xref: /dflybsd-src/contrib/gdb-7/gdb/infrun.c (revision c0d274d062fd959993bf623f25f7cb6a8a676c4e)
1 /* Target-struct-independent code to start (run) and stop an inferior
2    process.
3 
4    Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
5    1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6    2008, 2009, 2010 Free Software Foundation, Inc.
7 
8    This file is part of GDB.
9 
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation; either version 3 of the License, or
13    (at your option) any later version.
14 
15    This program is distributed in the hope that it will be useful,
16    but WITHOUT ANY WARRANTY; without even the implied warranty of
17    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18    GNU General Public License for more details.
19 
20    You should have received a copy of the GNU General Public License
21    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
22 
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include "symtab.h"
27 #include "frame.h"
28 #include "inferior.h"
29 #include "exceptions.h"
30 #include "breakpoint.h"
31 #include "gdb_wait.h"
32 #include "gdbcore.h"
33 #include "gdbcmd.h"
34 #include "cli/cli-script.h"
35 #include "target.h"
36 #include "gdbthread.h"
37 #include "annotate.h"
38 #include "symfile.h"
39 #include "top.h"
40 #include <signal.h>
41 #include "inf-loop.h"
42 #include "regcache.h"
43 #include "value.h"
44 #include "observer.h"
45 #include "language.h"
46 #include "solib.h"
47 #include "main.h"
48 #include "gdb_assert.h"
49 #include "mi/mi-common.h"
50 #include "event-top.h"
51 #include "record.h"
52 #include "inline-frame.h"
53 #include "jit.h"
54 #include "tracepoint.h"
55 
56 /* Prototypes for local functions */
57 
58 static void signals_info (char *, int);
59 
60 static void handle_command (char *, int);
61 
62 static void sig_print_info (enum target_signal);
63 
64 static void sig_print_header (void);
65 
66 static void resume_cleanups (void *);
67 
68 static int hook_stop_stub (void *);
69 
70 static int restore_selected_frame (void *);
71 
72 static int follow_fork (void);
73 
74 static void set_schedlock_func (char *args, int from_tty,
75 				struct cmd_list_element *c);
76 
77 static int currently_stepping (struct thread_info *tp);
78 
79 static int currently_stepping_or_nexting_callback (struct thread_info *tp,
80 						   void *data);
81 
82 static void xdb_handle_command (char *args, int from_tty);
83 
84 static int prepare_to_proceed (int);
85 
86 void _initialize_infrun (void);
87 
88 void nullify_last_target_wait_ptid (void);
89 
90 /* When set, stop the 'step' command if we enter a function which has
91    no line number information.  The normal behavior is that we step
92    over such function.  */
93 int step_stop_if_no_debug = 0;
94 static void
95 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
96 			    struct cmd_list_element *c, const char *value)
97 {
98   fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
99 }
100 
101 /* In asynchronous mode, but simulating synchronous execution. */
102 
103 int sync_execution = 0;
104 
105 /* wait_for_inferior and normal_stop use this to notify the user
106    when the inferior stopped in a different thread than it had been
107    running in.  */
108 
109 static ptid_t previous_inferior_ptid;
110 
111 /* Default behavior is to detach newly forked processes (legacy).  */
112 int detach_fork = 1;
113 
114 int debug_displaced = 0;
115 static void
116 show_debug_displaced (struct ui_file *file, int from_tty,
117 		      struct cmd_list_element *c, const char *value)
118 {
119   fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
120 }
121 
122 int debug_infrun = 0;
123 static void
124 show_debug_infrun (struct ui_file *file, int from_tty,
125 		   struct cmd_list_element *c, const char *value)
126 {
127   fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
128 }
129 
130 /* If the program uses ELF-style shared libraries, then calls to
131    functions in shared libraries go through stubs, which live in a
132    table called the PLT (Procedure Linkage Table).  The first time the
133    function is called, the stub sends control to the dynamic linker,
134    which looks up the function's real address, patches the stub so
135    that future calls will go directly to the function, and then passes
136    control to the function.
137 
138    If we are stepping at the source level, we don't want to see any of
139    this --- we just want to skip over the stub and the dynamic linker.
140    The simple approach is to single-step until control leaves the
141    dynamic linker.
142 
143    However, on some systems (e.g., Red Hat's 5.2 distribution) the
144    dynamic linker calls functions in the shared C library, so you
145    can't tell from the PC alone whether the dynamic linker is still
146    running.  In this case, we use a step-resume breakpoint to get us
147    past the dynamic linker, as if we were using "next" to step over a
148    function call.
149 
150    in_solib_dynsym_resolve_code() says whether we're in the dynamic
151    linker code or not.  Normally, this means we single-step.  However,
152    if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
153    address where we can place a step-resume breakpoint to get past the
154    linker's symbol resolution function.
155 
156    in_solib_dynsym_resolve_code() can generally be implemented in a
157    pretty portable way, by comparing the PC against the address ranges
158    of the dynamic linker's sections.
159 
160    SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
161    it depends on internal details of the dynamic linker.  It's usually
162    not too hard to figure out where to put a breakpoint, but it
163    certainly isn't portable.  SKIP_SOLIB_RESOLVER should do plenty of
164    sanity checking.  If it can't figure things out, returning zero and
165    getting the (possibly confusing) stepping behavior is better than
166    signalling an error, which will obscure the change in the
167    inferior's state.  */
168 
169 /* This function returns TRUE if pc is the address of an instruction
170    that lies within the dynamic linker (such as the event hook, or the
171    dld itself).
172 
173    This function must be used only when a dynamic linker event has
174    been caught, and the inferior is being stepped out of the hook, or
175    undefined results are guaranteed.  */
176 
177 #ifndef SOLIB_IN_DYNAMIC_LINKER
178 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
179 #endif
180 
181 /* "Observer mode" is somewhat like a more extreme version of
182    non-stop, in which all GDB operations that might affect the
183    target's execution have been disabled.  */
184 
185 static int non_stop_1 = 0;
186 
187 int observer_mode = 0;
188 static int observer_mode_1 = 0;
189 
190 static void
191 set_observer_mode (char *args, int from_tty,
192 		   struct cmd_list_element *c)
193 {
194   extern int pagination_enabled;
195 
196   if (target_has_execution)
197     {
198       observer_mode_1 = observer_mode;
199       error (_("Cannot change this setting while the inferior is running."));
200     }
201 
202   observer_mode = observer_mode_1;
203 
204   may_write_registers = !observer_mode;
205   may_write_memory = !observer_mode;
206   may_insert_breakpoints = !observer_mode;
207   may_insert_tracepoints = !observer_mode;
208   /* We can insert fast tracepoints in or out of observer mode,
209      but enable them if we're going into this mode.  */
210   if (observer_mode)
211     may_insert_fast_tracepoints = 1;
212   may_stop = !observer_mode;
213   update_target_permissions ();
214 
215   /* Going *into* observer mode we must force non-stop, then
216      going out we leave it that way.  */
217   if (observer_mode)
218     {
219       target_async_permitted = 1;
220       pagination_enabled = 0;
221       non_stop = non_stop_1 = 1;
222     }
223 
224   if (from_tty)
225     printf_filtered (_("Observer mode is now %s.\n"),
226 		     (observer_mode ? "on" : "off"));
227 }
228 
229 static void
230 show_observer_mode (struct ui_file *file, int from_tty,
231 		    struct cmd_list_element *c, const char *value)
232 {
233   fprintf_filtered (file, _("Observer mode is %s.\n"), value);
234 }
235 
236 /* This updates the value of observer mode based on changes in
237    permissions.  Note that we are deliberately ignoring the values of
238    may-write-registers and may-write-memory, since the user may have
239    reason to enable these during a session, for instance to turn on a
240    debugging-related global.  */
241 
242 void
243 update_observer_mode (void)
244 {
245   int newval;
246 
247   newval = (!may_insert_breakpoints
248 	    && !may_insert_tracepoints
249 	    && may_insert_fast_tracepoints
250 	    && !may_stop
251 	    && non_stop);
252 
253   /* Let the user know if things change.  */
254   if (newval != observer_mode)
255     printf_filtered (_("Observer mode is now %s.\n"),
256 		     (newval ? "on" : "off"));
257 
258   observer_mode = observer_mode_1 = newval;
259 }
260 
261 /* Tables of how to react to signals; the user sets them.  */
262 
263 static unsigned char *signal_stop;
264 static unsigned char *signal_print;
265 static unsigned char *signal_program;
266 
267 #define SET_SIGS(nsigs,sigs,flags) \
268   do { \
269     int signum = (nsigs); \
270     while (signum-- > 0) \
271       if ((sigs)[signum]) \
272 	(flags)[signum] = 1; \
273   } while (0)
274 
275 #define UNSET_SIGS(nsigs,sigs,flags) \
276   do { \
277     int signum = (nsigs); \
278     while (signum-- > 0) \
279       if ((sigs)[signum]) \
280 	(flags)[signum] = 0; \
281   } while (0)
282 
283 /* Value to pass to target_resume() to cause all threads to resume */
284 
285 #define RESUME_ALL minus_one_ptid
286 
287 /* Command list pointer for the "stop" placeholder.  */
288 
289 static struct cmd_list_element *stop_command;
290 
291 /* Function inferior was in as of last step command.  */
292 
293 static struct symbol *step_start_function;
294 
295 /* Nonzero if we want to give control to the user when we're notified
296    of shared library events by the dynamic linker.  */
297 int stop_on_solib_events;
298 static void
299 show_stop_on_solib_events (struct ui_file *file, int from_tty,
300 			   struct cmd_list_element *c, const char *value)
301 {
302   fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
303 		    value);
304 }
305 
306 /* Nonzero means expecting a trace trap
307    and should stop the inferior and return silently when it happens.  */
308 
309 int stop_after_trap;
310 
311 /* Save register contents here when executing a "finish" command or are
312    about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
313    Thus this contains the return value from the called function (assuming
314    values are returned in a register).  */
315 
316 struct regcache *stop_registers;
317 
318 /* Nonzero after stop if current stack frame should be printed.  */
319 
320 static int stop_print_frame;
321 
322 /* This is a cached copy of the pid/waitstatus of the last event
323    returned by target_wait()/deprecated_target_wait_hook().  This
324    information is returned by get_last_target_status().  */
325 static ptid_t target_last_wait_ptid;
326 static struct target_waitstatus target_last_waitstatus;
327 
328 static void context_switch (ptid_t ptid);
329 
330 void init_thread_stepping_state (struct thread_info *tss);
331 
332 void init_infwait_state (void);
333 
334 static const char follow_fork_mode_child[] = "child";
335 static const char follow_fork_mode_parent[] = "parent";
336 
337 static const char *follow_fork_mode_kind_names[] = {
338   follow_fork_mode_child,
339   follow_fork_mode_parent,
340   NULL
341 };
342 
343 static const char *follow_fork_mode_string = follow_fork_mode_parent;
344 static void
345 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
346 			      struct cmd_list_element *c, const char *value)
347 {
348   fprintf_filtered (file, _("\
349 Debugger response to a program call of fork or vfork is \"%s\".\n"),
350 		    value);
351 }
352 
353 
354 /* Tell the target to follow the fork we're stopped at.  Returns true
355    if the inferior should be resumed; false, if the target for some
356    reason decided it's best not to resume.  */
357 
358 static int
359 follow_fork (void)
360 {
361   int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
362   int should_resume = 1;
363   struct thread_info *tp;
364 
365   /* Copy user stepping state to the new inferior thread.  FIXME: the
366      followed fork child thread should have a copy of most of the
367      parent thread structure's run control related fields, not just these.
368      Initialized to avoid "may be used uninitialized" warnings from gcc.  */
369   struct breakpoint *step_resume_breakpoint = NULL;
370   CORE_ADDR step_range_start = 0;
371   CORE_ADDR step_range_end = 0;
372   struct frame_id step_frame_id = { 0 };
373 
374   if (!non_stop)
375     {
376       ptid_t wait_ptid;
377       struct target_waitstatus wait_status;
378 
379       /* Get the last target status returned by target_wait().  */
380       get_last_target_status (&wait_ptid, &wait_status);
381 
382       /* If not stopped at a fork event, then there's nothing else to
383 	 do.  */
384       if (wait_status.kind != TARGET_WAITKIND_FORKED
385 	  && wait_status.kind != TARGET_WAITKIND_VFORKED)
386 	return 1;
387 
388       /* Check if we switched over from WAIT_PTID, since the event was
389 	 reported.  */
390       if (!ptid_equal (wait_ptid, minus_one_ptid)
391 	  && !ptid_equal (inferior_ptid, wait_ptid))
392 	{
393 	  /* We did.  Switch back to WAIT_PTID thread, to tell the
394 	     target to follow it (in either direction).  We'll
395 	     afterwards refuse to resume, and inform the user what
396 	     happened.  */
397 	  switch_to_thread (wait_ptid);
398 	  should_resume = 0;
399 	}
400     }
401 
402   tp = inferior_thread ();
403 
404   /* If there were any forks/vforks that were caught and are now to be
405      followed, then do so now.  */
406   switch (tp->pending_follow.kind)
407     {
408     case TARGET_WAITKIND_FORKED:
409     case TARGET_WAITKIND_VFORKED:
410       {
411 	ptid_t parent, child;
412 
413 	/* If the user did a next/step, etc, over a fork call,
414 	   preserve the stepping state in the fork child.  */
415 	if (follow_child && should_resume)
416 	  {
417 	    step_resume_breakpoint
418 	      = clone_momentary_breakpoint (tp->step_resume_breakpoint);
419 	    step_range_start = tp->step_range_start;
420 	    step_range_end = tp->step_range_end;
421 	    step_frame_id = tp->step_frame_id;
422 
423 	    /* For now, delete the parent's sr breakpoint, otherwise,
424 	       parent/child sr breakpoints are considered duplicates,
425 	       and the child version will not be installed.  Remove
426 	       this when the breakpoints module becomes aware of
427 	       inferiors and address spaces.  */
428 	    delete_step_resume_breakpoint (tp);
429 	    tp->step_range_start = 0;
430 	    tp->step_range_end = 0;
431 	    tp->step_frame_id = null_frame_id;
432 	  }
433 
434 	parent = inferior_ptid;
435 	child = tp->pending_follow.value.related_pid;
436 
437 	/* Tell the target to do whatever is necessary to follow
438 	   either parent or child.  */
439 	if (target_follow_fork (follow_child))
440 	  {
441 	    /* Target refused to follow, or there's some other reason
442 	       we shouldn't resume.  */
443 	    should_resume = 0;
444 	  }
445 	else
446 	  {
447 	    /* This pending follow fork event is now handled, one way
448 	       or another.  The previous selected thread may be gone
449 	       from the lists by now, but if it is still around, need
450 	       to clear the pending follow request.  */
451 	    tp = find_thread_ptid (parent);
452 	    if (tp)
453 	      tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
454 
455 	    /* This makes sure we don't try to apply the "Switched
456 	       over from WAIT_PID" logic above.  */
457 	    nullify_last_target_wait_ptid ();
458 
459 	    /* If we followed the child, switch to it... */
460 	    if (follow_child)
461 	      {
462 		switch_to_thread (child);
463 
464 		/* ... and preserve the stepping state, in case the
465 		   user was stepping over the fork call.  */
466 		if (should_resume)
467 		  {
468 		    tp = inferior_thread ();
469 		    tp->step_resume_breakpoint = step_resume_breakpoint;
470 		    tp->step_range_start = step_range_start;
471 		    tp->step_range_end = step_range_end;
472 		    tp->step_frame_id = step_frame_id;
473 		  }
474 		else
475 		  {
476 		    /* If we get here, it was because we're trying to
477 		       resume from a fork catchpoint, but, the user
478 		       has switched threads away from the thread that
479 		       forked.  In that case, the resume command
480 		       issued is most likely not applicable to the
481 		       child, so just warn, and refuse to resume.  */
482 		    warning (_("\
483 Not resuming: switched threads before following fork child.\n"));
484 		  }
485 
486 		/* Reset breakpoints in the child as appropriate.  */
487 		follow_inferior_reset_breakpoints ();
488 	      }
489 	    else
490 	      switch_to_thread (parent);
491 	  }
492       }
493       break;
494     case TARGET_WAITKIND_SPURIOUS:
495       /* Nothing to follow.  */
496       break;
497     default:
498       internal_error (__FILE__, __LINE__,
499 		      "Unexpected pending_follow.kind %d\n",
500 		      tp->pending_follow.kind);
501       break;
502     }
503 
504   return should_resume;
505 }
506 
507 void
508 follow_inferior_reset_breakpoints (void)
509 {
510   struct thread_info *tp = inferior_thread ();
511 
512   /* Was there a step_resume breakpoint?  (There was if the user
513      did a "next" at the fork() call.)  If so, explicitly reset its
514      thread number.
515 
516      step_resumes are a form of bp that are made to be per-thread.
517      Since we created the step_resume bp when the parent process
518      was being debugged, and now are switching to the child process,
519      from the breakpoint package's viewpoint, that's a switch of
520      "threads".  We must update the bp's notion of which thread
521      it is for, or it'll be ignored when it triggers.  */
522 
523   if (tp->step_resume_breakpoint)
524     breakpoint_re_set_thread (tp->step_resume_breakpoint);
525 
526   /* Reinsert all breakpoints in the child.  The user may have set
527      breakpoints after catching the fork, in which case those
528      were never set in the child, but only in the parent.  This makes
529      sure the inserted breakpoints match the breakpoint list.  */
530 
531   breakpoint_re_set ();
532   insert_breakpoints ();
533 }
534 
535 /* The child has exited or execed: resume threads of the parent the
536    user wanted to be executing.  */
537 
538 static int
539 proceed_after_vfork_done (struct thread_info *thread,
540 			  void *arg)
541 {
542   int pid = * (int *) arg;
543 
544   if (ptid_get_pid (thread->ptid) == pid
545       && is_running (thread->ptid)
546       && !is_executing (thread->ptid)
547       && !thread->stop_requested
548       && thread->stop_signal == TARGET_SIGNAL_0)
549     {
550       if (debug_infrun)
551 	fprintf_unfiltered (gdb_stdlog,
552 			    "infrun: resuming vfork parent thread %s\n",
553 			    target_pid_to_str (thread->ptid));
554 
555       switch_to_thread (thread->ptid);
556       clear_proceed_status ();
557       proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
558     }
559 
560   return 0;
561 }
562 
563 /* Called whenever we notice an exec or exit event, to handle
564    detaching or resuming a vfork parent.  */
565 
566 static void
567 handle_vfork_child_exec_or_exit (int exec)
568 {
569   struct inferior *inf = current_inferior ();
570 
571   if (inf->vfork_parent)
572     {
573       int resume_parent = -1;
574 
575       /* This exec or exit marks the end of the shared memory region
576 	 between the parent and the child.  If the user wanted to
577 	 detach from the parent, now is the time.  */
578 
579       if (inf->vfork_parent->pending_detach)
580 	{
581 	  struct thread_info *tp;
582 	  struct cleanup *old_chain;
583 	  struct program_space *pspace;
584 	  struct address_space *aspace;
585 
586 	  /* follow-fork child, detach-on-fork on */
587 
588 	  old_chain = make_cleanup_restore_current_thread ();
589 
590 	  /* We're letting loose of the parent.  */
591 	  tp = any_live_thread_of_process (inf->vfork_parent->pid);
592 	  switch_to_thread (tp->ptid);
593 
594 	  /* We're about to detach from the parent, which implicitly
595 	     removes breakpoints from its address space.  There's a
596 	     catch here: we want to reuse the spaces for the child,
597 	     but, parent/child are still sharing the pspace at this
598 	     point, although the exec in reality makes the kernel give
599 	     the child a fresh set of new pages.  The problem here is
600 	     that the breakpoints module being unaware of this, would
601 	     likely chose the child process to write to the parent
602 	     address space.  Swapping the child temporarily away from
603 	     the spaces has the desired effect.  Yes, this is "sort
604 	     of" a hack.  */
605 
606 	  pspace = inf->pspace;
607 	  aspace = inf->aspace;
608 	  inf->aspace = NULL;
609 	  inf->pspace = NULL;
610 
611 	  if (debug_infrun || info_verbose)
612 	    {
613 	      target_terminal_ours ();
614 
615 	      if (exec)
616 		fprintf_filtered (gdb_stdlog,
617 				  "Detaching vfork parent process %d after child exec.\n",
618 				  inf->vfork_parent->pid);
619 	      else
620 		fprintf_filtered (gdb_stdlog,
621 				  "Detaching vfork parent process %d after child exit.\n",
622 				  inf->vfork_parent->pid);
623 	    }
624 
625 	  target_detach (NULL, 0);
626 
627 	  /* Put it back.  */
628 	  inf->pspace = pspace;
629 	  inf->aspace = aspace;
630 
631 	  do_cleanups (old_chain);
632 	}
633       else if (exec)
634 	{
635 	  /* We're staying attached to the parent, so, really give the
636 	     child a new address space.  */
637 	  inf->pspace = add_program_space (maybe_new_address_space ());
638 	  inf->aspace = inf->pspace->aspace;
639 	  inf->removable = 1;
640 	  set_current_program_space (inf->pspace);
641 
642 	  resume_parent = inf->vfork_parent->pid;
643 
644 	  /* Break the bonds.  */
645 	  inf->vfork_parent->vfork_child = NULL;
646 	}
647       else
648 	{
649 	  struct cleanup *old_chain;
650 	  struct program_space *pspace;
651 
652 	  /* If this is a vfork child exiting, then the pspace and
653 	     aspaces were shared with the parent.  Since we're
654 	     reporting the process exit, we'll be mourning all that is
655 	     found in the address space, and switching to null_ptid,
656 	     preparing to start a new inferior.  But, since we don't
657 	     want to clobber the parent's address/program spaces, we
658 	     go ahead and create a new one for this exiting
659 	     inferior.  */
660 
661 	  /* Switch to null_ptid, so that clone_program_space doesn't want
662 	     to read the selected frame of a dead process.  */
663 	  old_chain = save_inferior_ptid ();
664 	  inferior_ptid = null_ptid;
665 
666 	  /* This inferior is dead, so avoid giving the breakpoints
667 	     module the option to write through to it (cloning a
668 	     program space resets breakpoints).  */
669 	  inf->aspace = NULL;
670 	  inf->pspace = NULL;
671 	  pspace = add_program_space (maybe_new_address_space ());
672 	  set_current_program_space (pspace);
673 	  inf->removable = 1;
674 	  clone_program_space (pspace, inf->vfork_parent->pspace);
675 	  inf->pspace = pspace;
676 	  inf->aspace = pspace->aspace;
677 
678 	  /* Put back inferior_ptid.  We'll continue mourning this
679 	     inferior. */
680 	  do_cleanups (old_chain);
681 
682 	  resume_parent = inf->vfork_parent->pid;
683 	  /* Break the bonds.  */
684 	  inf->vfork_parent->vfork_child = NULL;
685 	}
686 
687       inf->vfork_parent = NULL;
688 
689       gdb_assert (current_program_space == inf->pspace);
690 
691       if (non_stop && resume_parent != -1)
692 	{
693 	  /* If the user wanted the parent to be running, let it go
694 	     free now.  */
695 	  struct cleanup *old_chain = make_cleanup_restore_current_thread ();
696 
697 	  if (debug_infrun)
698 	    fprintf_unfiltered (gdb_stdlog, "infrun: resuming vfork parent process %d\n",
699 				resume_parent);
700 
701 	  iterate_over_threads (proceed_after_vfork_done, &resume_parent);
702 
703 	  do_cleanups (old_chain);
704 	}
705     }
706 }
707 
708 /* Enum strings for "set|show displaced-stepping".  */
709 
710 static const char follow_exec_mode_new[] = "new";
711 static const char follow_exec_mode_same[] = "same";
712 static const char *follow_exec_mode_names[] =
713 {
714   follow_exec_mode_new,
715   follow_exec_mode_same,
716   NULL,
717 };
718 
719 static const char *follow_exec_mode_string = follow_exec_mode_same;
720 static void
721 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
722 			      struct cmd_list_element *c, const char *value)
723 {
724   fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"),  value);
725 }
726 
727 /* EXECD_PATHNAME is assumed to be non-NULL. */
728 
729 static void
730 follow_exec (ptid_t pid, char *execd_pathname)
731 {
732   struct thread_info *th = inferior_thread ();
733   struct inferior *inf = current_inferior ();
734 
735   /* This is an exec event that we actually wish to pay attention to.
736      Refresh our symbol table to the newly exec'd program, remove any
737      momentary bp's, etc.
738 
739      If there are breakpoints, they aren't really inserted now,
740      since the exec() transformed our inferior into a fresh set
741      of instructions.
742 
743      We want to preserve symbolic breakpoints on the list, since
744      we have hopes that they can be reset after the new a.out's
745      symbol table is read.
746 
747      However, any "raw" breakpoints must be removed from the list
748      (e.g., the solib bp's), since their address is probably invalid
749      now.
750 
751      And, we DON'T want to call delete_breakpoints() here, since
752      that may write the bp's "shadow contents" (the instruction
753      value that was overwritten witha TRAP instruction).  Since
754      we now have a new a.out, those shadow contents aren't valid. */
755 
756   mark_breakpoints_out ();
757 
758   update_breakpoints_after_exec ();
759 
760   /* If there was one, it's gone now.  We cannot truly step-to-next
761      statement through an exec(). */
762   th->step_resume_breakpoint = NULL;
763   th->step_range_start = 0;
764   th->step_range_end = 0;
765 
766   /* The target reports the exec event to the main thread, even if
767      some other thread does the exec, and even if the main thread was
768      already stopped --- if debugging in non-stop mode, it's possible
769      the user had the main thread held stopped in the previous image
770      --- release it now.  This is the same behavior as step-over-exec
771      with scheduler-locking on in all-stop mode.  */
772   th->stop_requested = 0;
773 
774   /* What is this a.out's name? */
775   printf_unfiltered (_("%s is executing new program: %s\n"),
776 		     target_pid_to_str (inferior_ptid),
777 		     execd_pathname);
778 
779   /* We've followed the inferior through an exec.  Therefore, the
780      inferior has essentially been killed & reborn. */
781 
782   gdb_flush (gdb_stdout);
783 
784   breakpoint_init_inferior (inf_execd);
785 
786   if (gdb_sysroot && *gdb_sysroot)
787     {
788       char *name = alloca (strlen (gdb_sysroot)
789 			    + strlen (execd_pathname)
790 			    + 1);
791 
792       strcpy (name, gdb_sysroot);
793       strcat (name, execd_pathname);
794       execd_pathname = name;
795     }
796 
797   /* Reset the shared library package.  This ensures that we get a
798      shlib event when the child reaches "_start", at which point the
799      dld will have had a chance to initialize the child.  */
800   /* Also, loading a symbol file below may trigger symbol lookups, and
801      we don't want those to be satisfied by the libraries of the
802      previous incarnation of this process.  */
803   no_shared_libraries (NULL, 0);
804 
805   if (follow_exec_mode_string == follow_exec_mode_new)
806     {
807       struct program_space *pspace;
808 
809       /* The user wants to keep the old inferior and program spaces
810 	 around.  Create a new fresh one, and switch to it.  */
811 
812       inf = add_inferior (current_inferior ()->pid);
813       pspace = add_program_space (maybe_new_address_space ());
814       inf->pspace = pspace;
815       inf->aspace = pspace->aspace;
816 
817       exit_inferior_num_silent (current_inferior ()->num);
818 
819       set_current_inferior (inf);
820       set_current_program_space (pspace);
821     }
822 
823   gdb_assert (current_program_space == inf->pspace);
824 
825   /* That a.out is now the one to use. */
826   exec_file_attach (execd_pathname, 0);
827 
828   /* Load the main file's symbols.  */
829   symbol_file_add_main (execd_pathname, 0);
830 
831 #ifdef SOLIB_CREATE_INFERIOR_HOOK
832   SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
833 #else
834   solib_create_inferior_hook (0);
835 #endif
836 
837   jit_inferior_created_hook ();
838 
839   /* Reinsert all breakpoints.  (Those which were symbolic have
840      been reset to the proper address in the new a.out, thanks
841      to symbol_file_command...) */
842   insert_breakpoints ();
843 
844   /* The next resume of this inferior should bring it to the shlib
845      startup breakpoints.  (If the user had also set bp's on
846      "main" from the old (parent) process, then they'll auto-
847      matically get reset there in the new process.) */
848 }
849 
850 /* Non-zero if we just simulating a single-step.  This is needed
851    because we cannot remove the breakpoints in the inferior process
852    until after the `wait' in `wait_for_inferior'.  */
853 static int singlestep_breakpoints_inserted_p = 0;
854 
855 /* The thread we inserted single-step breakpoints for.  */
856 static ptid_t singlestep_ptid;
857 
858 /* PC when we started this single-step.  */
859 static CORE_ADDR singlestep_pc;
860 
861 /* If another thread hit the singlestep breakpoint, we save the original
862    thread here so that we can resume single-stepping it later.  */
863 static ptid_t saved_singlestep_ptid;
864 static int stepping_past_singlestep_breakpoint;
865 
866 /* If not equal to null_ptid, this means that after stepping over breakpoint
867    is finished, we need to switch to deferred_step_ptid, and step it.
868 
869    The use case is when one thread has hit a breakpoint, and then the user
870    has switched to another thread and issued 'step'. We need to step over
871    breakpoint in the thread which hit the breakpoint, but then continue
872    stepping the thread user has selected.  */
873 static ptid_t deferred_step_ptid;
874 
875 /* Displaced stepping.  */
876 
877 /* In non-stop debugging mode, we must take special care to manage
878    breakpoints properly; in particular, the traditional strategy for
879    stepping a thread past a breakpoint it has hit is unsuitable.
880    'Displaced stepping' is a tactic for stepping one thread past a
881    breakpoint it has hit while ensuring that other threads running
882    concurrently will hit the breakpoint as they should.
883 
884    The traditional way to step a thread T off a breakpoint in a
885    multi-threaded program in all-stop mode is as follows:
886 
887    a0) Initially, all threads are stopped, and breakpoints are not
888        inserted.
889    a1) We single-step T, leaving breakpoints uninserted.
890    a2) We insert breakpoints, and resume all threads.
891 
892    In non-stop debugging, however, this strategy is unsuitable: we
893    don't want to have to stop all threads in the system in order to
894    continue or step T past a breakpoint.  Instead, we use displaced
895    stepping:
896 
897    n0) Initially, T is stopped, other threads are running, and
898        breakpoints are inserted.
899    n1) We copy the instruction "under" the breakpoint to a separate
900        location, outside the main code stream, making any adjustments
901        to the instruction, register, and memory state as directed by
902        T's architecture.
903    n2) We single-step T over the instruction at its new location.
904    n3) We adjust the resulting register and memory state as directed
905        by T's architecture.  This includes resetting T's PC to point
906        back into the main instruction stream.
907    n4) We resume T.
908 
909    This approach depends on the following gdbarch methods:
910 
911    - gdbarch_max_insn_length and gdbarch_displaced_step_location
912      indicate where to copy the instruction, and how much space must
913      be reserved there.  We use these in step n1.
