xref: /dflybsd-src/contrib/gdb-7/gdb/i386-tdep.c (revision c0d274d062fd959993bf623f25f7cb6a8a676c4e)
1 /* Intel 386 target-dependent stuff.
2 
3    Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4    1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
5    2010 Free Software Foundation, Inc.
6 
7    This file is part of GDB.
8 
9    This program is free software; you can redistribute it and/or modify
10    it under the terms of the GNU General Public License as published by
11    the Free Software Foundation; either version 3 of the License, or
12    (at your option) any later version.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
21 
22 #include "defs.h"
23 #include "opcode/i386.h"
24 #include "arch-utils.h"
25 #include "command.h"
26 #include "dummy-frame.h"
27 #include "dwarf2-frame.h"
28 #include "doublest.h"
29 #include "frame.h"
30 #include "frame-base.h"
31 #include "frame-unwind.h"
32 #include "inferior.h"
33 #include "gdbcmd.h"
34 #include "gdbcore.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "osabi.h"
38 #include "regcache.h"
39 #include "reggroups.h"
40 #include "regset.h"
41 #include "symfile.h"
42 #include "symtab.h"
43 #include "target.h"
44 #include "value.h"
45 #include "dis-asm.h"
46 #include "disasm.h"
47 #include "remote.h"
48 
49 #include "gdb_assert.h"
50 #include "gdb_string.h"
51 
52 #include "i386-tdep.h"
53 #include "i387-tdep.h"
54 #include "i386-xstate.h"
55 
56 #include "record.h"
57 #include <stdint.h>
58 
59 #include "features/i386/i386.c"
60 #include "features/i386/i386-avx.c"
61 #include "features/i386/i386-mmx.c"
62 
63 /* Register names.  */
64 
65 static const char *i386_register_names[] =
66 {
67   "eax",   "ecx",    "edx",   "ebx",
68   "esp",   "ebp",    "esi",   "edi",
69   "eip",   "eflags", "cs",    "ss",
70   "ds",    "es",     "fs",    "gs",
71   "st0",   "st1",    "st2",   "st3",
72   "st4",   "st5",    "st6",   "st7",
73   "fctrl", "fstat",  "ftag",  "fiseg",
74   "fioff", "foseg",  "fooff", "fop",
75   "xmm0",  "xmm1",   "xmm2",  "xmm3",
76   "xmm4",  "xmm5",   "xmm6",  "xmm7",
77   "mxcsr"
78 };
79 
80 static const char *i386_ymm_names[] =
81 {
82   "ymm0",  "ymm1",   "ymm2",  "ymm3",
83   "ymm4",  "ymm5",   "ymm6",  "ymm7",
84 };
85 
86 static const char *i386_ymmh_names[] =
87 {
88   "ymm0h",  "ymm1h",   "ymm2h",  "ymm3h",
89   "ymm4h",  "ymm5h",   "ymm6h",  "ymm7h",
90 };
91 
92 /* Register names for MMX pseudo-registers.  */
93 
94 static const char *i386_mmx_names[] =
95 {
96   "mm0", "mm1", "mm2", "mm3",
97   "mm4", "mm5", "mm6", "mm7"
98 };
99 
100 /* Register names for byte pseudo-registers.  */
101 
102 static const char *i386_byte_names[] =
103 {
104   "al", "cl", "dl", "bl",
105   "ah", "ch", "dh", "bh"
106 };
107 
108 /* Register names for word pseudo-registers.  */
109 
110 static const char *i386_word_names[] =
111 {
112   "ax", "cx", "dx", "bx",
113   "", "bp", "si", "di"
114 };
115 
116 /* MMX register?  */
117 
118 static int
119 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
120 {
121   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
122   int mm0_regnum = tdep->mm0_regnum;
123 
124   if (mm0_regnum < 0)
125     return 0;
126 
127   regnum -= mm0_regnum;
128   return regnum >= 0 && regnum < tdep->num_mmx_regs;
129 }
130 
131 /* Byte register?  */
132 
133 int
134 i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
135 {
136   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
137 
138   regnum -= tdep->al_regnum;
139   return regnum >= 0 && regnum < tdep->num_byte_regs;
140 }
141 
142 /* Word register?  */
143 
144 int
145 i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
146 {
147   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
148 
149   regnum -= tdep->ax_regnum;
150   return regnum >= 0 && regnum < tdep->num_word_regs;
151 }
152 
153 /* Dword register?  */
154 
155 int
156 i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
157 {
158   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
159   int eax_regnum = tdep->eax_regnum;
160 
161   if (eax_regnum < 0)
162     return 0;
163 
164   regnum -= eax_regnum;
165   return regnum >= 0 && regnum < tdep->num_dword_regs;
166 }
167 
168 int
169 i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
170 {
171   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
172   int ymm0h_regnum = tdep->ymm0h_regnum;
173 
174   if (ymm0h_regnum < 0)
175     return 0;
176 
177   regnum -= ymm0h_regnum;
178   return regnum >= 0 && regnum < tdep->num_ymm_regs;
179 }
180 
181 /* AVX register?  */
182 
183 int
184 i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
185 {
186   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
187   int ymm0_regnum = tdep->ymm0_regnum;
188 
189   if (ymm0_regnum < 0)
190     return 0;
191 
192   regnum -= ymm0_regnum;
193   return regnum >= 0 && regnum < tdep->num_ymm_regs;
194 }
195 
196 /* SSE register?  */
197 
198 int
199 i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
200 {
201   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
202   int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
203 
204   if (num_xmm_regs == 0)
205     return 0;
206 
207   regnum -= I387_XMM0_REGNUM (tdep);
208   return regnum >= 0 && regnum < num_xmm_regs;
209 }
210 
211 static int
212 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
213 {
214   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
215 
216   if (I387_NUM_XMM_REGS (tdep) == 0)
217     return 0;
218 
219   return (regnum == I387_MXCSR_REGNUM (tdep));
220 }
221 
222 /* FP register?  */
223 
224 int
225 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
226 {
227   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
228 
229   if (I387_ST0_REGNUM (tdep) < 0)
230     return 0;
231 
232   return (I387_ST0_REGNUM (tdep) <= regnum
233 	  && regnum < I387_FCTRL_REGNUM (tdep));
234 }
235 
236 int
237 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
238 {
239   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
240 
241   if (I387_ST0_REGNUM (tdep) < 0)
242     return 0;
243 
244   return (I387_FCTRL_REGNUM (tdep) <= regnum
245 	  && regnum < I387_XMM0_REGNUM (tdep));
246 }
247 
248 /* Return the name of register REGNUM, or the empty string if it is
249    an anonymous register.  */
250 
251 static const char *
252 i386_register_name (struct gdbarch *gdbarch, int regnum)
253 {
254   /* Hide the upper YMM registers.  */
255   if (i386_ymmh_regnum_p (gdbarch, regnum))
256     return "";
257 
258   return tdesc_register_name (gdbarch, regnum);
259 }
260 
261 /* Return the name of register REGNUM.  */
262 
263 const char *
264 i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
265 {
266   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
267   if (i386_mmx_regnum_p (gdbarch, regnum))
268     return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
269   else if (i386_ymm_regnum_p (gdbarch, regnum))
270     return i386_ymm_names[regnum - tdep->ymm0_regnum];
271   else if (i386_byte_regnum_p (gdbarch, regnum))
272     return i386_byte_names[regnum - tdep->al_regnum];
273   else if (i386_word_regnum_p (gdbarch, regnum))
274     return i386_word_names[regnum - tdep->ax_regnum];
275 
276   internal_error (__FILE__, __LINE__, _("invalid regnum"));
277 }
278 
279 /* Convert a dbx register number REG to the appropriate register
280    number used by GDB.  */
281 
282 static int
283 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
284 {
285   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
286 
287   /* This implements what GCC calls the "default" register map
288      (dbx_register_map[]).  */
289 
290   if (reg >= 0 && reg <= 7)
291     {
292       /* General-purpose registers.  The debug info calls %ebp
293          register 4, and %esp register 5.  */
294       if (reg == 4)
295         return 5;
296       else if (reg == 5)
297         return 4;
298       else return reg;
299     }
300   else if (reg >= 12 && reg <= 19)
301     {
302       /* Floating-point registers.  */
303       return reg - 12 + I387_ST0_REGNUM (tdep);
304     }
305   else if (reg >= 21 && reg <= 28)
306     {
307       /* SSE registers.  */
308       int ymm0_regnum = tdep->ymm0_regnum;
309 
310       if (ymm0_regnum >= 0
311 	  && i386_xmm_regnum_p (gdbarch, reg))
312 	return reg - 21 + ymm0_regnum;
313       else
314 	return reg - 21 + I387_XMM0_REGNUM (tdep);
315     }
316   else if (reg >= 29 && reg <= 36)
317     {
318       /* MMX registers.  */
319       return reg - 29 + I387_MM0_REGNUM (tdep);
320     }
321 
322   /* This will hopefully provoke a warning.  */
323   return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
324 }
325 
326 /* Convert SVR4 register number REG to the appropriate register number
327    used by GDB.  */
328 
329 static int
330 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
331 {
332   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
333 
334   /* This implements the GCC register map that tries to be compatible
335      with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]).  */
336 
337   /* The SVR4 register numbering includes %eip and %eflags, and
338      numbers the floating point registers differently.  */
339   if (reg >= 0 && reg <= 9)
340     {
341       /* General-purpose registers.  */
342       return reg;
343     }
344   else if (reg >= 11 && reg <= 18)
345     {
346       /* Floating-point registers.  */
347       return reg - 11 + I387_ST0_REGNUM (tdep);
348     }
349   else if (reg >= 21 && reg <= 36)
350     {
351       /* The SSE and MMX registers have the same numbers as with dbx.  */
352       return i386_dbx_reg_to_regnum (gdbarch, reg);
353     }
354 
355   switch (reg)
356     {
357     case 37: return I387_FCTRL_REGNUM (tdep);
358     case 38: return I387_FSTAT_REGNUM (tdep);
359     case 39: return I387_MXCSR_REGNUM (tdep);
360     case 40: return I386_ES_REGNUM;
361     case 41: return I386_CS_REGNUM;
362     case 42: return I386_SS_REGNUM;
363     case 43: return I386_DS_REGNUM;
364     case 44: return I386_FS_REGNUM;
365     case 45: return I386_GS_REGNUM;
366     }
367 
368   /* This will hopefully provoke a warning.  */
369   return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
370 }
371 
372 
373 
374 /* This is the variable that is set with "set disassembly-flavor", and
375    its legitimate values.  */
376 static const char att_flavor[] = "att";
377 static const char intel_flavor[] = "intel";
378 static const char *valid_flavors[] =
379 {
380   att_flavor,
381   intel_flavor,
382   NULL
383 };
384 static const char *disassembly_flavor = att_flavor;
385 
386 
387 /* Use the program counter to determine the contents and size of a
388    breakpoint instruction.  Return a pointer to a string of bytes that
389    encode a breakpoint instruction, store the length of the string in
390    *LEN and optionally adjust *PC to point to the correct memory
391    location for inserting the breakpoint.
