_cleanup, inf_status); 6213 } 6214 6215 void 6216 discard_inferior_status (struct inferior_status *inf_status) 6217 { 6218 /* See save_inferior_status for info on stop_bpstat. */ 6219 bpstat_clear (&inf_status->stop_bpstat); 6220 xfree (inf_status); 6221 } 6222 6223 int 6224 inferior_has_forked (ptid_t pid, ptid_t *child_pid) 6225 { 6226 struct target_waitstatus last; 6227 ptid_t last_ptid; 6228 6229 get_last_target_status (&last_ptid, &last); 6230 6231 if (last.kind != TARGET_WAITKIND_FORKED) 6232 return 0; 6233 6234 if (!ptid_equal (last_ptid, pid)) 6235 return 0; 6236 6237 *child_pid = last.value.related_pid; 6238 return 1; 6239 } 6240 6241 int 6242 inferior_has_vforked (ptid_t pid, ptid_t *child_pid) 6243 { 6244 struct target_waitstatus last; 6245 ptid_t last_ptid; 6246 6247 get_last_target_status (&last_ptid, &last); 6248 6249 if (last.kind != TARGET_WAITKIND_VFORKED) 6250 return 0; 6251 6252 if (!ptid_equal (last_ptid, pid)) 6253 return 0; 6254 6255 *child_pid = last.value.related_pid; 6256 return 1; 6257 } 6258 6259 int 6260 inferior_has_execd (ptid_t pid, char **execd_pathname) 6261 { 6262 struct target_waitstatus last; 6263 ptid_t last_ptid; 6264 6265 get_last_target_status (&last_ptid, &last); 6266 6267 if (last.kind != TARGET_WAITKIND_EXECD) 6268 return 0; 6269 6270 if (!ptid_equal (last_ptid, pid)) 6271 return 0; 6272 6273 *execd_pathname = xstrdup (last.value.execd_pathname); 6274 return 1; 6275 } 6276 6277 int 6278 inferior_has_called_syscall (ptid_t pid, int *syscall_number) 6279 { 6280 struct target_waitstatus last; 6281 ptid_t last_ptid; 6282 6283 get_last_target_status (&last_ptid, &last); 6284 6285 if (last.kind != TARGET_WAITKIND_SYSCALL_ENTRY && 6286 last.kind != TARGET_WAITKIND_SYSCALL_RETURN) 6287 return 0; 6288 6289 if (!ptid_equal (last_ptid, pid)) 6290 return 0; 6291 6292 *syscall_number = last.value.syscall_number; 6293 return 1; 6294 } 6295 6296 /* Oft used ptids */ 6297 ptid_t null_ptid; 6298 ptid_t minus_one_ptid; 6299 6300 /* Create a ptid given the necessary PID, LWP, and TID components. */ 6301 6302 ptid_t 6303 ptid_build (int pid, long lwp, long tid) 6304 { 6305 ptid_t ptid; 6306 6307 ptid.pid = pid; 6308 ptid.lwp = lwp; 6309 ptid.tid = tid; 6310 return ptid; 6311 } 6312 6313 /* Create a ptid from just a pid. */ 6314 6315 ptid_t 6316 pid_to_ptid (int pid) 6317 { 6318 return ptid_build (pid, 0, 0); 6319 } 6320 6321 /* Fetch the pid (process id) component from a ptid. */ 6322 6323 int 6324 ptid_get_pid (ptid_t ptid) 6325 { 6326 return ptid.pid; 6327 } 6328 6329 /* Fetch the lwp (lightweight process) component from a ptid. */ 6330 6331 long 6332 ptid_get_lwp (ptid_t ptid) 6333 { 6334 return ptid.lwp; 6335 } 6336 6337 /* Fetch the tid (thread id) component from a ptid. */ 6338 6339 long 6340 ptid_get_tid (ptid_t ptid) 6341 { 6342 return ptid.tid; 6343 } 6344 6345 /* ptid_equal() is used to test equality of two ptids. */ 6346 6347 int 6348 ptid_equal (ptid_t ptid1, ptid_t ptid2) 6349 { 6350 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp 6351 && ptid1.tid == ptid2.tid); 6352 } 6353 6354 /* Returns true if PTID represents a process. */ 6355 6356 int 6357 ptid_is_pid (ptid_t ptid) 6358 { 6359 if (ptid_equal (minus_one_ptid, ptid)) 6360 return 0; 6361 if (ptid_equal (null_ptid, ptid)) 6362 return 0; 6363 6364 return (ptid_get_lwp (ptid) == 0 && ptid_get_tid (ptid) == 0); 6365 } 6366 6367 int 6368 ptid_match (ptid_t ptid, ptid_t filter) 6369 { 6370 /* Since both parameters have the same type, prevent easy mistakes 6371 from happening. */ 6372 gdb_assert (!ptid_equal (ptid, minus_one_ptid) 6373 && !ptid_equal (ptid, null_ptid)); 6374 6375 if (ptid_equal (filter, minus_one_ptid)) 6376 return 1; 6377 if (ptid_is_pid (filter) 6378 && ptid_get_pid (ptid) == ptid_get_pid (filter)) 6379 return 1; 6380 else if (ptid_equal (ptid, filter)) 6381 return 1; 6382 6383 return 0; 6384 } 6385 6386 /* restore_inferior_ptid() will be used by the cleanup machinery 6387 to restore the inferior_ptid value saved in a call to 6388 save_inferior_ptid(). */ 