914 
915    - gdbarch_displaced_step_copy_insn copies a instruction to a new
916      address, and makes any necessary adjustments to the instruction,
917      register contents, and memory.  We use this in step n1.
918 
919    - gdbarch_displaced_step_fixup adjusts registers and memory after
920      we have successfuly single-stepped the instruction, to yield the
921      same effect the instruction would have had if we had executed it
922      at its original address.  We use this in step n3.
923 
924    - gdbarch_displaced_step_free_closure provides cleanup.
925 
926    The gdbarch_displaced_step_copy_insn and
927    gdbarch_displaced_step_fixup functions must be written so that
928    copying an instruction with gdbarch_displaced_step_copy_insn,
929    single-stepping across the copied instruction, and then applying
930    gdbarch_displaced_insn_fixup should have the same effects on the
931    thread's memory and registers as stepping the instruction in place
932    would have.  Exactly which responsibilities fall to the copy and
933    which fall to the fixup is up to the author of those functions.
934 
935    See the comments in gdbarch.sh for details.
936 
937    Note that displaced stepping and software single-step cannot
938    currently be used in combination, although with some care I think
939    they could be made to.  Software single-step works by placing
940    breakpoints on all possible subsequent instructions; if the
941    displaced instruction is a PC-relative jump, those breakpoints
942    could fall in very strange places --- on pages that aren't
943    executable, or at addresses that are not proper instruction
944    boundaries.  (We do generally let other threads run while we wait
945    to hit the software single-step breakpoint, and they might
946    encounter such a corrupted instruction.)  One way to work around
947    this would be to have gdbarch_displaced_step_copy_insn fully
948    simulate the effect of PC-relative instructions (and return NULL)
949    on architectures that use software single-stepping.
950 
951    In non-stop mode, we can have independent and simultaneous step
952    requests, so more than one thread may need to simultaneously step
953    over a breakpoint.  The current implementation assumes there is
954    only one scratch space per process.  In this case, we have to
955    serialize access to the scratch space.  If thread A wants to step
956    over a breakpoint, but we are currently waiting for some other
957    thread to complete a displaced step, we leave thread A stopped and
958    place it in the displaced_step_request_queue.  Whenever a displaced
959    step finishes, we pick the next thread in the queue and start a new
960    displaced step operation on it.  See displaced_step_prepare and
961    displaced_step_fixup for details.  */
962 
963 struct displaced_step_request
964 {
965   ptid_t ptid;
966   struct displaced_step_request *next;
967 };
968 
969 /* Per-inferior displaced stepping state.  */
970 struct displaced_step_inferior_state
971 {
972   /* Pointer to next in linked list.  */
973   struct displaced_step_inferior_state *next;
974 
975   /* The process this displaced step state refers to.  */
976   int pid;
977 
978   /* A queue of pending displaced stepping requests.  One entry per
979      thread that needs to do a displaced step.  */
980   struct displaced_step_request *step_request_queue;
981 
982   /* If this is not null_ptid, this is the thread carrying out a
983      displaced single-step in process PID.  This thread's state will
984      require fixing up once it has completed its step.  */
985   ptid_t step_ptid;
986 
987   /* The architecture the thread had when we stepped it.  */
988   struct gdbarch *step_gdbarch;
989 
990   /* The closure provided gdbarch_displaced_step_copy_insn, to be used
991      for post-step cleanup.  */
992   struct displaced_step_closure *step_closure;
993 
994   /* The address of the original instruction, and the copy we
995      made.  */
996   CORE_ADDR step_original, step_copy;
997 
998   /* Saved contents of copy area.  */
999   gdb_byte *step_saved_copy;
1000 };
1001 
1002 /* The list of states of processes involved in displaced stepping
1003    presently.  */
1004 static struct displaced_step_inferior_state *displaced_step_inferior_states;
1005 
1006 /* Get the displaced stepping state of process PID.  */
1007 
1008 static struct displaced_step_inferior_state *
1009 get_displaced_stepping_state (int pid)
1010 {
1011   struct displaced_step_inferior_state *state;
1012 
1013   for (state = displaced_step_inferior_states;
1014        state != NULL;
1015        state = state->next)
1016     if (state->pid == pid)
1017       return state;
1018 
1019   return NULL;
1020 }
1021 
1022 /* Add a new displaced stepping state for process PID to the displaced
1023    stepping state list, or return a pointer to an already existing
1024    entry, if it already exists.  Never returns NULL.  */
1025 
1026 static struct displaced_step_inferior_state *
1027 add_displaced_stepping_state (int pid)
1028 {
1029   struct displaced_step_inferior_state *state;
1030 
1031   for (state = displaced_step_inferior_states;
1032        state != NULL;
1033        state = state->next)
1034     if (state->pid == pid)
1035       return state;
1036 
1037   state = xcalloc (1, sizeof (*state));
1038   state->pid = pid;
1039   state->next = displaced_step_inferior_states;
1040   displaced_step_inferior_states = state;
1041 
1042   return state;
1043 }
1044 
1045 /* Remove the displaced stepping state of process PID.  */
1046 
1047 static void
1048 remove_displaced_stepping_state (int pid)
1049 {
1050   struct displaced_step_inferior_state *it, **prev_next_p;
1051 
1052   gdb_assert (kernel_debugger || (pid != 0));
1053 
1054   it = displaced_step_inferior_states;
1055   prev_next_p = &displaced_step_inferior_states;
1056   while (it)
1057     {
1058       if (it->pid == pid)
1059 	{
1060 	  *prev_next_p = it->next;
1061 	  xfree (it);
1062 	  return;
1063 	}
1064 
1065       prev_next_p = &it->next;
1066       it = *prev_next_p;
1067     }
1068 }
1069 
1070 static void
1071 infrun_inferior_exit (struct inferior *inf)
1072 {
1073   remove_displaced_stepping_state (inf->pid);
1074 }
1075 
1076 /* Enum strings for "set|show displaced-stepping".  */
1077 
1078 static const char can_use_displaced_stepping_auto[] = "auto";
1079 static const char can_use_displaced_stepping_on[] = "on";
1080 static const char can_use_displaced_stepping_off[] = "off";
1081 static const char *can_use_displaced_stepping_enum[] =
1082 {
1083   can_use_displaced_stepping_auto,
1084   can_use_displaced_stepping_on,
1085   can_use_displaced_stepping_off,
1086   NULL,
1087 };
1088 
1089 /* If ON, and the architecture supports it, GDB will use displaced
1090    stepping to step over breakpoints.  If OFF, or if the architecture
1091    doesn't support it, GDB will instead use the traditional
1092    hold-and-step approach.  If AUTO (which is the default), GDB will
1093    decide which technique to use to step over breakpoints depending on
1094    which of all-stop or non-stop mode is active --- displaced stepping
1095    in non-stop mode; hold-and-step in all-stop mode.  */
1096 
1097 static const char *can_use_displaced_stepping =
1098   can_use_displaced_stepping_auto;
1099 
1100 static void
1101 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1102 				 struct cmd_list_element *c,
1103 				 const char *value)
1104 {
1105   if (can_use_displaced_stepping == can_use_displaced_stepping_auto)
1106     fprintf_filtered (file, _("\
1107 Debugger's willingness to use displaced stepping to step over \
1108 breakpoints is %s (currently %s).\n"),
1109 		      value, non_stop ? "on" : "off");
1110   else
1111     fprintf_filtered (file, _("\
1112 Debugger's willingness to use displaced stepping to step over \
1113 breakpoints is %s.\n"), value);
1114 }
1115 
1116 /* Return non-zero if displaced stepping can/should be used to step
1117    over breakpoints.  */
1118 
1119 static int
1120 use_displaced_stepping (struct gdbarch *gdbarch)
1121 {
1122   return (((can_use_displaced_stepping == can_use_displaced_stepping_auto
1123 	    && non_stop)
1124 	   || can_use_displaced_stepping == can_use_displaced_stepping_on)
1125 	  && gdbarch_displaced_step_copy_insn_p (gdbarch)
1126 	  && !RECORD_IS_USED);
1127 }
1128 
1129 /* Clean out any stray displaced stepping state.  */
1130 static void
1131 displaced_step_clear (struct displaced_step_inferior_state *displaced)
1132 {
1133   /* Indicate that there is no cleanup pending.  */
1134   displaced->step_ptid = null_ptid;
1135 
1136   if (displaced->step_closure)
1137     {
1138       gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1139                                            displaced->step_closure);
1140       displaced->step_closure = NULL;
1141     }
1142 }
1143 
1144 static void
1145 displaced_step_clear_cleanup (void *arg)
1146 {
1147   struct displaced_step_inferior_state *state = arg;
1148 
1149   displaced_step_clear (state);
1150 }
1151 
1152 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline.  */
1153 void
1154 displaced_step_dump_bytes (struct ui_file *file,
1155                            const gdb_byte *buf,
1156                            size_t len)
1157 {
1158   int i;
1159 
1160   for (i = 0; i < len; i++)
1161     fprintf_unfiltered (file, "%02x ", buf[i]);
1162   fputs_unfiltered ("\n", file);
1163 }
1164 
1165 /* Prepare to single-step, using displaced stepping.
1166 
1167    Note that we cannot use displaced stepping when we have a signal to
1168    deliver.  If we have a signal to deliver and an instruction to step
1169    over, then after the step, there will be no indication from the
1170    target whether the thread entered a signal handler or ignored the
1171    signal and stepped over the instruction successfully --- both cases
1172    result in a simple SIGTRAP.  In the first case we mustn't do a
1173    fixup, and in the second case we must --- but we can't tell which.
1174    Comments in the code for 'random signals' in handle_inferior_event
1175    explain how we handle this case instead.
1176 
1177    Returns 1 if preparing was successful -- this thread is going to be
1178    stepped now; or 0 if displaced stepping this thread got queued.  */
1179 static int
1180 displaced_step_prepare (ptid_t ptid)
1181 {
1182   struct cleanup *old_cleanups, *ignore_cleanups;
1183   struct regcache *regcache = get_thread_regcache (ptid);
1184   struct gdbarch *gdbarch = get_regcache_arch (regcache);
1185   CORE_ADDR original, copy;
1186   ULONGEST len;
1187   struct displaced_step_closure *closure;
1188   struct displaced_step_inferior_state *displaced;
1189 
1190   /* We should never reach this function if the architecture does not
1191      support displaced stepping.  */
1192   gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1193 
1194   /* We have to displaced step one thread at a time, as we only have
1195      access to a single scratch space per inferior.  */
1196 
1197   displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1198 
1199   if (!ptid_equal (displaced->step_ptid, null_ptid))
1200     {
1201       /* Already waiting for a displaced step to finish.  Defer this
1202 	 request and place in queue.  */
1203       struct displaced_step_request *req, *new_req;
1204 
1205       if (debug_displaced)
1206 	fprintf_unfiltered (gdb_stdlog,
1207 			    "displaced: defering step of %s\n",
1208 			    target_pid_to_str (ptid));
1209 
1210       new_req = xmalloc (sizeof (*new_req));
1211       new_req->ptid = ptid;
1212       new_req->next = NULL;
1213 
1214       if (displaced->step_request_queue)
1215 	{
1216 	  for (req = displaced->step_request_queue;
1217 	       req && req->next;
1218 	       req = req->next)
1219 	    ;
1220 	  req->next = new_req;
1221 	}
1222       else
1223 	displaced->step_request_queue = new_req;
1224 
1225       return 0;
1226     }
1227   else
1228     {
1229       if (debug_displaced)
1230 	fprintf_unfiltered (gdb_stdlog,
1231 			    "displaced: stepping %s now\n",
1232 			    target_pid_to_str (ptid));
1233     }
1234 
1235   displaced_step_clear (displaced);
1236 
1237   old_cleanups = save_inferior_ptid ();
1238   inferior_ptid = ptid;
1239 
1240   original = regcache_read_pc (regcache);
1241 
1242   copy = gdbarch_displaced_step_location (gdbarch);
1243   len = gdbarch_max_insn_length (gdbarch);
1244 
1245   /* Save the original contents of the copy area.  */
1246   displaced->step_saved_copy = xmalloc (len);
1247   ignore_cleanups = make_cleanup (free_current_contents,
1248 				  &displaced->step_saved_copy);
1249   read_memory (copy, displaced->step_saved_copy, len);
1250   if (debug_displaced)
1251     {
1252       fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1253 			  paddress (gdbarch, copy));
1254       displaced_step_dump_bytes (gdb_stdlog,
1255 				 displaced->step_saved_copy,
1256 				 len);
1257     };
1258 
1259   closure = gdbarch_displaced_step_copy_insn (gdbarch,
1260 					      original, copy, regcache);
1261 
1262   /* We don't support the fully-simulated case at present.  */
1263   gdb_assert (closure);
1264 
1265   /* Save the information we need to fix things up if the step
1266      succeeds.  */
1267   displaced->step_ptid = ptid;
1268   displaced->step_gdbarch = gdbarch;
1269   displaced->step_closure = closure;
1270   displaced->step_original = original;
1271   displaced->step_copy = copy;
1272 
1273   make_cleanup (displaced_step_clear_cleanup, displaced);
1274 
1275   /* Resume execution at the copy.  */
1276   regcache_write_pc (regcache, copy);
1277 
1278   discard_cleanups (ignore_cleanups);
1279 
1280   do_cleanups (old_cleanups);
1281 
1282   if (debug_displaced)
1283     fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1284 			paddress (gdbarch, copy));
1285 
1286   return 1;
1287 }
1288 
1289 static void
1290 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
1291 {
1292   struct cleanup *ptid_cleanup = save_inferior_ptid ();
1293 
1294   inferior_ptid = ptid;
1295   write_memory (memaddr, myaddr, len);
1296   do_cleanups (ptid_cleanup);
1297 }
1298 
1299 static void
1300 displaced_step_fixup (ptid_t event_ptid, enum target_signal signal)
1301 {
1302   struct cleanup *old_cleanups;
1303   struct displaced_step_inferior_state *displaced
1304     = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1305 
1306   /* Was any thread of this process doing a displaced step?  */
1307   if (displaced == NULL)
1308     return;
1309 
1310   /* Was this event for the pid we displaced?  */
1311   if (ptid_equal (displaced->step_ptid, null_ptid)
1312       || ! ptid_equal (displaced->step_ptid, event_ptid))
1313     return;
1314 
1315   old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
1316 
1317   /* Restore the contents of the copy area.  */
1318   {
1319     ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1320 
1321     write_memory_ptid (displaced->step_ptid, displaced->step_copy,
1322 		       displaced->step_saved_copy, len);
1323     if (debug_displaced)
1324       fprintf_unfiltered (gdb_stdlog, "displaced: restored %s\n",
1325                           paddress (displaced->step_gdbarch,
1326 				    displaced->step_copy));
1327   }
1328 
1329   /* Did the instruction complete successfully?  */
1330   if (signal == TARGET_SIGNAL_TRAP)
1331     {
1332       /* Fix up the resulting state.  */
1333       gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1334                                     displaced->step_closure,
1335                                     displaced->step_original,
1336                                     displaced->step_copy,
1337                                     get_thread_regcache (displaced->step_ptid));
1338     }
1339   else
1340     {
1341       /* Since the instruction didn't complete, all we can do is
1342          relocate the PC.  */
1343       struct regcache *regcache = get_thread_regcache (event_ptid);
1344       CORE_ADDR pc = regcache_read_pc (regcache);
1345 
1346       pc = displaced->step_original + (pc - displaced->step_copy);
1347       regcache_write_pc (regcache, pc);
1348     }
1349 
1350   do_cleanups (old_cleanups);
1351 
1352   displaced->step_ptid = null_ptid;
1353 
1354   /* Are there any pending displaced stepping requests?  If so, run
1355      one now.  Leave the state object around, since we're likely to
1356      need it again soon.  */
1357   while (displaced->step_request_queue)
1358     {
1359       struct displaced_step_request *head;
1360       ptid_t ptid;
1361       struct regcache *regcache;
1362       struct gdbarch *gdbarch;
1363       CORE_ADDR actual_pc;
1364       struct address_space *aspace;
1365 
1366       head = displaced->step_request_queue;
1367       ptid = head->ptid;
1368       displaced->step_request_queue = head->next;
1369       xfree (head);
1370 
1371       context_switch (ptid);
1372 
1373       regcache = get_thread_regcache (ptid);
1374       actual_pc = regcache_read_pc (regcache);
1375       aspace = get_regcache_aspace (regcache);
1376 
1377       if (breakpoint_here_p (aspace, actual_pc))
1378 	{
1379 	  if (debug_displaced)
1380 	    fprintf_unfiltered (gdb_stdlog,
1381 				"displaced: stepping queued %s now\n",
1382 				target_pid_to_str (ptid));
1383 
1384 	  displaced_step_prepare (ptid);
1385 
1386 	  gdbarch = get_regcache_arch (regcache);
1387 
1388 	  if (debug_displaced)
1389 	    {
1390 	      CORE_ADDR actual_pc = regcache_read_pc (regcache);
1391 	      gdb_byte buf[4];
1392 
1393 	      fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1394 				  paddress (gdbarch, actual_pc));
1395 	      read_memory (actual_pc, buf, sizeof (buf));
1396 	      displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1397 	    }
1398 
1399 	  if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1400 						    displaced->step_closure))
1401 	    target_resume (ptid, 1, TARGET_SIGNAL_0);
1402 	  else
1403 	    target_resume (ptid, 0, TARGET_SIGNAL_0);
1404 
1405 	  /* Done, we're stepping a thread.  */
1406 	  break;
1407 	}
1408       else
1409 	{
1410 	  int step;
1411 	  struct thread_info *tp = inferior_thread ();
1412 
1413 	  /* The breakpoint we were sitting under has since been
1414 	     removed.  */
1415 	  tp->trap_expected = 0;
1416 
1417 	  /* Go back to what we were trying to do.  */
1418 	  step = currently_stepping (tp);
1419 
1420 	  if (debug_displaced)
1421 	    fprintf_unfiltered (gdb_stdlog, "breakpoint is gone %s: step(%d)\n",
1422 				target_pid_to_str (tp->ptid), step);
1423 
1424 	  target_resume (ptid, step, TARGET_SIGNAL_0);
1425 	  tp->stop_signal = TARGET_SIGNAL_0;
1426 
1427 	  /* This request was discarded.  See if there's any other
1428 	     thread waiting for its turn.  */
1429 	}
1430     }
1431 }
1432 
1433 /* Update global variables holding ptids to hold NEW_PTID if they were
1434    holding OLD_PTID.  */
1435 static void
1436 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1437 {
1438   struct displaced_step_request *it;
1439   struct displaced_step_inferior_state *displaced;
1440 
1441   if (ptid_equal (inferior_ptid, old_ptid))
1442     inferior_ptid = new_ptid;
1443 
1444   if (ptid_equal (singlestep_ptid, old_ptid))
1445     singlestep_ptid = new_ptid;
1446 
1447   if (ptid_equal (deferred_step_ptid, old_ptid))
1448     deferred_step_ptid = new_ptid;
1449 
1450   for (displaced = displaced_step_inferior_states;
1451        displaced;
1452        displaced = displaced->next)
1453     {
1454       if (ptid_equal (displaced->step_ptid, old_ptid))
1455 	displaced->step_ptid = new_ptid;
1456 
1457       for (it = displaced->step_request_queue; it; it = it->next)
1458 	if (ptid_equal (it->ptid, old_ptid))
1459 	  it->ptid = new_ptid;
1460     }
1461 }
1462 
1463 
1464 /* Resuming.  */
1465 
1466 /* Things to clean up if we QUIT out of resume ().  */
1467 static void
1468 resume_cleanups (void *ignore)
1469 {
1470   normal_stop ();
1471 }
1472 
1473 static const char schedlock_off[] = "off";
1474 static const char schedlock_on[] = "on";
1475 static const char schedlock_step[] = "step";
1476 static const char *scheduler_enums[] = {
1477   schedlock_off,
1478   schedlock_on,
1479   schedlock_step,
1480   NULL
1481 };
1482 static const char *scheduler_mode = schedlock_off;
1483 static void
1484 show_scheduler_mode (struct ui_file *file, int from_tty,
1485 		     struct cmd_list_element *c, const char *value)
1486 {
1487   fprintf_filtered (file, _("\
1488 Mode for locking scheduler during execution is \"%s\".\n"),
1489 		    value);
1490 }
1491 
1492 static void
1493 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
1494 {
1495   if (!target_can_lock_scheduler)
1496     {
1497       scheduler_mode = schedlock_off;
1498       error (_("Target '%s' cannot support this command."), target_shortname);
1499     }
1500 }
1501 
1502 /* True if execution commands resume all threads of all processes by
1503    default; otherwise, resume only threads of the current inferior
1504    process.  */
1505 int sched_multi = 0;
1506 
1507 /* Try to setup for software single stepping over the specified location.
1508    Return 1 if target_resume() should use hardware single step.
1509 
1510    GDBARCH the current gdbarch.
1511    PC the location to step over.  */
1512 
1513 static int
1514 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1515 {
1516   int hw_step = 1;
1517 
1518   if (gdbarch_software_single_step_p (gdbarch)
1519       && gdbarch_software_single_step (gdbarch, get_current_frame ()))
1520     {
1521       hw_step = 0;
1522       /* Do not pull these breakpoints until after a `wait' in
1523 	 `wait_for_inferior' */
1524       singlestep_breakpoints_inserted_p = 1;
1525       singlestep_ptid = inferior_ptid;
1526       singlestep_pc = pc;
1527     }
1528   return hw_step;
1529 }
1530 
1531 /* Resume the inferior, but allow a QUIT.  This is useful if the user
1532    wants to interrupt some lengthy single-stepping operation
1533    (for child processes, the SIGINT goes to the inferior, and so
1534    we get a SIGINT random_signal, but for remote debugging and perhaps
1535    other targets, that's not true).
1536 
1537    STEP nonzero if we should step (zero to continue instead).
1538    SIG is the signal to give the inferior (zero for none).  */
1539 void
1540 resume (int step, enum target_signal sig)
1541 {
1542   int should_resume = 1;
1543   struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
1544   struct regcache *regcache = get_current_regcache ();
1545   struct gdbarch *gdbarch = get_regcache_arch (regcache);
1546   struct thread_info *tp = inferior_thread ();
1547   CORE_ADDR pc = regcache_read_pc (regcache);
1548   struct address_space *aspace = get_regcache_aspace (regcache);
1549 
1550   QUIT;
1551 
1552   if (debug_infrun)
1553     fprintf_unfiltered (gdb_stdlog,
1554                         "infrun: resume (step=%d, signal=%d), "
1555 			"trap_expected=%d\n",
1556  			step, sig, tp->trap_expected);
1557 
1558   /* Normally, by the time we reach `resume', the breakpoints are either
1559      removed or inserted, as appropriate.  The exception is if we're sitting
1560      at a permanent breakpoint; we need to step over it, but permanent
1561      breakpoints can't be removed.  So we have to test for it here.  */
1562   if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
1563     {
1564       if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1565 	gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
1566       else
1567 	error (_("\
1568 The program is stopped at a permanent breakpoint, but GDB does not know\n\
1569 how to step past a permanent breakpoint on this architecture.  Try using\n\
1570 a command like `return' or `jump' to continue execution."));
1571     }
1572 
1573   /* If enabled, step over breakpoints by executing a copy of the
1574      instruction at a different address.
1575 
1576      We can't use displaced stepping when we have a signal to deliver;
1577      the comments for displaced_step_prepare explain why.  The
1578      comments in the handle_inferior event for dealing with 'random
1579      signals' explain what we do instead.  */
1580   if (use_displaced_stepping (gdbarch)
1581       && (tp->trap_expected
1582 	  || (step && gdbarch_software_single_step_p (gdbarch)))
1583       && sig == TARGET_SIGNAL_0)
1584     {
1585       struct displaced_step_inferior_state *displaced;
1586 
1587       if (!displaced_step_prepare (inferior_ptid))
1588 	{
1589 	  /* Got placed in displaced stepping queue.  Will be resumed
1590 	     later when all the currently queued displaced stepping
1591 	     requests finish.  The thread is not executing at this point,
1592 	     and the call to set_executing will be made later.  But we
1593 	     need to call set_running here, since from frontend point of view,
1594 	     the thread is running.  */
1595 	  set_running (inferior_ptid, 1);
1596 	  discard_cleanups (old_cleanups);
1597 	  return;
1598 	}
1599 
1600       displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1601       step = gdbarch_displaced_step_hw_singlestep (gdbarch,
1602 						   displaced->step_closure);
1603     }
1604 
1605   /* Do we need to do it the hard way, w/temp breakpoints?  */
1606   else if (step)
1607     step = maybe_software_singlestep (gdbarch, pc);
1608 
1609   if (should_resume)
1610     {
1611       ptid_t resume_ptid;
1612 
1613       /* If STEP is set, it's a request to use hardware stepping
1614 	 facilities.  But in that case, we should never
1615 	 use singlestep breakpoint.  */
1616       gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1617 
1618       /* Decide the set of threads to ask the target to resume.  Start
1619 	 by assuming everything will be resumed, than narrow the set
1620 	 by applying increasingly restricting conditions.  */
1621 
1622       /* By default, resume all threads of all processes.  */
1623       resume_ptid = RESUME_ALL;
1624 
1625       /* Maybe resume only all threads of the current process.  */
1626       if (!sched_multi && target_supports_multi_process ())
1627 	{
1628 	  resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1629 	}
1630 
1631       /* Maybe resume a single thread after all.  */
1632       if (singlestep_breakpoints_inserted_p
1633 	  && stepping_past_singlestep_breakpoint)
1634 	{
1635 	  /* The situation here is as follows.  In thread T1 we wanted to
1636 	     single-step.  Lacking hardware single-stepping we've
1637 	     set breakpoint at the PC of the next instruction -- call it
1638 	     P.  After resuming, we've hit that breakpoint in thread T2.
1639 	     Now we've removed original breakpoint, inserted breakpoint
1640 	     at P+1, and try to step to advance T2 past breakpoint.
1641 	     We need to step only T2, as if T1 is allowed to freely run,
1642 	     it can run past P, and if other threads are allowed to run,
1643 	     they can hit breakpoint at P+1, and nested hits of single-step
1644 	     breakpoints is not something we'd want -- that's complicated
1645 	     to support, and has no value.  */
1646 	  resume_ptid = inferior_ptid;
1647 	}
1648       else if ((step || singlestep_breakpoints_inserted_p)
1649 	       && tp->trap_expected)
1650 	{
1651 	  /* We're allowing a thread to run past a breakpoint it has
1652 	     hit, by single-stepping the thread with the breakpoint
1653 	     removed.  In which case, we need to single-step only this
1654 	     thread, and keep others stopped, as they can miss this
1655 	     breakpoint if allowed to run.
1656 
1657 	     The current code actually removes all breakpoints when
1658 	     doing this, not just the one being stepped over, so if we
1659 	     let other threads run, we can actually miss any
1660 	     breakpoint, not just the one at PC.  */
1661 	  resume_ptid = inferior_ptid;
1662 	}
1663       else if (non_stop)
1664 	{
1665 	  /* With non-stop mode on, threads are always handled
1666 	     individually.  */
1667 	  resume_ptid = inferior_ptid;
1668 	}
1669       else if ((scheduler_mode == schedlock_on)
1670 	       || (scheduler_mode == schedlock_step
1671 		   && (step || singlestep_breakpoints_inserted_p)))
1672 	{
1673 	  /* User-settable 'scheduler' mode requires solo thread resume. */
1674 	  resume_ptid = inferior_ptid;
1675 	}
1676 
1677       if (gdbarch_cannot_step_breakpoint (gdbarch))
1678 	{
1679 	  /* Most targets can step a breakpoint instruction, thus
1680 	     executing it normally.  But if this one cannot, just
1681 	     continue and we will hit it anyway.  */
1682 	  if (step && breakpoint_inserted_here_p (aspace, pc))
1683 	    step = 0;
1684 	}
1685 
1686       if (debug_displaced
1687           && use_displaced_stepping (gdbarch)
1688           && tp->trap_expected)
1689         {
1690 	  struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
1691 	  struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
1692           CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
1693           gdb_byte buf[4];
1694 
1695           fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1696                               paddress (resume_gdbarch, actual_pc));
1697           read_memory (actual_pc, buf, sizeof (buf));
1698           displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1699         }
1700 
1701       /* Install inferior's terminal modes.  */
1702       target_terminal_inferior ();
1703 
1704       /* Avoid confusing the next resume, if the next stop/resume
1705 	 happens to apply to another thread.  */
1706       tp->stop_signal = TARGET_SIGNAL_0;
1707 
1708       target_resume (resume_ptid, step, sig);
1709     }
1710 
1711   discard_cleanups (old_cleanups);
1712 }
1713 
1714 /* Proceeding.  */
1715 
1716 /* Clear out all variables saying what to do when inferior is continued.
1717    First do this, then set the ones you want, then call `proceed'.  */
1718 
1719 static void
1720 clear_proceed_status_thread (struct thread_info *tp)
1721 {
1722   if (debug_infrun)
1723     fprintf_unfiltered (gdb_stdlog,
1724 			"infrun: clear_proceed_status_thread (%s)\n",
1725 			target_pid_to_str (tp->ptid));
1726 
1727   tp->trap_expected = 0;
1728   tp->step_range_start = 0;
1729   tp->step_range_end = 0;
1730   tp->step_frame_id = null_frame_id;
1731   tp->step_stack_frame_id = null_frame_id;
1732   tp->step_over_calls = STEP_OVER_UNDEBUGGABLE;
1733   tp->stop_requested = 0;
1734 
1735   tp->stop_step = 0;
1736 
1737   tp->proceed_to_finish = 0;
1738 
1739   /* Discard any remaining commands or status from previous stop.  */
1740   bpstat_clear (&tp->stop_bpstat);
1741 }
1742 
1743 static int
1744 clear_proceed_status_callback (struct thread_info *tp, void *data)
1745 {
1746   if (is_exited (tp->ptid))
1747     return 0;
1748 
1749   clear_proceed_status_thread (tp);
1750   return 0;
1751 }
1752 
1753 void
1754 clear_proceed_status (void)
1755 {
1756   if (!non_stop)
1757     {
1758       /* In all-stop mode, delete the per-thread status of all
1759 	 threads, even if inferior_ptid is null_ptid, there may be
1760 	 threads on the list.  E.g., we may be launching a new
1761 	 process, while selecting the executable.  */
1762       iterate_over_threads (clear_proceed_status_callback, NULL);
1763     }
1764 
1765   if (!ptid_equal (inferior_ptid, null_ptid))
1766     {
1767       struct inferior *inferior;
1768 
1769       if (non_stop)
1770 	{
1771 	  /* If in non-stop mode, only delete the per-thread status of
1772 	     the current thread.  */
1773 	  clear_proceed_status_thread (inferior_thread ());
1774 	}
1775 
1776       inferior = current_inferior ();
1777       inferior->stop_soon = NO_STOP_QUIETLY;
1778     }
1779 
1780   stop_after_trap = 0;
1781 
1782   observer_notify_about_to_proceed ();
1783 
1784   if (stop_registers)
1785     {
1786       regcache_xfree (stop_registers);
1787       stop_registers = NULL;
1788     }
1789 }
1790 
1791 /* Check the current thread against the thread that reported the most recent
1792    event.  If a step-over is required return TRUE and set the current thread
1793    to the old thread.  Otherwise return FALSE.