392 
393    On the i386 we have a single breakpoint that fits in a single byte
394    and can be inserted anywhere.
395 
396    This function is 64-bit safe.  */
397 
398 static const gdb_byte *
399 i386_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
400 {
401   static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
402 
403   *len = sizeof (break_insn);
404   return break_insn;
405 }
406 
407 /* Displaced instruction handling.  */
408 
409 /* Skip the legacy instruction prefixes in INSN.
410    Not all prefixes are valid for any particular insn
411    but we needn't care, the insn will fault if it's invalid.
412    The result is a pointer to the first opcode byte,
413    or NULL if we run off the end of the buffer.  */
414 
415 static gdb_byte *
416 i386_skip_prefixes (gdb_byte *insn, size_t max_len)
417 {
418   gdb_byte *end = insn + max_len;
419 
420   while (insn < end)
421     {
422       switch (*insn)
423 	{
424 	case DATA_PREFIX_OPCODE:
425 	case ADDR_PREFIX_OPCODE:
426 	case CS_PREFIX_OPCODE:
427 	case DS_PREFIX_OPCODE:
428 	case ES_PREFIX_OPCODE:
429 	case FS_PREFIX_OPCODE:
430 	case GS_PREFIX_OPCODE:
431 	case SS_PREFIX_OPCODE:
432 	case LOCK_PREFIX_OPCODE:
433 	case REPE_PREFIX_OPCODE:
434 	case REPNE_PREFIX_OPCODE:
435 	  ++insn;
436 	  continue;
437 	default:
438 	  return insn;
439 	}
440     }
441 
442   return NULL;
443 }
444 
445 static int
446 i386_absolute_jmp_p (const gdb_byte *insn)
447 {
448   /* jmp far (absolute address in operand) */
449   if (insn[0] == 0xea)
450     return 1;
451 
452   if (insn[0] == 0xff)
453     {
454       /* jump near, absolute indirect (/4) */
455       if ((insn[1] & 0x38) == 0x20)
456         return 1;
457 
458       /* jump far, absolute indirect (/5) */
459       if ((insn[1] & 0x38) == 0x28)
460         return 1;
461     }
462 
463   return 0;
464 }
465 
466 static int
467 i386_absolute_call_p (const gdb_byte *insn)
468 {
469   /* call far, absolute */
470   if (insn[0] == 0x9a)
471     return 1;
472 
473   if (insn[0] == 0xff)
474     {
475       /* Call near, absolute indirect (/2) */
476       if ((insn[1] & 0x38) == 0x10)
477         return 1;
478 
479       /* Call far, absolute indirect (/3) */
480       if ((insn[1] & 0x38) == 0x18)
481         return 1;
482     }
483 
484   return 0;
485 }
486 
487 static int
488 i386_ret_p (const gdb_byte *insn)
489 {
490   switch (insn[0])
491     {
492     case 0xc2: /* ret near, pop N bytes */
493     case 0xc3: /* ret near */
494     case 0xca: /* ret far, pop N bytes */
495     case 0xcb: /* ret far */
496     case 0xcf: /* iret */
497       return 1;
498 
499     default:
500       return 0;
501     }
502 }
503 
504 static int
505 i386_call_p (const gdb_byte *insn)
506 {
507   if (i386_absolute_call_p (insn))
508     return 1;
509 
510   /* call near, relative */
511   if (insn[0] == 0xe8)
512     return 1;
513 
514   return 0;
515 }
516 
517 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
518    length in bytes.  Otherwise, return zero.  */
519 
520 static int
521 i386_syscall_p (const gdb_byte *insn, int *lengthp)
522 {
523   if (insn[0] == 0xcd)
524     {
525       *lengthp = 2;
526       return 1;
527     }
528 
529   return 0;
530 }
531 
532 /* Some kernels may run one past a syscall insn, so we have to cope.
533    Otherwise this is just simple_displaced_step_copy_insn.  */
534 
535 struct displaced_step_closure *
536 i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
537 			       CORE_ADDR from, CORE_ADDR to,
538 			       struct regcache *regs)
539 {
540   size_t len = gdbarch_max_insn_length (gdbarch);
541   gdb_byte *buf = xmalloc (len);
542 
543   read_memory (from, buf, len);
544 
545   /* GDB may get control back after the insn after the syscall.
546      Presumably this is a kernel bug.
547      If this is a syscall, make sure there's a nop afterwards.  */
548   {
549     int syscall_length;
550     gdb_byte *insn;
551 
552     insn = i386_skip_prefixes (buf, len);
553     if (insn != NULL && i386_syscall_p (insn, &syscall_length))
554       insn[syscall_length] = NOP_OPCODE;
555   }
556 
557   write_memory (to, buf, len);
558 
559   if (debug_displaced)
560     {
561       fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
562                           paddress (gdbarch, from), paddress (gdbarch, to));
563       displaced_step_dump_bytes (gdb_stdlog, buf, len);
564     }
565 
566   return (struct displaced_step_closure *) buf;
567 }
568 
569 /* Fix up the state of registers and memory after having single-stepped
570    a displaced instruction.  */
571 
572 void
573 i386_displaced_step_fixup (struct gdbarch *gdbarch,
574                            struct displaced_step_closure *closure,
575                            CORE_ADDR from, CORE_ADDR to,
576                            struct regcache *regs)
577 {
578   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
579 
580   /* The offset we applied to the instruction's address.
581      This could well be negative (when viewed as a signed 32-bit
582      value), but ULONGEST won't reflect that, so take care when
583      applying it.  */
584   ULONGEST insn_offset = to - from;
585 
586   /* Since we use simple_displaced_step_copy_insn, our closure is a
587      copy of the instruction.  */
588   gdb_byte *insn = (gdb_byte *) closure;
589   /* The start of the insn, needed in case we see some prefixes.  */
590   gdb_byte *insn_start = insn;
591 
592   if (debug_displaced)
593     fprintf_unfiltered (gdb_stdlog,
594                         "displaced: fixup (%s, %s), "
595                         "insn = 0x%02x 0x%02x ...\n",
596                         paddress (gdbarch, from), paddress (gdbarch, to),
597 			insn[0], insn[1]);
598 
599   /* The list of issues to contend with here is taken from
600      resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
601      Yay for Free Software!  */
602 
603   /* Relocate the %eip, if necessary.  */
604 
605   /* The instruction recognizers we use assume any leading prefixes
606      have been skipped.  */
607   {
608     /* This is the size of the buffer in closure.  */
609     size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
610     gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
611     /* If there are too many prefixes, just ignore the insn.
612        It will fault when run.  */
613     if (opcode != NULL)
614       insn = opcode;
615   }
616 
617   /* Except in the case of absolute or indirect jump or call
618      instructions, or a return instruction, the new eip is relative to
619      the displaced instruction; make it relative.  Well, signal
620      handler returns don't need relocation either, but we use the
621      value of %eip to recognize those; see below.  */
622   if (! i386_absolute_jmp_p (insn)
623       && ! i386_absolute_call_p (insn)
624       && ! i386_ret_p (insn))
625     {
626       ULONGEST orig_eip;
627       int insn_len;
628 
629       regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
630 
631       /* A signal trampoline system call changes the %eip, resuming
632          execution of the main program after the signal handler has
633          returned.  That makes them like 'return' instructions; we
634          shouldn't relocate %eip.
635 
636          But most system calls don't, and we do need to relocate %eip.
637 
638          Our heuristic for distinguishing these cases: if stepping
639          over the system call instruction left control directly after
640          the instruction, the we relocate --- control almost certainly
641          doesn't belong in the displaced copy.  Otherwise, we assume
642          the instruction has put control where it belongs, and leave
643          it unrelocated.  Goodness help us if there are PC-relative
644          system calls.  */
645       if (i386_syscall_p (insn, &insn_len)
646           && orig_eip != to + (insn - insn_start) + insn_len
647 	  /* GDB can get control back after the insn after the syscall.