6389 6390 static void 6391 restore_inferior_ptid (void *arg) 6392 { 6393 ptid_t *saved_ptid_ptr = arg; 6394 6395 inferior_ptid = *saved_ptid_ptr; 6396 xfree (arg); 6397 } 6398 6399 /* Save the value of inferior_ptid so that it may be restored by a 6400 later call to do_cleanups(). Returns the struct cleanup pointer 6401 needed for later doing the cleanup. */ 6402 6403 struct cleanup * 6404 save_inferior_ptid (void) 6405 { 6406 ptid_t *saved_ptid_ptr; 6407 6408 saved_ptid_ptr = xmalloc (sizeof (ptid_t)); 6409 *saved_ptid_ptr = inferior_ptid; 6410 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr); 6411 } 6412 6413 6414 /* User interface for reverse debugging: 6415 Set exec-direction / show exec-direction commands 6416 (returns error unless target implements to_set_exec_direction method). */ 6417 6418 enum exec_direction_kind execution_direction = EXEC_FORWARD; 6419 static const char exec_forward[] = "forward"; 6420 static const char exec_reverse[] = "reverse"; 6421 static const char *exec_direction = exec_forward; 6422 static const char *exec_direction_names[] = { 6423 exec_forward, 6424 exec_reverse, 6425 NULL 6426 }; 6427 6428 static void 6429 set_exec_direction_func (char *args, int from_tty, 6430 struct cmd_list_element *cmd) 6431 { 6432 if (target_can_execute_reverse) 6433 { 6434 if (!strcmp (exec_direction, exec_forward)) 6435 execution_direction = EXEC_FORWARD; 6436 else if (!strcmp (exec_direction, exec_reverse)) 6437 execution_direction = EXEC_REVERSE; 6438 } 6439 else 6440 { 6441 exec_direction = exec_forward; 6442 error (_("Target does not support this operation.")); 6443 } 6444 } 6445 6446 static void 6447 show_exec_direction_func (struct ui_file *out, int from_tty, 6448 struct cmd_list_element *cmd, const char *value) 6449 { 6450 switch (execution_direction) { 6451 case EXEC_FORWARD: 6452 fprintf_filtered (out, _("Forward.\n")); 6453 break; 6454 case EXEC_REVERSE: 6455 fprintf_filtered (out, _("Reverse.\n")); 6456 break; 6457 case EXEC_ERROR: 6458 default: 6459 fprintf_filtered (out, 6460 _("Forward (target `%s' does not support exec-direction).\n"), 6461 target_shortname); 6462 break; 6463 } 6464 } 6465 6466 /* User interface for non-stop mode. */ 6467 6468 int non_stop = 0; 6469 6470 static void 6471 set_non_stop (char *args, int from_tty, 6472 struct cmd_list_element *c) 6473 { 6474 if (target_has_execution) 6475 { 6476 non_stop_1 = non_stop; 6477 error (_("Cannot change this setting while the inferior is running.")); 6478 } 6479 6480 non_stop = non_stop_1; 6481 } 6482 6483 static void 6484 show_non_stop (struct ui_file *file, int from_tty, 6485 struct cmd_list_element *c, const char *value) 6486 { 6487 fprintf_filtered (file, 6488 _("Controlling the inferior in non-stop mode is %s.\n"), 6489 value); 6490 } 6491 6492 static void 6493 show_schedule_multiple (struct ui_file *file, int from_tty, 6494 struct cmd_list_element *c, const char *value) 6495 { 6496 fprintf_filtered (file, _("\ 6497 Resuming the execution of threads of all processes is %s.\n"), value); 6498 } 6499 6500 void 6501 _initialize_infrun (void) 6502 { 6503 int i; 6504 int numsigs; 6505 6506 add_info ("signals", signals_info, _("\ 6507 What debugger does when program gets various signals.\n\ 6508 Specify a signal as argument to print info on that signal only.")); 6509 add_info_alias ("handle", "signals", 0); 6510 6511 add_com ("handle", class_run, handle_command, _("\ 6512 Specify how to handle a signal.\n\ 6513 Args are signals and actions to apply to those signals.\n\ 6514 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\ 6515 from 1-15 are allowed for compatibility with old versions of GDB.\n\ 6516 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\ 6517 The special arg \"all\" is recognized to mean all signals except those\n\ 6518 used by the debugger, typically SIGTRAP and SIGINT.\n\ 6519 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\ 6520 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\ 6521 Stop means reenter debugger if this signal happens (implies print).