1794 
1795    This should be suitable for any targets that support threads. */
1796 
1797 static int
1798 prepare_to_proceed (int step)
1799 {
1800   ptid_t wait_ptid;
1801   struct target_waitstatus wait_status;
1802   int schedlock_enabled;
1803 
1804   /* With non-stop mode on, threads are always handled individually.  */
1805   gdb_assert (! non_stop);
1806 
1807   /* Get the last target status returned by target_wait().  */
1808   get_last_target_status (&wait_ptid, &wait_status);
1809 
1810   /* Make sure we were stopped at a breakpoint.  */
1811   if (wait_status.kind != TARGET_WAITKIND_STOPPED
1812       || (wait_status.value.sig != TARGET_SIGNAL_TRAP
1813 	  && wait_status.value.sig != TARGET_SIGNAL_ILL
1814 	  && wait_status.value.sig != TARGET_SIGNAL_SEGV
1815 	  && wait_status.value.sig != TARGET_SIGNAL_EMT))
1816     {
1817       return 0;
1818     }
1819 
1820   schedlock_enabled = (scheduler_mode == schedlock_on
1821 		       || (scheduler_mode == schedlock_step
1822 			   && step));
1823 
1824   /* Don't switch over to WAIT_PTID if scheduler locking is on.  */
1825   if (schedlock_enabled)
1826     return 0;
1827 
1828   /* Don't switch over if we're about to resume some other process
1829      other than WAIT_PTID's, and schedule-multiple is off.  */
1830   if (!sched_multi
1831       && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
1832     return 0;
1833 
1834   /* Switched over from WAIT_PID.  */
1835   if (!ptid_equal (wait_ptid, minus_one_ptid)
1836       && !ptid_equal (inferior_ptid, wait_ptid))
1837     {
1838       struct regcache *regcache = get_thread_regcache (wait_ptid);
1839 
1840       if (breakpoint_here_p (get_regcache_aspace (regcache),
1841 			     regcache_read_pc (regcache)))
1842 	{
1843 	  /* If stepping, remember current thread to switch back to.  */
1844 	  if (step)
1845 	    deferred_step_ptid = inferior_ptid;
1846 
1847 	  /* Switch back to WAIT_PID thread.  */
1848 	  switch_to_thread (wait_ptid);
1849 
1850 	  /* We return 1 to indicate that there is a breakpoint here,
1851 	     so we need to step over it before continuing to avoid
1852 	     hitting it straight away. */
1853 	  return 1;
1854 	}
1855     }
1856 
1857   return 0;
1858 }
1859 
1860 /* Basic routine for continuing the program in various fashions.
1861 
1862    ADDR is the address to resume at, or -1 for resume where stopped.
1863    SIGGNAL is the signal to give it, or 0 for none,
1864    or -1 for act according to how it stopped.
1865    STEP is nonzero if should trap after one instruction.
1866    -1 means return after that and print nothing.
1867    You should probably set various step_... variables
1868    before calling here, if you are stepping.
1869 
1870    You should call clear_proceed_status before calling proceed.  */
1871 
1872 void
1873 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
1874 {
1875   struct regcache *regcache;
1876   struct gdbarch *gdbarch;
1877   struct thread_info *tp;
1878   CORE_ADDR pc;
1879   struct address_space *aspace;
1880   int oneproc = 0;
1881 
1882   /* If we're stopped at a fork/vfork, follow the branch set by the
1883      "set follow-fork-mode" command; otherwise, we'll just proceed
1884      resuming the current thread.  */
1885   if (!follow_fork ())
1886     {
1887       /* The target for some reason decided not to resume.  */
1888       normal_stop ();
1889       return;
1890     }
1891 
1892   regcache = get_current_regcache ();
1893   gdbarch = get_regcache_arch (regcache);
1894   aspace = get_regcache_aspace (regcache);
1895   pc = regcache_read_pc (regcache);
1896 
1897   if (step > 0)
1898     step_start_function = find_pc_function (pc);
1899   if (step < 0)
1900     stop_after_trap = 1;
1901 
1902   if (addr == (CORE_ADDR) -1)
1903     {
1904       if (pc == stop_pc && breakpoint_here_p (aspace, pc)
1905 	  && execution_direction != EXEC_REVERSE)
1906 	/* There is a breakpoint at the address we will resume at,
1907 	   step one instruction before inserting breakpoints so that
1908 	   we do not stop right away (and report a second hit at this
1909 	   breakpoint).
1910 
1911 	   Note, we don't do this in reverse, because we won't
1912 	   actually be executing the breakpoint insn anyway.
1913 	   We'll be (un-)executing the previous instruction.  */
1914 
1915 	oneproc = 1;
1916       else if (gdbarch_single_step_through_delay_p (gdbarch)
1917 	       && gdbarch_single_step_through_delay (gdbarch,
1918 						     get_current_frame ()))
1919 	/* We stepped onto an instruction that needs to be stepped
1920 	   again before re-inserting the breakpoint, do so.  */
1921 	oneproc = 1;
1922     }
1923   else
1924     {
1925       regcache_write_pc (regcache, addr);
1926     }
1927 
1928   if (debug_infrun)
1929     fprintf_unfiltered (gdb_stdlog,
1930 			"infrun: proceed (addr=%s, signal=%d, step=%d)\n",
1931 			paddress (gdbarch, addr), siggnal, step);
1932 
1933   /* We're handling a live event, so make sure we're doing live
1934      debugging.  If we're looking at traceframes while the target is
1935      running, we're going to need to get back to that mode after
1936      handling the event.  */
1937   if (non_stop)
1938     {
1939       make_cleanup_restore_current_traceframe ();
1940       set_traceframe_number (-1);
1941     }
1942 
1943   if (non_stop)
1944     /* In non-stop, each thread is handled individually.  The context
1945        must already be set to the right thread here.  */
1946     ;
1947   else
1948     {
1949       /* In a multi-threaded task we may select another thread and
1950 	 then continue or step.
1951 
1952 	 But if the old thread was stopped at a breakpoint, it will
1953 	 immediately cause another breakpoint stop without any
1954 	 execution (i.e. it will report a breakpoint hit incorrectly).
1955 	 So we must step over it first.
1956 
1957 	 prepare_to_proceed checks the current thread against the
1958 	 thread that reported the most recent event.  If a step-over
1959 	 is required it returns TRUE and sets the current thread to
1960 	 the old thread. */
1961       if (prepare_to_proceed (step))
1962 	oneproc = 1;
1963     }
1964 
1965   /* prepare_to_proceed may change the current thread.  */
1966   tp = inferior_thread ();
1967 
1968   if (oneproc)
1969     {
1970       tp->trap_expected = 1;
1971       /* If displaced stepping is enabled, we can step over the
1972 	 breakpoint without hitting it, so leave all breakpoints
1973 	 inserted.  Otherwise we need to disable all breakpoints, step
1974 	 one instruction, and then re-add them when that step is
1975 	 finished.  */
1976       if (!use_displaced_stepping (gdbarch))
1977 	remove_breakpoints ();
1978     }
1979 
1980   /* We can insert breakpoints if we're not trying to step over one,
1981      or if we are stepping over one but we're using displaced stepping
1982      to do so.  */
1983   if (! tp->trap_expected || use_displaced_stepping (gdbarch))
1984     insert_breakpoints ();
1985 
1986   if (!non_stop)
1987     {
1988       /* Pass the last stop signal to the thread we're resuming,
1989 	 irrespective of whether the current thread is the thread that
1990 	 got the last event or not.  This was historically GDB's
1991 	 behaviour before keeping a stop_signal per thread.  */
1992 
1993       struct thread_info *last_thread;
1994       ptid_t last_ptid;
1995       struct target_waitstatus last_status;
1996 
1997       get_last_target_status (&last_ptid, &last_status);
1998       if (!ptid_equal (inferior_ptid, last_ptid)
1999 	  && !ptid_equal (last_ptid, null_ptid)
2000 	  && !ptid_equal (last_ptid, minus_one_ptid))
2001 	{
2002 	  last_thread = find_thread_ptid (last_ptid);
2003 	  if (last_thread)
2004 	    {
2005 	      tp->stop_signal = last_thread->stop_signal;
2006 	      last_thread->stop_signal = TARGET_SIGNAL_0;
2007 	    }
2008 	}
2009     }
2010 
2011   if (siggnal != TARGET_SIGNAL_DEFAULT)
2012     tp->stop_signal = siggnal;
2013   /* If this signal should not be seen by program,
2014      give it zero.  Used for debugging signals.  */
2015   else if (!signal_program[tp->stop_signal])
2016     tp->stop_signal = TARGET_SIGNAL_0;
2017 
2018   annotate_starting ();
2019 
2020   /* Make sure that output from GDB appears before output from the
2021      inferior.  */
2022   gdb_flush (gdb_stdout);
2023 
2024   /* Refresh prev_pc value just prior to resuming.  This used to be
2025      done in stop_stepping, however, setting prev_pc there did not handle
2026      scenarios such as inferior function calls or returning from
2027      a function via the return command.  In those cases, the prev_pc
2028      value was not set properly for subsequent commands.  The prev_pc value
2029      is used to initialize the starting line number in the ecs.  With an
2030      invalid value, the gdb next command ends up stopping at the position
2031      represented by the next line table entry past our start position.
2032      On platforms that generate one line table entry per line, this
2033      is not a problem.  However, on the ia64, the compiler generates
2034      extraneous line table entries that do not increase the line number.
2035      When we issue the gdb next command on the ia64 after an inferior call
2036      or a return command, we often end up a few instructions forward, still
2037      within the original line we started.
2038 
2039      An attempt was made to refresh the prev_pc at the same time the
2040      execution_control_state is initialized (for instance, just before
2041      waiting for an inferior event).  But this approach did not work
2042      because of platforms that use ptrace, where the pc register cannot
2043      be read unless the inferior is stopped.  At that point, we are not
2044      guaranteed the inferior is stopped and so the regcache_read_pc() call
2045      can fail.  Setting the prev_pc value here ensures the value is updated
2046      correctly when the inferior is stopped.  */
2047   tp->prev_pc = regcache_read_pc (get_current_regcache ());
2048 
2049   /* Fill in with reasonable starting values.  */
2050   init_thread_stepping_state (tp);
2051 
2052   /* Reset to normal state.  */
2053   init_infwait_state ();
2054 
2055   /* Resume inferior.  */
2056   resume (oneproc || step || bpstat_should_step (), tp->stop_signal);
2057 
2058   /* Wait for it to stop (if not standalone)
2059      and in any case decode why it stopped, and act accordingly.  */
2060   /* Do this only if we are not using the event loop, or if the target
2061      does not support asynchronous execution. */
2062   if (!target_can_async_p ())
2063     {
2064       wait_for_inferior (0);
2065       normal_stop ();
2066     }
2067 }
2068 
2069 
2070 /* Start remote-debugging of a machine over a serial link.  */
2071 
2072 void
2073 start_remote (int from_tty)
2074 {
2075   struct inferior *inferior;
2076 
2077   init_wait_for_inferior ();
2078   inferior = current_inferior ();
2079   inferior->stop_soon = STOP_QUIETLY_REMOTE;
2080 
2081   /* Always go on waiting for the target, regardless of the mode. */
2082   /* FIXME: cagney/1999-09-23: At present it isn't possible to
2083      indicate to wait_for_inferior that a target should timeout if
2084      nothing is returned (instead of just blocking).  Because of this,
2085      targets expecting an immediate response need to, internally, set
2086      things up so that the target_wait() is forced to eventually
2087      timeout. */
2088   /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2089      differentiate to its caller what the state of the target is after
2090      the initial open has been performed.  Here we're assuming that
2091      the target has stopped.  It should be possible to eventually have
2092      target_open() return to the caller an indication that the target
2093      is currently running and GDB state should be set to the same as
2094      for an async run. */
2095   wait_for_inferior (0);
2096 
2097   /* Now that the inferior has stopped, do any bookkeeping like
2098      loading shared libraries.  We want to do this before normal_stop,
2099      so that the displayed frame is up to date.  */
2100   post_create_inferior (&current_target, from_tty);
2101 
2102   normal_stop ();
2103 }
2104 
2105 /* Initialize static vars when a new inferior begins.  */
2106 
2107 void
2108 init_wait_for_inferior (void)
2109 {
2110   /* These are meaningless until the first time through wait_for_inferior.  */
2111 
2112   breakpoint_init_inferior (inf_starting);
2113 
2114   clear_proceed_status ();
2115 
2116   stepping_past_singlestep_breakpoint = 0;
2117   deferred_step_ptid = null_ptid;
2118 
2119   target_last_wait_ptid = minus_one_ptid;
2120 
2121   previous_inferior_ptid = null_ptid;
2122   init_infwait_state ();
2123 
2124   /* Discard any skipped inlined frames.  */
2125   clear_inline_frame_state (minus_one_ptid);
2126 }
2127 
2128 
2129 /* This enum encodes possible reasons for doing a target_wait, so that
2130    wfi can call target_wait in one place.  (Ultimately the call will be
2131    moved out of the infinite loop entirely.) */
2132 
2133 enum infwait_states
2134 {
2135   infwait_normal_state,
2136   infwait_thread_hop_state,
2137   infwait_step_watch_state,
2138   infwait_nonstep_watch_state
2139 };
2140 
2141 /* Why did the inferior stop? Used to print the appropriate messages
2142    to the interface from within handle_inferior_event(). */
2143 enum inferior_stop_reason
2144 {
2145   /* Step, next, nexti, stepi finished. */
2146   END_STEPPING_RANGE,
2147   /* Inferior terminated by signal. */
2148   SIGNAL_EXITED,
2149   /* Inferior exited. */
2150   EXITED,
2151   /* Inferior received signal, and user asked to be notified. */
2152   SIGNAL_RECEIVED,
2153   /* Reverse execution -- target ran out of history info.  */
2154   NO_HISTORY
2155 };
2156 
2157 /* The PTID we'll do a target_wait on.*/
2158 ptid_t waiton_ptid;
2159 
2160 /* Current inferior wait state.  */
2161 enum infwait_states infwait_state;
2162 
2163 /* Data to be passed around while handling an event.  This data is
2164    discarded between events.  */
2165 struct execution_control_state
2166 {
2167   ptid_t ptid;
2168   /* The thread that got the event, if this was a thread event; NULL
2169      otherwise.  */
2170   struct thread_info *event_thread;
2171 
2172   struct target_waitstatus ws;
2173   int random_signal;
2174   CORE_ADDR stop_func_start;
2175   CORE_ADDR stop_func_end;
2176   char *stop_func_name;
2177   int new_thread_event;
2178   int wait_some_more;
2179 };
2180 
2181 static void handle_inferior_event (struct execution_control_state *ecs);
2182 
2183 static void handle_step_into_function (struct gdbarch *gdbarch,
2184 				       struct execution_control_state *ecs);
2185 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2186 						struct execution_control_state *ecs);
2187 static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
2188 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
2189 static void insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
2190 						  struct symtab_and_line sr_sal,
2191 						  struct frame_id sr_id);
2192 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
2193 
2194 static void stop_stepping (struct execution_control_state *ecs);
2195 static void prepare_to_wait (struct execution_control_state *ecs);
2196 static void keep_going (struct execution_control_state *ecs);
2197 static void print_stop_reason (enum inferior_stop_reason stop_reason,
2198 			       int stop_info);
2199 
2200 /* Callback for iterate over threads.  If the thread is stopped, but
2201    the user/frontend doesn't know about that yet, go through
2202    normal_stop, as if the thread had just stopped now.  ARG points at
2203    a ptid.  If PTID is MINUS_ONE_PTID, applies to all threads.  If
2204    ptid_is_pid(PTID) is true, applies to all threads of the process
2205    pointed at by PTID.  Otherwise, apply only to the thread pointed by
2206    PTID.  */
2207 
2208 static int
2209 infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2210 {
2211   ptid_t ptid = * (ptid_t *) arg;
2212 
2213   if ((ptid_equal (info->ptid, ptid)
2214        || ptid_equal (minus_one_ptid, ptid)
2215        || (ptid_is_pid (ptid)
2216 	   && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2217       && is_running (info->ptid)
2218       && !is_executing (info->ptid))
2219     {
2220       struct cleanup *old_chain;
2221       struct execution_control_state ecss;
2222       struct execution_control_state *ecs = &ecss;
2223 
2224       memset (ecs, 0, sizeof (*ecs));
2225 
2226       old_chain = make_cleanup_restore_current_thread ();
2227 
2228       switch_to_thread (info->ptid);
2229 
2230       /* Go through handle_inferior_event/normal_stop, so we always
2231 	 have consistent output as if the stop event had been
2232 	 reported.  */
2233       ecs->ptid = info->ptid;
2234       ecs->event_thread = find_thread_ptid (info->ptid);
2235       ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2236       ecs->ws.value.sig = TARGET_SIGNAL_0;
2237 
2238       handle_inferior_event (ecs);
2239 
2240       if (!ecs->wait_some_more)
2241 	{
2242 	  struct thread_info *tp;
2243 
2244 	  normal_stop ();
2245 
2246 	  /* Finish off the continuations.  The continations
2247 	     themselves are responsible for realising the thread
2248 	     didn't finish what it was supposed to do.  */
2249 	  tp = inferior_thread ();
2250 	  do_all_intermediate_continuations_thread (tp);
2251 	  do_all_continuations_thread (tp);
2252 	}
2253 
2254       do_cleanups (old_chain);
2255     }
2256 
2257   return 0;
2258 }
2259 
2260 /* This function is attached as a "thread_stop_requested" observer.
2261    Cleanup local state that assumed the PTID was to be resumed, and
2262    report the stop to the frontend.  */
2263 
2264 static void
2265 infrun_thread_stop_requested (ptid_t ptid)
2266 {
2267   struct displaced_step_inferior_state *displaced;
2268 
2269   /* PTID was requested to stop.  Remove it from the displaced
2270      stepping queue, so we don't try to resume it automatically.  */
2271 
2272   for (displaced = displaced_step_inferior_states;
2273        displaced;
2274        displaced = displaced->next)
2275     {
2276       struct displaced_step_request *it, **prev_next_p;
2277 
2278       it = displaced->step_request_queue;
2279       prev_next_p = &displaced->step_request_queue;
2280       while (it)
2281 	{
2282 	  if (ptid_match (it->ptid, ptid))
2283 	    {
2284 	      *prev_next_p = it->next;
2285 	      it->next = NULL;
2286 	      xfree (it);
2287 	    }
2288 	  else
2289 	    {
2290 	      prev_next_p = &it->next;
2291 	    }
2292 
2293 	  it = *prev_next_p;
2294 	}
2295     }
2296 
2297   iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2298 }
2299 
2300 static void
2301 infrun_thread_thread_exit (struct thread_info *tp, int silent)
2302 {
2303   if (ptid_equal (target_last_wait_ptid, tp->ptid))
2304     nullify_last_target_wait_ptid ();
2305 }
2306 
2307 /* Callback for iterate_over_threads.  */
2308 
2309 static int
2310 delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
2311 {
2312   if (is_exited (info->ptid))
2313     return 0;
2314 
2315   delete_step_resume_breakpoint (info);
2316   return 0;
2317 }
2318 
2319 /* In all-stop, delete the step resume breakpoint of any thread that
2320    had one.  In non-stop, delete the step resume breakpoint of the
2321    thread that just stopped.  */
2322 
2323 static void
2324 delete_step_thread_step_resume_breakpoint (void)
2325 {
2326   if (!target_has_execution
2327       || ptid_equal (inferior_ptid, null_ptid))
2328     /* If the inferior has exited, we have already deleted the step
2329        resume breakpoints out of GDB's lists.  */
2330     return;
2331 
2332   if (non_stop)
2333     {
2334       /* If in non-stop mode, only delete the step-resume or
2335 	 longjmp-resume breakpoint of the thread that just stopped
2336 	 stepping.  */
2337       struct thread_info *tp = inferior_thread ();
2338 
2339       delete_step_resume_breakpoint (tp);
2340     }
2341   else
2342     /* In all-stop mode, delete all step-resume and longjmp-resume
2343        breakpoints of any thread that had them.  */
2344     iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
2345 }
2346 
2347 /* A cleanup wrapper. */
2348 
2349 static void
2350 delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
2351 {
2352   delete_step_thread_step_resume_breakpoint ();
2353 }
2354 
2355 /* Pretty print the results of target_wait, for debugging purposes.  */
2356 
2357 static void
2358 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2359 			   const struct target_waitstatus *ws)
2360 {
2361   char *status_string = target_waitstatus_to_string (ws);
2362   struct ui_file *tmp_stream = mem_fileopen ();
2363   char *text;
2364 
2365   /* The text is split over several lines because it was getting too long.
2366      Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
2367      output as a unit; we want only one timestamp printed if debug_timestamp
2368      is set.  */
2369 
2370   fprintf_unfiltered (tmp_stream,
2371 		      "infrun: target_wait (%d", PIDGET (waiton_ptid));
2372   if (PIDGET (waiton_ptid) != -1)
2373     fprintf_unfiltered (tmp_stream,
2374 			" [%s]", target_pid_to_str (waiton_ptid));
2375   fprintf_unfiltered (tmp_stream, ", status) =\n");
2376   fprintf_unfiltered (tmp_stream,
2377 		      "infrun:   %d [%s],\n",
2378 		      PIDGET (result_ptid), target_pid_to_str (result_ptid));
2379   fprintf_unfiltered (tmp_stream,
2380 		      "infrun:   %s\n",
2381 		      status_string);
2382 
2383   text = ui_file_xstrdup (tmp_stream, NULL);
2384 
2385   /* This uses %s in part to handle %'s in the text, but also to avoid
2386      a gcc error: the format attribute requires a string literal.  */
2387   fprintf_unfiltered (gdb_stdlog, "%s", text);
2388 
2389   xfree (status_string);
2390   xfree (text);
2391   ui_file_delete (tmp_stream);
2392 }
2393 
2394 /* Prepare and stabilize the inferior for detaching it.  E.g.,
2395    detaching while a thread is displaced stepping is a recipe for
2396    crashing it, as nothing would readjust the PC out of the scratch
2397    pad.  */
2398 
2399 void
2400 prepare_for_detach (void)
2401 {
2402   struct inferior *inf = current_inferior ();
2403   ptid_t pid_ptid = pid_to_ptid (inf->pid);
2404   struct cleanup *old_chain_1;
2405   struct displaced_step_inferior_state *displaced;
2406 
2407   displaced = get_displaced_stepping_state (inf->pid);
2408 
2409   /* Is any thread of this process displaced stepping?  If not,
2410      there's nothing else to do.  */
2411   if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
2412     return;
2413 
2414   if (debug_infrun)
2415     fprintf_unfiltered (gdb_stdlog,
2416 			"displaced-stepping in-process while detaching");
2417 
2418   old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
2419   inf->detaching = 1;
2420 
2421   while (!ptid_equal (displaced->step_ptid, null_ptid))
2422     {
2423       struct cleanup *old_chain_2;
2424       struct execution_control_state ecss;
2425       struct execution_control_state *ecs;
2426 
2427       ecs = &ecss;
2428       memset (ecs, 0, sizeof (*ecs));
2429 
2430       overlay_cache_invalid = 1;
2431 
2432       /* We have to invalidate the registers BEFORE calling
2433 	 target_wait because they can be loaded from the target while
2434 	 in target_wait.  This makes remote debugging a bit more
2435 	 efficient for those targets that provide critical registers
2436 	 as part of their normal status mechanism. */
2437 
2438       registers_changed ();
2439 
2440       if (deprecated_target_wait_hook)
2441 	ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
2442       else
2443 	ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
2444 
2445       if (debug_infrun)
2446 	print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
2447 
2448       /* If an error happens while handling the event, propagate GDB's
2449 	 knowledge of the executing state to the frontend/user running
2450 	 state.  */
2451       old_chain_2 = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2452 
2453       /* In non-stop mode, each thread is handled individually.
2454 	 Switch early, so the global state is set correctly for this
2455 	 thread.  */
2456       if (non_stop
2457 	  && ecs->ws.kind != TARGET_WAITKIND_EXITED
2458 	  && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2459 	context_switch (ecs->ptid);
2460 
2461       /* Now figure out what to do with the result of the result.  */
2462       handle_inferior_event (ecs);
2463 
2464       /* No error, don't finish the state yet.  */
2465       discard_cleanups (old_chain_2);
2466 
2467       /* Breakpoints and watchpoints are not installed on the target
2468 	 at this point, and signals are passed directly to the
2469 	 inferior, so this must mean the process is gone.  */
2470       if (!ecs->wait_some_more)
2471 	{
2472 	  discard_cleanups (old_chain_1);
2473 	  error (_("Program exited while detaching"));
2474 	}
2475     }
2476 
2477   discard_cleanups (old_chain_1);
2478 }
2479 
2480 /* Wait for control to return from inferior to debugger.
2481 
2482    If TREAT_EXEC_AS_SIGTRAP is non-zero, then handle EXEC signals
2483    as if they were SIGTRAP signals.  This can be useful during
2484    the startup sequence on some targets such as HP/UX, where
2485    we receive an EXEC event instead of the expected SIGTRAP.
2486 
2487    If inferior gets a signal, we may decide to start it up again
2488    instead of returning.  That is why there is a loop in this function.
2489    When this function actually returns it means the inferior
2490    should be left stopped and GDB should read more commands.  */
2491 
2492 void
2493 wait_for_inferior (int treat_exec_as_sigtrap)
2494 {
2495   struct cleanup *old_cleanups;
2496   struct execution_control_state ecss;
2497   struct execution_control_state *ecs;
2498 
2499   if (debug_infrun)
2500     fprintf_unfiltered
2501       (gdb_stdlog, "infrun: wait_for_inferior (treat_exec_as_sigtrap=%d)\n",
2502        treat_exec_as_sigtrap);
2503 
2504   old_cleanups =
2505     make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
2506 
2507   ecs = &ecss;
2508   memset (ecs, 0, sizeof (*ecs));
2509 
2510   /* We'll update this if & when we switch to a new thread.  */
2511   previous_inferior_ptid = inferior_ptid;
2512 
2513   while (1)
2514     {
2515       struct cleanup *old_chain;
2516 
2517       /* We have to invalidate the registers BEFORE calling target_wait
2518 	 because they can be loaded from the target while in target_wait.
2519 	 This makes remote debugging a bit more efficient for those
2520 	 targets that provide critical registers as part of their normal
2521 	 status mechanism. */
2522 
2523       overlay_cache_invalid = 1;
2524       registers_changed ();
2525 
2526       if (deprecated_target_wait_hook)
2527 	ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
2528       else
2529 	ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
2530 
2531       if (debug_infrun)
2532 	print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2533 
2534       if (treat_exec_as_sigtrap && ecs->ws.kind == TARGET_WAITKIND_EXECD)
2535         {
2536           xfree (ecs->ws.value.execd_pathname);
2537           ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2538           ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
2539         }
2540 
2541       /* If an error happens while handling the event, propagate GDB's
2542 	 knowledge of the executing state to the frontend/user running
2543 	 state.  */
2544       old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2545 
2546       if (ecs->ws.kind == TARGET_WAITKIND_SYSCALL_ENTRY
2547           || ecs->ws.kind == TARGET_WAITKIND_SYSCALL_RETURN)
2548         ecs->ws.value.syscall_number = UNKNOWN_SYSCALL;
2549 
2550       /* Now figure out what to do with the result of the result.  */
2551       handle_inferior_event (ecs);
2552 
2553       /* No error, don't finish the state yet.  */
2554       discard_cleanups (old_chain);
2555 
2556       if (!ecs->wait_some_more)
2557 	break;
2558     }
2559 
2560   do_cleanups (old_cleanups);
2561 }
2562 
2563 /* Asynchronous version of wait_for_inferior. It is called by the
2564    event loop whenever a change of state is detected on the file
2565    descriptor corresponding to the target. It can be called more than
2566    once to complete a single execution command. In such cases we need
2567    to keep the state in a global variable ECSS. If it is the last time
2568    that this function is called for a single execution command, then
2569    report to the user that the inferior has stopped, and do the
2570    necessary cleanups. */
2571 
2572 void
2573 fetch_inferior_event (void *client_data)
2574 {
2575   struct execution_control_state ecss;
2576   struct execution_control_state *ecs = &ecss;
2577   struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
2578   struct cleanup *ts_old_chain;
2579   int was_sync = sync_execution;
2580 
2581   memset (ecs, 0, sizeof (*ecs));
2582 
2583   /* We'll update this if & when we switch to a new thread.  */
2584   previous_inferior_ptid = inferior_ptid;
2585 
2586   if (non_stop)
2587     /* In non-stop mode, the user/frontend should not notice a thread
2588        switch due to internal events.  Make sure we reverse to the
2589        user selected thread and frame after handling the event and
2590        running any breakpoint commands.  */
2591     make_cleanup_restore_current_thread ();
2592 
2593   /* We have to invalidate the registers BEFORE calling target_wait
2594      because they can be loaded from the target while in target_wait.