648 	     Presumably this is a kernel bug.
649 	     i386_displaced_step_copy_insn ensures its a nop,
650 	     we add one to the length for it.  */
651           && orig_eip != to + (insn - insn_start) + insn_len + 1)
652         {
653           if (debug_displaced)
654             fprintf_unfiltered (gdb_stdlog,
655                                 "displaced: syscall changed %%eip; "
656                                 "not relocating\n");
657         }
658       else
659         {
660           ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
661 
662 	  /* If we just stepped over a breakpoint insn, we don't backup
663 	     the pc on purpose; this is to match behaviour without
664 	     stepping.  */
665 
666           regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
667 
668           if (debug_displaced)
669             fprintf_unfiltered (gdb_stdlog,
670                                 "displaced: "
671                                 "relocated %%eip from %s to %s\n",
672                                 paddress (gdbarch, orig_eip),
673 				paddress (gdbarch, eip));
674         }
675     }
676 
677   /* If the instruction was PUSHFL, then the TF bit will be set in the
678      pushed value, and should be cleared.  We'll leave this for later,
679      since GDB already messes up the TF flag when stepping over a
680      pushfl.  */
681 
682   /* If the instruction was a call, the return address now atop the
683      stack is the address following the copied instruction.  We need
684      to make it the address following the original instruction.  */
685   if (i386_call_p (insn))
686     {
687       ULONGEST esp;
688       ULONGEST retaddr;
689       const ULONGEST retaddr_len = 4;
690 
691       regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
692       retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
693       retaddr = (retaddr - insn_offset) & 0xffffffffUL;
694       write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
695 
696       if (debug_displaced)
697         fprintf_unfiltered (gdb_stdlog,
698                             "displaced: relocated return addr at %s to %s\n",
699                             paddress (gdbarch, esp),
700                             paddress (gdbarch, retaddr));
701     }
702 }
703 
704 static void
705 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
706 {
707   target_write_memory (*to, buf, len);
708   *to += len;
709 }
710 
711 static void
712 i386_relocate_instruction (struct gdbarch *gdbarch,
713 			   CORE_ADDR *to, CORE_ADDR oldloc)
714 {
715   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
716   gdb_byte buf[I386_MAX_INSN_LEN];
717   int offset = 0, rel32, newrel;
718   int insn_length;
719   gdb_byte *insn = buf;
720 
721   read_memory (oldloc, buf, I386_MAX_INSN_LEN);
722 
723   insn_length = gdb_buffered_insn_length (gdbarch, insn,
724 					  I386_MAX_INSN_LEN, oldloc);
725 
726   /* Get past the prefixes.  */
727   insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
728 
729   /* Adjust calls with 32-bit relative addresses as push/jump, with
730      the address pushed being the location where the original call in
731      the user program would return to.  */
732   if (insn[0] == 0xe8)
733     {
734       gdb_byte push_buf[16];
735       unsigned int ret_addr;
736 
737       /* Where "ret" in the original code will return to.  */
738       ret_addr = oldloc + insn_length;
739       push_buf[0] = 0x68; /* pushq $... */
740       memcpy (&push_buf[1], &ret_addr, 4);
741       /* Push the push.  */
742       append_insns (to, 5, push_buf);
743 
744       /* Convert the relative call to a relative jump.  */
745       insn[0] = 0xe9;
746 
747       /* Adjust the destination offset.  */
748       rel32 = extract_signed_integer (insn + 1, 4, byte_order);
749       newrel = (oldloc - *to) + rel32;
750       store_signed_integer (insn + 1, 4, newrel, byte_order);
751 
752       /* Write the adjusted jump into its displaced location.  */
753       append_insns (to, 5, insn);
754       return;
755     }
756 
757   /* Adjust jumps with 32-bit relative addresses.  Calls are already
758      handled above.  */
759   if (insn[0] == 0xe9)
760     offset = 1;
761   /* Adjust conditional jumps.  */
762   else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
763     offset = 2;
764 
765   if (offset)
766     {
767       rel32 = extract_signed_integer (insn + offset, 4, byte_order);
768       newrel = (oldloc - *to) + rel32;
769       store_signed_integer (insn + offset, 4, newrel, byte_order);
770       if (debug_displaced)
771 	fprintf_unfiltered (gdb_stdlog,
772 			    "Adjusted insn rel32=0x%s at 0x%s to"
773 			    " rel32=0x%s at 0x%s\n",
774 			    hex_string (rel32), paddress (gdbarch, oldloc),
775 			    hex_string (newrel), paddress (gdbarch, *to));
776     }
777 
778   /* Write the adjusted instructions into their displaced
779      location.  */
780   append_insns (to, insn_length, buf);
781 }
782 
783 
784 #ifdef I386_REGNO_TO_SYMMETRY
785 #error "The Sequent Symmetry is no longer supported."
786 #endif
787 
788 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
789    and %esp "belong" to the calling function.  Therefore these
790    registers should be saved if they're going to be modified.  */
791 
792 /* The maximum number of saved registers.  This should include all
793    registers mentioned above, and %eip.  */
794 #define I386_NUM_SAVED_REGS	I386_NUM_GREGS
795 
796 struct i386_frame_cache
797 {
798   /* Base address.  */
799   CORE_ADDR base;
800   LONGEST sp_offset;
801   CORE_ADDR pc;
802 
803   /* Saved registers.  */
804   CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
805   CORE_ADDR saved_sp;
806   int saved_sp_reg;
807   int pc_in_eax;
808 
809   /* Stack space reserved for local variables.  */
810   long locals;
811 };
812 
813 /* Allocate and initialize a frame cache.  */
814 
815 static struct i386_frame_cache *
816 i386_alloc_frame_cache (void)
817 {
818   struct i386_frame_cache *cache;
819   int i;
820 
821   cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
822 
823   /* Base address.  */
824   cache->base = 0;
825   cache->sp_offset = -4;
826   cache->pc = 0;
827 
828   /* Saved registers.  We initialize these to -1 since zero is a valid
829      offset (that's where %ebp is supposed to be stored).  */
830   for (i = 0; i < I386_NUM_SAVED_REGS; i++)
831     cache->saved_regs[i] = -1;
832   cache->saved_sp = 0;
833   cache->saved_sp_reg = -1;
834   cache->pc_in_eax = 0;
835 
836   /* Frameless until proven otherwise.  */
837   cache->locals = -1;
838 
839   return cache;
840 }
841 
842 /* If the instruction at PC is a jump, return the address of its
843    target.  Otherwise, return PC.  */
844 
845 static CORE_ADDR
846 i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
847 {
848   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
849   gdb_byte op;
850   long delta = 0;
851   int data16 = 0;
852 
853   target_read_memory (pc, &op, 1);
854   if (op == 0x66)
855     {
856       data16 = 1;
857       op = read_memory_unsigned_integer (pc + 1, 1, byte_order);
858     }
859 
860   switch (op)
861     {
862     case 0xe9:
863       /* Relative jump: if data16 == 0, disp32, else disp16.  */
864       if (data16)
865 	{
866 	  delta = read_memory_integer (pc + 2, 2, byte_order);
867 
868 	  /* Include the size of the jmp instruction (including the
869              0x66 prefix).  */
870 	  delta += 4;
871 	}
872       else
873 	{
874 	  delta = read_memory_integer (pc + 1, 4, byte_order);
875 
876 	  /* Include the size of the jmp instruction.  */
877 	  delta += 5;
878 	}
879       break;
880     case 0xeb:
881       /* Relative jump, disp8 (ignore data16).  */
882       delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
883 
884       delta += data16 + 2;
885       break;
886     }
887 
888   return pc + delta;
889 }
890 
891 /* Check whether PC points at a prologue for a function returning a
892    structure or union.  If so, it updates CACHE and returns the
893    address of the first instruction after the code sequence that
894    removes the "hidden" argument from the stack or CURRENT_PC,
895    whichever is smaller.  Otherwise, return PC.  */
896 
897 static CORE_ADDR
898 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
899 			    struct i386_frame_cache *cache)
900 {
901   /* Functions that return a structure or union start with:
902 
903         popl %eax             0x58
904         xchgl %eax, (%esp)    0x87 0x04 0x24
905      or xchgl %eax, 0(%esp)   0x87 0x44 0x24 0x00
906 
907      (the System V compiler puts out the second `xchg' instruction,
908      and the assembler doesn't try to optimize it, so the 'sib' form
909      gets generated).  This sequence is used to get the address of the
910      return buffer for a function that returns a structure.  */
911   static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
912   static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
913   gdb_byte buf[4];
914   gdb_byte op;
915 
916   if (current_pc <= pc)
917     return pc;
918 
919   target_read_memory (pc, &op, 1);
920 
921   if (op != 0x58)		/* popl %eax */
922     return pc;
923 
924   target_read_memory (pc + 1, buf, 4);
925   if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
926     return pc;
927 
928   if (current_pc == pc)
929     {
930       cache->sp_offset += 4;
931       return current_pc;
932     }
933 
934   if (current_pc == pc + 1)
935     {
936       cache->pc_in_eax = 1;
937       return current_pc;
938     }
939 
940   if (buf[1] == proto1[1])
941     return pc + 4;
942   else
943     return pc + 5;
944 }
945 
946 static CORE_ADDR
947 i386_skip_probe (CORE_ADDR pc)
948 {
949   /* A function may start with
950 
951         pushl constant
952         call _probe
953 	addl $4, %esp
954 
955      followed by
956 
957         pushl %ebp
958 
959      etc.  */
960   gdb_byte buf[8];
961   gdb_byte op;
962 
963   target_read_memory (pc, &op, 1);
964 
965   if (op == 0x68 || op == 0x6a)
966     {
967       int delta;
968 
969       /* Skip past the `pushl' instruction; it has either a one-byte or a
970 	 four-byte operand, depending on the opcode.  */
971       if (op == 0x68)
972 	delta = 5;
973       else