\n\ 6522 Print means print a message if this signal happens.\n\ 6523 Pass means let program see this signal; otherwise program doesn't know.\n\ 6524 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\ 6525 Pass and Stop may be combined.")); 6526 if (xdb_commands) 6527 { 6528 add_com ("lz", class_info, signals_info, _("\ 6529 What debugger does when program gets various signals.\n\ 6530 Specify a signal as argument to print info on that signal only.")); 6531 add_com ("z", class_run, xdb_handle_command, _("\ 6532 Specify how to handle a signal.\n\ 6533 Args are signals and actions to apply to those signals.\n\ 6534 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\ 6535 from 1-15 are allowed for compatibility with old versions of GDB.\n\ 6536 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\ 6537 The special arg \"all\" is recognized to mean all signals except those\n\ 6538 used by the debugger, typically SIGTRAP and SIGINT.\n\ 6539 Recognized actions include \"s\" (toggles between stop and nostop),\n\ 6540 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \ 6541 nopass), \"Q\" (noprint)\n\ 6542 Stop means reenter debugger if this signal happens (implies print).\n\ 6543 Print means print a message if this signal happens.\n\ 6544 Pass means let program see this signal; otherwise program doesn't know.\n\ 6545 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\ 6546 Pass and Stop may be combined.")); 6547 } 6548 6549 if (!dbx_commands) 6550 stop_command = add_cmd ("stop", class_obscure, 6551 not_just_help_class_command, _("\ 6552 There is no `stop' command, but you can set a hook on `stop'.\n\ 6553 This allows you to set a list of commands to be run each time execution\n\ 6554 of the program stops."), &cmdlist); 6555 6556 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\ 6557 Set inferior debugging."), _("\ 6558 Show inferior debugging."), _("\ 6559 When non-zero, inferior specific debugging is enabled."), 6560 NULL, 6561 show_debug_infrun, 6562 &setdebuglist, &showdebuglist); 6563 6564 add_setshow_boolean_cmd ("displaced", class_maintenance, &debug_displaced, _("\ 6565 Set displaced stepping debugging."), _("\ 6566 Show displaced stepping debugging."), _("\ 6567 When non-zero, displaced stepping specific debugging is enabled."), 6568 NULL, 6569 show_debug_displaced, 6570 &setdebuglist, &showdebuglist); 6571 6572 add_setshow_boolean_cmd ("non-stop", no_class, 6573 &non_stop_1, _("\ 6574 Set whether gdb controls the inferior in non-stop mode."), _("\ 6575 Show whether gdb controls the inferior in non-stop mode."), _("\ 6576 When debugging a multi-threaded program and this setting is\n\ 6577 off (the default, also called all-stop mode), when one thread stops\n\ 6578 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\ 6579 all other threads in the program while you interact with the thread of\n\ 6580 interest. When you continue or step a thread, you can allow the other\n\ 6581 threads to run, or have them remain stopped, but while you inspect any\n\ 6582 thread's state, all threads stop.\n\ 6583 \n\ 6584 In non-stop mode, when one thread stops, other threads can continue\n\ 6585 to run freely. You'll be able to step each thread independently,\n\ 6586 leave it stopped or free to run as needed."), 6587 set_non_stop, 6588 show_non_stop, 6589 &setlist, 6590 &showlist); 6591 6592 numsigs = (int) TARGET_SIGNAL_LAST; 6593 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs); 6594 signal_print = (unsigned char *) 6595 xmalloc (sizeof (signal_print[0]) * numsigs); 6596 signal_program = (unsigned char *) 6597 xmalloc (sizeof (signal_program[0]) * numsigs); 6598 for (i = 0; i < numsigs; i++) 6599 { 6600 signal_stop[i] = 1; 6601 signal_print[i] = 1; 6602 signal_program[i] = 1; 6603 } 6604 6605 /* Signals caused by debugger's own actions 6606 should not be given to the program afterwards. */ 6607 signal_program[TARGET_SIGNAL_TRAP] = 0; 6608 signal_program[TARGET_SIGNAL_INT] = 0; 6609 6610 /* Signals that are not errors should not normally enter