2595      This makes remote debugging a bit more efficient for those
2596      targets that provide critical registers as part of their normal
2597      status mechanism. */
2598 
2599   overlay_cache_invalid = 1;
2600   registers_changed ();
2601 
2602   if (deprecated_target_wait_hook)
2603     ecs->ptid =
2604       deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2605   else
2606     ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2607 
2608   if (debug_infrun)
2609     print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2610 
2611   if (non_stop
2612       && ecs->ws.kind != TARGET_WAITKIND_IGNORE
2613       && ecs->ws.kind != TARGET_WAITKIND_EXITED
2614       && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2615     /* In non-stop mode, each thread is handled individually.  Switch
2616        early, so the global state is set correctly for this
2617        thread.  */
2618     context_switch (ecs->ptid);
2619 
2620   /* If an error happens while handling the event, propagate GDB's
2621      knowledge of the executing state to the frontend/user running
2622      state.  */
2623   if (!non_stop)
2624     ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2625   else
2626     ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2627 
2628   /* Now figure out what to do with the result of the result.  */
2629   handle_inferior_event (ecs);
2630 
2631   if (!ecs->wait_some_more)
2632     {
2633       struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2634 
2635       delete_step_thread_step_resume_breakpoint ();
2636 
2637       /* We may not find an inferior if this was a process exit.  */
2638       if (inf == NULL || inf->stop_soon == NO_STOP_QUIETLY)
2639 	normal_stop ();
2640 
2641       if (target_has_execution
2642 	  && ecs->ws.kind != TARGET_WAITKIND_EXITED
2643 	  && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2644 	  && ecs->event_thread->step_multi
2645 	  && ecs->event_thread->stop_step)
2646 	inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2647       else
2648 	inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2649     }
2650 
2651   /* No error, don't finish the thread states yet.  */
2652   discard_cleanups (ts_old_chain);
2653 
2654   /* Revert thread and frame.  */
2655   do_cleanups (old_chain);
2656 
2657   /* If the inferior was in sync execution mode, and now isn't,
2658      restore the prompt.  */
2659   if (was_sync && !sync_execution)
2660     display_gdb_prompt (0);
2661 }
2662 
2663 /* Record the frame and location we're currently stepping through.  */
2664 void
2665 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
2666 {
2667   struct thread_info *tp = inferior_thread ();
2668 
2669   tp->step_frame_id = get_frame_id (frame);
2670   tp->step_stack_frame_id = get_stack_frame_id (frame);
2671 
2672   tp->current_symtab = sal.symtab;
2673   tp->current_line = sal.line;
2674 }
2675 
2676 /* Clear context switchable stepping state.  */
2677 
2678 void
2679 init_thread_stepping_state (struct thread_info *tss)
2680 {
2681   tss->stepping_over_breakpoint = 0;
2682   tss->step_after_step_resume_breakpoint = 0;
2683   tss->stepping_through_solib_after_catch = 0;
2684   tss->stepping_through_solib_catchpoints = NULL;
2685 }
2686 
2687 /* Return the cached copy of the last pid/waitstatus returned by
2688    target_wait()/deprecated_target_wait_hook().  The data is actually
2689    cached by handle_inferior_event(), which gets called immediately
2690    after target_wait()/deprecated_target_wait_hook().  */
2691 
2692 void
2693 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
2694 {
2695   *ptidp = target_last_wait_ptid;
2696   *status = target_last_waitstatus;
2697 }
2698 
2699 void
2700 nullify_last_target_wait_ptid (void)
2701 {
2702   target_last_wait_ptid = minus_one_ptid;
2703 }
2704 
2705 /* Switch thread contexts.  */
2706 
2707 static void
2708 context_switch (ptid_t ptid)
2709 {
2710   if (debug_infrun)
2711     {
2712       fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2713 			  target_pid_to_str (inferior_ptid));
2714       fprintf_unfiltered (gdb_stdlog, "to %s\n",
2715 			  target_pid_to_str (ptid));
2716     }
2717 
2718   switch_to_thread (ptid);
2719 }
2720 
2721 static void
2722 adjust_pc_after_break (struct execution_control_state *ecs)
2723 {
2724   struct regcache *regcache;
2725   struct gdbarch *gdbarch;
2726   struct address_space *aspace;
2727   CORE_ADDR breakpoint_pc;
2728 
2729   /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP.  If
2730      we aren't, just return.
2731 
2732      We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
2733      affected by gdbarch_decr_pc_after_break.  Other waitkinds which are
2734      implemented by software breakpoints should be handled through the normal
2735      breakpoint layer.
2736 
2737      NOTE drow/2004-01-31: On some targets, breakpoints may generate
2738      different signals (SIGILL or SIGEMT for instance), but it is less
2739      clear where the PC is pointing afterwards.  It may not match
2740      gdbarch_decr_pc_after_break.  I don't know any specific target that
2741      generates these signals at breakpoints (the code has been in GDB since at
2742      least 1992) so I can not guess how to handle them here.
2743 
2744      In earlier versions of GDB, a target with
2745      gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
2746      watchpoint affected by gdbarch_decr_pc_after_break.  I haven't found any
2747      target with both of these set in GDB history, and it seems unlikely to be
2748      correct, so gdbarch_have_nonsteppable_watchpoint is not checked here.  */
2749 
2750   if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2751     return;
2752 
2753   if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
2754     return;
2755 
2756   /* In reverse execution, when a breakpoint is hit, the instruction
2757      under it has already been de-executed.  The reported PC always
2758      points at the breakpoint address, so adjusting it further would
2759      be wrong.  E.g., consider this case on a decr_pc_after_break == 1
2760      architecture:
2761 
2762        B1         0x08000000 :   INSN1
2763        B2         0x08000001 :   INSN2
2764 		  0x08000002 :   INSN3
2765 	    PC -> 0x08000003 :   INSN4
2766 
2767      Say you're stopped at 0x08000003 as above.  Reverse continuing
2768      from that point should hit B2 as below.  Reading the PC when the
2769      SIGTRAP is reported should read 0x08000001 and INSN2 should have
2770      been de-executed already.
2771 
2772        B1         0x08000000 :   INSN1
2773        B2   PC -> 0x08000001 :   INSN2
2774 		  0x08000002 :   INSN3
2775 		  0x08000003 :   INSN4
2776 
2777      We can't apply the same logic as for forward execution, because
2778      we would wrongly adjust the PC to 0x08000000, since there's a
2779      breakpoint at PC - 1.  We'd then report a hit on B1, although
2780      INSN1 hadn't been de-executed yet.  Doing nothing is the correct
2781      behaviour.  */
2782   if (execution_direction == EXEC_REVERSE)
2783     return;
2784 
2785   /* If this target does not decrement the PC after breakpoints, then
2786      we have nothing to do.  */
2787   regcache = get_thread_regcache (ecs->ptid);
2788   gdbarch = get_regcache_arch (regcache);
2789   if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2790     return;
2791 
2792   aspace = get_regcache_aspace (regcache);
2793 
2794   /* Find the location where (if we've hit a breakpoint) the
2795      breakpoint would be.  */
2796   breakpoint_pc = regcache_read_pc (regcache)
2797 		  - gdbarch_decr_pc_after_break (gdbarch);
2798 
2799   /* Check whether there actually is a software breakpoint inserted at
2800      that location.
2801 
2802      If in non-stop mode, a race condition is possible where we've
2803      removed a breakpoint, but stop events for that breakpoint were
2804      already queued and arrive later.  To suppress those spurious
2805      SIGTRAPs, we keep a list of such breakpoint locations for a bit,
2806      and retire them after a number of stop events are reported.  */
2807   if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
2808       || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
2809     {
2810       struct cleanup *old_cleanups = NULL;
2811 
2812       if (RECORD_IS_USED)
2813 	old_cleanups = record_gdb_operation_disable_set ();
2814 
2815       /* When using hardware single-step, a SIGTRAP is reported for both
2816 	 a completed single-step and a software breakpoint.  Need to
2817 	 differentiate between the two, as the latter needs adjusting
2818 	 but the former does not.
2819 
2820 	 The SIGTRAP can be due to a completed hardware single-step only if
2821 	  - we didn't insert software single-step breakpoints
2822 	  - the thread to be examined is still the current thread
2823 	  - this thread is currently being stepped
2824 
2825 	 If any of these events did not occur, we must have stopped due
2826 	 to hitting a software breakpoint, and have to back up to the
2827 	 breakpoint address.
2828 
2829 	 As a special case, we could have hardware single-stepped a
2830 	 software breakpoint.  In this case (prev_pc == breakpoint_pc),
2831 	 we also need to back up to the breakpoint address.  */
2832 
2833       if (singlestep_breakpoints_inserted_p
2834 	  || !ptid_equal (ecs->ptid, inferior_ptid)
2835 	  || !currently_stepping (ecs->event_thread)
2836 	  || ecs->event_thread->prev_pc == breakpoint_pc)
2837 	regcache_write_pc (regcache, breakpoint_pc);
2838 
2839       if (RECORD_IS_USED)
2840 	do_cleanups (old_cleanups);
2841     }
2842 }
2843 
2844 void
2845 init_infwait_state (void)
2846 {
2847   waiton_ptid = pid_to_ptid (-1);
2848   infwait_state = infwait_normal_state;
2849 }
2850 
2851 void
2852 error_is_running (void)
2853 {
2854   error (_("\
2855 Cannot execute this command while the selected thread is running."));
2856 }
2857 
2858 void
2859 ensure_not_running (void)
2860 {
2861   if (is_running (inferior_ptid))
2862     error_is_running ();
2863 }
2864 
2865 static int
2866 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
2867 {
2868   for (frame = get_prev_frame (frame);
2869        frame != NULL;
2870        frame = get_prev_frame (frame))
2871     {
2872       if (frame_id_eq (get_frame_id (frame), step_frame_id))
2873 	return 1;
2874       if (get_frame_type (frame) != INLINE_FRAME)
2875 	break;
2876     }
2877 
2878   return 0;
2879 }
2880 
2881 /* Auxiliary function that handles syscall entry/return events.
2882    It returns 1 if the inferior should keep going (and GDB
2883    should ignore the event), or 0 if the event deserves to be
2884    processed.  */
2885 
2886 static int
2887 handle_syscall_event (struct execution_control_state *ecs)
2888 {
2889   struct regcache *regcache;
2890   struct gdbarch *gdbarch;
2891   int syscall_number;
2892 
2893   if (!ptid_equal (ecs->ptid, inferior_ptid))
2894     context_switch (ecs->ptid);
2895 
2896   regcache = get_thread_regcache (ecs->ptid);
2897   gdbarch = get_regcache_arch (regcache);
2898   syscall_number = gdbarch_get_syscall_number (gdbarch, ecs->ptid);
2899   stop_pc = regcache_read_pc (regcache);
2900 
2901   target_last_waitstatus.value.syscall_number = syscall_number;
2902 
2903   if (catch_syscall_enabled () > 0
2904       && catching_syscall_number (syscall_number) > 0)
2905     {
2906       if (debug_infrun)
2907         fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
2908                             syscall_number);
2909 
2910       ecs->event_thread->stop_bpstat
2911 	= bpstat_stop_status (get_regcache_aspace (regcache),
2912 			      stop_pc, ecs->ptid);
2913       ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
2914 
2915       if (!ecs->random_signal)
2916 	{
2917 	  /* Catchpoint hit.  */
2918 	  ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
2919 	  return 0;
2920 	}
2921     }
2922 
2923   /* If no catchpoint triggered for this, then keep going.  */
2924   ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2925   keep_going (ecs);
2926   return 1;
2927 }
2928 
2929 /* Given an execution control state that has been freshly filled in
2930    by an event from the inferior, figure out what it means and take
2931    appropriate action.  */
2932 
2933 static void
2934 handle_inferior_event (struct execution_control_state *ecs)
2935 {
2936   struct frame_info *frame;
2937   struct gdbarch *gdbarch;
2938   int sw_single_step_trap_p = 0;
2939   int stopped_by_watchpoint;
2940   int stepped_after_stopped_by_watchpoint = 0;
2941   struct symtab_and_line stop_pc_sal;
2942   enum stop_kind stop_soon;
2943 
2944   if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
2945     {
2946       /* We had an event in the inferior, but we are not interested in
2947 	 handling it at this level.  The lower layers have already
2948 	 done what needs to be done, if anything.
2949 
2950 	 One of the possible circumstances for this is when the
2951 	 inferior produces output for the console.  The inferior has
2952 	 not stopped, and we are ignoring the event.  Another possible
2953 	 circumstance is any event which the lower level knows will be
2954 	 reported multiple times without an intervening resume.  */
2955       if (debug_infrun)
2956 	fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
2957       prepare_to_wait (ecs);
2958       return;
2959     }
2960 
2961   if (ecs->ws.kind != TARGET_WAITKIND_EXITED
2962       && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2963     {
2964       struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2965 
2966       gdb_assert (inf);
2967       stop_soon = inf->stop_soon;
2968     }
2969   else
2970     stop_soon = NO_STOP_QUIETLY;
2971 
2972   /* Cache the last pid/waitstatus. */
2973   target_last_wait_ptid = ecs->ptid;
2974   target_last_waitstatus = ecs->ws;
2975 
2976   /* Always clear state belonging to the previous time we stopped.  */
2977   stop_stack_dummy = STOP_NONE;
2978 
2979   /* If it's a new process, add it to the thread database */
2980 
2981   ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
2982 			   && !ptid_equal (ecs->ptid, minus_one_ptid)
2983 			   && !in_thread_list (ecs->ptid));
2984 
2985   if (ecs->ws.kind != TARGET_WAITKIND_EXITED
2986       && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
2987     add_thread (ecs->ptid);
2988 
2989   ecs->event_thread = find_thread_ptid (ecs->ptid);
2990 
2991   /* Dependent on valid ECS->EVENT_THREAD.  */
2992   adjust_pc_after_break (ecs);
2993 
2994   /* Dependent on the current PC value modified by adjust_pc_after_break.  */
2995   reinit_frame_cache ();
2996 
2997   breakpoint_retire_moribund ();
2998 
2999   /* First, distinguish signals caused by the debugger from signals
3000      that have to do with the program's own actions.  Note that
3001      breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3002      on the operating system version.  Here we detect when a SIGILL or
3003      SIGEMT is really a breakpoint and change it to SIGTRAP.  We do
3004      something similar for SIGSEGV, since a SIGSEGV will be generated
3005      when we're trying to execute a breakpoint instruction on a
3006      non-executable stack.  This happens for call dummy breakpoints
3007      for architectures like SPARC that place call dummies on the
3008      stack.  */
3009   if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
3010       && (ecs->ws.value.sig == TARGET_SIGNAL_ILL
3011 	  || ecs->ws.value.sig == TARGET_SIGNAL_SEGV
3012 	  || ecs->ws.value.sig == TARGET_SIGNAL_EMT))
3013     {
3014       struct regcache *regcache = get_thread_regcache (ecs->ptid);
3015 
3016       if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3017 				      regcache_read_pc (regcache)))
3018 	{
3019 	  if (debug_infrun)
3020 	    fprintf_unfiltered (gdb_stdlog,
3021 				"infrun: Treating signal as SIGTRAP\n");
3022 	  ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
3023 	}
3024     }
3025 
3026   /* Mark the non-executing threads accordingly.  In all-stop, all
3027      threads of all processes are stopped when we get any event
3028      reported.  In non-stop mode, only the event thread stops.  If
3029      we're handling a process exit in non-stop mode, there's nothing
3030      to do, as threads of the dead process are gone, and threads of
3031      any other process were left running.  */
3032   if (!non_stop)
3033     set_executing (minus_one_ptid, 0);
3034   else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3035 	   && ecs->ws.kind != TARGET_WAITKIND_EXITED)
3036     set_executing (inferior_ptid, 0);
3037 
3038   switch (infwait_state)
3039     {
3040     case infwait_thread_hop_state:
3041       if (debug_infrun)
3042         fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
3043       break;
3044 
3045     case infwait_normal_state:
3046       if (debug_infrun)
3047         fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
3048       break;
3049 
3050     case infwait_step_watch_state:
3051       if (debug_infrun)
3052         fprintf_unfiltered (gdb_stdlog,
3053 			    "infrun: infwait_step_watch_state\n");
3054 
3055       stepped_after_stopped_by_watchpoint = 1;
3056       break;
3057 
3058     case infwait_nonstep_watch_state:
3059       if (debug_infrun)
3060         fprintf_unfiltered (gdb_stdlog,
3061 			    "infrun: infwait_nonstep_watch_state\n");
3062       insert_breakpoints ();
3063 
3064       /* FIXME-maybe: is this cleaner than setting a flag?  Does it
3065          handle things like signals arriving and other things happening
3066          in combination correctly?  */
3067       stepped_after_stopped_by_watchpoint = 1;
3068       break;
3069 
3070     default:
3071       internal_error (__FILE__, __LINE__, _("bad switch"));
3072     }
3073 
3074   infwait_state = infwait_normal_state;
3075   waiton_ptid = pid_to_ptid (-1);
3076 
3077   switch (ecs->ws.kind)
3078     {
3079     case TARGET_WAITKIND_LOADED:
3080       if (debug_infrun)
3081         fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
3082       /* Ignore gracefully during startup of the inferior, as it might
3083          be the shell which has just loaded some objects, otherwise
3084          add the symbols for the newly loaded objects.  Also ignore at
3085          the beginning of an attach or remote session; we will query
3086          the full list of libraries once the connection is
3087          established.  */
3088       if (stop_soon == NO_STOP_QUIETLY)
3089 	{
3090 	  /* Check for any newly added shared libraries if we're
3091 	     supposed to be adding them automatically.  Switch
3092 	     terminal for any messages produced by
3093 	     breakpoint_re_set.  */
3094 	  target_terminal_ours_for_output ();
3095 	  /* NOTE: cagney/2003-11-25: Make certain that the target
3096 	     stack's section table is kept up-to-date.  Architectures,
3097 	     (e.g., PPC64), use the section table to perform
3098 	     operations such as address => section name and hence
3099 	     require the table to contain all sections (including
3100 	     those found in shared libraries).  */
3101 #ifdef SOLIB_ADD
3102 	  SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
3103 #else
3104 	  solib_add (NULL, 0, &current_target, auto_solib_add);
3105 #endif
3106 	  target_terminal_inferior ();
3107 
3108 	  /* If requested, stop when the dynamic linker notifies
3109 	     gdb of events.  This allows the user to get control
3110 	     and place breakpoints in initializer routines for
3111 	     dynamically loaded objects (among other things).  */
3112 	  if (stop_on_solib_events)
3113 	    {
3114 	      /* Make sure we print "Stopped due to solib-event" in
3115 		 normal_stop.  */
3116 	      stop_print_frame = 1;
3117 
3118 	      stop_stepping (ecs);
3119 	      return;
3120 	    }
3121 
3122 	  /* NOTE drow/2007-05-11: This might be a good place to check
3123 	     for "catch load".  */
3124 	}
3125 
3126       /* If we are skipping through a shell, or through shared library
3127 	 loading that we aren't interested in, resume the program.  If
3128 	 we're running the program normally, also resume.  But stop if
3129 	 we're attaching or setting up a remote connection.  */
3130       if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3131 	{
3132 	  /* Loading of shared libraries might have changed breakpoint
3133 	     addresses.  Make sure new breakpoints are inserted.  */
3134 	  if (stop_soon == NO_STOP_QUIETLY
3135 	      && !breakpoints_always_inserted_mode ())
3136 	    insert_breakpoints ();
3137 	  resume (0, TARGET_SIGNAL_0);
3138 	  prepare_to_wait (ecs);
3139 	  return;
3140 	}
3141 
3142       break;
3143 
3144     case TARGET_WAITKIND_SPURIOUS:
3145       if (debug_infrun)
3146         fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
3147       resume (0, TARGET_SIGNAL_0);
3148       prepare_to_wait (ecs);
3149       return;
3150 
3151     case TARGET_WAITKIND_EXITED:
3152       if (debug_infrun)
3153         fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
3154       inferior_ptid = ecs->ptid;
3155       set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3156       set_current_program_space (current_inferior ()->pspace);
3157       handle_vfork_child_exec_or_exit (0);
3158       target_terminal_ours ();	/* Must do this before mourn anyway */
3159       print_stop_reason (EXITED, ecs->ws.value.integer);
3160 
3161       /* Record the exit code in the convenience variable $_exitcode, so
3162          that the user can inspect this again later.  */
3163       set_internalvar_integer (lookup_internalvar ("_exitcode"),
3164 			       (LONGEST) ecs->ws.value.integer);
3165       gdb_flush (gdb_stdout);
3166       target_mourn_inferior ();
3167       singlestep_breakpoints_inserted_p = 0;
3168       cancel_single_step_breakpoints ();
3169       stop_print_frame = 0;
3170       stop_stepping (ecs);
3171       return;
3172 
3173     case TARGET_WAITKIND_SIGNALLED:
3174       if (debug_infrun)
3175         fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
3176       inferior_ptid = ecs->ptid;
3177       set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3178       set_current_program_space (current_inferior ()->pspace);
3179       handle_vfork_child_exec_or_exit (0);
3180       stop_print_frame = 0;
3181       target_terminal_ours ();	/* Must do this before mourn anyway */
3182 
3183       /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
3184          reach here unless the inferior is dead.  However, for years
3185          target_kill() was called here, which hints that fatal signals aren't
3186          really fatal on some systems.  If that's true, then some changes
3187          may be needed. */
3188       target_mourn_inferior ();
3189 
3190       print_stop_reason (SIGNAL_EXITED, ecs->ws.value.sig);
3191       singlestep_breakpoints_inserted_p = 0;
3192       cancel_single_step_breakpoints ();
3193       stop_stepping (ecs);
3194       return;
3195 
3196       /* The following are the only cases in which we keep going;
3197          the above cases end in a continue or goto. */
3198     case TARGET_WAITKIND_FORKED:
3199     case TARGET_WAITKIND_VFORKED:
3200       if (debug_infrun)
3201         fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
3202 
3203       if (!ptid_equal (ecs->ptid, inferior_ptid))
3204 	{
3205 	  context_switch (ecs->ptid);
3206 	  reinit_frame_cache ();
3207 	}
3208 
3209       /* Immediately detach breakpoints from the child before there's
3210 	 any chance of letting the user delete breakpoints from the
3211 	 breakpoint lists.  If we don't do this early, it's easy to
3212 	 leave left over traps in the child, vis: "break foo; catch
3213 	 fork; c; <fork>; del; c; <child calls foo>".  We only follow
3214 	 the fork on the last `continue', and by that time the
3215 	 breakpoint at "foo" is long gone from the breakpoint table.
3216 	 If we vforked, then we don't need to unpatch here, since both
3217 	 parent and child are sharing the same memory pages; we'll
3218 	 need to unpatch at follow/detach time instead to be certain
3219 	 that new breakpoints added between catchpoint hit time and
3220 	 vfork follow are detached.  */
3221       if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
3222 	{
3223 	  int child_pid = ptid_get_pid (ecs->ws.value.related_pid);
3224 
3225 	  /* This won't actually modify the breakpoint list, but will
3226 	     physically remove the breakpoints from the child.  */
3227 	  detach_breakpoints (child_pid);
3228 	}
3229 
3230       if (singlestep_breakpoints_inserted_p)
3231 	{
3232 	  /* Pull the single step breakpoints out of the target. */
3233 	  remove_single_step_breakpoints ();
3234 	  singlestep_breakpoints_inserted_p = 0;
3235 	}
3236 
3237       /* In case the event is caught by a catchpoint, remember that
3238 	 the event is to be followed at the next resume of the thread,
3239 	 and not immediately.  */
3240       ecs->event_thread->pending_follow = ecs->ws;
3241 
3242       stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3243 
3244       ecs->event_thread->stop_bpstat
3245 	= bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3246 			      stop_pc, ecs->ptid);
3247 
3248       /* Note that we're interested in knowing the bpstat actually
3249 	 causes a stop, not just if it may explain the signal.
3250 	 Software watchpoints, for example, always appear in the
3251 	 bpstat.  */
3252       ecs->random_signal = !bpstat_causes_stop (ecs->event_thread->stop_bpstat);
3253 
3254       /* If no catchpoint triggered for this, then keep going.  */
3255       if (ecs->random_signal)
3256 	{
3257 	  ptid_t parent;
3258 	  ptid_t child;
3259 	  int should_resume;
3260 	  int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
3261 
3262 	  ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
3263 
3264 	  should_resume = follow_fork ();
3265 
3266 	  parent = ecs->ptid;
3267 	  child = ecs->ws.value.related_pid;
3268 
3269 	  /* In non-stop mode, also resume the other branch.  */
3270 	  if (non_stop && !detach_fork)
3271 	    {
3272 	      if (follow_child)
3273 		switch_to_thread (parent);
3274 	      else
3275 		switch_to_thread (child);
3276 
3277 	      ecs->event_thread = inferior_thread ();
3278 	      ecs->ptid = inferior_ptid;
3279 	      keep_going (ecs);
3280 	    }
3281 
3282 	  if (follow_child)
3283 	    switch_to_thread (child);
3284 	  else
3285 	    switch_to_thread (parent);
3286 
3287 	  ecs->event_thread = inferior_thread ();
3288 	  ecs->ptid = inferior_ptid;
3289 
3290 	  if (should_resume)
3291 	    keep_going (ecs);
3292 	  else
3293 	    stop_stepping (ecs);
3294 	  return;
3295 	}
3296       ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
3297       goto process_event_stop_test;
3298 
3299     case TARGET_WAITKIND_VFORK_DONE:
3300       /* Done with the shared memory region.  Re-insert breakpoints in
3301 	 the parent, and keep going.  */
3302 
3303       if (debug_infrun)
3304 	fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORK_DONE\n");
3305 
3306       if (!ptid_equal (ecs->ptid, inferior_ptid))
3307 	context_switch (ecs->ptid);
3308 
3309       current_inferior ()->waiting_for_vfork_done = 0;
3310       current_inferior ()->pspace->breakpoints_not_allowed = 0;
3311       /* This also takes care of reinserting breakpoints in the
3312 	 previously locked inferior.  */
3313       keep_going (ecs);
3314       return;
3315 
3316     case TARGET_WAITKIND_EXECD:
3317       if (debug_infrun)
3318         fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
3319 
3320       if (!ptid_equal (ecs->ptid, inferior_ptid))
3321 	{
3322 	  context_switch (ecs->ptid);
3323 	  reinit_frame_cache ();
3324 	}
3325 
3326       singlestep_breakpoints_inserted_p = 0;
3327       cancel_single_step_breakpoints ();
3328 
3329       stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3330 
3331       /* Do whatever is necessary to the parent branch of the vfork.  */
3332       handle_vfork_child_exec_or_exit (1);
3333 
3334       /* This causes the eventpoints and symbol table to be reset.
3335          Must do this now, before trying to determine whether to
3336          stop.  */
3337       follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
3338 
3339       ecs->event_thread->stop_bpstat
3340 	= bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3341 			      stop_pc, ecs->ptid);
3342       ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
3343 
3344       /* Note that this may be referenced from inside
3345 	 bpstat_stop_status above, through inferior_has_execd.  */
3346       xfree (ecs->ws.value.execd_pathname);
3347       ecs->ws.value.execd_pathname = NULL;
3348 
3349       /* If no catchpoint triggered for this, then keep going.  */
3350       if (ecs->random_signal)
3351 	{
3352 	  ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
3353 	  keep_going (ecs);
3354 	  return;
3355 	}
3356       ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
3357       goto process_event_stop_test;
3358 
3359       /* Be careful not to try to gather much state about a thread
3360          that's in a syscall.  It's frequently a losing proposition.  */
3361     case TARGET_WAITKIND_SYSCALL_ENTRY:
3362       if (debug_infrun)
3363         fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
3364       /* Getting the current syscall number */
3365       if (handle_syscall_event (ecs) != 0)
3366         return;
3367       goto process_event_stop_test;
3368 
3369       /* Before examining the threads further, step this thread to
3370          get it entirely out of the syscall.  (We get notice of the
3371          event when the thread is just on the verge of exiting a
3372          syscall.  Stepping one instruction seems to get it back
3373          into user code.)  */
3374     case TARGET_WAITKIND_SYSCALL_RETURN:
3375       if (debug_infrun)
3376         fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
3377       if (handle_syscall_event (ecs) != 0)
3378         return;
3379       goto process_event_stop_test;
3380 
3381     case TARGET_WAITKIND_STOPPED:
3382       if (debug_infrun)
3383         fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
3384       ecs->event_thread->stop_signal = ecs->ws.value.sig;
3385       break;
3386 
3387     case TARGET_WAITKIND_NO_HISTORY:
3388       /* Reverse execution: target ran out of history info.  */
3389       stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3390       print_stop_reason (NO_HISTORY, 0);
3391       stop_stepping (ecs);
3392       return;
3393     }
3394 
3395   if (ecs->new_thread_event)
3396     {
3397       if (non_stop)
3398 	/* Non-stop assumes that the target handles adding new threads
3399 	   to the thread list.  */
3400 	internal_error (__FILE__, __LINE__, "\
3401 targets should add new threads to the thread list themselves in non-stop mode.");
3402 
3403       /* We may want to consider not doing a resume here in order to
3404 	 give the user a chance to play with the new thread.  It might
3405 	 be good to make that a user-settable option.  */
3406 
3407       /* At this point, all threads are stopped (happens automatically
3408 	 in either the OS or the native code).  Therefore we need to
3409 	 continue all threads in order to make progress.  */
3410 
3411       if (!ptid_equal (ecs->ptid, inferior_ptid))
3412 	context_switch (ecs->ptid);
3413       target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
3414       prepare_to_wait (ecs);
3415       return;
3416     }
3417 
3418   if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
3419     {
3420       /* Do we need to clean up the state of a thread that has
3421 	 completed a displaced single-step?  (Doing so usually affects
3422 	 the PC, so do it here, before we set stop_pc.)  */
3423       displaced_step_fixup (ecs->ptid, ecs->event_thread->stop_signal);
3424 
3425       /* If we either finished a single-step or hit a breakpoint, but
3426 	 the user wanted this thread to be stopped, pretend we got a
3427 	 SIG0 (generic unsignaled stop).  */
3428 
3429       if (ecs->event_thread->stop_requested
3430 	  && ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
3431 	ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
3432     }
3433 
3434   stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3435 
3436   if (debug_infrun)
3437     {
3438       struct regcache *regcache = get_thread_regcache (ecs->ptid);
3439       struct gdbarch *gdbarch = get_regcache_arch (regcache);
3440       struct cleanup *old_chain = save_inferior_ptid ();
3441 
3442       inferior_ptid = ecs->ptid;
3443 
3444       fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
3445                           paddress (gdbarch, stop_pc));
3446       if (target_stopped_by_watchpoint ())
3447 	{
3448           CORE_ADDR addr;
3449 
3450 	  fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
3451 
3452           if (target_stopped_data_address (&current_target, &addr))
3453             fprintf_unfiltered (gdb_stdlog,
3454                                 "infrun: stopped data address = %s\n",
3455                                 paddress (gdbarch, addr));
3456           else
3457             fprintf_unfiltered (gdb_stdlog,
3458                                 "infrun: (no data address available)\n");
3459 	}
3460 
3461       do_cleanups (old_chain);
3462     }
3463 
3464   if (stepping_past_singlestep_breakpoint)
3465     {
3466       gdb_assert (singlestep_breakpoints_inserted_p);
3467       gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
3468       gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
3469 
3470       stepping_past_singlestep_breakpoint = 0;
3471 
3472       /* We've either finished single-stepping past the single-step
3473          breakpoint, or stopped for some other reason.  It would be nice if
3474          we could tell, but we can't reliably.  */
3475       if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
3476 	{
3477 	  if (debug_infrun)
3478 	    fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
3479 	  /* Pull the single step breakpoints out of the target.  */
3480 	  remove_single_step_breakpoints ();
3481 	  singlestep_breakpoints_inserted_p = 0;
3482 
3483 	  ecs->random_signal = 0;
3484 	  ecs->event_thread->trap_expected = 0;
3485 
3486 	  context_switch (saved_singlestep_ptid);
3487 	  if (deprecated_context_hook)
3488 	    deprecated_context_hook (pid_to_thread_id (ecs->ptid));
3489 
3490 	  resume (1, TARGET_SIGNAL_0);
3491 	  prepare_to_wait (ecs);
3492 	  return;
3493 	}
3494     }
3495 
3496   if (!ptid_equal (deferred_step_ptid, null_ptid))
3497     {
3498       /* In non-stop mode, there's never a deferred_step_ptid set.  */
3499       gdb_assert (!non_stop);
3500 
3501       /* If we stopped for some other reason than single-stepping, ignore
3502 	 the fact that we were supposed to switch back.  */
3503       if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
3504 	{
3505 	  if (debug_infrun)
3506 	    fprintf_unfiltered (gdb_stdlog,
3507 				"infrun: handling deferred step\n");
3508 
3509 	  /* Pull the single step breakpoints out of the target.  */
3510 	  if (singlestep_breakpoints_inserted_p)
3511 	    {
3512 	      remove_single_step_breakpoints ();
3513 	      singlestep_breakpoints_inserted_p = 0;
3514 	    }
3515 
3516 	  /* Note: We do not call context_switch at this point, as the
3517 	     context is already set up for stepping the original thread.  */
3518 	  switch_to_thread (deferred_step_ptid);
3519 	  deferred_step_ptid = null_ptid;
3520 	  /* Suppress spurious "Switching to ..." message.  */
3521 	  previous_inferior_ptid = inferior_ptid;
3522 
3523 	  resume (1, TARGET_SIGNAL_0);
3524 	  prepare_to_wait (ecs);
3525 	  return;
3526 	}
3527 
3528       deferred_step_ptid = null_ptid;
3529     }
3530 
3531   /* See if a thread hit a thread-specific breakpoint that was meant for
3532      another thread.  If so, then step that thread past the breakpoint,
3533      and continue it.  */
3534 
3535   if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
3536     {
3537       int thread_hop_needed = 0;
3538       struct address_space *aspace =
3539 	get_regcache_aspace (get_thread_regcache (ecs->ptid));
3540 
3541       /* Check if a regular breakpoint has been hit before checking
3542          for a potential single step breakpoint. Otherwise, GDB will
3543          not see this breakpoint hit when stepping onto breakpoints.  */
3544       if (regular_breakpoint_inserted_here_p (aspace, stop_pc))
3545 	{
3546 	  ecs->random_signal = 0;
3547 	  if (!breakpoint_thread_match (aspace, stop_pc, ecs->ptid))
3548 	    thread_hop_needed = 1;
3549 	}
3550       else if (singlestep_breakpoints_inserted_p)
3551 	{
3552 	  /* We have not context switched yet, so this should be true
3553 	     no matter which thread hit the singlestep breakpoint.  */
3554 	  gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
3555 	  if (debug_infrun)
3556 	    fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
3557 				"trap for %s\n",
3558 				target_pid_to_str (ecs->ptid));
3559 
3560 	  ecs->random_signal = 0;
3561 	  /* The call to in_thread_list is necessary because PTIDs sometimes
3562 	     change when we go from single-threaded to multi-threaded.  If
3563 	     the singlestep_ptid is still in the list, assume that it is
3564 	     really different from ecs->ptid.  */
3565 	  if (!ptid_equal (singlestep_ptid, ecs->ptid)
3566 	      && in_thread_list (singlestep_ptid))
3567 	    {
3568 	      /* If the PC of the thread we were trying to single-step
3569 		 has changed, discard this event (which we were going
3570 		 to ignore anyway), and pretend we saw that thread
3571 		 trap.  This prevents us continuously moving the
3572 		 single-step breakpoint forward, one instruction at a
3573 		 time.  If the PC has changed, then the thread we were
3574 		 trying to single-step has trapped or been signalled,
3575 		 but the event has not been reported to GDB yet.