974 	delta = 2;
975 
976       /* Read the following 8 bytes, which should be `call _probe' (6
977 	 bytes) followed by `addl $4,%esp' (2 bytes).  */
978       read_memory (pc + delta, buf, sizeof (buf));
979       if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
980 	pc += delta + sizeof (buf);
981     }
982 
983   return pc;
984 }
985 
986 /* GCC 4.1 and later, can put code in the prologue to realign the
987    stack pointer.  Check whether PC points to such code, and update
988    CACHE accordingly.  Return the first instruction after the code
989    sequence or CURRENT_PC, whichever is smaller.  If we don't
990    recognize the code, return PC.  */
991 
992 static CORE_ADDR
993 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
994 			  struct i386_frame_cache *cache)
995 {
996   /* There are 2 code sequences to re-align stack before the frame
997      gets set up:
998 
999 	1. Use a caller-saved saved register:
1000 
1001 		leal  4(%esp), %reg
1002 		andl  $-XXX, %esp
1003 		pushl -4(%reg)
1004 
1005 	2. Use a callee-saved saved register:
1006 
1007 		pushl %reg
1008 		leal  8(%esp), %reg
1009 		andl  $-XXX, %esp
1010 		pushl -4(%reg)
1011 
1012      "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1013 
1014      	0x83 0xe4 0xf0			andl $-16, %esp
1015      	0x81 0xe4 0x00 0xff 0xff 0xff	andl $-256, %esp
1016    */
1017 
1018   gdb_byte buf[14];
1019   int reg;
1020   int offset, offset_and;
1021   static int regnums[8] = {
1022     I386_EAX_REGNUM,		/* %eax */
1023     I386_ECX_REGNUM,		/* %ecx */
1024     I386_EDX_REGNUM,		/* %edx */
1025     I386_EBX_REGNUM,		/* %ebx */
1026     I386_ESP_REGNUM,		/* %esp */
1027     I386_EBP_REGNUM,		/* %ebp */
1028     I386_ESI_REGNUM,		/* %esi */
1029     I386_EDI_REGNUM		/* %edi */
1030   };
1031 
1032   if (target_read_memory (pc, buf, sizeof buf))
1033     return pc;
1034 
1035   /* Check caller-saved saved register.  The first instruction has
1036      to be "leal 4(%esp), %reg".  */
1037   if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1038     {
1039       /* MOD must be binary 10 and R/M must be binary 100.  */
1040       if ((buf[1] & 0xc7) != 0x44)
1041 	return pc;
1042 
1043       /* REG has register number.  */
1044       reg = (buf[1] >> 3) & 7;
1045       offset = 4;
1046     }
1047   else
1048     {
1049       /* Check callee-saved saved register.  The first instruction
1050 	 has to be "pushl %reg".  */
1051       if ((buf[0] & 0xf8) != 0x50)
1052 	return pc;
1053 
1054       /* Get register.  */
1055       reg = buf[0] & 0x7;
1056 
1057       /* The next instruction has to be "leal 8(%esp), %reg".  */
1058       if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1059 	return pc;
1060 
1061       /* MOD must be binary 10 and R/M must be binary 100.  */
1062       if ((buf[2] & 0xc7) != 0x44)
1063 	return pc;
1064 
1065       /* REG has register number.  Registers in pushl and leal have to
1066 	 be the same.  */
1067       if (reg != ((buf[2] >> 3) & 7))
1068 	return pc;
1069 
1070       offset = 5;
1071     }
1072 
1073   /* Rigister can't be %esp nor %ebp.  */
1074   if (reg == 4 || reg == 5)
1075     return pc;
1076 
1077   /* The next instruction has to be "andl $-XXX, %esp".  */
1078   if (buf[offset + 1] != 0xe4
1079       || (buf[offset] != 0x81 && buf[offset] != 0x83))
1080     return pc;
1081 
1082   offset_and = offset;
1083   offset += buf[offset] == 0x81 ? 6 : 3;
1084 
1085   /* The next instruction has to be "pushl -4(%reg)".  8bit -4 is
1086      0xfc.  REG must be binary 110 and MOD must be binary 01.  */
1087   if (buf[offset] != 0xff
1088       || buf[offset + 2] != 0xfc
1089       || (buf[offset + 1] & 0xf8) != 0x70)
1090     return pc;
1091 
1092   /* R/M has register.  Registers in leal and pushl have to be the
1093      same.  */
1094   if (reg != (buf[offset + 1] & 7))
1095     return pc;
1096 
1097   if (current_pc > pc + offset_and)
1098     cache->saved_sp_reg = regnums[reg];
1099 
1100   return min (pc + offset + 3, current_pc);
1101 }
1102 
1103 /* Maximum instruction length we need to handle.  */
1104 #define I386_MAX_MATCHED_INSN_LEN	6
1105 
1106 /* Instruction description.  */
1107 struct i386_insn
1108 {
1109   size_t len;
1110   gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1111   gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
1112 };
1113 
1114 /* Search for the instruction at PC in the list SKIP_INSNS.  Return
1115    the first instruction description that matches.  Otherwise, return
1116    NULL.  */
1117 
1118 static struct i386_insn *
1119 i386_match_insn (CORE_ADDR pc, struct i386_insn *skip_insns)
1120 {
1121   struct i386_insn *insn;
1122   gdb_byte op;
1123 
1124   target_read_memory (pc, &op, 1);
1125 
1126   for (insn = skip_insns; insn->len > 0; insn++)
1127     {
1128       if ((op & insn->mask[0]) == insn->insn[0])
1129 	{
1130 	  gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1131 	  int insn_matched = 1;
1132 	  size_t i;
1133 
1134 	  gdb_assert (insn->len > 1);
1135 	  gdb_assert (insn->len <= I386_MAX_MATCHED_INSN_LEN);
1136 
1137 	  target_read_memory (pc + 1, buf, insn->len - 1);
1138 	  for (i = 1; i < insn->len; i++)
1139 	    {
1140 	      if ((buf[i - 1] & insn->mask[i]) != insn->insn[i])
1141 		insn_matched = 0;
1142 	    }
1143 
1144 	  if (insn_matched)
1145 	    return insn;
1146 	}
1147     }
1148 
1149   return NULL;
1150 }
1151 
1152 /* Some special instructions that might be migrated by GCC into the
1153    part of the prologue that sets up the new stack frame.  Because the
1154    stack frame hasn't been setup yet, no registers have been saved
1155    yet, and only the scratch registers %eax, %ecx and %edx can be
1156    touched.  */
1157 
1158 struct i386_insn i386_frame_setup_skip_insns[] =
1159 {
1160   /* Check for `movb imm8, r' and `movl imm32, r'.
1161 
1162      ??? Should we handle 16-bit operand-sizes here?  */
1163 
1164   /* `movb imm8, %al' and `movb imm8, %ah' */
1165   /* `movb imm8, %cl' and `movb imm8, %ch' */
1166   { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1167   /* `movb imm8, %dl' and `movb imm8, %dh' */
1168   { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1169   /* `movl imm32, %eax' and `movl imm32, %ecx' */
1170   { 5, { 0xb8 }, { 0xfe } },
1171   /* `movl imm32, %edx' */
1172   { 5, { 0xba }, { 0xff } },
1173 
1174   /* Check for `mov imm32, r32'.  Note that there is an alternative
1175      encoding for `mov m32, %eax'.
1176 
1177      ??? Should we handle SIB adressing here?
1178      ??? Should we handle 16-bit operand-sizes here?  */
1179 
1180   /* `movl m32, %eax' */
1181   { 5, { 0xa1 }, { 0xff } },
1182   /* `movl m32, %eax' and `mov; m32, %ecx' */
1183   { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1184   /* `movl m32, %edx' */
1185   { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1186 
1187   /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1188      Because of the symmetry, there are actually two ways to encode
1189      these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1190      opcode bytes 0x31 and 0x33 for `xorl'.  */
1191 
1192   /* `subl %eax, %eax' */
1193   { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1194   /* `subl %ecx, %ecx' */
1195   { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1196   /* `subl %edx, %edx' */
1197   { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1198   /* `xorl %eax, %eax' */
1199   { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1200   /* `xorl %ecx, %ecx' */
1201   { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1202   /* `xorl %edx, %edx' */
1203   { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1204   { 0 }
1205 };
1206 
1207 
1208 /* Check whether PC points to a no-op instruction.  */
1209 static CORE_ADDR
1210 i386_skip_noop (CORE_ADDR pc)
1211 {
1212   gdb_byte op;
1213   int check = 1;
1214 
1215   target_read_memory (pc, &op, 1);
1216 
1217   while (check)
1218     {
1219       check = 0;
1220       /* Ignore `nop' instruction.  */
1221       if (op == 0x90)
1222 	{
1223 	  pc += 1;
1224 	  target_read_memory (pc, &op, 1);
1225 	  check = 1;
1226 	}
1227       /* Ignore no-op instruction `mov %edi, %edi'.
1228 	 Microsoft system dlls often start with
1229 	 a `mov %edi,%edi' instruction.
1230 	 The 5 bytes before the function start are
1231 	 filled with `nop' instructions.
1232 	 This pattern can be used for hot-patching:
1233 	 The `mov %edi, %edi' instruction can be replaced by a
1234 	 near jump to the location of the 5 `nop' instructions
1235 	 which can be replaced by a 32-bit jump to anywhere
1236 	 in the 32-bit address space.  */
1237 
1238       else if (op == 0x8b)
1239 	{
1240 	  target_read_memory (pc + 1, &op, 1);
1241 	  if (op == 0xff)
1242 	    {
1243 	      pc += 2;
1244 	      target_read_memory (pc, &op, 1);
1245 	      check = 1;
1246 	    }
1247 	}
1248     }
1249   return pc;
1250 }
1251 
1252 /* Check whether PC points at a code that sets up a new stack frame.
1253    If so, it updates CACHE and returns the address of the first
1254    instruction after the sequence that sets up the frame or LIMIT,
1255    whichever is smaller.  If we don't recognize the code, return PC.  */
1256 
1257 static CORE_ADDR
1258 i386_analyze_frame_setup (struct gdbarch *gdbarch,
1259 			  CORE_ADDR pc, CORE_ADDR limit,
1260 			  struct i386_frame_cache *cache)
1261 {
1262   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1263   struct i386_insn *insn;
1264   gdb_byte op;
1265   int skip = 0;
1266 
1267   if (limit <= pc)
1268     return limit;
1269 
1270   target_read_memory (pc, &op, 1);
1271 
1272   if (op == 0x55)		/* pushl %ebp */
1273     {
1274       /* Take into account that we've executed the `pushl %ebp' that
1275 	 starts this instruction sequence.  */
1276       cache->saved_regs[I386_EBP_REGNUM] = 0;
1277       cache->sp_offset += 4;
1278       pc++;
1279 
1280       /* If that's all, return now.  */
1281       if (limit <= pc)
1282 	return limit;
1283 
1284       /* Check for some special instructions that might be migrated by
1285 	 GCC into the prologue and skip them.  At this point in the
1286 	 prologue, code should only touch the scratch registers %eax,
1287 	 %ecx and %edx, so while the number of posibilities is sheer,
1288 	 it is limited.