the debugger. */ 6611 signal_stop[TARGET_SIGNAL_ALRM] = 0; 6612 signal_print[TARGET_SIGNAL_ALRM] = 0; 6613 signal_stop[TARGET_SIGNAL_VTALRM] = 0; 6614 signal_print[TARGET_SIGNAL_VTALRM] = 0; 6615 signal_stop[TARGET_SIGNAL_PROF] = 0; 6616 signal_print[TARGET_SIGNAL_PROF] = 0; 6617 signal_stop[TARGET_SIGNAL_CHLD] = 0; 6618 signal_print[TARGET_SIGNAL_CHLD] = 0; 6619 signal_stop[TARGET_SIGNAL_IO] = 0; 6620 signal_print[TARGET_SIGNAL_IO] = 0; 6621 signal_stop[TARGET_SIGNAL_POLL] = 0; 6622 signal_print[TARGET_SIGNAL_POLL] = 0; 6623 signal_stop[TARGET_SIGNAL_URG] = 0; 6624 signal_print[TARGET_SIGNAL_URG] = 0; 6625 signal_stop[TARGET_SIGNAL_WINCH] = 0; 6626 signal_print[TARGET_SIGNAL_WINCH] = 0; 6627 6628 /* These signals are used internally by user-level thread 6629 implementations. (See signal(5) on Solaris.) Like the above 6630 signals, a healthy program receives and handles them as part of 6631 its normal operation. */ 6632 signal_stop[TARGET_SIGNAL_LWP] = 0; 6633 signal_print[TARGET_SIGNAL_LWP] = 0; 6634 signal_stop[TARGET_SIGNAL_WAITING] = 0; 6635 signal_print[TARGET_SIGNAL_WAITING] = 0; 6636 signal_stop[TARGET_SIGNAL_CANCEL] = 0; 6637 signal_print[TARGET_SIGNAL_CANCEL] = 0; 6638 6639 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support, 6640 &stop_on_solib_events, _("\ 6641 Set stopping for shared library events."), _("\ 6642 Show stopping for shared library events."), _("\ 6643 If nonzero, gdb will give control to the user when the dynamic linker\n\ 6644 notifies gdb of shared library events. The most common event of interest\n\ 6645 to the user would be loading/unloading of a new library."), 6646 NULL, 6647 show_stop_on_solib_events, 6648 &setlist, &showlist); 6649 6650 add_setshow_enum_cmd ("follow-fork-mode", class_run, 6651 follow_fork_mode_kind_names, 6652 &follow_fork_mode_string, _("\ 6653 Set debugger response to a program call of fork or vfork."), _("\ 6654 Show debugger response to a program call of fork or vfork."), _("\ 6655 A fork or vfork creates a new process. follow-fork-mode can be:\n\ 6656 parent - the original process is debugged after a fork\n\ 6657 child - the new process is debugged after a fork\n\ 6658 The unfollowed process will continue to run.\n\ 6659 By default, the debugger will follow the parent process."), 6660 NULL, 6661 show_follow_fork_mode_string, 6662 &setlist, &showlist); 6663 6664 add_setshow_enum_cmd ("follow-exec-mode", class_run, 6665 follow_exec_mode_names, 6666 &follow_exec_mode_string, _("\ 6667 Set debugger response to a program call of exec."), _("\ 6668 Show debugger response to a program call of exec."), _("\ 6669 An exec call replaces the program image of a process.\n\ 6670 \n\ 6671 follow-exec-mode can be:\n\ 6672 \n\ 6673 new - the debugger creates a new inferior and rebinds the process\n\ 6674 to this new inferior. The program the process was running before\n\ 6675 the exec call can be restarted afterwards by restarting the original\n\ 6676 inferior.\n\ 6677 \n\ 6678 same - the debugger keeps the process bound to the same inferior.\n\ 6679 The new executable image replaces the previous executable loaded in\n\ 6680 the inferior. Restarting the inferior after the exec call restarts\n\ 6681 the executable the process was running after the exec call.\n\ 6682 \n\ 6683 By default, the debugger will use the same inferior."), 6684 NULL, 6685 show_follow_exec_mode_string, 6686 &setlist, &showlist); 6687 6688 add_setshow_enum_cmd ("scheduler-locking", class_run, 6689 scheduler_enums, &scheduler_mode, _("\ 6690 Set mode for locking scheduler during execution."), _("\ 6691 Show mode for locking scheduler during execution."), _("\ 6692 off == no locking (threads may preempt at any time)\n\ 6693 on == full locking (no thread except the current thread may run)\n\ 6694 step == scheduler locked during every single-step operation.\n\ 6695 In this mode, no other thread may run during a step command.