3576 
3577 		 There might be some cases where this loses signal
3578 		 information, if a signal has arrived at exactly the
3579 		 same time that the PC changed, but this is the best
3580 		 we can do with the information available.  Perhaps we
3581 		 should arrange to report all events for all threads
3582 		 when they stop, or to re-poll the remote looking for
3583 		 this particular thread (i.e. temporarily enable
3584 		 schedlock).  */
3585 
3586 	     CORE_ADDR new_singlestep_pc
3587 	       = regcache_read_pc (get_thread_regcache (singlestep_ptid));
3588 
3589 	     if (new_singlestep_pc != singlestep_pc)
3590 	       {
3591 		 enum target_signal stop_signal;
3592 
3593 		 if (debug_infrun)
3594 		   fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
3595 				       " but expected thread advanced also\n");
3596 
3597 		 /* The current context still belongs to
3598 		    singlestep_ptid.  Don't swap here, since that's
3599 		    the context we want to use.  Just fudge our
3600 		    state and continue.  */
3601                  stop_signal = ecs->event_thread->stop_signal;
3602                  ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
3603                  ecs->ptid = singlestep_ptid;
3604                  ecs->event_thread = find_thread_ptid (ecs->ptid);
3605                  ecs->event_thread->stop_signal = stop_signal;
3606                  stop_pc = new_singlestep_pc;
3607                }
3608              else
3609 	       {
3610 		 if (debug_infrun)
3611 		   fprintf_unfiltered (gdb_stdlog,
3612 				       "infrun: unexpected thread\n");
3613 
3614 		 thread_hop_needed = 1;
3615 		 stepping_past_singlestep_breakpoint = 1;
3616 		 saved_singlestep_ptid = singlestep_ptid;
3617 	       }
3618 	    }
3619 	}
3620 
3621       if (thread_hop_needed)
3622 	{
3623 	  struct regcache *thread_regcache;
3624 	  int remove_status = 0;
3625 
3626 	  if (debug_infrun)
3627 	    fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
3628 
3629 	  /* Switch context before touching inferior memory, the
3630 	     previous thread may have exited.  */
3631 	  if (!ptid_equal (inferior_ptid, ecs->ptid))
3632 	    context_switch (ecs->ptid);
3633 
3634 	  /* Saw a breakpoint, but it was hit by the wrong thread.
3635 	     Just continue. */
3636 
3637 	  if (singlestep_breakpoints_inserted_p)
3638 	    {
3639 	      /* Pull the single step breakpoints out of the target. */
3640 	      remove_single_step_breakpoints ();
3641 	      singlestep_breakpoints_inserted_p = 0;
3642 	    }
3643 
3644 	  /* If the arch can displace step, don't remove the
3645 	     breakpoints.  */
3646 	  thread_regcache = get_thread_regcache (ecs->ptid);
3647 	  if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
3648 	    remove_status = remove_breakpoints ();
3649 
3650 	  /* Did we fail to remove breakpoints?  If so, try
3651 	     to set the PC past the bp.  (There's at least
3652 	     one situation in which we can fail to remove
3653 	     the bp's: On HP-UX's that use ttrace, we can't
3654 	     change the address space of a vforking child
3655 	     process until the child exits (well, okay, not
3656 	     then either :-) or execs. */
3657 	  if (remove_status != 0)
3658 	    error (_("Cannot step over breakpoint hit in wrong thread"));
3659 	  else
3660 	    {			/* Single step */
3661 	      if (!non_stop)
3662 		{
3663 		  /* Only need to require the next event from this
3664 		     thread in all-stop mode.  */
3665 		  waiton_ptid = ecs->ptid;
3666 		  infwait_state = infwait_thread_hop_state;
3667 		}
3668 
3669 	      ecs->event_thread->stepping_over_breakpoint = 1;
3670 	      keep_going (ecs);
3671 	      return;
3672 	    }
3673 	}
3674       else if (singlestep_breakpoints_inserted_p)
3675 	{
3676 	  sw_single_step_trap_p = 1;
3677 	  ecs->random_signal = 0;
3678 	}
3679     }
3680   else
3681     ecs->random_signal = 1;
3682 
3683   /* See if something interesting happened to the non-current thread.  If
3684      so, then switch to that thread.  */
3685   if (!ptid_equal (ecs->ptid, inferior_ptid))
3686     {
3687       if (debug_infrun)
3688 	fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
3689 
3690       context_switch (ecs->ptid);
3691 
3692       if (deprecated_context_hook)
3693 	deprecated_context_hook (pid_to_thread_id (ecs->ptid));
3694     }
3695 
3696   /* At this point, get hold of the now-current thread's frame.  */
3697   frame = get_current_frame ();
3698   gdbarch = get_frame_arch (frame);
3699 
3700   if (singlestep_breakpoints_inserted_p)
3701     {
3702       /* Pull the single step breakpoints out of the target. */
3703       remove_single_step_breakpoints ();
3704       singlestep_breakpoints_inserted_p = 0;
3705     }
3706 
3707   if (stepped_after_stopped_by_watchpoint)
3708     stopped_by_watchpoint = 0;
3709   else
3710     stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
3711 
3712   /* If necessary, step over this watchpoint.  We'll be back to display
3713      it in a moment.  */
3714   if (stopped_by_watchpoint
3715       && (target_have_steppable_watchpoint
3716 	  || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
3717     {
3718       /* At this point, we are stopped at an instruction which has
3719          attempted to write to a piece of memory under control of
3720          a watchpoint.  The instruction hasn't actually executed
3721          yet.  If we were to evaluate the watchpoint expression
3722          now, we would get the old value, and therefore no change
3723          would seem to have occurred.
3724 
3725          In order to make watchpoints work `right', we really need
3726          to complete the memory write, and then evaluate the
3727          watchpoint expression.  We do this by single-stepping the
3728 	 target.
3729 
3730 	 It may not be necessary to disable the watchpoint to stop over
3731 	 it.  For example, the PA can (with some kernel cooperation)
3732 	 single step over a watchpoint without disabling the watchpoint.
3733 
3734 	 It is far more common to need to disable a watchpoint to step
3735 	 the inferior over it.  If we have non-steppable watchpoints,
3736 	 we must disable the current watchpoint; it's simplest to
3737 	 disable all watchpoints and breakpoints.  */
3738       int hw_step = 1;
3739 
3740       if (!target_have_steppable_watchpoint)
3741 	remove_breakpoints ();
3742 	/* Single step */
3743       hw_step = maybe_software_singlestep (gdbarch, stop_pc);
3744       target_resume (ecs->ptid, hw_step, TARGET_SIGNAL_0);
3745       waiton_ptid = ecs->ptid;
3746       if (target_have_steppable_watchpoint)
3747 	infwait_state = infwait_step_watch_state;
3748       else
3749 	infwait_state = infwait_nonstep_watch_state;
3750       prepare_to_wait (ecs);
3751       return;
3752     }
3753 
3754   ecs->stop_func_start = 0;
3755   ecs->stop_func_end = 0;
3756   ecs->stop_func_name = 0;
3757   /* Don't care about return value; stop_func_start and stop_func_name
3758      will both be 0 if it doesn't work.  */
3759   find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3760 			    &ecs->stop_func_start, &ecs->stop_func_end);
3761   ecs->stop_func_start
3762     += gdbarch_deprecated_function_start_offset (gdbarch);
3763   ecs->event_thread->stepping_over_breakpoint = 0;
3764   bpstat_clear (&ecs->event_thread->stop_bpstat);
3765   ecs->event_thread->stop_step = 0;
3766   stop_print_frame = 1;
3767   ecs->random_signal = 0;
3768   stopped_by_random_signal = 0;
3769 
3770   /* Hide inlined functions starting here, unless we just performed stepi or
3771      nexti.  After stepi and nexti, always show the innermost frame (not any
3772      inline function call sites).  */
3773   if (ecs->event_thread->step_range_end != 1)
3774     skip_inline_frames (ecs->ptid);
3775 
3776   if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
3777       && ecs->event_thread->trap_expected
3778       && gdbarch_single_step_through_delay_p (gdbarch)
3779       && currently_stepping (ecs->event_thread))
3780     {
3781       /* We're trying to step off a breakpoint.  Turns out that we're
3782 	 also on an instruction that needs to be stepped multiple
3783 	 times before it's been fully executing. E.g., architectures
3784 	 with a delay slot.  It needs to be stepped twice, once for
3785 	 the instruction and once for the delay slot.  */
3786       int step_through_delay
3787 	= gdbarch_single_step_through_delay (gdbarch, frame);
3788 
3789       if (debug_infrun && step_through_delay)
3790 	fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
3791       if (ecs->event_thread->step_range_end == 0 && step_through_delay)
3792 	{
3793 	  /* The user issued a continue when stopped at a breakpoint.
3794 	     Set up for another trap and get out of here.  */
3795          ecs->event_thread->stepping_over_breakpoint = 1;
3796          keep_going (ecs);
3797          return;
3798 	}
3799       else if (step_through_delay)
3800 	{
3801 	  /* The user issued a step when stopped at a breakpoint.
3802 	     Maybe we should stop, maybe we should not - the delay
3803 	     slot *might* correspond to a line of source.  In any
3804 	     case, don't decide that here, just set
3805 	     ecs->stepping_over_breakpoint, making sure we
3806 	     single-step again before breakpoints are re-inserted.  */
3807 	  ecs->event_thread->stepping_over_breakpoint = 1;
3808 	}
3809     }
3810 
3811   /* Look at the cause of the stop, and decide what to do.
3812      The alternatives are:
3813      1) stop_stepping and return; to really stop and return to the debugger,
3814      2) keep_going and return to start up again
3815      (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
3816      3) set ecs->random_signal to 1, and the decision between 1 and 2
3817      will be made according to the signal handling tables.  */
3818 
3819   if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
3820       || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
3821       || stop_soon == STOP_QUIETLY_REMOTE)
3822     {
3823       if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
3824 	{
3825           if (debug_infrun)
3826 	    fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
3827 	  stop_print_frame = 0;
3828 	  stop_stepping (ecs);
3829 	  return;
3830 	}
3831 
3832       /* This is originated from start_remote(), start_inferior() and
3833          shared libraries hook functions.  */
3834       if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
3835 	{
3836           if (debug_infrun)
3837 	    fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
3838 	  stop_stepping (ecs);
3839 	  return;
3840 	}
3841 
3842       /* This originates from attach_command().  We need to overwrite
3843 	 the stop_signal here, because some kernels don't ignore a
3844 	 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
3845 	 See more comments in inferior.h.  On the other hand, if we
3846 	 get a non-SIGSTOP, report it to the user - assume the backend
3847 	 will handle the SIGSTOP if it should show up later.
3848 
3849 	 Also consider that the attach is complete when we see a
3850 	 SIGTRAP.  Some systems (e.g. Windows), and stubs supporting
3851 	 target extended-remote report it instead of a SIGSTOP
3852 	 (e.g. gdbserver).  We already rely on SIGTRAP being our
3853 	 signal, so this is no exception.
3854 
3855 	 Also consider that the attach is complete when we see a
3856 	 TARGET_SIGNAL_0.  In non-stop mode, GDB will explicitly tell
3857 	 the target to stop all threads of the inferior, in case the
3858 	 low level attach operation doesn't stop them implicitly.  If
3859 	 they weren't stopped implicitly, then the stub will report a
3860 	 TARGET_SIGNAL_0, meaning: stopped for no particular reason
3861 	 other than GDB's request.  */
3862       if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
3863 	  && (ecs->event_thread->stop_signal == TARGET_SIGNAL_STOP
3864 	      || ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
3865 	      || ecs->event_thread->stop_signal == TARGET_SIGNAL_0))
3866 	{
3867 	  stop_stepping (ecs);
3868 	  ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
3869 	  return;
3870 	}
3871 
3872       /* See if there is a breakpoint at the current PC.  */
3873       ecs->event_thread->stop_bpstat
3874 	= bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3875 			      stop_pc, ecs->ptid);
3876 
3877       /* Following in case break condition called a
3878 	 function.  */
3879       stop_print_frame = 1;
3880 
3881       /* This is where we handle "moribund" watchpoints.  Unlike
3882 	 software breakpoints traps, hardware watchpoint traps are
3883 	 always distinguishable from random traps.  If no high-level
3884 	 watchpoint is associated with the reported stop data address
3885 	 anymore, then the bpstat does not explain the signal ---
3886 	 simply make sure to ignore it if `stopped_by_watchpoint' is
3887 	 set.  */
3888 
3889       if (debug_infrun
3890 	  && ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
3891 	  && !bpstat_explains_signal (ecs->event_thread->stop_bpstat)
3892 	  && stopped_by_watchpoint)
3893 	fprintf_unfiltered (gdb_stdlog, "\
3894 infrun: no user watchpoint explains watchpoint SIGTRAP, ignoring\n");
3895 
3896       /* NOTE: cagney/2003-03-29: These two checks for a random signal
3897          at one stage in the past included checks for an inferior
3898          function call's call dummy's return breakpoint.  The original
3899          comment, that went with the test, read:
3900 
3901          ``End of a stack dummy.  Some systems (e.g. Sony news) give
3902          another signal besides SIGTRAP, so check here as well as
3903          above.''
3904 
3905          If someone ever tries to get call dummys on a
3906          non-executable stack to work (where the target would stop
3907          with something like a SIGSEGV), then those tests might need
3908          to be re-instated.  Given, however, that the tests were only
3909          enabled when momentary breakpoints were not being used, I
3910          suspect that it won't be the case.
3911 
3912          NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
3913          be necessary for call dummies on a non-executable stack on
3914          SPARC.  */
3915 
3916       if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
3917 	ecs->random_signal
3918 	  = !(bpstat_explains_signal (ecs->event_thread->stop_bpstat)
3919 	      || stopped_by_watchpoint
3920 	      || ecs->event_thread->trap_expected
3921 	      || (ecs->event_thread->step_range_end
3922 		  && ecs->event_thread->step_resume_breakpoint == NULL));
3923       else
3924 	{
3925 	  ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
3926 	  if (!ecs->random_signal)
3927 	    ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
3928 	}
3929     }
3930 
3931   /* When we reach this point, we've pretty much decided
3932      that the reason for stopping must've been a random
3933      (unexpected) signal. */
3934 
3935   else
3936     ecs->random_signal = 1;
3937 
3938 process_event_stop_test:
3939 
3940   /* Re-fetch current thread's frame in case we did a
3941      "goto process_event_stop_test" above.  */
3942   frame = get_current_frame ();
3943   gdbarch = get_frame_arch (frame);
3944 
3945   /* For the program's own signals, act according to
3946      the signal handling tables.  */
3947 
3948   if (ecs->random_signal)
3949     {
3950       /* Signal not for debugging purposes.  */
3951       int printed = 0;
3952       struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
3953 
3954       if (debug_infrun)
3955 	 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
3956 			     ecs->event_thread->stop_signal);
3957 
3958       stopped_by_random_signal = 1;
3959 
3960       if (signal_print[ecs->event_thread->stop_signal])
3961 	{
3962 	  printed = 1;
3963 	  target_terminal_ours_for_output ();
3964 	  print_stop_reason (SIGNAL_RECEIVED, ecs->event_thread->stop_signal);
3965 	}
3966       /* Always stop on signals if we're either just gaining control
3967 	 of the program, or the user explicitly requested this thread
3968 	 to remain stopped.  */
3969       if (stop_soon != NO_STOP_QUIETLY
3970 	  || ecs->event_thread->stop_requested
3971 	  || (!inf->detaching
3972 	      && signal_stop_state (ecs->event_thread->stop_signal)))
3973 	{
3974 	  stop_stepping (ecs);
3975 	  return;
3976 	}
3977       /* If not going to stop, give terminal back
3978          if we took it away.  */
3979       else if (printed)
3980 	target_terminal_inferior ();
3981 
3982       /* Clear the signal if it should not be passed.  */
3983       if (signal_program[ecs->event_thread->stop_signal] == 0)
3984 	ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
3985 
3986       if (ecs->event_thread->prev_pc == stop_pc
3987 	  && ecs->event_thread->trap_expected
3988 	  && ecs->event_thread->step_resume_breakpoint == NULL)
3989 	{
3990 	  /* We were just starting a new sequence, attempting to
3991 	     single-step off of a breakpoint and expecting a SIGTRAP.
3992 	     Instead this signal arrives.  This signal will take us out
3993 	     of the stepping range so GDB needs to remember to, when
3994 	     the signal handler returns, resume stepping off that
3995 	     breakpoint.  */
3996 	  /* To simplify things, "continue" is forced to use the same
3997 	     code paths as single-step - set a breakpoint at the
3998 	     signal return address and then, once hit, step off that
3999 	     breakpoint.  */
4000           if (debug_infrun)
4001             fprintf_unfiltered (gdb_stdlog,
4002                                 "infrun: signal arrived while stepping over "
4003                                 "breakpoint\n");
4004 
4005 	  insert_step_resume_breakpoint_at_frame (frame);
4006 	  ecs->event_thread->step_after_step_resume_breakpoint = 1;
4007 	  keep_going (ecs);
4008 	  return;
4009 	}
4010 
4011       if (ecs->event_thread->step_range_end != 0
4012 	  && ecs->event_thread->stop_signal != TARGET_SIGNAL_0
4013 	  && (ecs->event_thread->step_range_start <= stop_pc
4014 	      && stop_pc < ecs->event_thread->step_range_end)
4015 	  && frame_id_eq (get_stack_frame_id (frame),
4016 			  ecs->event_thread->step_stack_frame_id)
4017 	  && ecs->event_thread->step_resume_breakpoint == NULL)
4018 	{
4019 	  /* The inferior is about to take a signal that will take it
4020 	     out of the single step range.  Set a breakpoint at the
4021 	     current PC (which is presumably where the signal handler
4022 	     will eventually return) and then allow the inferior to
4023 	     run free.
4024 
4025 	     Note that this is only needed for a signal delivered
4026 	     while in the single-step range.  Nested signals aren't a
4027 	     problem as they eventually all return.  */
4028           if (debug_infrun)
4029             fprintf_unfiltered (gdb_stdlog,
4030                                 "infrun: signal may take us out of "
4031                                 "single-step range\n");
4032 
4033 	  insert_step_resume_breakpoint_at_frame (frame);
4034 	  keep_going (ecs);
4035 	  return;
4036 	}
4037 
4038       /* Note: step_resume_breakpoint may be non-NULL.  This occures
4039 	 when either there's a nested signal, or when there's a
4040 	 pending signal enabled just as the signal handler returns
4041 	 (leaving the inferior at the step-resume-breakpoint without
4042 	 actually executing it).  Either way continue until the
4043 	 breakpoint is really hit.  */
4044       keep_going (ecs);
4045       return;
4046     }
4047 
4048   /* Handle cases caused by hitting a breakpoint.  */
4049   {
4050     CORE_ADDR jmp_buf_pc;
4051     struct bpstat_what what;
4052 
4053     what = bpstat_what (ecs->event_thread->stop_bpstat);
4054 
4055     if (what.call_dummy)
4056       {
4057 	stop_stack_dummy = what.call_dummy;
4058       }
4059 
4060     /* If we hit an internal event that triggers symbol changes, the
4061        current frame will be invalidated within bpstat_what (e.g., if
4062        we hit an internal solib event).  Re-fetch it.  */
4063     frame = get_current_frame ();
4064     gdbarch = get_frame_arch (frame);
4065 
4066     switch (what.main_action)
4067       {
4068       case BPSTAT_WHAT_SET_LONGJMP_RESUME:
4069 	/* If we hit the breakpoint at longjmp while stepping, we
4070 	   install a momentary breakpoint at the target of the
4071 	   jmp_buf.  */
4072 
4073 	if (debug_infrun)
4074 	  fprintf_unfiltered (gdb_stdlog,
4075 			      "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
4076 
4077 	ecs->event_thread->stepping_over_breakpoint = 1;
4078 
4079 	if (!gdbarch_get_longjmp_target_p (gdbarch)
4080 	    || !gdbarch_get_longjmp_target (gdbarch, frame, &jmp_buf_pc))
4081 	  {
4082 	    if (debug_infrun)
4083 	      fprintf_unfiltered (gdb_stdlog, "\
4084 infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME (!gdbarch_get_longjmp_target)\n");
4085 	    keep_going (ecs);
4086 	    return;
4087 	  }
4088 
4089 	/* We're going to replace the current step-resume breakpoint
4090 	   with a longjmp-resume breakpoint.  */
4091 	delete_step_resume_breakpoint (ecs->event_thread);
4092 
4093 	/* Insert a breakpoint at resume address.  */
4094 	insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
4095 
4096 	keep_going (ecs);
4097 	return;
4098 
4099       case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
4100         if (debug_infrun)
4101 	  fprintf_unfiltered (gdb_stdlog,
4102 			      "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
4103 
4104 	gdb_assert (ecs->event_thread->step_resume_breakpoint != NULL);
4105 	delete_step_resume_breakpoint (ecs->event_thread);
4106 
4107 	ecs->event_thread->stop_step = 1;
4108 	print_stop_reason (END_STEPPING_RANGE, 0);
4109 	stop_stepping (ecs);
4110 	return;
4111 
4112       case BPSTAT_WHAT_SINGLE:
4113         if (debug_infrun)
4114 	  fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4115 	ecs->event_thread->stepping_over_breakpoint = 1;
4116 	/* Still need to check other stuff, at least the case
4117 	   where we are stepping and step out of the right range.  */
4118 	break;
4119 
4120       case BPSTAT_WHAT_STOP_NOISY:
4121         if (debug_infrun)
4122 	  fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
4123 	stop_print_frame = 1;
4124 
4125 	/* We are about to nuke the step_resume_breakpointt via the
4126 	   cleanup chain, so no need to worry about it here.  */
4127 
4128 	stop_stepping (ecs);
4129 	return;
4130 
4131       case BPSTAT_WHAT_STOP_SILENT:
4132         if (debug_infrun)
4133 	  fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
4134 	stop_print_frame = 0;
4135 
4136 	/* We are about to nuke the step_resume_breakpoin via the
4137 	   cleanup chain, so no need to worry about it here.  */
4138 
4139 	stop_stepping (ecs);
4140 	return;
4141 
4142       case BPSTAT_WHAT_STEP_RESUME:
4143         if (debug_infrun)
4144 	  fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
4145 
4146 	delete_step_resume_breakpoint (ecs->event_thread);
4147 	if (ecs->event_thread->step_after_step_resume_breakpoint)
4148 	  {
4149 	    /* Back when the step-resume breakpoint was inserted, we
4150 	       were trying to single-step off a breakpoint.  Go back
4151 	       to doing that.  */
4152 	    ecs->event_thread->step_after_step_resume_breakpoint = 0;
4153 	    ecs->event_thread->stepping_over_breakpoint = 1;
4154 	    keep_going (ecs);
4155 	    return;
4156 	  }
4157 	if (stop_pc == ecs->stop_func_start
4158 	    && execution_direction == EXEC_REVERSE)
4159 	  {
4160 	    /* We are stepping over a function call in reverse, and
4161 	       just hit the step-resume breakpoint at the start
4162 	       address of the function.  Go back to single-stepping,
4163 	       which should take us back to the function call.  */
4164 	    ecs->event_thread->stepping_over_breakpoint = 1;
4165 	    keep_going (ecs);
4166 	    return;
4167 	  }
4168 	break;
4169 
4170       case BPSTAT_WHAT_KEEP_CHECKING:
4171 	break;
4172       }
4173   }
4174 
4175   /* We come here if we hit a breakpoint but should not
4176      stop for it.  Possibly we also were stepping
4177      and should stop for that.  So fall through and
4178      test for stepping.  But, if not stepping,
4179      do not stop.  */
4180 
4181   /* In all-stop mode, if we're currently stepping but have stopped in
4182      some other thread, we need to switch back to the stepped thread.  */
4183   if (!non_stop)
4184     {
4185       struct thread_info *tp;
4186 
4187       tp = iterate_over_threads (currently_stepping_or_nexting_callback,
4188 				 ecs->event_thread);
4189       if (tp)
4190 	{
4191 	  /* However, if the current thread is blocked on some internal
4192 	     breakpoint, and we simply need to step over that breakpoint
4193 	     to get it going again, do that first.  */
4194 	  if ((ecs->event_thread->trap_expected
4195 	       && ecs->event_thread->stop_signal != TARGET_SIGNAL_TRAP)
4196 	      || ecs->event_thread->stepping_over_breakpoint)
4197 	    {
4198 	      keep_going (ecs);
4199 	      return;
4200 	    }
4201 
4202 	  /* If the stepping thread exited, then don't try to switch
4203 	     back and resume it, which could fail in several different
4204 	     ways depending on the target.  Instead, just keep going.
4205 
4206 	     We can find a stepping dead thread in the thread list in
4207 	     two cases:
4208 
4209 	     - The target supports thread exit events, and when the
4210 	     target tries to delete the thread from the thread list,
4211 	     inferior_ptid pointed at the exiting thread.  In such
4212 	     case, calling delete_thread does not really remove the
4213 	     thread from the list; instead, the thread is left listed,
4214 	     with 'exited' state.
4215 
4216 	     - The target's debug interface does not support thread
4217 	     exit events, and so we have no idea whatsoever if the
4218 	     previously stepping thread is still alive.  For that
4219 	     reason, we need to synchronously query the target
4220 	     now.  */
4221 	  if (is_exited (tp->ptid)
4222 	      || !target_thread_alive (tp->ptid))
4223 	    {
4224 	      if (debug_infrun)
4225 		fprintf_unfiltered (gdb_stdlog, "\
4226 infrun: not switching back to stepped thread, it has vanished\n");
4227 
4228 	      delete_thread (tp->ptid);
4229 	      keep_going (ecs);
4230 	      return;
4231 	    }
4232 
4233 	  /* Otherwise, we no longer expect a trap in the current thread.
4234 	     Clear the trap_expected flag before switching back -- this is
4235 	     what keep_going would do as well, if we called it.  */
4236 	  ecs->event_thread->trap_expected = 0;
4237 
4238 	  if (debug_infrun)
4239 	    fprintf_unfiltered (gdb_stdlog,
4240 				"infrun: switching back to stepped thread\n");
4241 
4242 	  ecs->event_thread = tp;
4243 	  ecs->ptid = tp->ptid;
4244 	  context_switch (ecs->ptid);
4245 	  keep_going (ecs);
4246 	  return;
4247 	}
4248     }
4249 
4250   /* Are we stepping to get the inferior out of the dynamic linker's
4251      hook (and possibly the dld itself) after catching a shlib
4252      event?  */
4253   if (ecs->event_thread->stepping_through_solib_after_catch)
4254     {
4255 #if defined(SOLIB_ADD)
4256       /* Have we reached our destination?  If not, keep going. */
4257       if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
4258 	{
4259           if (debug_infrun)
4260 	    fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
4261 	  ecs->event_thread->stepping_over_breakpoint = 1;
4262 	  keep_going (ecs);
4263 	  return;
4264 	}
4265 #endif
4266       if (debug_infrun)
4267 	 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
4268       /* Else, stop and report the catchpoint(s) whose triggering
4269          caused us to begin stepping. */
4270       ecs->event_thread->stepping_through_solib_after_catch = 0;
4271       bpstat_clear (&ecs->event_thread->stop_bpstat);
4272       ecs->event_thread->stop_bpstat
4273 	= bpstat_copy (ecs->event_thread->stepping_through_solib_catchpoints);
4274       bpstat_clear (&ecs->event_thread->stepping_through_solib_catchpoints);
4275       stop_print_frame = 1;
4276       stop_stepping (ecs);
4277       return;
4278     }
4279 
4280   if (ecs->event_thread->step_resume_breakpoint)
4281     {
4282       if (debug_infrun)
4283 	 fprintf_unfiltered (gdb_stdlog,
4284 			     "infrun: step-resume breakpoint is inserted\n");
4285 
4286       /* Having a step-resume breakpoint overrides anything
4287          else having to do with stepping commands until
4288          that breakpoint is reached.  */
4289       keep_going (ecs);
4290       return;
4291     }
4292 
4293   if (ecs->event_thread->step_range_end == 0)
4294     {
4295       if (debug_infrun)
4296 	 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
4297       /* Likewise if we aren't even stepping.  */
4298       keep_going (ecs);
4299       return;
4300     }
4301 
4302   /* Re-fetch current thread's frame in case the code above caused
4303      the frame cache to be re-initialized, making our FRAME variable
4304      a dangling pointer.  */
4305   frame = get_current_frame ();
4306   gdbarch = get_frame_arch (frame);
4307 
4308   /* If stepping through a line, keep going if still within it.