1289 
1290 	 Make sure we only skip these instructions if we later see the
1291 	 `movl %esp, %ebp' that actually sets up the frame.  */
1292       while (pc + skip < limit)
1293 	{
1294 	  insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1295 	  if (insn == NULL)
1296 	    break;
1297 
1298 	  skip += insn->len;
1299 	}
1300 
1301       /* If that's all, return now.  */
1302       if (limit <= pc + skip)
1303 	return limit;
1304 
1305       target_read_memory (pc + skip, &op, 1);
1306 
1307       /* Check for `movl %esp, %ebp' -- can be written in two ways.  */
1308       switch (op)
1309 	{
1310 	case 0x8b:
1311 	  if (read_memory_unsigned_integer (pc + skip + 1, 1, byte_order)
1312 	      != 0xec)
1313 	    return pc;
1314 	  break;
1315 	case 0x89:
1316 	  if (read_memory_unsigned_integer (pc + skip + 1, 1, byte_order)
1317 	      != 0xe5)
1318 	    return pc;
1319 	  break;
1320 	default:
1321 	  return pc;
1322 	}
1323 
1324       /* OK, we actually have a frame.  We just don't know how large
1325 	 it is yet.  Set its size to zero.  We'll adjust it if
1326 	 necessary.  We also now commit to skipping the special
1327 	 instructions mentioned before.  */
1328       cache->locals = 0;
1329       pc += (skip + 2);
1330 
1331       /* If that's all, return now.  */
1332       if (limit <= pc)
1333 	return limit;
1334 
1335       /* Check for stack adjustment
1336 
1337 	    subl $XXX, %esp
1338 
1339 	 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1340 	 reg, so we don't have to worry about a data16 prefix.  */
1341       target_read_memory (pc, &op, 1);
1342       if (op == 0x83)
1343 	{
1344 	  /* `subl' with 8-bit immediate.  */
1345 	  if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1346 	    /* Some instruction starting with 0x83 other than `subl'.  */
1347 	    return pc;
1348 
1349 	  /* `subl' with signed 8-bit immediate (though it wouldn't
1350 	     make sense to be negative).  */
1351 	  cache->locals = read_memory_integer (pc + 2, 1, byte_order);
1352 	  return pc + 3;
1353 	}
1354       else if (op == 0x81)
1355 	{
1356 	  /* Maybe it is `subl' with a 32-bit immediate.  */
1357 	  if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1358 	    /* Some instruction starting with 0x81 other than `subl'.  */
1359 	    return pc;
1360 
1361 	  /* It is `subl' with a 32-bit immediate.  */
1362 	  cache->locals = read_memory_integer (pc + 2, 4, byte_order);
1363 	  return pc + 6;
1364 	}
1365       else
1366 	{
1367 	  /* Some instruction other than `subl'.  */
1368 	  return pc;
1369 	}
1370     }
1371   else if (op == 0xc8)		/* enter */
1372     {
1373       cache->locals = read_memory_unsigned_integer (pc + 1, 2, byte_order);
1374       return pc + 4;
1375     }
1376 
1377   return pc;
1378 }
1379 
1380 /* Check whether PC points at code that saves registers on the stack.
1381    If so, it updates CACHE and returns the address of the first
1382    instruction after the register saves or CURRENT_PC, whichever is
1383    smaller.  Otherwise, return PC.  */
1384 
1385 static CORE_ADDR
1386 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1387 			     struct i386_frame_cache *cache)
1388 {
1389   CORE_ADDR offset = 0;
1390   gdb_byte op;
1391   int i;
1392 
1393   if (cache->locals > 0)
1394     offset -= cache->locals;
1395   for (i = 0; i < 8 && pc < current_pc; i++)
1396     {
1397       target_read_memory (pc, &op, 1);
1398       if (op < 0x50 || op > 0x57)
1399 	break;
1400 
1401       offset -= 4;
1402       cache->saved_regs[op - 0x50] = offset;
1403       cache->sp_offset += 4;
1404       pc++;
1405     }
1406 
1407   return pc;
1408 }
1409 
1410 /* Do a full analysis of the prologue at PC and update CACHE
1411    accordingly.  Bail out early if CURRENT_PC is reached.  Return the
1412    address where the analysis stopped.
1413 
1414    We handle these cases:
1415 
1416    The startup sequence can be at the start of the function, or the
1417    function can start with a branch to startup code at the end.
1418 
1419    %ebp can be set up with either the 'enter' instruction, or "pushl
1420    %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1421    once used in the System V compiler).
1422 
1423    Local space is allocated just below the saved %ebp by either the
1424    'enter' instruction, or by "subl $<size>, %esp".  'enter' has a
1425    16-bit unsigned argument for space to allocate, and the 'addl'
1426    instruction could have either a signed byte, or 32-bit immediate.
1427 
1428    Next, the registers used by this function are pushed.  With the
1429    System V compiler they will always be in the order: %edi, %esi,
1430    %ebx (and sometimes a harmless bug causes it to also save but not
1431    restore %eax); however, the code below is willing to see the pushes
1432    in any order, and will handle up to 8 of them.
1433 
1434    If the setup sequence is at the end of the function, then the next
1435    instruction will be a branch back to the start.  */
1436 
1437 static CORE_ADDR
1438 i386_analyze_prologue (struct gdbarch *gdbarch,
1439 		       CORE_ADDR pc, CORE_ADDR current_pc,
1440 		       struct i386_frame_cache *cache)
1441 {
1442   pc = i386_skip_noop (pc);
1443   pc = i386_follow_jump (gdbarch, pc);
1444   pc = i386_analyze_struct_return (pc, current_pc, cache);
1445   pc = i386_skip_probe (pc);
1446   pc = i386_analyze_stack_align (pc, current_pc, cache);
1447   pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
1448   return i386_analyze_register_saves (pc, current_pc, cache);
1449 }
1450 
1451 /* Return PC of first real instruction.  */
1452 
1453 static CORE_ADDR
1454 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1455 {
1456   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1457 
1458   static gdb_byte pic_pat[6] =
1459   {
1460     0xe8, 0, 0, 0, 0,		/* call 0x0 */
1461     0x5b,			/* popl %ebx */
1462   };
1463   struct i386_frame_cache cache;
1464   CORE_ADDR pc;
1465   gdb_byte op;
1466   int i;
1467 
1468   cache.locals = -1;
1469   pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
1470   if (cache.locals < 0)
1471     return start_pc;
1472 
1473   /* Found valid frame setup.  */
1474 
1475   /* The native cc on SVR4 in -K PIC mode inserts the following code
1476      to get the address of the global offset table (GOT) into register
1477      %ebx:
1478 
1479         call	0x0
1480 	popl    %ebx
1481         movl    %ebx,x(%ebp)    (optional)
1482         addl    y,%ebx
1483 
1484      This code is with the rest of the prologue (at the end of the
1485      function), so we have to skip it to get to the first real
1486      instruction at the start of the function.  */
1487 
1488   for (i = 0; i < 6; i++)
1489     {
1490       target_read_memory (pc + i, &op, 1);
1491       if (pic_pat[i] != op)
1492 	break;
1493     }
1494   if (i == 6)
1495     {
1496       int delta = 6;
1497 
1498       target_read_memory (pc + delta, &op, 1);
1499 
1500       if (op == 0x89)		/* movl %ebx, x(%ebp) */
1501 	{
1502 	  op = read_memory_unsigned_integer (pc + delta + 1, 1, byte_order);
1503 
1504 	  if (op == 0x5d)	/* One byte offset from %ebp.  */
1505 	    delta += 3;
1506 	  else if (op == 0x9d)	/* Four byte offset from %ebp.  */
1507 	    delta += 6;
1508 	  else			/* Unexpected instruction.  */
1509 	    delta = 0;
1510 
1511           target_read_memory (pc + delta, &op, 1);
1512 	}
1513 
1514       /* addl y,%ebx */
1515       if (delta > 0 && op == 0x81
1516 	  && read_memory_unsigned_integer (pc + delta + 1, 1, byte_order)
1517 	     == 0xc3)
1518 	{
1519 	  pc += delta + 6;
1520 	}
1521     }
1522 
1523   /* If the function starts with a branch (to startup code at the end)
1524      the last instruction should bring us back to the first
1525      instruction of the real code.  */
1526   if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1527     pc = i386_follow_jump (gdbarch, pc);
1528 
1529   return pc;
1530 }
1531 
1532 /* Check that the code pointed to by PC corresponds to a call to
1533    __main, skip it if so.  Return PC otherwise.  */
1534 
1535 CORE_ADDR
1536 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1537 {
1538   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1539   gdb_byte op;
1540 
1541   target_read_memory (pc, &op, 1);
1542   if (op == 0xe8)
1543     {
1544       gdb_byte buf[4];
1545 
1546       if (target_read_memory (pc + 1, buf, sizeof buf) == 0)
1547  	{
1548 	  /* Make sure address is computed correctly as a 32bit
1549 	     integer even if CORE_ADDR is 64 bit wide.  */
1550  	  struct minimal_symbol *s;
1551  	  CORE_ADDR call_dest;
1552 
1553 	  call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
1554 	  call_dest = call_dest & 0xffffffffU;
1555  	  s = lookup_minimal_symbol_by_pc (call_dest);
1556  	  if (s != NULL
1557  	      && SYMBOL_LINKAGE_NAME (s) != NULL
1558  	      && strcmp (SYMBOL_LINKAGE_NAME (s), "__main") == 0)
1559  	    pc += 5;
1560  	}
1561     }
1562 
1563   return pc;
1564 }
1565 
1566 /* This function is 64-bit safe.  */
1567 
1568 static CORE_ADDR
1569 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1570 {
1571   gdb_byte buf[8];
1572 
1573   frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1574   return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1575 }
1576 
1577 
1578 /* Normal frames.  */
1579 
1580 static struct i386_frame_cache *
1581 i386_frame_cache (struct frame_info *this_frame, void **this_cache)
1582 {
1583   struct gdbarch *gdbarch = get_frame_arch (this_frame);
1584   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1585   struct i386_frame_cache *cache;
1586   gdb_byte buf[4];
1587   int i;
1588 
1589   if (*this_cache)
1590     return *this_cache;
1591 
1592   cache = i386_alloc_frame_cache ();
1593   *this_cache = cache;
1594 
1595   /* In principle, for normal frames, %ebp holds the frame pointer,
1596      which holds the base address for the current stack frame.