\n\ 6696 Other threads may run while stepping over a function call ('next')."), 6697 set_schedlock_func, /* traps on target vector */ 6698 show_scheduler_mode, 6699 &setlist, &showlist); 6700 6701 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\ 6702 Set mode for resuming threads of all processes."), _("\ 6703 Show mode for resuming threads of all processes."), _("\ 6704 When on, execution commands (such as 'continue' or 'next') resume all\n\ 6705 threads of all processes. When off (which is the default), execution\n\ 6706 commands only resume the threads of the current process. The set of\n\ 6707 threads that are resumed is further refined by the scheduler-locking\n\ 6708 mode (see help set scheduler-locking)."), 6709 NULL, 6710 show_schedule_multiple, 6711 &setlist, &showlist); 6712 6713 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\ 6714 Set mode of the step operation."), _("\ 6715 Show mode of the step operation."), _("\ 6716 When set, doing a step over a function without debug line information\n\ 6717 will stop at the first instruction of that function. Otherwise, the\n\ 6718 function is skipped and the step command stops at a different source line."), 6719 NULL, 6720 show_step_stop_if_no_debug, 6721 &setlist, &showlist); 6722 6723 add_setshow_enum_cmd ("displaced-stepping", class_run, 6724 can_use_displaced_stepping_enum, 6725 &can_use_displaced_stepping, _("\ 6726 Set debugger's willingness to use displaced stepping."), _("\ 6727 Show debugger's willingness to use displaced stepping."), _("\ 6728 If on, gdb will use displaced stepping to step over breakpoints if it is\n\ 6729 supported by the target architecture. If off, gdb will not use displaced\n\ 6730 stepping to step over breakpoints, even if such is supported by the target\n\ 6731 architecture. If auto (which is the default), gdb will use displaced stepping\n\ 6732 if the target architecture supports it and non-stop mode is active, but will not\n\ 6733 use it in all-stop mode (see help set non-stop)."), 6734 NULL, 6735 show_can_use_displaced_stepping, 6736 &setlist, &showlist); 6737 6738 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names, 6739 &exec_direction, _("Set direction of execution.\n\ 6740 Options are 'forward' or 'reverse'."), 6741 _("Show direction of execution (forward/reverse)."), 6742 _("Tells gdb whether to execute forward or backward."), 6743 set_exec_direction_func, show_exec_direction_func, 6744 &setlist, &showlist); 6745 6746 /* Set/show detach-on-fork: user-settable mode. */ 6747 6748 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\ 6749 Set whether gdb will detach the child of a fork."), _("\ 6750 Show whether gdb will detach the child of a fork."), _("\ 6751 Tells gdb whether to detach the child of a fork."), 6752 NULL, NULL, &setlist, &showlist); 6753 6754 /* ptid initializations */ 6755 null_ptid = ptid_build (0, 0, 0); 6756 minus_one_ptid = ptid_build (-1, 0, 0); 6757 inferior_ptid = null_ptid; 6758 target_last_wait_ptid = minus_one_ptid; 6759 6760 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed); 6761 observer_attach_thread_stop_requested (infrun_thread_stop_requested); 6762 observer_attach_thread_exit (infrun_thread_thread_exit); 6763 observer_attach_inferior_exit (infrun_inferior_exit); 6764 6765 /* Explicitly create without lookup, since that tries to create a 6766 value with a void typed value, and when we get here, gdbarch 6767 isn't initialized yet. At this point, we're quite sure there 6768 isn't another convenience variable of the same name. */ 6769 create_internalvar_type_lazy ("_siginfo", siginfo_make_value); 6770 6771 add_setshow_boolean_cmd ("observer", no_class, 6772 &observer_mode_1, _("\ 6773 Set whether gdb controls the inferior in observer mode."), _("\ 6774 Show whether gdb controls the inferior in observer mode."), _("\ 6775 In observer mode, GDB can get data from the inferior, but not\n\ 6776 affect its execution. Registers and memory may not be changed,\n\ 6777 breakpoints may not be set, and the program cannot be interrupted\n\ 6778 or signalled."), 6779 set_observer_mode, 6780 show_observer_mode, 6781 &setlist, 6782 &showlist); 6783 } 6784