4309 
4310      Note that step_range_end is the address of the first instruction
4311      beyond the step range, and NOT the address of the last instruction
4312      within it!
4313 
4314      Note also that during reverse execution, we may be stepping
4315      through a function epilogue and therefore must detect when
4316      the current-frame changes in the middle of a line.  */
4317 
4318   if (stop_pc >= ecs->event_thread->step_range_start
4319       && stop_pc < ecs->event_thread->step_range_end
4320       && (execution_direction != EXEC_REVERSE
4321 	  || frame_id_eq (get_frame_id (frame),
4322 			  ecs->event_thread->step_frame_id)))
4323     {
4324       if (debug_infrun)
4325 	fprintf_unfiltered
4326 	  (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
4327 	   paddress (gdbarch, ecs->event_thread->step_range_start),
4328 	   paddress (gdbarch, ecs->event_thread->step_range_end));
4329 
4330       /* When stepping backward, stop at beginning of line range
4331 	 (unless it's the function entry point, in which case
4332 	 keep going back to the call point).  */
4333       if (stop_pc == ecs->event_thread->step_range_start
4334 	  && stop_pc != ecs->stop_func_start
4335 	  && execution_direction == EXEC_REVERSE)
4336 	{
4337 	  ecs->event_thread->stop_step = 1;
4338 	  print_stop_reason (END_STEPPING_RANGE, 0);
4339 	  stop_stepping (ecs);
4340 	}
4341       else
4342 	keep_going (ecs);
4343 
4344       return;
4345     }
4346 
4347   /* We stepped out of the stepping range.  */
4348 
4349   /* If we are stepping at the source level and entered the runtime
4350      loader dynamic symbol resolution code...
4351 
4352      EXEC_FORWARD: we keep on single stepping until we exit the run
4353      time loader code and reach the callee's address.
4354 
4355      EXEC_REVERSE: we've already executed the callee (backward), and
4356      the runtime loader code is handled just like any other
4357      undebuggable function call.  Now we need only keep stepping
4358      backward through the trampoline code, and that's handled further
4359      down, so there is nothing for us to do here.  */
4360 
4361   if (execution_direction != EXEC_REVERSE
4362       && ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
4363       && in_solib_dynsym_resolve_code (stop_pc))
4364     {
4365       CORE_ADDR pc_after_resolver =
4366 	gdbarch_skip_solib_resolver (gdbarch, stop_pc);
4367 
4368       if (debug_infrun)
4369 	 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
4370 
4371       if (pc_after_resolver)
4372 	{
4373 	  /* Set up a step-resume breakpoint at the address
4374 	     indicated by SKIP_SOLIB_RESOLVER.  */
4375 	  struct symtab_and_line sr_sal;
4376 
4377 	  init_sal (&sr_sal);
4378 	  sr_sal.pc = pc_after_resolver;
4379 	  sr_sal.pspace = get_frame_program_space (frame);
4380 
4381 	  insert_step_resume_breakpoint_at_sal (gdbarch,
4382 						sr_sal, null_frame_id);
4383 	}
4384 
4385       keep_going (ecs);
4386       return;
4387     }
4388 
4389   if (ecs->event_thread->step_range_end != 1
4390       && (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
4391 	  || ecs->event_thread->step_over_calls == STEP_OVER_ALL)
4392       && get_frame_type (frame) == SIGTRAMP_FRAME)
4393     {
4394       if (debug_infrun)
4395 	 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
4396       /* The inferior, while doing a "step" or "next", has ended up in
4397          a signal trampoline (either by a signal being delivered or by
4398          the signal handler returning).  Just single-step until the
4399          inferior leaves the trampoline (either by calling the handler
4400          or returning).  */
4401       keep_going (ecs);
4402       return;
4403     }
4404 
4405   /* Check for subroutine calls.  The check for the current frame
4406      equalling the step ID is not necessary - the check of the
4407      previous frame's ID is sufficient - but it is a common case and
4408      cheaper than checking the previous frame's ID.
4409 
4410      NOTE: frame_id_eq will never report two invalid frame IDs as
4411      being equal, so to get into this block, both the current and
4412      previous frame must have valid frame IDs.  */
4413   /* The outer_frame_id check is a heuristic to detect stepping
4414      through startup code.  If we step over an instruction which
4415      sets the stack pointer from an invalid value to a valid value,
4416      we may detect that as a subroutine call from the mythical
4417      "outermost" function.  This could be fixed by marking
4418      outermost frames as !stack_p,code_p,special_p.  Then the
4419      initial outermost frame, before sp was valid, would
4420      have code_addr == &_start.  See the comment in frame_id_eq
4421      for more.  */
4422   if (!frame_id_eq (get_stack_frame_id (frame),
4423 		    ecs->event_thread->step_stack_frame_id)
4424       && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
4425 		       ecs->event_thread->step_stack_frame_id)
4426 	  && (!frame_id_eq (ecs->event_thread->step_stack_frame_id,
4427 			    outer_frame_id)
4428 	      || step_start_function != find_pc_function (stop_pc))))
4429     {
4430       CORE_ADDR real_stop_pc;
4431 
4432       if (debug_infrun)
4433 	 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
4434 
4435       if ((ecs->event_thread->step_over_calls == STEP_OVER_NONE)
4436 	  || ((ecs->event_thread->step_range_end == 1)
4437 	      && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4438 			      ecs->stop_func_start)))
4439 	{
4440 	  /* I presume that step_over_calls is only 0 when we're
4441 	     supposed to be stepping at the assembly language level
4442 	     ("stepi").  Just stop.  */
4443 	  /* Also, maybe we just did a "nexti" inside a prolog, so we
4444 	     thought it was a subroutine call but it was not.  Stop as
4445 	     well.  FENN */
4446 	  /* And this works the same backward as frontward.  MVS */
4447 	  ecs->event_thread->stop_step = 1;
4448 	  print_stop_reason (END_STEPPING_RANGE, 0);
4449 	  stop_stepping (ecs);
4450 	  return;
4451 	}
4452 
4453       /* Reverse stepping through solib trampolines.  */
4454 
4455       if (execution_direction == EXEC_REVERSE
4456 	  && ecs->event_thread->step_over_calls != STEP_OVER_NONE
4457 	  && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4458 	      || (ecs->stop_func_start == 0
4459 		  && in_solib_dynsym_resolve_code (stop_pc))))
4460 	{
4461 	  /* Any solib trampoline code can be handled in reverse
4462 	     by simply continuing to single-step.  We have already
4463 	     executed the solib function (backwards), and a few
4464 	     steps will take us back through the trampoline to the
4465 	     caller.  */
4466 	  keep_going (ecs);
4467 	  return;
4468 	}
4469 
4470       if (ecs->event_thread->step_over_calls == STEP_OVER_ALL)
4471 	{
4472 	  /* We're doing a "next".
4473 
4474 	     Normal (forward) execution: set a breakpoint at the
4475 	     callee's return address (the address at which the caller
4476 	     will resume).
4477 
4478 	     Reverse (backward) execution.  set the step-resume
4479 	     breakpoint at the start of the function that we just
4480 	     stepped into (backwards), and continue to there.  When we
4481 	     get there, we'll need to single-step back to the caller.  */
4482 
4483 	  if (execution_direction == EXEC_REVERSE)
4484 	    {
4485 	      struct symtab_and_line sr_sal;
4486 
4487 	      /* Normal function call return (static or dynamic).  */
4488 	      init_sal (&sr_sal);
4489 	      sr_sal.pc = ecs->stop_func_start;
4490 	      sr_sal.pspace = get_frame_program_space (frame);
4491 	      insert_step_resume_breakpoint_at_sal (gdbarch,
4492 						    sr_sal, null_frame_id);
4493 	    }
4494 	  else
4495 	    insert_step_resume_breakpoint_at_caller (frame);
4496 
4497 	  keep_going (ecs);
4498 	  return;
4499 	}
4500 
4501       /* If we are in a function call trampoline (a stub between the
4502          calling routine and the real function), locate the real
4503          function.  That's what tells us (a) whether we want to step
4504          into it at all, and (b) what prologue we want to run to the
4505          end of, if we do step into it.  */
4506       real_stop_pc = skip_language_trampoline (frame, stop_pc);
4507       if (real_stop_pc == 0)
4508 	real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4509       if (real_stop_pc != 0)
4510 	ecs->stop_func_start = real_stop_pc;
4511 
4512       if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
4513 	{
4514 	  struct symtab_and_line sr_sal;
4515 
4516 	  init_sal (&sr_sal);
4517 	  sr_sal.pc = ecs->stop_func_start;
4518 	  sr_sal.pspace = get_frame_program_space (frame);
4519 
4520 	  insert_step_resume_breakpoint_at_sal (gdbarch,
4521 						sr_sal, null_frame_id);
4522 	  keep_going (ecs);
4523 	  return;
4524 	}
4525 
4526       /* If we have line number information for the function we are
4527          thinking of stepping into, step into it.
4528 
4529          If there are several symtabs at that PC (e.g. with include
4530          files), just want to know whether *any* of them have line
4531          numbers.  find_pc_line handles this.  */
4532       {
4533 	struct symtab_and_line tmp_sal;
4534 
4535 	tmp_sal = find_pc_line (ecs->stop_func_start, 0);
4536 	tmp_sal.pspace = get_frame_program_space (frame);
4537 	if (tmp_sal.line != 0)
4538 	  {
4539 	    if (execution_direction == EXEC_REVERSE)
4540 	      handle_step_into_function_backward (gdbarch, ecs);
4541 	    else
4542 	      handle_step_into_function (gdbarch, ecs);
4543 	    return;
4544 	  }
4545       }
4546 
4547       /* If we have no line number and the step-stop-if-no-debug is
4548          set, we stop the step so that the user has a chance to switch
4549          in assembly mode.  */
4550       if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
4551 	  && step_stop_if_no_debug)
4552 	{
4553 	  ecs->event_thread->stop_step = 1;
4554 	  print_stop_reason (END_STEPPING_RANGE, 0);
4555 	  stop_stepping (ecs);
4556 	  return;
4557 	}
4558 
4559       if (execution_direction == EXEC_REVERSE)
4560 	{
4561 	  /* Set a breakpoint at callee's start address.
4562 	     From there we can step once and be back in the caller.  */
4563 	  struct symtab_and_line sr_sal;
4564 
4565 	  init_sal (&sr_sal);
4566 	  sr_sal.pc = ecs->stop_func_start;
4567 	  sr_sal.pspace = get_frame_program_space (frame);
4568 	  insert_step_resume_breakpoint_at_sal (gdbarch,
4569 						sr_sal, null_frame_id);
4570 	}
4571       else
4572 	/* Set a breakpoint at callee's return address (the address
4573 	   at which the caller will resume).  */
4574 	insert_step_resume_breakpoint_at_caller (frame);
4575 
4576       keep_going (ecs);
4577       return;
4578     }
4579 
4580   /* Reverse stepping through solib trampolines.  */
4581 
4582   if (execution_direction == EXEC_REVERSE
4583       && ecs->event_thread->step_over_calls != STEP_OVER_NONE)
4584     {
4585       if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4586 	  || (ecs->stop_func_start == 0
4587 	      && in_solib_dynsym_resolve_code (stop_pc)))
4588 	{
4589 	  /* Any solib trampoline code can be handled in reverse
4590 	     by simply continuing to single-step.  We have already
4591 	     executed the solib function (backwards), and a few
4592 	     steps will take us back through the trampoline to the
4593 	     caller.  */
4594 	  keep_going (ecs);
4595 	  return;
4596 	}
4597       else if (in_solib_dynsym_resolve_code (stop_pc))
4598 	{
4599 	  /* Stepped backward into the solib dynsym resolver.
4600 	     Set a breakpoint at its start and continue, then
4601 	     one more step will take us out.  */
4602 	  struct symtab_and_line sr_sal;
4603 
4604 	  init_sal (&sr_sal);
4605 	  sr_sal.pc = ecs->stop_func_start;
4606 	  sr_sal.pspace = get_frame_program_space (frame);
4607 	  insert_step_resume_breakpoint_at_sal (gdbarch,
4608 						sr_sal, null_frame_id);
4609 	  keep_going (ecs);
4610 	  return;
4611 	}
4612     }
4613 
4614   /* If we're in the return path from a shared library trampoline,
4615      we want to proceed through the trampoline when stepping.  */
4616   if (gdbarch_in_solib_return_trampoline (gdbarch,
4617 					  stop_pc, ecs->stop_func_name))
4618     {
4619       /* Determine where this trampoline returns.  */
4620       CORE_ADDR real_stop_pc;
4621 
4622       real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4623 
4624       if (debug_infrun)
4625 	 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
4626 
4627       /* Only proceed through if we know where it's going.  */
4628       if (real_stop_pc)
4629 	{
4630 	  /* And put the step-breakpoint there and go until there. */
4631 	  struct symtab_and_line sr_sal;
4632 
4633 	  init_sal (&sr_sal);	/* initialize to zeroes */
4634 	  sr_sal.pc = real_stop_pc;
4635 	  sr_sal.section = find_pc_overlay (sr_sal.pc);
4636 	  sr_sal.pspace = get_frame_program_space (frame);
4637 
4638 	  /* Do not specify what the fp should be when we stop since
4639 	     on some machines the prologue is where the new fp value
4640 	     is established.  */
4641 	  insert_step_resume_breakpoint_at_sal (gdbarch,
4642 						sr_sal, null_frame_id);
4643 
4644 	  /* Restart without fiddling with the step ranges or
4645 	     other state.  */
4646 	  keep_going (ecs);
4647 	  return;
4648 	}
4649     }
4650 
4651   stop_pc_sal = find_pc_line (stop_pc, 0);
4652 
4653   /* NOTE: tausq/2004-05-24: This if block used to be done before all
4654      the trampoline processing logic, however, there are some trampolines
4655      that have no names, so we should do trampoline handling first.  */
4656   if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
4657       && ecs->stop_func_name == NULL
4658       && stop_pc_sal.line == 0)
4659     {
4660       if (debug_infrun)
4661 	 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
4662 
4663       /* The inferior just stepped into, or returned to, an
4664          undebuggable function (where there is no debugging information
4665          and no line number corresponding to the address where the
4666          inferior stopped).  Since we want to skip this kind of code,
4667          we keep going until the inferior returns from this
4668          function - unless the user has asked us not to (via
4669          set step-mode) or we no longer know how to get back
4670          to the call site.  */
4671       if (step_stop_if_no_debug
4672 	  || !frame_id_p (frame_unwind_caller_id (frame)))
4673 	{
4674 	  /* If we have no line number and the step-stop-if-no-debug
4675 	     is set, we stop the step so that the user has a chance to
4676 	     switch in assembly mode.  */
4677 	  ecs->event_thread->stop_step = 1;
4678 	  print_stop_reason (END_STEPPING_RANGE, 0);
4679 	  stop_stepping (ecs);
4680 	  return;
4681 	}
4682       else
4683 	{
4684 	  /* Set a breakpoint at callee's return address (the address
4685 	     at which the caller will resume).  */
4686 	  insert_step_resume_breakpoint_at_caller (frame);
4687 	  keep_going (ecs);
4688 	  return;
4689 	}
4690     }
4691 
4692   if (ecs->event_thread->step_range_end == 1)
4693     {
4694       /* It is stepi or nexti.  We always want to stop stepping after
4695          one instruction.  */
4696       if (debug_infrun)
4697 	 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
4698       ecs->event_thread->stop_step = 1;
4699       print_stop_reason (END_STEPPING_RANGE, 0);
4700       stop_stepping (ecs);
4701       return;
4702     }
4703 
4704   if (stop_pc_sal.line == 0)
4705     {
4706       /* We have no line number information.  That means to stop
4707          stepping (does this always happen right after one instruction,
4708          when we do "s" in a function with no line numbers,
4709          or can this happen as a result of a return or longjmp?).  */
4710       if (debug_infrun)
4711 	 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
4712       ecs->event_thread->stop_step = 1;
4713       print_stop_reason (END_STEPPING_RANGE, 0);
4714       stop_stepping (ecs);
4715       return;
4716     }
4717 
4718   /* Look for "calls" to inlined functions, part one.  If the inline
4719      frame machinery detected some skipped call sites, we have entered
4720      a new inline function.  */
4721 
4722   if (frame_id_eq (get_frame_id (get_current_frame ()),
4723 		   ecs->event_thread->step_frame_id)
4724       && inline_skipped_frames (ecs->ptid))
4725     {
4726       struct symtab_and_line call_sal;
4727 
4728       if (debug_infrun)
4729 	fprintf_unfiltered (gdb_stdlog,
4730 			    "infrun: stepped into inlined function\n");
4731 
4732       find_frame_sal (get_current_frame (), &call_sal);
4733 
4734       if (ecs->event_thread->step_over_calls != STEP_OVER_ALL)
4735 	{
4736 	  /* For "step", we're going to stop.  But if the call site
4737 	     for this inlined function is on the same source line as
4738 	     we were previously stepping, go down into the function
4739 	     first.  Otherwise stop at the call site.  */
4740 
4741 	  if (call_sal.line == ecs->event_thread->current_line
4742 	      && call_sal.symtab == ecs->event_thread->current_symtab)
4743 	    step_into_inline_frame (ecs->ptid);
4744 
4745 	  ecs->event_thread->stop_step = 1;
4746 	  print_stop_reason (END_STEPPING_RANGE, 0);
4747 	  stop_stepping (ecs);
4748 	  return;
4749 	}
4750       else
4751 	{
4752 	  /* For "next", we should stop at the call site if it is on a
4753 	     different source line.  Otherwise continue through the
4754 	     inlined function.  */
4755 	  if (call_sal.line == ecs->event_thread->current_line
4756 	      && call_sal.symtab == ecs->event_thread->current_symtab)
4757 	    keep_going (ecs);
4758 	  else
4759 	    {
4760 	      ecs->event_thread->stop_step = 1;
4761 	      print_stop_reason (END_STEPPING_RANGE, 0);
4762 	      stop_stepping (ecs);
4763 	    }
4764 	  return;
4765 	}
4766     }
4767 
4768   /* Look for "calls" to inlined functions, part two.  If we are still
4769      in the same real function we were stepping through, but we have
4770      to go further up to find the exact frame ID, we are stepping
4771      through a more inlined call beyond its call site.  */
4772 
4773   if (get_frame_type (get_current_frame ()) == INLINE_FRAME
4774       && !frame_id_eq (get_frame_id (get_current_frame ()),
4775 		       ecs->event_thread->step_frame_id)
4776       && stepped_in_from (get_current_frame (),
4777 			  ecs->event_thread->step_frame_id))
4778     {
4779       if (debug_infrun)
4780 	fprintf_unfiltered (gdb_stdlog,
4781 			    "infrun: stepping through inlined function\n");
4782 
4783       if (ecs->event_thread->step_over_calls == STEP_OVER_ALL)
4784 	keep_going (ecs);
4785       else
4786 	{
4787 	  ecs->event_thread->stop_step = 1;
4788 	  print_stop_reason (END_STEPPING_RANGE, 0);
4789 	  stop_stepping (ecs);
4790 	}
4791       return;
4792     }
4793 
4794   if ((stop_pc == stop_pc_sal.pc)
4795       && (ecs->event_thread->current_line != stop_pc_sal.line
4796  	  || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
4797     {
4798       /* We are at the start of a different line.  So stop.  Note that
4799          we don't stop if we step into the middle of a different line.
4800          That is said to make things like for (;;) statements work
4801          better.  */
4802       if (debug_infrun)
4803 	 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
4804       ecs->event_thread->stop_step = 1;
4805       print_stop_reason (END_STEPPING_RANGE, 0);
4806       stop_stepping (ecs);
4807       return;
4808     }
4809 
4810   /* We aren't done stepping.
4811 
4812      Optimize by setting the stepping range to the line.
4813      (We might not be in the original line, but if we entered a
4814      new line in mid-statement, we continue stepping.  This makes
4815      things like for(;;) statements work better.)  */
4816 
4817   ecs->event_thread->step_range_start = stop_pc_sal.pc;
4818   ecs->event_thread->step_range_end = stop_pc_sal.end;
4819   set_step_info (frame, stop_pc_sal);
4820 
4821   if (debug_infrun)
4822      fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
4823   keep_going (ecs);
4824 }
4825 
4826 /* Is thread TP in the middle of single-stepping?  */
4827 
4828 static int
4829 currently_stepping (struct thread_info *tp)
4830 {
4831   return ((tp->step_range_end && tp->step_resume_breakpoint == NULL)
4832  	  || tp->trap_expected
4833  	  || tp->stepping_through_solib_after_catch
4834  	  || bpstat_should_step ());
4835 }
4836 
4837 /* Returns true if any thread *but* the one passed in "data" is in the
4838    middle of stepping or of handling a "next".  */
4839 
4840 static int
4841 currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
4842 {
4843   if (tp == data)
4844     return 0;
4845 
4846   return (tp->step_range_end
4847  	  || tp->trap_expected
4848  	  || tp->stepping_through_solib_after_catch);
4849 }
4850 
4851 /* Inferior has stepped into a subroutine call with source code that
4852    we should not step over.  Do step to the first line of code in
4853    it.  */
4854 
4855 static void
4856 handle_step_into_function (struct gdbarch *gdbarch,
4857 			   struct execution_control_state *ecs)
4858 {
4859   struct symtab *s;
4860   struct symtab_and_line stop_func_sal, sr_sal;
4861 
4862   s = find_pc_symtab (stop_pc);
4863   if (s && s->language != language_asm)
4864     ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
4865 						  ecs->stop_func_start);
4866 
4867   stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
4868   /* Use the step_resume_break to step until the end of the prologue,
4869      even if that involves jumps (as it seems to on the vax under
4870      4.2).  */
4871   /* If the prologue ends in the middle of a source line, continue to
4872      the end of that source line (if it is still within the function).
4873      Otherwise, just go to end of prologue.  */
4874   if (stop_func_sal.end
4875       && stop_func_sal.pc != ecs->stop_func_start
4876       && stop_func_sal.end < ecs->stop_func_end)
4877     ecs->stop_func_start = stop_func_sal.end;
4878 
4879   /* Architectures which require breakpoint adjustment might not be able
4880      to place a breakpoint at the computed address.  If so, the test
4881      ``ecs->stop_func_start == stop_pc'' will never succeed.  Adjust
4882      ecs->stop_func_start to an address at which a breakpoint may be
4883      legitimately placed.
4884 
4885      Note:  kevinb/2004-01-19:  On FR-V, if this adjustment is not
4886      made, GDB will enter an infinite loop when stepping through
4887      optimized code consisting of VLIW instructions which contain
4888      subinstructions corresponding to different source lines.  On
4889      FR-V, it's not permitted to place a breakpoint on any but the
4890      first subinstruction of a VLIW instruction.  When a breakpoint is
4891      set, GDB will adjust the breakpoint address to the beginning of
4892      the VLIW instruction.  Thus, we need to make the corresponding
4893      adjustment here when computing the stop address.  */
4894 
4895   if (gdbarch_adjust_breakpoint_address_p (gdbarch))
4896     {
4897       ecs->stop_func_start
4898 	= gdbarch_adjust_breakpoint_address (gdbarch,
4899 					     ecs->stop_func_start);
4900     }
4901 
4902   if (ecs->stop_func_start == stop_pc)
4903     {
4904       /* We are already there: stop now.  */
4905       ecs->event_thread->stop_step = 1;
4906       print_stop_reason (END_STEPPING_RANGE, 0);
4907       stop_stepping (ecs);
4908       return;
4909     }
4910   else
4911     {
4912       /* Put the step-breakpoint there and go until there.  */
4913       init_sal (&sr_sal);	/* initialize to zeroes */
4914       sr_sal.pc = ecs->stop_func_start;
4915       sr_sal.section = find_pc_overlay (ecs->stop_func_start);
4916       sr_sal.pspace = get_frame_program_space (get_current_frame ());
4917 
4918       /* Do not specify what the fp should be when we stop since on
4919          some machines the prologue is where the new fp value is
4920          established.  */
4921       insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
4922 
4923       /* And make sure stepping stops right away then.  */
4924       ecs->event_thread->step_range_end = ecs->event_thread->step_range_start;
4925     }
4926   keep_going (ecs);
4927 }
4928 
4929 /* Inferior has stepped backward into a subroutine call with source
4930    code that we should not step over.  Do step to the beginning of the
4931    last line of code in it.  */
4932 
4933 static void
4934 handle_step_into_function_backward (struct gdbarch *gdbarch,
4935 				    struct execution_control_state *ecs)
4936 {
4937   struct symtab *s;
4938   struct symtab_and_line stop_func_sal;
4939 
4940   s = find_pc_symtab (stop_pc);
4941   if (s && s->language != language_asm)
4942     ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
4943 						  ecs->stop_func_start);
4944 
4945   stop_func_sal = find_pc_line (stop_pc, 0);
4946 
4947   /* OK, we're just going to keep stepping here.  */
4948   if (stop_func_sal.pc == stop_pc)
4949     {
4950       /* We're there already.  Just stop stepping now.  */
4951       ecs->event_thread->stop_step = 1;
4952       print_stop_reason (END_STEPPING_RANGE, 0);
4953       stop_stepping (ecs);
4954     }
4955   else
4956     {
4957       /* Else just reset the step range and keep going.
4958 	 No step-resume breakpoint, they don't work for
4959 	 epilogues, which can have multiple entry paths.  */
4960       ecs->event_thread->step_range_start = stop_func_sal.pc;
4961       ecs->event_thread->step_range_end = stop_func_sal.end;
4962       keep_going (ecs);
4963     }
4964   return;
4965 }
4966 
4967 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
4968    This is used to both functions and to skip over code.  */
4969 
4970 static void
4971 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
4972 				      struct symtab_and_line sr_sal,
4973 				      struct frame_id sr_id)
4974 {
4975   /* There should never be more than one step-resume or longjmp-resume
4976      breakpoint per thread, so we should never be setting a new
4977      step_resume_breakpoint when one is already active.  */
4978   gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
4979 
4980   if (debug_infrun)
4981     fprintf_unfiltered (gdb_stdlog,
4982 			"infrun: inserting step-resume breakpoint at %s\n",
4983 			paddress (gdbarch, sr_sal.pc));
4984 
4985   inferior_thread ()->step_resume_breakpoint
4986     = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, bp_step_resume);
4987 }
4988 
4989 /* Insert a "step-resume breakpoint" at RETURN_FRAME.pc.  This is used
4990    to skip a potential signal handler.
4991 
4992    This is called with the interrupted function's frame.  The signal
4993    handler, when it returns, will resume the interrupted function at
4994    RETURN_FRAME.pc.  */
4995 
4996 static void
4997 insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
4998 {
4999   struct symtab_and_line sr_sal;
5000   struct gdbarch *gdbarch;
5001 
5002   gdb_assert (return_frame != NULL);
5003   init_sal (&sr_sal);		/* initialize to zeros */
5004 
5005   gdbarch = get_frame_arch (return_frame);
5006   sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
5007   sr_sal.section = find_pc_overlay (sr_sal.pc);
5008   sr_sal.pspace = get_frame_program_space (return_frame);
5009 
5010   insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
5011 					get_stack_frame_id (return_frame));
5012 }
5013 
5014 /* Similar to insert_step_resume_breakpoint_at_frame, except
5015    but a breakpoint at the previous frame's PC.  This is used to
5016    skip a function after stepping into it (for "next" or if the called
5017    function has no debugging information).
5018 
5019    The current function has almost always been reached by single
5020    stepping a call or return instruction.  NEXT_FRAME belongs to the
5021    current function, and the breakpoint will be set at the caller's
5022    resume address.
5023 
5024    This is a separate function rather than reusing
5025    insert_step_resume_breakpoint_at_frame in order to avoid
5026    get_prev_frame, which may stop prematurely (see the implementation
5027    of frame_unwind_caller_id for an example).  */
5028 
5029 static void
5030 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
5031 {
5032   struct symtab_and_line sr_sal;
5033   struct gdbarch *gdbarch;
5034 
5035   /* We shouldn't have gotten here if we don't know where the call site
5036      is.  */
5037   gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
5038 
5039   init_sal (&sr_sal);		/* initialize to zeros */
5040 
5041   gdbarch = frame_unwind_caller_arch (next_frame);
5042   sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
5043 					frame_unwind_caller_pc (next_frame));
5044   sr_sal.section = find_pc_overlay (sr_sal.pc);
5045   sr_sal.pspace = frame_unwind_program_space (next_frame);
5046 
5047   insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
5048 					frame_unwind_caller_id (next_frame));
5049 }
5050 
5051 /* Insert a "longjmp-resume" breakpoint at PC.  This is used to set a
5052    new breakpoint at the target of a jmp_buf.  The handling of
5053    longjmp-resume uses the same mechanisms used for handling
5054    "step-resume" breakpoints.  */
5055 
5056 static void
5057 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
5058 {
5059   /* There should never be more than one step-resume or longjmp-resume
5060      breakpoint per thread, so we should never be setting a new
5061      longjmp_resume_breakpoint when one is already active.  */
5062   gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
5063 
5064   if (debug_infrun)
5065     fprintf_unfiltered (gdb_stdlog,
5066 			"infrun: inserting longjmp-resume breakpoint at %s\n",
5067 			paddress (gdbarch, pc));
5068 
5069   inferior_thread ()->step_resume_breakpoint =
5070     set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
5071 }
5072 
5073 static void
5074 stop_stepping (struct execution_control_state *ecs)
5075 {
5076   if (debug_infrun)
5077     fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
5078 
5079   /* Let callers know we don't want to wait for the inferior anymore.  */
5080   ecs->wait_some_more = 0;
5081 }
5082 
5083 /* This function handles various cases where we need to continue
5084    waiting for the inferior.  */
5085 /* (Used to be the keep_going: label in the old wait_for_inferior) */
5086 
5087 static void
5088 keep_going (struct execution_control_state *ecs)
5089 {
5090   /* Make sure normal_stop is called if we get a QUIT handled before
5091      reaching resume.  */
5092   struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
5093 
5094   /* Save the pc before execution, to compare with pc after stop.  */
5095   ecs->event_thread->prev_pc
5096     = regcache_read_pc (get_thread_regcache (ecs->ptid));
5097 
5098   /* If we did not do break;, it means we should keep running the
5099      inferior and not return to debugger.  */
5100 
5101   if (ecs->event_thread->trap_expected
5102       && ecs->event_thread->stop_signal != TARGET_SIGNAL_TRAP)
5103     {
5104       /* We took a signal (which we are supposed to pass through to
5105 	 the inferior, else we'd not get here) and we haven't yet
5106 	 gotten our trap.  Simply continue.  */
5107 
5108       discard_cleanups (old_cleanups);
5109       resume (currently_stepping (ecs->event_thread),
5110 	      ecs->event_thread->stop_signal);
5111     }
5112   else
5113     {
5114       /* Either the trap was not expected, but we are continuing
5115          anyway (the user asked that this signal be passed to the
5116          child)
5117          -- or --
5118          The signal was SIGTRAP, e.g. it was our signal, but we
5119          decided we should resume from it.