1597      However, for functions that don't need it, the frame pointer is
1598      optional.  For these "frameless" functions the frame pointer is
1599      actually the frame pointer of the calling frame.  Signal
1600      trampolines are just a special case of a "frameless" function.
1601      They (usually) share their frame pointer with the frame that was
1602      in progress when the signal occurred.  */
1603 
1604   get_frame_register (this_frame, I386_EBP_REGNUM, buf);
1605   cache->base = extract_unsigned_integer (buf, 4, byte_order);
1606   if (cache->base == 0)
1607     return cache;
1608 
1609   /* For normal frames, %eip is stored at 4(%ebp).  */
1610   cache->saved_regs[I386_EIP_REGNUM] = 4;
1611 
1612   cache->pc = get_frame_func (this_frame);
1613   if (cache->pc != 0)
1614     i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
1615 			   cache);
1616 
1617   if (cache->saved_sp_reg != -1)
1618     {
1619       /* Saved stack pointer has been saved.  */
1620       get_frame_register (this_frame, cache->saved_sp_reg, buf);
1621       cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1622     }
1623 
1624   if (cache->locals < 0)
1625     {
1626       /* We didn't find a valid frame, which means that CACHE->base
1627 	 currently holds the frame pointer for our calling frame.  If
1628 	 we're at the start of a function, or somewhere half-way its
1629 	 prologue, the function's frame probably hasn't been fully
1630 	 setup yet.  Try to reconstruct the base address for the stack
1631 	 frame by looking at the stack pointer.  For truly "frameless"
1632 	 functions this might work too.  */
1633 
1634       if (cache->saved_sp_reg != -1)
1635 	{
1636 	  /* We're halfway aligning the stack.  */
1637 	  cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
1638 	  cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
1639 
1640 	  /* This will be added back below.  */
1641 	  cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
1642 	}
1643       else if (cache->pc != 0
1644 	       || target_read_memory (get_frame_pc (this_frame), buf, 1))
1645 	{
1646 	  /* We're in a known function, but did not find a frame
1647 	     setup.  Assume that the function does not use %ebp.
1648 	     Alternatively, we may have jumped to an invalid
1649 	     address; in that case there is definitely no new
1650 	     frame in %ebp.  */
1651 	  get_frame_register (this_frame, I386_ESP_REGNUM, buf);
1652 	  cache->base = extract_unsigned_integer (buf, 4, byte_order)
1653 			+ cache->sp_offset;
1654 	}
1655       else
1656 	/* We're in an unknown function.  We could not find the start
1657 	   of the function to analyze the prologue; our best option is
1658 	   to assume a typical frame layout with the caller's %ebp
1659 	   saved.  */
1660 	cache->saved_regs[I386_EBP_REGNUM] = 0;
1661     }
1662 
1663   /* Now that we have the base address for the stack frame we can
1664      calculate the value of %esp in the calling frame.  */
1665   if (cache->saved_sp == 0)
1666     cache->saved_sp = cache->base + 8;
1667 
1668   /* Adjust all the saved registers such that they contain addresses
1669      instead of offsets.  */
1670   for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1671     if (cache->saved_regs[i] != -1)
1672       cache->saved_regs[i] += cache->base;
1673 
1674   return cache;
1675 }
1676 
1677 static void
1678 i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
1679 		    struct frame_id *this_id)
1680 {
1681   struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1682 
1683   /* This marks the outermost frame.  */
1684   if (cache->base == 0)
1685     return;
1686 
1687   /* See the end of i386_push_dummy_call.  */
1688   (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1689 }
1690 
1691 static struct value *
1692 i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1693 			  int regnum)
1694 {
1695   struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1696 
1697   gdb_assert (regnum >= 0);
1698 
1699   /* The System V ABI says that:
1700 
1701      "The flags register contains the system flags, such as the
1702      direction flag and the carry flag.  The direction flag must be
1703      set to the forward (that is, zero) direction before entry and
1704      upon exit from a function.  Other user flags have no specified
1705      role in the standard calling sequence and are not preserved."
1706 
1707      To guarantee the "upon exit" part of that statement we fake a
1708      saved flags register that has its direction flag cleared.
1709 
1710      Note that GCC doesn't seem to rely on the fact that the direction
1711      flag is cleared after a function return; it always explicitly
1712      clears the flag before operations where it matters.
1713 
1714      FIXME: kettenis/20030316: I'm not quite sure whether this is the
1715      right thing to do.  The way we fake the flags register here makes
1716      it impossible to change it.  */
1717 
1718   if (regnum == I386_EFLAGS_REGNUM)
1719     {
1720       ULONGEST val;
1721 
1722       val = get_frame_register_unsigned (this_frame, regnum);
1723       val &= ~(1 << 10);
1724       return frame_unwind_got_constant (this_frame, regnum, val);
1725     }
1726 
1727   if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
1728     return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
1729 
1730   if (regnum == I386_ESP_REGNUM && cache->saved_sp)
1731     return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
1732 
1733   if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
1734     return frame_unwind_got_memory (this_frame, regnum,
1735 				    cache->saved_regs[regnum]);
1736 
1737   return frame_unwind_got_register (this_frame, regnum, regnum);
1738 }
1739 
1740 static const struct frame_unwind i386_frame_unwind =
1741 {
1742   NORMAL_FRAME,
1743   i386_frame_this_id,
1744   i386_frame_prev_register,
1745   NULL,
1746   default_frame_sniffer
1747 };
1748 
1749 /* Normal frames, but in a function epilogue.  */
1750 
1751 /* The epilogue is defined here as the 'ret' instruction, which will
1752    follow any instruction such as 'leave' or 'pop %ebp' that destroys
1753    the function's stack frame.  */
1754 
1755 static int
1756 i386_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
1757 {
1758   gdb_byte insn;
1759 
1760   if (target_read_memory (pc, &insn, 1))
1761     return 0;	/* Can't read memory at pc.  */
1762 
1763   if (insn != 0xc3)	/* 'ret' instruction.  */
1764     return 0;
1765 
1766   return 1;
1767 }
1768 
1769 static int
1770 i386_epilogue_frame_sniffer (const struct frame_unwind *self,
1771 			     struct frame_info *this_frame,
1772 			     void **this_prologue_cache)
1773 {
1774   if (frame_relative_level (this_frame) == 0)
1775     return i386_in_function_epilogue_p (get_frame_arch (this_frame),
1776 					get_frame_pc (this_frame));
1777   else
1778     return 0;
1779 }
1780 
1781 static struct i386_frame_cache *
1782 i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
1783 {
1784   struct gdbarch *gdbarch = get_frame_arch (this_frame);
1785   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1786   struct i386_frame_cache *cache;
1787   gdb_byte buf[4];
1788 
1789   if (*this_cache)
1790     return *this_cache;
1791 
1792   cache = i386_alloc_frame_cache ();
1793   *this_cache = cache;
1794 
1795   /* Cache base will be %esp plus cache->sp_offset (-4).  */
1796   get_frame_register (this_frame, I386_ESP_REGNUM, buf);
1797   cache->base = extract_unsigned_integer (buf, 4,
1798 					  byte_order) + cache->sp_offset;
1799 
1800   /* Cache pc will be the frame func.  */
1801   cache->pc = get_frame_pc (this_frame);
1802 
1803   /* The saved %esp will be at cache->base plus 8.  */
1804   cache->saved_sp = cache->base + 8;
1805 
1806   /* The saved %eip will be at cache->base plus 4.  */
1807   cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
1808 
1809   return cache;
1810 }
1811 
1812 static void
1813 i386_epilogue_frame_this_id (struct frame_info *this_frame,
1814 			     void **this_cache,
1815 			     struct frame_id *this_id)
1816 {
1817   struct i386_frame_cache *cache = i386_epilogue_frame_cache (this_frame,
1818 							      this_cache);
1819 
1820   (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1821 }
1822 
1823 static const struct frame_unwind i386_epilogue_frame_unwind =
1824 {
1825   NORMAL_FRAME,
1826   i386_epilogue_frame_this_id,
1827   i386_frame_prev_register,
1828   NULL,
1829   i386_epilogue_frame_sniffer
1830 };
1831 
1832 
1833 /* Signal trampolines.  */
1834 
1835 static struct i386_frame_cache *
1836 i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
1837 {
1838   struct gdbarch *gdbarch = get_frame_arch (this_frame);
1839   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1840   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1841   struct i386_frame_cache *cache;
1842   CORE_ADDR addr;
1843   gdb_byte buf[4];
1844 
1845   if (*this_cache)
1846     return *this_cache;
1847 
1848   cache = i386_alloc_frame_cache ();
1849 
1850   get_frame_register (this_frame, I386_ESP_REGNUM, buf);
1851   cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
1852 
1853   addr = tdep->sigcontext_addr (this_frame);
1854   if (tdep->sc_reg_offset)
1855     {
1856       int i;
1857 
1858       gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
1859 
1860       for (i = 0; i < tdep->sc_num_regs; i++)
1861 	if (tdep->sc_reg_offset[i] != -1)
1862 	  cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
1863     }
1864   else
1865     {
1866       cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
1867       cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
1868     }
1869 
1870   *this_cache = cache;
1871   return cache;
1872 }
1873 
1874 static void
1875 i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
1876 			     struct frame_id *this_id)
1877 {
1878   struct i386_frame_cache *cache =
1879     i386_sigtramp_frame_cache (this_frame, this_cache);
1880 
1881   /* See the end of i386_push_dummy_call.  */
1882   (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
1883 }
1884 
1885 static struct value *
1886 i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
1887 				   void **this_cache, int regnum)
1888 {
1889   /* Make sure we've initialized the cache.  */
1890   i386_sigtramp_frame_cache (this_frame, this_cache);
1891 
1892   return i386_frame_prev_register (this_frame, this_cache, regnum);
1893 }
1894 
1895 static int
1896 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
1897 			     struct frame_info *this_frame,
1898 			     void **this_prologue_cache)
1899 {
1900   struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
1901 
1902   /* We shouldn't even bother if we don't have a sigcontext_addr
1903      handler.  */
1904   if (tdep->sigcontext_addr == NULL)
1905     return 0;
1906 
1907   if (tdep->sigtramp_p != NULL)
1908     {
1909       if (tdep->sigtramp_p (this_frame))
1910 	return 1;
1911     }
1912 
1913   if (tdep->sigtramp_start != 0)
1914     {
1915       CORE_ADDR pc = get_frame_pc (this_frame);
1916 
1917       gdb_assert (tdep->sigtramp_end != 0);
1918       if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
1919 	return 1;
1920     }
1921 
1922   return 0;
1923 }
1924 
1925 static const struct frame_unwind i386_sigtramp_frame_unwind =
1926 {
1927   SIGTRAMP_FRAME,
1928   i386_sigtramp_frame_this_id,
1929   i386_sigtramp_frame_prev_register,
1930   NULL,
1931   i386_sigtramp_frame_sniffer
1932 };
1933 
1934 
1935 static CORE_ADDR
1936 i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
1937 {
1938   struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1939 
1940   return cache->base;
1941 }
1942 
1943 static const struct frame_base i386_frame_base =
1944 {
1945   &i386_frame_unwind,
1946   i386_frame_base_address,
1947   i386_frame_base_address,
1948   i386_frame_base_address
1949 };
1950 
1951 static struct frame_id
1952 i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1953 {
1954   CORE_ADDR fp;
1955 
1956   fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
1957 
1958   /* See the end of i386_push_dummy_call.  */
1959   return frame_id_build (fp + 8, get_frame_pc (this_frame));
1960 }
1961 
1962 
1963 /* Figure out where the longjmp will land.  Slurp the args out of the
1964    stack.  We expect the first arg to be a pointer to the jmp_buf
1965    structure from which we extract the address that we will land at.
1966    This address is copied into PC.  This routine returns non-zero on
1967    success.  */
1968 
1969 static int
1970 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1971 {
1972   gdb_byte buf[4];
1973   CORE_ADDR sp, jb_addr;
1974   struct gdbarch *gdbarch = get_frame_arch (frame);
1975   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1976   int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
1977 
1978   /* If JB_PC_OFFSET is -1, we have no way to find out where the
1979      longjmp will land.  */
1980   if (jb_pc_offset == -1)
1981     return 0;
1982 
1983   get_frame_register (frame, I386_ESP_REGNUM, buf);
1984   sp = extract_unsigned_integer (buf, 4, byte_order);
1985   if (target_read_memory (sp + 4, buf, 4))
1986     return 0;
1987 
1988   jb_addr = extract_unsigned_integer (buf, 4, byte_order);
1989   if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
1990     return 0;
1991 
1992   *pc = extract_unsigned_integer (buf, 4, byte_order);
1993   return 1;
1994 }
1995 
1996 
1997 /* Check whether TYPE must be 16-byte-aligned when passed as a
1998    function argument.  16-byte vectors, _Decimal128 and structures or
1999    unions containing such types must be 16-byte-aligned; other
2000    arguments are 4-byte-aligned.  */
2001 
2002 static int
2003 i386_16_byte_align_p (struct type *type)
2004 {
2005   type = check_typedef (type);
2006   if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2007        || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2008       && TYPE_LENGTH (type) == 16)
2009     return 1;
2010   if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2011     return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2012   if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2013       || TYPE_CODE (type) == TYPE_CODE_UNION)
2014     {
2015       int i;
2016       for (i = 0; i < TYPE_NFIELDS (type); i++)
2017 	{
2018 	  if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2019 	    return 1;
2020 	}
2021     }
2022   return 0;
2023 }
2024 
2025 static CORE_ADDR
2026 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2027 		      struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2028 		      struct value **args, CORE_ADDR sp, int struct_return,
2029 		      CORE_ADDR struct_addr)
2030 {
2031   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2032   gdb_byte buf[4];
2033   int i;
2034   int write_pass;
2035   int args_space = 0;
2036 
2037   /* Determine the total space required for arguments and struct
2038      return address in a first pass (allowing for 16-byte-aligned
2039      arguments), then push arguments in a second pass.  */
2040 
2041   for (write_pass = 0; write_pass < 2; write_pass++)
2042     {
2043       int args_space_used = 0;
2044       int have_16_byte_aligned_arg = 0;
2045 
2046       if (struct_return)
2047 	{
2048 	  if (write_pass)
2049 	    {
2050 	      /* Push value address.  */
2051 	      store_unsigned_integer (buf, 4, byte_order, struct_addr);
2052 	      write_memory (sp, buf, 4);
2053 	      args_space_used += 4;
2054 	    }
2055 	  else
2056 	    args_space += 4;
2057 	}
2058 
2059       for (i = 0; i < nargs; i++)
2060 	{
2061 	  int len = TYPE_LENGTH (value_enclosing_type (args[i]));
2062 
2063 	  if (write_pass)
2064 	    {
2065 	      if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2066 		args_space_used = align_up (args_space_used, 16);
2067 
2068 	      write_memory (sp + args_space_used,
2069 			    value_contents_all (args[i]), len);
2070 	      /* The System V ABI says that:
2071 
2072 	      "An argument's size is increased, if necessary, to make it a
2073 	      multiple of [32-bit] words.  This may require tail padding,
2074 	      depending on the size of the argument."
2075 
2076 	      This makes sure the stack stays word-aligned.  */
2077 	      args_space_used += align_up (len, 4);
2078 	    }
2079 	  else
2080 	    {
2081 	      if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2082 		{
2083 		  args_space = align_up (args_space, 16);
2084 		  have_16_byte_aligned_arg = 1;
2085 		}
2086 	      args_space += align_up (len, 4);
2087 	    }
2088 	}
2089 
2090       if (!write_pass)
2091 	{
2092 	  if (have_16_byte_aligned_arg)
2093 	    args_space = align_up (args_space, 16);
2094 	  sp -= args_space;
2095 	}
2096     }
2097 
2098   /* Store return address.  */
2099   sp -= 4;
2100   store_unsigned_integer (buf, 4, byte_order, bp_addr);
2101   write_memory (sp, buf, 4);
2102 
2103   /* Finally, update the stack pointer...  */
2104   store_unsigned_integer (buf, 4, byte_order, sp);
2105   regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
2106 
2107   /* ...and fake a frame pointer.  */
2108   regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
2109 
2110   /* MarkK wrote: This "+ 8" is all over the place:
2111      (i386_frame_this_id, i386_sigtramp_frame_this_id,
2112      i386_dummy_id).  It's there, since all frame unwinders for
2113      a given target have to agree (within a certain margin) on the
2114      definition of the stack address of a frame.  Otherwise frame id
2115      comparison might not work correctly.  Since DWARF2/GCC uses the
2116      stack address *before* the function call as a frame's CFA.  On
2117      the i386, when %ebp is used as a frame pointer, the offset
2118      between the contents %ebp and the CFA as defined by GCC.  */
2119   return sp + 8;
2120 }
2121 
2122 /* These registers are used for returning integers (and on some
2123    targets also for returning `struct' and `union' values when their
2124    size and alignment match an integer type).  */
2125 #define LOW_RETURN_REGNUM	I386_EAX_REGNUM /* %eax */
2126 #define HIGH_RETURN_REGNUM	I386_EDX_REGNUM /* %edx */
2127 
2128 /* Read, for architecture GDBARCH, a function return value of TYPE
2129    from REGCACHE, and copy that into VALBUF.  */
2130 
2131 static void
2132 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
2133 			   struct regcache *regcache, gdb_byte *valbuf)
2134 {
2135   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2136   int len = TYPE_LENGTH (type);
2137   gdb_byte buf[I386_MAX_REGISTER_SIZE];
2138 
2139   if (TYPE_CODE (type) == TYPE_CODE_FLT)
2140     {
2141       if (tdep->st0_regnum < 0)
2142 	{
2143 	  warning (_("Cannot find floating-point return value."));
2144 	  memset (valbuf, 0, len);
2145 	  return;
2146 	}
2147 
2148       /* Floating-point return values can be found in %st(0).  Convert
2149 	 its contents to the desired type.  This is probably not
2150 	 exactly how it would happen on the target itself, but it is
2151 	 the best we can do.  */
2152       regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
2153       convert_typed_floating (buf, i387_ext_type (gdbarch), valbuf, type);
2154     }
2155   else
2156     {
2157       int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2158       int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2159 
2160       if (len <= low_size)
2161 	{
2162 	  regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2163 	  memcpy (valbuf, buf, len);
2164 	}
2165       else if (len <= (low_size + high_size))
2166 	{
2167 	  regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2168 	  memcpy (valbuf, buf, low_size);
2169 	  regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
2170 	  memcpy (valbuf + low_size, buf, len - low_size);
2171 	}
2172       else
2173 	internal_error (__FILE__, __LINE__,
2174 			_("Cannot extract return value of %d bytes long."), len);
2175     }
2176 }
2177 
2178 /* Write, for architecture GDBARCH, a function return value of TYPE
2179    from VALBUF into REGCACHE.  */
2180 
2181 static void
2182 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
2183 			 struct regcache *regcache, const gdb_byte *valbuf)