5120 
5121          We're going to run this baby now!
5122 
5123 	 Note that insert_breakpoints won't try to re-insert
5124 	 already inserted breakpoints.  Therefore, we don't
5125 	 care if breakpoints were already inserted, or not.  */
5126 
5127       if (ecs->event_thread->stepping_over_breakpoint)
5128 	{
5129 	  struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
5130 
5131 	  if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
5132 	    /* Since we can't do a displaced step, we have to remove
5133 	       the breakpoint while we step it.  To keep things
5134 	       simple, we remove them all.  */
5135 	    remove_breakpoints ();
5136 	}
5137       else
5138 	{
5139 	  struct gdb_exception e;
5140 
5141 	  /* Stop stepping when inserting breakpoints
5142 	     has failed.  */
5143 	  TRY_CATCH (e, RETURN_MASK_ERROR)
5144 	    {
5145 	      insert_breakpoints ();
5146 	    }
5147 	  if (e.reason < 0)
5148 	    {
5149 	      exception_print (gdb_stderr, e);
5150 	      stop_stepping (ecs);
5151 	      return;
5152 	    }
5153 	}
5154 
5155       ecs->event_thread->trap_expected = ecs->event_thread->stepping_over_breakpoint;
5156 
5157       /* Do not deliver SIGNAL_TRAP (except when the user explicitly
5158          specifies that such a signal should be delivered to the
5159          target program).
5160 
5161          Typically, this would occure when a user is debugging a
5162          target monitor on a simulator: the target monitor sets a
5163          breakpoint; the simulator encounters this break-point and
5164          halts the simulation handing control to GDB; GDB, noteing
5165          that the break-point isn't valid, returns control back to the
5166          simulator; the simulator then delivers the hardware
5167          equivalent of a SIGNAL_TRAP to the program being debugged. */
5168 
5169       if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
5170 	  && !signal_program[ecs->event_thread->stop_signal])
5171 	ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
5172 
5173       discard_cleanups (old_cleanups);
5174       resume (currently_stepping (ecs->event_thread),
5175 	      ecs->event_thread->stop_signal);
5176     }
5177 
5178   prepare_to_wait (ecs);
5179 }
5180 
5181 /* This function normally comes after a resume, before
5182    handle_inferior_event exits.  It takes care of any last bits of
5183    housekeeping, and sets the all-important wait_some_more flag.  */
5184 
5185 static void
5186 prepare_to_wait (struct execution_control_state *ecs)
5187 {
5188   if (debug_infrun)
5189     fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
5190 
5191   /* This is the old end of the while loop.  Let everybody know we
5192      want to wait for the inferior some more and get called again
5193      soon.  */
5194   ecs->wait_some_more = 1;
5195 }
5196 
5197 /* Print why the inferior has stopped. We always print something when
5198    the inferior exits, or receives a signal. The rest of the cases are
5199    dealt with later on in normal_stop() and print_it_typical().  Ideally
5200    there should be a call to this function from handle_inferior_event()
5201    each time stop_stepping() is called.*/
5202 static void
5203 print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
5204 {
5205   switch (stop_reason)
5206     {
5207     case END_STEPPING_RANGE:
5208       /* We are done with a step/next/si/ni command. */
5209       /* For now print nothing. */
5210       /* Print a message only if not in the middle of doing a "step n"
5211          operation for n > 1 */
5212       if (!inferior_thread ()->step_multi
5213 	  || !inferior_thread ()->stop_step)
5214 	if (ui_out_is_mi_like_p (uiout))
5215 	  ui_out_field_string
5216 	    (uiout, "reason",
5217 	     async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
5218       break;
5219     case SIGNAL_EXITED:
5220       /* The inferior was terminated by a signal. */
5221       annotate_signalled ();
5222       if (ui_out_is_mi_like_p (uiout))
5223 	ui_out_field_string
5224 	  (uiout, "reason",
5225 	   async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
5226       ui_out_text (uiout, "\nProgram terminated with signal ");
5227       annotate_signal_name ();
5228       ui_out_field_string (uiout, "signal-name",
5229 			   target_signal_to_name (stop_info));
5230       annotate_signal_name_end ();
5231       ui_out_text (uiout, ", ");
5232       annotate_signal_string ();
5233       ui_out_field_string (uiout, "signal-meaning",
5234 			   target_signal_to_string (stop_info));
5235       annotate_signal_string_end ();
5236       ui_out_text (uiout, ".\n");
5237       ui_out_text (uiout, "The program no longer exists.\n");
5238       break;
5239     case EXITED:
5240       /* The inferior program is finished. */
5241       annotate_exited (stop_info);
5242       if (stop_info)
5243 	{
5244 	  if (ui_out_is_mi_like_p (uiout))
5245 	    ui_out_field_string (uiout, "reason",
5246 				 async_reason_lookup (EXEC_ASYNC_EXITED));
5247 	  ui_out_text (uiout, "\nProgram exited with code ");
5248 	  ui_out_field_fmt (uiout, "exit-code", "0%o",
5249 			    (unsigned int) stop_info);
5250 	  ui_out_text (uiout, ".\n");
5251 	}
5252       else
5253 	{
5254 	  if (ui_out_is_mi_like_p (uiout))
5255 	    ui_out_field_string
5256 	      (uiout, "reason",
5257 	       async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
5258 	  ui_out_text (uiout, "\nProgram exited normally.\n");
5259 	}
5260       /* Support the --return-child-result option.  */
5261       return_child_result_value = stop_info;
5262       break;
5263     case SIGNAL_RECEIVED:
5264       /* Signal received.  The signal table tells us to print about
5265 	 it. */
5266       annotate_signal ();
5267 
5268       if (stop_info == TARGET_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
5269 	{
5270 	  struct thread_info *t = inferior_thread ();
5271 
5272 	  ui_out_text (uiout, "\n[");
5273 	  ui_out_field_string (uiout, "thread-name",
5274 			       target_pid_to_str (t->ptid));
5275 	  ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
5276 	  ui_out_text (uiout, " stopped");
5277 	}
5278       else
5279 	{
5280 	  ui_out_text (uiout, "\nProgram received signal ");
5281 	  annotate_signal_name ();
5282 	  if (ui_out_is_mi_like_p (uiout))
5283 	    ui_out_field_string
5284 	      (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
5285 	  ui_out_field_string (uiout, "signal-name",
5286 			       target_signal_to_name (stop_info));
5287 	  annotate_signal_name_end ();
5288 	  ui_out_text (uiout, ", ");
5289 	  annotate_signal_string ();
5290 	  ui_out_field_string (uiout, "signal-meaning",
5291 			       target_signal_to_string (stop_info));
5292 	  annotate_signal_string_end ();
5293 	}
5294       ui_out_text (uiout, ".\n");
5295       break;
5296     case NO_HISTORY:
5297       /* Reverse execution: target ran out of history info.  */
5298       ui_out_text (uiout, "\nNo more reverse-execution history.\n");
5299       break;
5300     default:
5301       internal_error (__FILE__, __LINE__,
5302 		      _("print_stop_reason: unrecognized enum value"));
5303       break;
5304     }
5305 }
5306 
5307 
5308 /* Here to return control to GDB when the inferior stops for real.
5309    Print appropriate messages, remove breakpoints, give terminal our modes.
5310 
5311    STOP_PRINT_FRAME nonzero means print the executing frame
5312    (pc, function, args, file, line number and line text).
5313    BREAKPOINTS_FAILED nonzero means stop was due to error
5314    attempting to insert breakpoints.  */
5315 
5316 void
5317 normal_stop (void)
5318 {
5319   struct target_waitstatus last;
5320   ptid_t last_ptid;
5321   struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
5322 
5323   get_last_target_status (&last_ptid, &last);
5324 
5325   /* If an exception is thrown from this point on, make sure to
5326      propagate GDB's knowledge of the executing state to the
5327      frontend/user running state.  A QUIT is an easy exception to see
5328      here, so do this before any filtered output.  */
5329   if (!non_stop)
5330     make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
5331   else if (last.kind != TARGET_WAITKIND_SIGNALLED
5332 	   && last.kind != TARGET_WAITKIND_EXITED)
5333     make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
5334 
5335   /* In non-stop mode, we don't want GDB to switch threads behind the
5336      user's back, to avoid races where the user is typing a command to
5337      apply to thread x, but GDB switches to thread y before the user
5338      finishes entering the command.  */
5339 
5340   /* As with the notification of thread events, we want to delay
5341      notifying the user that we've switched thread context until
5342      the inferior actually stops.
5343 
5344      There's no point in saying anything if the inferior has exited.
5345      Note that SIGNALLED here means "exited with a signal", not
5346      "received a signal".  */
5347   if (!non_stop
5348       && !ptid_equal (previous_inferior_ptid, inferior_ptid)
5349       && target_has_execution
5350       && last.kind != TARGET_WAITKIND_SIGNALLED
5351       && last.kind != TARGET_WAITKIND_EXITED)
5352     {
5353       target_terminal_ours_for_output ();
5354       printf_filtered (_("[Switching to %s]\n"),
5355 		       target_pid_to_str (inferior_ptid));
5356       annotate_thread_changed ();
5357       previous_inferior_ptid = inferior_ptid;
5358     }
5359 
5360   if (!breakpoints_always_inserted_mode () && target_has_execution)
5361     {
5362       if (remove_breakpoints ())
5363 	{
5364 	  target_terminal_ours_for_output ();
5365 	  printf_filtered (_("\
5366 Cannot remove breakpoints because program is no longer writable.\n\
5367 Further execution is probably impossible.\n"));
5368 	}
5369     }
5370 
5371   /* If an auto-display called a function and that got a signal,
5372      delete that auto-display to avoid an infinite recursion.  */
5373 
5374   if (stopped_by_random_signal)
5375     disable_current_display ();
5376 
5377   /* Don't print a message if in the middle of doing a "step n"
5378      operation for n > 1 */
5379   if (target_has_execution
5380       && last.kind != TARGET_WAITKIND_SIGNALLED
5381       && last.kind != TARGET_WAITKIND_EXITED
5382       && inferior_thread ()->step_multi
5383       && inferior_thread ()->stop_step)
5384     goto done;
5385 
5386   target_terminal_ours ();
5387 
5388   /* Set the current source location.  This will also happen if we
5389      display the frame below, but the current SAL will be incorrect
5390      during a user hook-stop function.  */
5391   if (has_stack_frames () && !stop_stack_dummy)
5392     set_current_sal_from_frame (get_current_frame (), 1);
5393 
5394   /* Let the user/frontend see the threads as stopped.  */
5395   do_cleanups (old_chain);
5396 
5397   /* Look up the hook_stop and run it (CLI internally handles problem
5398      of stop_command's pre-hook not existing).  */
5399   if (stop_command)
5400     catch_errors (hook_stop_stub, stop_command,
5401 		  "Error while running hook_stop:\n", RETURN_MASK_ALL);
5402 
5403   if (!has_stack_frames ())
5404     goto done;
5405 
5406   if (last.kind == TARGET_WAITKIND_SIGNALLED
5407       || last.kind == TARGET_WAITKIND_EXITED)
5408     goto done;
5409 
5410   /* Select innermost stack frame - i.e., current frame is frame 0,
5411      and current location is based on that.
5412      Don't do this on return from a stack dummy routine,
5413      or if the program has exited. */
5414 
5415   if (!stop_stack_dummy)
5416     {
5417       select_frame (get_current_frame ());
5418 
5419       /* Print current location without a level number, if
5420          we have changed functions or hit a breakpoint.
5421          Print source line if we have one.
5422          bpstat_print() contains the logic deciding in detail
5423          what to print, based on the event(s) that just occurred. */
5424 
5425       /* If --batch-silent is enabled then there's no need to print the current
5426 	 source location, and to try risks causing an error message about
5427 	 missing source files.  */
5428       if (stop_print_frame && !batch_silent)
5429 	{
5430 	  int bpstat_ret;
5431 	  int source_flag;
5432 	  int do_frame_printing = 1;
5433 	  struct thread_info *tp = inferior_thread ();
5434 
5435 	  bpstat_ret = bpstat_print (tp->stop_bpstat);
5436 	  switch (bpstat_ret)
5437 	    {
5438 	    case PRINT_UNKNOWN:
5439 	      /* If we had hit a shared library event breakpoint,
5440 		 bpstat_print would print out this message.  If we hit
5441 		 an OS-level shared library event, do the same
5442 		 thing.  */
5443 	      if (last.kind == TARGET_WAITKIND_LOADED)
5444 		{
5445 		  printf_filtered (_("Stopped due to shared library event\n"));
5446 		  source_flag = SRC_LINE;	/* something bogus */
5447 		  do_frame_printing = 0;
5448 		  break;
5449 		}
5450 
5451 	      /* FIXME: cagney/2002-12-01: Given that a frame ID does
5452 	         (or should) carry around the function and does (or
5453 	         should) use that when doing a frame comparison.  */
5454 	      if (tp->stop_step
5455 		  && frame_id_eq (tp->step_frame_id,
5456 				  get_frame_id (get_current_frame ()))
5457 		  && step_start_function == find_pc_function (stop_pc))
5458 		source_flag = SRC_LINE;	/* finished step, just print source line */
5459 	      else
5460 		source_flag = SRC_AND_LOC;	/* print location and source line */
5461 	      break;
5462 	    case PRINT_SRC_AND_LOC:
5463 	      source_flag = SRC_AND_LOC;	/* print location and source line */
5464 	      break;
5465 	    case PRINT_SRC_ONLY:
5466 	      source_flag = SRC_LINE;
5467 	      break;
5468 	    case PRINT_NOTHING:
5469 	      source_flag = SRC_LINE;	/* something bogus */
5470 	      do_frame_printing = 0;
5471 	      break;
5472 	    default:
5473 	      internal_error (__FILE__, __LINE__, _("Unknown value."));
5474 	    }
5475 
5476 	  /* The behavior of this routine with respect to the source
5477 	     flag is:
5478 	     SRC_LINE: Print only source line
5479 	     LOCATION: Print only location
5480 	     SRC_AND_LOC: Print location and source line */
5481 	  if (do_frame_printing)
5482 	    print_stack_frame (get_selected_frame (NULL), 0, source_flag);
5483 
5484 	  /* Display the auto-display expressions.  */
5485 	  do_displays ();
5486 	}
5487     }
5488 
5489   /* Save the function value return registers, if we care.
5490      We might be about to restore their previous contents.  */
5491   if (inferior_thread ()->proceed_to_finish)
5492     {
5493       /* This should not be necessary.  */
5494       if (stop_registers)
5495 	regcache_xfree (stop_registers);
5496 
5497       /* NB: The copy goes through to the target picking up the value of
5498 	 all the registers.  */
5499       stop_registers = regcache_dup (get_current_regcache ());
5500     }
5501 
5502   if (stop_stack_dummy == STOP_STACK_DUMMY)
5503     {
5504       /* Pop the empty frame that contains the stack dummy.
5505 	 This also restores inferior state prior to the call
5506 	 (struct inferior_thread_state).  */
5507       struct frame_info *frame = get_current_frame ();
5508 
5509       gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
5510       frame_pop (frame);
5511       /* frame_pop() calls reinit_frame_cache as the last thing it does
5512 	 which means there's currently no selected frame.  We don't need
5513 	 to re-establish a selected frame if the dummy call returns normally,
5514 	 that will be done by restore_inferior_status.  However, we do have
5515 	 to handle the case where the dummy call is returning after being
5516 	 stopped (e.g. the dummy call previously hit a breakpoint).  We
5517 	 can't know which case we have so just always re-establish a
5518 	 selected frame here.  */
5519       select_frame (get_current_frame ());
5520     }
5521 
5522 done:
5523   annotate_stopped ();
5524 
5525   /* Suppress the stop observer if we're in the middle of:
5526 
5527      - a step n (n > 1), as there still more steps to be done.
5528 
5529      - a "finish" command, as the observer will be called in
5530        finish_command_continuation, so it can include the inferior
5531        function's return value.
5532 
5533      - calling an inferior function, as we pretend we inferior didn't
5534        run at all.  The return value of the call is handled by the
5535        expression evaluator, through call_function_by_hand.  */
5536 
5537   if (!target_has_execution
5538       || last.kind == TARGET_WAITKIND_SIGNALLED
5539       || last.kind == TARGET_WAITKIND_EXITED
5540       || (!inferior_thread ()->step_multi
5541 	  && !(inferior_thread ()->stop_bpstat
5542 	       && inferior_thread ()->proceed_to_finish)
5543 	  && !inferior_thread ()->in_infcall))
5544     {
5545       if (!ptid_equal (inferior_ptid, null_ptid))
5546 	observer_notify_normal_stop (inferior_thread ()->stop_bpstat,
5547 				     stop_print_frame);
5548       else
5549 	observer_notify_normal_stop (NULL, stop_print_frame);
5550     }
5551 
5552   if (target_has_execution)
5553     {
5554       if (last.kind != TARGET_WAITKIND_SIGNALLED
5555 	  && last.kind != TARGET_WAITKIND_EXITED)
5556 	/* Delete the breakpoint we stopped at, if it wants to be deleted.
5557 	   Delete any breakpoint that is to be deleted at the next stop.  */
5558 	breakpoint_auto_delete (inferior_thread ()->stop_bpstat);
5559     }
5560 
5561   /* Try to get rid of automatically added inferiors that are no
5562      longer needed.  Keeping those around slows down things linearly.
5563      Note that this never removes the current inferior.  */
5564   prune_inferiors ();
5565 }
5566 
5567 static int
5568 hook_stop_stub (void *cmd)
5569 {
5570   execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
5571   return (0);
5572 }
5573 
5574 int
5575 signal_stop_state (int signo)
5576 {
5577   return signal_stop[signo];
5578 }
5579 
5580 int
5581 signal_print_state (int signo)
5582 {
5583   return signal_print[signo];
5584 }
5585 
5586 int
5587 signal_pass_state (int signo)
5588 {
5589   return signal_program[signo];
5590 }
5591 
5592 int
5593 signal_stop_update (int signo, int state)
5594 {
5595   int ret = signal_stop[signo];
5596 
5597   signal_stop[signo] = state;
5598   return ret;
5599 }
5600 
5601 int
5602 signal_print_update (int signo, int state)
5603 {
5604   int ret = signal_print[signo];
5605 
5606   signal_print[signo] = state;
5607   return ret;
5608 }
5609 
5610 int
5611 signal_pass_update (int signo, int state)
5612 {
5613   int ret = signal_program[signo];
5614 
5615   signal_program[signo] = state;
5616   return ret;
5617 }
5618 
5619 static void
5620 sig_print_header (void)
5621 {
5622   printf_filtered (_("\
5623 Signal        Stop\tPrint\tPass to program\tDescription\n"));
5624 }
5625 
5626 static void
5627 sig_print_info (enum target_signal oursig)
5628 {
5629   const char *name = target_signal_to_name (oursig);
5630   int name_padding = 13 - strlen (name);
5631 
5632   if (name_padding <= 0)
5633     name_padding = 0;
5634 
5635   printf_filtered ("%s", name);
5636   printf_filtered ("%*.*s ", name_padding, name_padding, "                 ");
5637   printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
5638   printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
5639   printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
5640   printf_filtered ("%s\n", target_signal_to_string (oursig));
5641 }
5642 
5643 /* Specify how various signals in the inferior should be handled.  */
5644 
5645 static void
5646 handle_command (char *args, int from_tty)
5647 {
5648   char **argv;
5649   int digits, wordlen;
5650   int sigfirst, signum, siglast;
5651   enum target_signal oursig;
5652   int allsigs;
5653   int nsigs;
5654   unsigned char *sigs;
5655   struct cleanup *old_chain;
5656 
5657   if (args == NULL)
5658     {
5659       error_no_arg (_("signal to handle"));
5660     }
5661 
5662   /* Allocate and zero an array of flags for which signals to handle. */
5663 
5664   nsigs = (int) TARGET_SIGNAL_LAST;
5665   sigs = (unsigned char *) alloca (nsigs);
5666   memset (sigs, 0, nsigs);
5667 
5668   /* Break the command line up into args. */
5669 
5670   argv = gdb_buildargv (args);
5671   old_chain = make_cleanup_freeargv (argv);
5672 
5673   /* Walk through the args, looking for signal oursigs, signal names, and
5674      actions.  Signal numbers and signal names may be interspersed with
5675      actions, with the actions being performed for all signals cumulatively
5676      specified.  Signal ranges can be specified as <LOW>-<HIGH>. */
5677 
5678   while (*argv != NULL)
5679     {
5680       wordlen = strlen (*argv);
5681       for (digits = 0; isdigit ((*argv)[digits]); digits++)
5682 	{;
5683 	}
5684       allsigs = 0;
5685       sigfirst = siglast = -1;
5686 
5687       if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
5688 	{
5689 	  /* Apply action to all signals except those used by the
5690 	     debugger.  Silently skip those. */
5691 	  allsigs = 1;
5692 	  sigfirst = 0;
5693 	  siglast = nsigs - 1;
5694 	}
5695       else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
5696 	{
5697 	  SET_SIGS (nsigs, sigs, signal_stop);
5698 	  SET_SIGS (nsigs, sigs, signal_print);
5699 	}
5700       else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
5701 	{
5702 	  UNSET_SIGS (nsigs, sigs, signal_program);
5703 	}
5704       else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
5705 	{
5706 	  SET_SIGS (nsigs, sigs, signal_print);
5707 	}
5708       else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
5709 	{
5710 	  SET_SIGS (nsigs, sigs, signal_program);
5711 	}
5712       else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
5713 	{
5714 	  UNSET_SIGS (nsigs, sigs, signal_stop);
5715 	}
5716       else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
5717 	{
5718 	  SET_SIGS (nsigs, sigs, signal_program);
5719 	}
5720       else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
5721 	{
5722 	  UNSET_SIGS (nsigs, sigs, signal_print);
5723 	  UNSET_SIGS (nsigs, sigs, signal_stop);
5724 	}
5725       else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
5726 	{
5727 	  UNSET_SIGS (nsigs, sigs, signal_program);
5728 	}
5729       else if (digits > 0)
5730 	{
5731 	  /* It is numeric.  The numeric signal refers to our own
5732 	     internal signal numbering from target.h, not to host/target
5733 	     signal  number.  This is a feature; users really should be
5734 	     using symbolic names anyway, and the common ones like
5735 	     SIGHUP, SIGINT, SIGALRM, etc. will work right anyway.  */
5736 
5737 	  sigfirst = siglast = (int)
5738 	    target_signal_from_command (atoi (*argv));
5739 	  if ((*argv)[digits] == '-')
5740 	    {
5741 	      siglast = (int)
5742 		target_signal_from_command (atoi ((*argv) + digits + 1));
5743 	    }
5744 	  if (sigfirst > siglast)
5745 	    {
5746 	      /* Bet he didn't figure we'd think of this case... */
5747 	      signum = sigfirst;
5748 	      sigfirst = siglast;
5749 	      siglast = signum;
5750 	    }
5751 	}
5752       else
5753 	{
5754 	  oursig = target_signal_from_name (*argv);
5755 	  if (oursig != TARGET_SIGNAL_UNKNOWN)
5756 	    {
5757 	      sigfirst = siglast = (int) oursig;
5758 	    }
5759 	  else
5760 	    {
5761 	      /* Not a number and not a recognized flag word => complain.  */
5762 	      error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
5763 	    }
5764 	}
5765 
5766       /* If any signal numbers or symbol names were found, set flags for
5767          which signals to apply actions to. */
5768 
5769       for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
5770 	{
5771 	  switch ((enum target_signal) signum)
5772 	    {
5773 	    case TARGET_SIGNAL_TRAP:
5774 	    case TARGET_SIGNAL_INT:
5775 	      if (!allsigs && !sigs[signum])
5776 		{
5777 		  if (query (_("%s is used by the debugger.\n\
5778 Are you sure you want to change it? "), target_signal_to_name ((enum target_signal) signum)))
5779 		    {
5780 		      sigs[signum] = 1;
5781 		    }
5782 		  else
5783 		    {
5784 		      printf_unfiltered (_("Not confirmed, unchanged.\n"));
5785 		      gdb_flush (gdb_stdout);
5786 		    }
5787 		}
5788 	      break;
5789 	    case TARGET_SIGNAL_0:
5790 	    case TARGET_SIGNAL_DEFAULT:
5791 	    case TARGET_SIGNAL_UNKNOWN:
5792 	      /* Make sure that "all" doesn't print these.  */
5793 	      break;
5794 	    default:
5795 	      sigs[signum] = 1;
5796 	      break;
5797 	    }
5798 	}
5799 
5800       argv++;
5801     }
5802 
5803   for (signum = 0; signum < nsigs; signum++)
5804     if (sigs[signum])
5805       {
5806 	target_notice_signals (inferior_ptid);
5807 
5808 	if (from_tty)
5809 	  {
5810 	    /* Show the results.  */
5811 	    sig_print_header ();
5812 	    for (; signum < nsigs; signum++)
5813 	      if (sigs[signum])
5814 		sig_print_info (signum);
5815 	  }
5816 
5817 	break;
5818       }
5819 
5820   do_cleanups (old_chain);
5821 }
5822 
5823 static void
5824 xdb_handle_command (char *args, int from_tty)
5825 {
5826   char **argv;
5827   struct cleanup *old_chain;
5828 
5829   if (args == NULL)
5830     error_no_arg (_("xdb command"));
5831 
5832   /* Break the command line up into args. */
5833 
5834   argv = gdb_buildargv (args);
5835   old_chain = make_cleanup_freeargv (argv);
5836   if (argv[1] != (char *) NULL)
5837     {
5838       char *argBuf;
5839       int bufLen;
5840 
5841       bufLen = strlen (argv[0]) + 20;
5842       argBuf = (char *) xmalloc (bufLen);
5843       if (argBuf)
5844 	{
5845 	  int validFlag = 1;
5846 	  enum target_signal oursig;
5847 
5848 	  oursig = target_signal_from_name (argv[0]);
5849 	  memset (argBuf, 0, bufLen);
5850 	  if (strcmp (argv[1], "Q") == 0)
5851 	    sprintf (argBuf, "%s %s", argv[0], "noprint");
5852 	  else
5853 	    {
5854 	      if (strcmp (argv[1], "s") == 0)
5855 		{
5856 		  if (!signal_stop[oursig])
5857 		    sprintf (argBuf, "%s %s", argv[0], "stop");
5858 		  else
5859 		    sprintf (argBuf, "%s %s", argv[0], "nostop");
5860 		}
5861 	      else if (strcmp (argv[1], "i") == 0)
5862 		{
5863 		  if (!signal_program[oursig])
5864 		    sprintf (argBuf, "%s %s", argv[0], "pass");
5865 		  else
5866 		    sprintf (argBuf, "%s %s", argv[0], "nopass");
5867 		}
5868 	      else if (strcmp (argv[1], "r") == 0)
5869 		{
5870 		  if (!signal_print[oursig])
5871 		    sprintf (argBuf, "%s %s", argv[0], "print");
5872 		  else
5873 		    sprintf (argBuf, "%s %s", argv[0], "noprint");
5874 		}
5875 	      else
5876 		validFlag = 0;
5877 	    }
5878 	  if (validFlag)
5879 	    handle_command (argBuf, from_tty);
5880 	  else
5881 	    printf_filtered (_("Invalid signal handling flag.\n"));
5882 	  if (argBuf)
5883 	    xfree (argBuf);
5884 	}
5885     }
5886   do_cleanups (old_chain);
5887 }
5888 
5889 /* Print current contents of the tables set by the handle command.
5890    It is possible we should just be printing signals actually used
5891    by the current target (but for things to work right when switching
5892    targets, all signals should be in the signal tables).  */
5893 
5894 static void
5895 signals_info (char *signum_exp, int from_tty)
5896 {
5897   enum target_signal oursig;
5898 
5899   sig_print_header ();
5900 
5901   if (signum_exp)
5902     {
5903       /* First see if this is a symbol name.  */
5904       oursig = target_signal_from_name (signum_exp);
5905       if (oursig == TARGET_SIGNAL_UNKNOWN)
5906 	{
5907 	  /* No, try numeric.  */
5908 	  oursig =
5909 	    target_signal_from_command (parse_and_eval_long (signum_exp));
5910 	}
5911       sig_print_info (oursig);
5912       return;
5913     }
5914 
5915   printf_filtered ("\n");
5916   /* These ugly casts brought to you by the native VAX compiler.  */
5917   for (oursig = TARGET_SIGNAL_FIRST;
5918        (int) oursig < (int) TARGET_SIGNAL_LAST;
5919        oursig = (enum target_signal) ((int) oursig + 1))
5920     {
5921       QUIT;
5922 
5923       if (oursig != TARGET_SIGNAL_UNKNOWN
5924 	  && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
5925 	sig_print_info (oursig);
5926     }
5927 
5928   printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
5929 }
5930 
5931 /* The $_siginfo convenience variable is a bit special.  We don't know
5932    for sure the type of the value until we actually have a chance to
5933    fetch the data.  The type can change depending on gdbarch, so it it
5934    also dependent on which thread you have selected.
5935 
5936      1. making $_siginfo be an internalvar that creates a new value on
5937      access.
5938 
5939      2. making the value of $_siginfo be an lval_computed value.  */
5940 
5941 /* This function implements the lval_computed support for reading a
5942    $_siginfo value.  */
5943 
5944 static void
5945 siginfo_value_read (struct value *v)
5946 {
5947   LONGEST transferred;
5948 
5949   transferred =
5950     target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
5951 		 NULL,
5952 		 value_contents_all_raw (v),
5953 		 value_offset (v),
5954 		 TYPE_LENGTH (value_type (v)));
5955 
5956   if (transferred != TYPE_LENGTH (value_type (v)))
5957     error (_("Unable to read siginfo"));
5958 }
5959 
5960 /* This function implements the lval_computed support for writing a
5961    $_siginfo value.  */
5962 
5963 static void
5964 siginfo_value_write (struct value *v, struct value *fromval)
5965 {
5966   LONGEST transferred;
5967 
5968   transferred = target_write (&current_target,
5969 			      TARGET_OBJECT_SIGNAL_INFO,
5970 			      NULL,
5971 			      value_contents_all_raw (fromval),
5972 			      value_offset (v),
5973 			      TYPE_LENGTH (value_type (fromval)));
5974 
5975   if (transferred != TYPE_LENGTH (value_type (fromval)))
5976     error (_("Unable to write siginfo"));
5977 }
5978 
5979 static struct lval_funcs siginfo_value_funcs =
5980   {
5981     siginfo_value_read,
5982     siginfo_value_write
5983   };
5984 
5985 /* Return a new value with the correct type for the siginfo object of
5986    the current thread using architecture GDBARCH.  Return a void value
5987    if there's no object available.  */
5988 
5989 static struct value *
5990 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var)
5991 {
5992   if (target_has_stack
5993       && !ptid_equal (inferior_ptid, null_ptid)
5994       && gdbarch_get_siginfo_type_p (gdbarch))
5995     {
5996       struct type *type = gdbarch_get_siginfo_type (gdbarch);
5997 
5998       return allocate_computed_value (type, &siginfo_value_funcs, NULL);
5999     }
6000 
6001   return allocate_value (builtin_type (gdbarch)->builtin_void);
6002 }
6003 
6004 
6005 /* Inferior thread state.
6006    These are details related to the inferior itself, and don't include
6007    things like what frame the user had selected or what gdb was doing
6008    with the target at the time.
6009    For inferior function calls these are things we want to restore
6010    regardless of whether the function call successfully completes
6011    or the dummy frame has to be manually popped.  */
6012 
6013 struct inferior_thread_state
6014 {
6015   enum target_signal stop_signal;
6016   CORE_ADDR stop_pc;
6017   struct regcache *registers;
6018 };
6019 
6020 struct inferior_thread_state *
6021 save_inferior_thread_state (void)
6022 {
6023   struct inferior_thread_state *inf_state = XMALLOC (struct inferior_thread_state);
6024   struct thread_info *tp = inferior_thread ();
6025 
6026   inf_state->stop_signal = tp->stop_signal;
6027   inf_state->stop_pc = stop_pc;
6028 
6029   inf_state->registers = regcache_dup (get_current_regcache ());
6030 
6031   return inf_state;
6032 }
6033 
6034 /* Restore inferior session state to INF_STATE.  */
6035 
6036 void
6037 restore_inferior_thread_state (struct inferior_thread_state *inf_state)
6038 {
6039   struct thread_info *tp = inferior_thread ();
6040 
6041   tp->stop_signal = inf_state->stop_signal;
6042   stop_pc = inf_state->stop_pc;
6043 
6044   /* The inferior can be gone if the user types "print exit(0)"
6045      (and perhaps other times).  */
6046   if (target_has_execution)
6047     /* NB: The register write goes through to the target.  */
6048     regcache_cpy (get_current_regcache (), inf_state->registers);
6049   regcache_xfree (inf_state->registers);
6050   xfree (inf_state);
6051 }
6052 
6053 static void
6054 do_restore_inferior_thread_state_cleanup (void *state)
6055 {
6056   restore_inferior_thread_state (state);
6057 }
6058 
6059 struct cleanup *
6060 make_cleanup_restore_inferior_thread_state (struct inferior_thread_state *inf_state)
6061 {
6062   return make_cleanup (do_restore_inferior_thread_state_cleanup, inf_state);
6063 }
6064 
6065 void
6066 discard_inferior_thread_state (struct inferior_thread_state *inf_state)
6067 {
6068   regcache_xfree (inf_state->registers);
6069   xfree (inf_state);
6070 }
6071 
6072 struct regcache *
6073 get_inferior_thread_state_regcache (struct inferior_thread_state *inf_state)
6074 {
6075   return inf_state->registers;
6076 }
6077 
6078 /* Session related state for inferior function calls.
6079    These are the additional bits of state that need to be restored
6080    when an inferior function call successfully completes.  */
6081 
6082 struct inferior_status
6083 {
6084   bpstat stop_bpstat;
6085   int stop_step;
6086   enum stop_stack_kind stop_stack_dummy;
6087   int stopped_by_random_signal;
6088   int stepping_over_breakpoint;
6089   CORE_ADDR step_range_start;
6090   CORE_ADDR step_range_end;
6091   struct frame_id step_frame_id;
6092   struct frame_id step_stack_frame_id;
6093   enum step_over_calls_kind step_over_calls;
6094   CORE_ADDR step_resume_break_address;
6095   int stop_after_trap;
6096   int stop_soon;
6097 
6098   /* ID if the selected frame when the inferior function call was made.  */
6099   struct frame_id selected_frame_id;
6100 
6101   int proceed_to_finish;
6102   int in_infcall;
6103 };
6104 
6105 /* Save all of the information associated with the inferior<==>gdb
6106    connection.  */
6107 
6108 struct inferior_status *
6109 save_inferior_status (void)
6110 {
6111   struct inferior_status *inf_status = XMALLOC (struct inferior_status);
6112   struct thread_info *tp = inferior_thread ();
6113   struct inferior *inf = current_inferior ();
6114 
6115   inf_status->stop_step = tp->stop_step;
6116   inf_status->stop_stack_dummy = stop_stack_dummy;
6117   inf_status->stopped_by_random_signal = stopped_by_random_signal;
6118   inf_status->stepping_over_breakpoint = tp->trap_expected;
6119   inf_status->step_range_start = tp->step_range_start;
6120   inf_status->step_range_end = tp->step_range_end;
6121   inf_status->step_frame_id = tp->step_frame_id;
6122   inf_status->step_stack_frame_id = tp->step_stack_frame_id;
6123   inf_status->step_over_calls = tp->step_over_calls;
6124   inf_status->stop_after_trap = stop_after_trap;
6125   inf_status->stop_soon = inf->stop_soon;
6126   /* Save original bpstat chain here; replace it with copy of chain.
6127      If caller's caller is walking the chain, they'll be happier if we
6128      hand them back the original chain when restore_inferior_status is
6129      called.  */
6130   inf_status->stop_bpstat = tp->stop_bpstat;
6131   tp->stop_bpstat = bpstat_copy (tp->stop_bpstat);
6132   inf_status->proceed_to_finish = tp->proceed_to_finish;
6133   inf_status->in_infcall = tp->in_infcall;
6134 
6135   inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
6136 
6137   return inf_status;
6138 }
6139 
6140 static int
6141 restore_selected_frame (void *args)
6142 {
6143   struct frame_id *fid = (struct frame_id *) args;
6144   struct frame_info *frame;
6145 
6146   frame = frame_find_by_id (*fid);
6147 
6148   /* If inf_status->selected_frame_id is NULL, there was no previously
6149      selected frame.  */
6150   if (frame == NULL)
6151     {
6152       warning (_("Unable to restore previously selected frame."));
6153       return 0;
6154     }
6155 
6156   select_frame (frame);
6157 
6158   return (1);
6159 }
6160 
6161 /* Restore inferior session state to INF_STATUS.  */
6162 
6163 void
6164 restore_inferior_status (struct inferior_status *inf_status)
6165 {
6166   struct thread_info *tp = inferior_thread ();
6167   struct inferior *inf = current_inferior ();
6168 
6169   tp->stop_step = inf_status->stop_step;
6170   stop_stack_dummy = inf_status->stop_stack_dummy;
6171   stopped_by_random_signal = inf_status->stopped_by_random_signal;
6172   tp->trap_expected = inf_status->stepping_over_breakpoint;
6173   tp->step_range_start = inf_status->step_range_start;
6174   tp->step_range_end = inf_status->step_range_end;
6175   tp->step_frame_id = inf_status->step_frame_id;
6176   tp->step_stack_frame_id = inf_status->step_stack_frame_id;
6177   tp->step_over_calls = inf_status->step_over_calls;
6178   stop_after_trap = inf_status->stop_after_trap;
6179   inf->stop_soon = inf_status->stop_soon;
6180   bpstat_clear (&tp->stop_bpstat);
6181   tp->stop_bpstat = inf_status->stop_bpstat;
6182   inf_status->stop_bpstat = NULL;
6183   tp->proceed_to_finish = inf_status->proceed_to_finish;
6184   tp->in_infcall = inf_status->in_infcall;
6185 
6186   if (target_has_stack)
6187     {
6188       /* The point of catch_errors is that if the stack is clobbered,
6189          walking the stack might encounter a garbage pointer and
6190          error() trying to dereference it.  */
6191       if (catch_errors
6192 	  (restore_selected_frame, &inf_status->selected_frame_id,
6193 	   "Unable to restore previously selected frame:\n",
6194 	   RETURN_MASK_ERROR) == 0)
6195 	/* Error in restoring the selected frame.  Select the innermost
6196 	   frame.  */
6197 	select_frame (get_current_frame ());
6198     }
6199 
6200   xfree (inf_status);
6201 }
6202 
6203 static void
6204 do_restore_inferior_status_cleanup (void *sts)
6205 {
6206   restore_inferior_status (sts);
6207 }
6208 
6209 struct cleanup *
6210 make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
6211 {
6212   return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
6213 }
6214 
6215 void
6216 discard_inferior_status (struct inferior_status *inf_status)
6217 {
6218   /* See save_inferior_status for info on stop_bpstat. */
6219   bpstat_clear (&inf_status->stop_bpstat);
6220   xfree (inf_status);
6221 }
6222 
6223 int
6224 inferior_has_forked (ptid_t pid, ptid_t *child_pid)
6225 {
6226   struct target_waitstatus last;
6227   ptid_t last_ptid;
6228 
6229   get_last_target_status (&last_ptid, &last);
6230 
6231   if (last.kind != TARGET_WAITKIND_FORKED)
6232     return 0;
6233 
6234   if (!ptid_equal (last_ptid, pid))
6235     return 0;
6236 
6237   *child_pid = last.value.related_pid;
6238   return 1;
6239 }
6240 
6241 int
6242 inferior_has_vforked (ptid_t pid, ptid_t *child_pid)
6243 {
6244   struct target_waitstatus last;
6245   ptid_t last_ptid;
6246 
6247   get_last_target_status (&last_ptid, &last);
6248 
6249   if (last.kind != TARGET_WAITKIND_VFORKED)
6250     return 0;
6251 
6252   if (!ptid_equal (last_ptid, pid))
6253     return 0;
6254 
6255   *child_pid = last.value.related_pid;
6256   return 1;
6257 }
6258 
6259 int
6260 inferior_has_execd (ptid_t pid, char **execd_pathname)
6261 {
6262   struct target_waitstatus last;
6263   ptid_t last_ptid;
6264 
6265   get_last_target_status (&last_ptid, &last);
6266 
6267   if (last.kind != TARGET_WAITKIND_EXECD)
6268     return 0;
6269 
6270   if (!ptid_equal (last_ptid, pid))
6271     return 0;
6272 
6273   *execd_pathname = xstrdup (last.value.execd_pathname);
6274   return 1;
6275 }
6276 
6277 int
6278 inferior_has_called_syscall (ptid_t pid, int *syscall_number)
6279 {
6280   struct target_waitstatus last;
6281   ptid_t last_ptid;
6282 
6283   get_last_target_status (&last_ptid, &last);
6284 
6285   if (last.kind != TARGET_WAITKIND_SYSCALL_ENTRY &&
6286       last.kind != TARGET_WAITKIND_SYSCALL_RETURN)
6287     return 0;
6288 
6289   if (!ptid_equal (last_ptid, pid))
6290     return 0;
6291 
6292   *syscall_number = last.value.syscall_number;
6293   return 1;
6294 }
6295 
6296 /* Oft used ptids */
6297 ptid_t null_ptid;
6298 ptid_t minus_one_ptid;
6299 
6300 /* Create a ptid given the necessary PID, LWP, and TID components.  */
6301 
6302 ptid_t
6303 ptid_build (int pid, long lwp, long tid)
6304 {
6305   ptid_t ptid;
6306 
6307   ptid.pid = pid;
6308   ptid.lwp = lwp;
6309   ptid.tid = tid;
6310   return ptid;
6311 }
6312 
6313 /* Create a ptid from just a pid.  */
6314 
6315 ptid_t
6316 pid_to_ptid (int pid)
6317 {
6318   return ptid_build (pid, 0, 0);
6319 }
6320 
6321 /* Fetch the pid (process id) component from a ptid.  */
6322 
6323 int
6324 ptid_get_pid (ptid_t ptid)
6325 {
6326   return ptid.pid;
6327 }
6328 
6329 /* Fetch the lwp (lightweight process) component from a ptid.  */
6330 
6331 long
6332 ptid_get_lwp (ptid_t ptid)
6333 {
6334   return ptid.lwp;
6335 }
6336 
6337 /* Fetch the tid (thread id) component from a ptid.  */
6338 
6339 long
6340 ptid_get_tid (ptid_t ptid)
6341 {
6342   return ptid.tid;
6343 }
6344 
6345 /* ptid_equal() is used to test equality of two ptids.  */
6346 
6347 int
6348 ptid_equal (ptid_t ptid1, ptid_t ptid2)
6349 {
6350   return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
6351 	  && ptid1.tid == ptid2.tid);
6352 }
6353 
6354 /* Returns true if PTID represents a process.  */
6355 
6356 int
6357 ptid_is_pid (ptid_t ptid)
6358 {
6359   if (ptid_equal (minus_one_ptid, ptid))
6360     return 0;
6361   if (ptid_equal (null_ptid, ptid))
6362     return 0;
6363 
6364   return (ptid_get_lwp (ptid) == 0 && ptid_get_tid (ptid) == 0);
6365 }
6366 
6367 int
6368 ptid_match (ptid_t ptid, ptid_t filter)
6369 {
6370   /* Since both parameters have the same type, prevent easy mistakes
6371      from happening.  */
6372   gdb_assert (!ptid_equal (ptid, minus_one_ptid)
6373 	      && !ptid_equal (ptid, null_ptid));
6374 
6375   if (ptid_equal (filter, minus_one_ptid))
6376     return 1;
6377   if (ptid_is_pid (filter)
6378       && ptid_get_pid (ptid) == ptid_get_pid (filter))
6379     return 1;
6380   else if (ptid_equal (ptid, filter))
6381     return 1;
6382 
6383   return 0;
6384 }
6385 
6386 /* restore_inferior_ptid() will be used by the cleanup machinery
6387    to restore the inferior_ptid value saved in a call to
6388    save_inferior_ptid().  */
6389 
6390 static void
6391 restore_inferior_ptid (void *arg)
6392 {
6393   ptid_t *saved_ptid_ptr = arg;
6394 
6395   inferior_ptid = *saved_ptid_ptr;
6396   xfree (arg);
6397 }
6398 
6399 /* Save the value of inferior_ptid so that it may be restored by a
6400    later call to do_cleanups().  Returns the struct cleanup pointer
6401    needed for later doing the cleanup.  */
6402 
6403 struct cleanup *
6404 save_inferior_ptid (void)
6405 {
6406   ptid_t *saved_ptid_ptr;
6407 
6408   saved_ptid_ptr = xmalloc (sizeof (ptid_t));
6409   *saved_ptid_ptr = inferior_ptid;
6410   return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
6411 }
6412 
6413 
6414 /* User interface for reverse debugging:
6415    Set exec-direction / show exec-direction commands
6416    (returns error unless target implements to_set_exec_direction method).  */
6417 
6418 enum exec_direction_kind execution_direction = EXEC_FORWARD;
6419 static const char exec_forward[] = "forward";
6420 static const char exec_reverse[] = "reverse";
6421 static const char *exec_direction = exec_forward;
6422 static const char *exec_direction_names[] = {
6423   exec_forward,
6424   exec_reverse,
6425   NULL
6426 };
6427 
6428 static void
6429 set_exec_direction_func (char *args, int from_tty,
6430 			 struct cmd_list_element *cmd)
6431 {
6432   if (target_can_execute_reverse)
6433     {
6434       if (!strcmp (exec_direction, exec_forward))
6435 	execution_direction = EXEC_FORWARD;
6436       else if (!strcmp (exec_direction, exec_reverse))
6437 	execution_direction = EXEC_REVERSE;
6438     }
6439   else
6440     {
6441       exec_direction = exec_forward;
6442       error (_("Target does not support this operation."));
6443     }
6444 }
6445 
6446 static void
6447 show_exec_direction_func (struct ui_file *out, int from_tty,
6448 			  struct cmd_list_element *cmd, const char *value)
6449 {
6450   switch (execution_direction) {
6451   case EXEC_FORWARD:
6452     fprintf_filtered (out, _("Forward.\n"));
6453     break;
6454   case EXEC_REVERSE:
6455     fprintf_filtered (out, _("Reverse.\n"));
6456     break;
6457   case EXEC_ERROR:
6458   default:
6459     fprintf_filtered (out,
6460 		      _("Forward (target `%s' does not support exec-direction).\n"),
6461 		      target_shortname);
6462     break;
6463   }
6464 }
6465 
6466 /* User interface for non-stop mode.  */
6467 
6468 int non_stop = 0;
6469 
6470 static void
6471 set_non_stop (char *args, int from_tty,
6472 	      struct cmd_list_element *c)
6473 {
6474   if (target_has_execution)
6475     {
6476       non_stop_1 = non_stop;
6477       error (_("Cannot change this setting while the inferior is running."));
6478     }
6479 
6480   non_stop = non_stop_1;
6481 }
6482 
6483 static void
6484 show_non_stop (struct ui_file *file, int from_tty,
6485 	       struct cmd_list_element *c, const char *value)
6486 {
6487   fprintf_filtered (file,
6488 		    _("Controlling the inferior in non-stop mode is %s.\n"),
6489 		    value);
6490 }
6491 
6492 static void
6493 show_schedule_multiple (struct ui_file *file, int from_tty,
6494 			struct cmd_list_element *c, const char *value)
6495 {
6496   fprintf_filtered (file, _("\
6497 Resuming the execution of threads of all processes is %s.\n"), value);
6498 }
6499 
6500 void
6501 _initialize_infrun (void)
6502 {
6503   int i;
6504   int numsigs;
6505 
6506   add_info ("signals", signals_info, _("\
6507 What debugger does when program gets various signals.\n\
6508 Specify a signal as argument to print info on that signal only."));
6509   add_info_alias ("handle", "signals", 0);
6510 
6511   add_com ("handle", class_run, handle_command, _("\
6512 Specify how to handle a signal.\n\
6513 Args are signals and actions to apply to those signals.\n\
6514 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
6515 from 1-15 are allowed for compatibility with old versions of GDB.\n\
6516 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
6517 The special arg \"all\" is recognized to mean all signals except those\n\
6518 used by the debugger, typically SIGTRAP and SIGINT.\n\
6519 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
6520 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
6521 Stop means reenter debugger if this signal happens (implies print).\n\
6522 Print means print a message if this signal happens.\n\
6523 Pass means let program see this signal; otherwise program doesn't know.\n\
6524 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
6525 Pass and Stop may be combined."));
6526   if (xdb_commands)
6527     {
6528       add_com ("lz", class_info, signals_info, _("\
6529 What debugger does when program gets various signals.\n\
6530 Specify a signal as argument to print info on that signal only."));
6531       add_com ("z", class_run, xdb_handle_command, _("\
6532 Specify how to handle a signal.\n\
6533 Args are signals and actions to apply to those signals.\n\
6534 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
6535 from 1-15 are allowed for compatibility with old versions of GDB.\n\
6536 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
6537 The special arg \"all\" is recognized to mean all signals except those\n\
6538 used by the debugger, typically SIGTRAP and SIGINT.\n\
6539 Recognized actions include \"s\" (toggles between stop and nostop),\n\
6540 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
6541 nopass), \"Q\" (noprint)\n\
6542 Stop means reenter debugger if this signal happens (implies print).\n\
6543 Print means print a message if this signal happens.\n\
6544 Pass means let program see this signal; otherwise program doesn't know.\n\
6545 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
6546 Pass and Stop may be combined."));
6547     }
6548 
6549   if (!dbx_commands)
6550     stop_command = add_cmd ("stop", class_obscure,
6551 			    not_just_help_class_command, _("\
6552 There is no `stop' command, but you can set a hook on `stop'.\n\
6553 This allows you to set a list of commands to be run each time execution\n\
6554 of the program stops."), &cmdlist);
6555 
6556   add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
6557 Set inferior debugging."), _("\
6558 Show inferior debugging."), _("\
6559 When non-zero, inferior specific debugging is enabled."),
6560 			    NULL,
6561 			    show_debug_infrun,
6562 			    &setdebuglist, &showdebuglist);
6563 
6564   add_setshow_boolean_cmd ("displaced", class_maintenance, &debug_displaced, _("\
6565 Set displaced stepping debugging."), _("\
6566 Show displaced stepping debugging."), _("\
6567 When non-zero, displaced stepping specific debugging is enabled."),
6568 			    NULL,
6569 			    show_debug_displaced,
6570 			    &setdebuglist, &showdebuglist);
6571 
6572   add_setshow_boolean_cmd ("non-stop", no_class,
6573 			   &non_stop_1, _("\
6574 Set whether gdb controls the inferior in non-stop mode."), _("\
6575 Show whether gdb controls the inferior in non-stop mode."), _("\
6576 When debugging a multi-threaded program and this setting is\n\
6577 off (the default, also called all-stop mode), when one thread stops\n\
6578 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
6579 all other threads in the program while you interact with the thread of\n\
6580 interest.  When you continue or step a thread, you can allow the other\n\
6581 threads to run, or have them remain stopped, but while you inspect any\n\
6582 thread's state, all threads stop.\n\
6583 \n\
6584 In non-stop mode, when one thread stops, other threads can continue\n\
6585 to run freely.  You'll be able to step each thread independently,\n\
6586 leave it stopped or free to run as needed."),
6587 			   set_non_stop,
6588 			   show_non_stop,
6589 			   &setlist,
6590 			   &showlist);
6591 
6592   numsigs = (int) TARGET_SIGNAL_LAST;
6593   signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
6594   signal_print = (unsigned char *)
6595     xmalloc (sizeof (signal_print[0]) * numsigs);
6596   signal_program = (unsigned char *)
6597     xmalloc (sizeof (signal_program[0]) * numsigs);
6598   for (i = 0; i < numsigs; i++)
6599     {
6600       signal_stop[i] = 1;
6601       signal_print[i] = 1;
6602       signal_program[i] = 1;
6603     }
6604 
6605   /* Signals caused by debugger's own actions
6606      should not be given to the program afterwards.  */
6607   signal_program[TARGET_SIGNAL_TRAP] = 0;
6608   signal_program[TARGET_SIGNAL_INT] = 0;
6609 
6610   /* Signals that are not errors should not normally enter the debugger.  */
6611   signal_stop[TARGET_SIGNAL_ALRM] = 0;
6612   signal_print[TARGET_SIGNAL_ALRM] = 0;
6613   signal_stop[TARGET_SIGNAL_VTALRM] = 0;
6614   signal_print[TARGET_SIGNAL_VTALRM] = 0;
6615   signal_stop[TARGET_SIGNAL_PROF] = 0;
6616   signal_print[TARGET_SIGNAL_PROF] = 0;
6617   signal_stop[TARGET_SIGNAL_CHLD] = 0;
6618   signal_print[TARGET_SIGNAL_CHLD] = 0;
6619   signal_stop[TARGET_SIGNAL_IO] = 0;
6620   signal_print[TARGET_SIGNAL_IO] = 0;
6621   signal_stop[TARGET_SIGNAL_POLL] = 0;
6622   signal_print[TARGET_SIGNAL_POLL] = 0;
6623   signal_stop[TARGET_SIGNAL_URG] = 0;
6624   signal_print[TARGET_SIGNAL_URG] = 0;
6625   signal_stop[TARGET_SIGNAL_WINCH] = 0;
6626   signal_print[TARGET_SIGNAL_WINCH] = 0;
6627 
6628   /* These signals are used internally by user-level thread
6629      implementations.  (See signal(5) on Solaris.)  Like the above
6630      signals, a healthy program receives and handles them as part of
6631      its normal operation.  */
6632   signal_stop[TARGET_SIGNAL_LWP] = 0;
6633   signal_print[TARGET_SIGNAL_LWP] = 0;
6634   signal_stop[TARGET_SIGNAL_WAITING] = 0;
6635   signal_print[TARGET_SIGNAL_WAITING] = 0;
6636   signal_stop[TARGET_SIGNAL_CANCEL] = 0;
6637   signal_print[TARGET_SIGNAL_CANCEL] = 0;
6638 
6639   add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
6640 			    &stop_on_solib_events, _("\
6641 Set stopping for shared library events."), _("\
6642 Show stopping for shared library events."), _("\
6643 If nonzero, gdb will give control to the user when the dynamic linker\n\
6644 notifies gdb of shared library events.  The most common event of interest\n\
6645 to the user would be loading/unloading of a new library."),
6646 			    NULL,
6647 			    show_stop_on_solib_events,
6648 			    &setlist, &showlist);
6649 
6650   add_setshow_enum_cmd ("follow-fork-mode", class_run,
6651 			follow_fork_mode_kind_names,
6652 			&follow_fork_mode_string, _("\
6653 Set debugger response to a program call of fork or vfork."), _("\
6654 Show debugger response to a program call of fork or vfork."), _("\
6655 A fork or vfork creates a new process.  follow-fork-mode can be:\n\
6656   parent  - the original process is debugged after a fork\n\
6657   child   - the new process is debugged after a fork\n\
6658 The unfollowed process will continue to run.\n\
6659 By default, the debugger will follow the parent process."),
6660 			NULL,
6661 			show_follow_fork_mode_string,
6662 			&setlist, &showlist);
6663 
6664   add_setshow_enum_cmd ("follow-exec-mode", class_run,
6665 			follow_exec_mode_names,
6666 			&follow_exec_mode_string, _("\
6667 Set debugger response to a program call of exec."), _("\
6668 Show debugger response to a program call of exec."), _("\
6669 An exec call replaces the program image of a process.\n\
6670 \n\
6671 follow-exec-mode can be:\n\
6672 \n\
6673   new - the debugger creates a new inferior and rebinds the process\n\
6674 to this new inferior.  The program the process was running before\n\
6675 the exec call can be restarted afterwards by restarting the original\n\
6676 inferior.\n\
6677 \n\
6678   same - the debugger keeps the process bound to the same inferior.\n\
6679 The new executable image replaces the previous executable loaded in\n\
6680 the inferior.  Restarting the inferior after the exec call restarts\n\
6681 the executable the process was running after the exec call.\n\
6682 \n\
6683 By default, the debugger will use the same inferior."),
6684 			NULL,
6685 			show_follow_exec_mode_string,
6686 			&setlist, &showlist);
6687 
6688   add_setshow_enum_cmd ("scheduler-locking", class_run,
6689 			scheduler_enums, &scheduler_mode, _("\
6690 Set mode for locking scheduler during execution."), _("\
6691 Show mode for locking scheduler during execution."), _("\
6692 off  == no locking (threads may preempt at any time)\n\
6693 on   == full locking (no thread except the current thread may run)\n\
6694 step == scheduler locked during every single-step operation.\n\
6695 	In this mode, no other thread may run during a step command.\n\
6696 	Other threads may run while stepping over a function call ('next')."),
6697 			set_schedlock_func,	/* traps on target vector */
6698 			show_scheduler_mode,
6699 			&setlist, &showlist);
6700 
6701   add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
6702 Set mode for resuming threads of all processes."), _("\
6703 Show mode for resuming threads of all processes."), _("\
6704 When on, execution commands (such as 'continue' or 'next') resume all\n\
6705 threads of all processes.  When off (which is the default), execution\n\
6706 commands only resume the threads of the current process.  The set of\n\
6707 threads that are resumed is further refined by the scheduler-locking\n\
6708 mode (see help set scheduler-locking)."),
6709 			   NULL,
6710 			   show_schedule_multiple,
6711 			   &setlist, &showlist);
6712 
6713   add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
6714 Set mode of the step operation."), _("\
6715 Show mode of the step operation."), _("\
6716 When set, doing a step over a function without debug line information\n\
6717 will stop at the first instruction of that function. Otherwise, the\n\
6718 function is skipped and the step command stops at a different source line."),
6719 			   NULL,
6720 			   show_step_stop_if_no_debug,
6721 			   &setlist, &showlist);
6722 
6723   add_setshow_enum_cmd ("displaced-stepping", class_run,
6724 			can_use_displaced_stepping_enum,
6725 			&can_use_displaced_stepping, _("\
6726 Set debugger's willingness to use displaced stepping."), _("\
6727 Show debugger's willingness to use displaced stepping."), _("\
6728 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
6729 supported by the target architecture.  If off, gdb will not use displaced\n\
6730 stepping to step over breakpoints, even if such is supported by the target\n\
6731 architecture.  If auto (which is the default), gdb will use displaced stepping\n\
6732 if the target architecture supports it and non-stop mode is active, but will not\n\
6733 use it in all-stop mode (see help set non-stop)."),
6734 			NULL,
6735 			show_can_use_displaced_stepping,
6736 			&setlist, &showlist);
6737 
6738   add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
6739 			&exec_direction, _("Set direction of execution.\n\
6740 Options are 'forward' or 'reverse'."),
6741 			_("Show direction of execution (forward/reverse)."),
6742 			_("Tells gdb whether to execute forward or backward."),
6743 			set_exec_direction_func, show_exec_direction_func,
6744 			&setlist, &showlist);
6745 
6746   /* Set/show detach-on-fork: user-settable mode.  */
6747 
6748   add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
6749 Set whether gdb will detach the child of a fork."), _("\
6750 Show whether gdb will detach the child of a fork."), _("\
6751 Tells gdb whether to detach the child of a fork."),
6752 			   NULL, NULL, &setlist, &showlist);
6753 
6754   /* ptid initializations */
6755   null_ptid = ptid_build (0, 0, 0);
6756   minus_one_ptid = ptid_build (-1, 0, 0);
6757   inferior_ptid = null_ptid;
6758   target_last_wait_ptid = minus_one_ptid;
6759 
6760   observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
6761   observer_attach_thread_stop_requested (infrun_thread_stop_requested);
6762   observer_attach_thread_exit (infrun_thread_thread_exit);
6763   observer_attach_inferior_exit (infrun_inferior_exit);
6764 
6765   /* Explicitly create without lookup, since that tries to create a
6766      value with a void typed value, and when we get here, gdbarch
6767      isn't initialized yet.  At this point, we're quite sure there
6768      isn't another convenience variable of the same name.  */
6769   create_internalvar_type_lazy ("_siginfo", siginfo_make_value);
6770 
6771   add_setshow_boolean_cmd ("observer", no_class,
6772 			   &observer_mode_1, _("\
6773 Set whether gdb controls the inferior in observer mode."), _("\
6774 Show whether gdb controls the inferior in observer mode."), _("\
6775 In observer mode, GDB can get data from the inferior, but not\n\
6776 affect its execution.  Registers and memory may not be changed,\n\
6777 breakpoints may not be set, and the program cannot be interrupted\n\
6778 or signalled."),
6779 			   set_observer_mode,
6780 			   show_observer_mode,
6781 			   &setlist,
6782 			   &showlist);
6783 }
6784