2184 {
2185   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2186   int len = TYPE_LENGTH (type);
2187 
2188   if (TYPE_CODE (type) == TYPE_CODE_FLT)
2189     {
2190       ULONGEST fstat;
2191       gdb_byte buf[I386_MAX_REGISTER_SIZE];
2192 
2193       if (tdep->st0_regnum < 0)
2194 	{
2195 	  warning (_("Cannot set floating-point return value."));
2196 	  return;
2197 	}
2198 
2199       /* Returning floating-point values is a bit tricky.  Apart from
2200          storing the return value in %st(0), we have to simulate the
2201          state of the FPU at function return point.  */
2202 
2203       /* Convert the value found in VALBUF to the extended
2204 	 floating-point format used by the FPU.  This is probably
2205 	 not exactly how it would happen on the target itself, but
2206 	 it is the best we can do.  */
2207       convert_typed_floating (valbuf, type, buf, i387_ext_type (gdbarch));
2208       regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
2209 
2210       /* Set the top of the floating-point register stack to 7.  The
2211          actual value doesn't really matter, but 7 is what a normal
2212          function return would end up with if the program started out
2213          with a freshly initialized FPU.  */
2214       regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2215       fstat |= (7 << 11);
2216       regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
2217 
2218       /* Mark %st(1) through %st(7) as empty.  Since we set the top of
2219          the floating-point register stack to 7, the appropriate value
2220          for the tag word is 0x3fff.  */
2221       regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
2222     }
2223   else
2224     {
2225       int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2226       int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2227 
2228       if (len <= low_size)
2229 	regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
2230       else if (len <= (low_size + high_size))
2231 	{
2232 	  regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
2233 	  regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
2234 				   len - low_size, valbuf + low_size);
2235 	}
2236       else
2237 	internal_error (__FILE__, __LINE__,
2238 			_("Cannot store return value of %d bytes long."), len);
2239     }
2240 }
2241 
2242 
2243 /* This is the variable that is set with "set struct-convention", and
2244    its legitimate values.  */
2245 static const char default_struct_convention[] = "default";
2246 static const char pcc_struct_convention[] = "pcc";
2247 static const char reg_struct_convention[] = "reg";
2248 static const char *valid_conventions[] =
2249 {
2250   default_struct_convention,
2251   pcc_struct_convention,
2252   reg_struct_convention,
2253   NULL
2254 };
2255 static const char *struct_convention = default_struct_convention;
2256 
2257 /* Return non-zero if TYPE, which is assumed to be a structure,
2258    a union type, or an array type, should be returned in registers
2259    for architecture GDBARCH.  */
2260 
2261 static int
2262 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
2263 {
2264   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2265   enum type_code code = TYPE_CODE (type);
2266   int len = TYPE_LENGTH (type);
2267 
2268   gdb_assert (code == TYPE_CODE_STRUCT
2269               || code == TYPE_CODE_UNION
2270               || code == TYPE_CODE_ARRAY);
2271 
2272   if (struct_convention == pcc_struct_convention
2273       || (struct_convention == default_struct_convention
2274 	  && tdep->struct_return == pcc_struct_return))
2275     return 0;
2276 
2277   /* Structures consisting of a single `float', `double' or 'long
2278      double' member are returned in %st(0).  */
2279   if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2280     {
2281       type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2282       if (TYPE_CODE (type) == TYPE_CODE_FLT)
2283 	return (len == 4 || len == 8 || len == 12);
2284     }
2285 
2286   return (len == 1 || len == 2 || len == 4 || len == 8);
2287 }
2288 
2289 /* Determine, for architecture GDBARCH, how a return value of TYPE
2290    should be returned.  If it is supposed to be returned in registers,
2291    and READBUF is non-zero, read the appropriate value from REGCACHE,
2292    and copy it into READBUF.  If WRITEBUF is non-zero, write the value
2293    from WRITEBUF into REGCACHE.  */
2294 
2295 static enum return_value_convention
2296 i386_return_value (struct gdbarch *gdbarch, struct type *func_type,
2297 		   struct type *type, struct regcache *regcache,
2298 		   gdb_byte *readbuf, const gdb_byte *writebuf)
2299 {
2300   enum type_code code = TYPE_CODE (type);
2301 
2302   if (((code == TYPE_CODE_STRUCT
2303 	|| code == TYPE_CODE_UNION
2304 	|| code == TYPE_CODE_ARRAY)
2305        && !i386_reg_struct_return_p (gdbarch, type))
2306       /* 128-bit decimal float uses the struct return convention.  */
2307       || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
2308     {
2309       /* The System V ABI says that:
2310 
2311 	 "A function that returns a structure or union also sets %eax
2312 	 to the value of the original address of the caller's area
2313 	 before it returns.  Thus when the caller receives control
2314 	 again, the address of the returned object resides in register
2315 	 %eax and can be used to access the object."
2316 
2317 	 So the ABI guarantees that we can always find the return
2318 	 value just after the function has returned.  */
2319 
2320       /* Note that the ABI doesn't mention functions returning arrays,
2321          which is something possible in certain languages such as Ada.
2322          In this case, the value is returned as if it was wrapped in
2323          a record, so the convention applied to records also applies
2324          to arrays.  */
2325 
2326       if (readbuf)
2327 	{
2328 	  ULONGEST addr;
2329 
2330 	  regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2331 	  read_memory (addr, readbuf, TYPE_LENGTH (type));
2332 	}
2333 
2334       return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2335     }
2336 
2337   /* This special case is for structures consisting of a single
2338      `float', `double' or 'long double' member.  These structures are
2339      returned in %st(0).  For these structures, we call ourselves
2340      recursively, changing TYPE into the type of the first member of
2341      the structure.  Since that should work for all structures that
2342      have only one member, we don't bother to check the member's type
2343      here.  */
2344   if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2345     {
2346       type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2347       return i386_return_value (gdbarch, func_type, type, regcache,
2348 				readbuf, writebuf);
2349     }
2350 
2351   if (readbuf)
2352     i386_extract_return_value (gdbarch, type, regcache, readbuf);
2353   if (writebuf)
2354     i386_store_return_value (gdbarch, type, regcache, writebuf);
2355 
2356   return RETURN_VALUE_REGISTER_CONVENTION;
2357 }
2358 
2359 
2360 struct type *
2361 i387_ext_type (struct gdbarch *gdbarch)
2362 {
2363   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2364 
2365   if (!tdep->i387_ext_type)
2366     {
2367       tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
2368       gdb_assert (tdep->i387_ext_type != NULL);
2369     }
2370 
2371   return tdep->i387_ext_type;
2372 }
2373 
2374 /* Construct vector type for pseudo YMM registers.  We can't use
2375    tdesc_find_type since YMM isn't described in target description.  */
2376 
2377 static struct type *
2378 i386_ymm_type (struct gdbarch *gdbarch)
2379 {
2380   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2381 
2382   if (!tdep->i386_ymm_type)
2383     {
2384       const struct builtin_type *bt = builtin_type (gdbarch);
2385 
2386       /* The type we're building is this: */
2387 #if 0
2388       union __gdb_builtin_type_vec256i
2389       {
2390         int128_t uint128[2];
2391         int64_t v2_int64[4];
2392         int32_t v4_int32[8];
2393         int16_t v8_int16[16];
2394         int8_t v16_int8[32];
2395         double v2_double[4];
2396         float v4_float[8];
2397       };
2398 #endif
2399 
2400       struct type *t;
2401 
2402       t = arch_composite_type (gdbarch,
2403 			       "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
2404       append_composite_type_field (t, "v8_float",
2405 				   init_vector_type (bt->builtin_float, 8));
2406       append_composite_type_field (t, "v4_double",
2407 				   init_vector_type (bt->builtin_double, 4));
2408       append_composite_type_field (t, "v32_int8",
2409 				   init_vector_type (bt->builtin_int8, 32));
2410       append_composite_type_field (t, "v16_int16",
2411 				   init_vector_type (bt->builtin_int16, 16));
2412       append_composite_type_field (t, "v8_int32",
2413 				   init_vector_type (bt->builtin_int32, 8));
2414       append_composite_type_field (t, "v4_int64",
2415 				   init_vector_type (bt->builtin_int64, 4));
2416       append_composite_type_field (t, "v2_int128",
2417 				   init_vector_type (bt->builtin_int128, 2));
2418 
2419       TYPE_VECTOR (t) = 1;
2420       TYPE_NAME (t) = "builtin_type_vec128i";
2421       tdep->i386_ymm_type = t;
2422     }
2423 
2424   return tdep->i386_ymm_type;
2425 }
2426 
2427 /* Construct vector type for MMX registers.  */
2428 static struct type *
2429 i386_mmx_type (struct gdbarch *gdbarch)
2430 {
2431   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2432 
2433   if (!tdep->i386_mmx_type)
2434     {
2435       const struct builtin_type *bt = builtin_type (gdbarch);
2436 
2437       /* The type we're building is this: */
2438 #if 0
2439       union __gdb_builtin_type_vec64i
2440       {
2441         int64_t uint64;
2442         int32_t v2_int32[2];
2443         int16_t v4_int16[4];
2444         int8_t v8_int8[8];
2445       };
2446 #endif
2447 
2448       struct type *t;
2449 
2450       t = arch_composite_type (gdbarch,
2451 			       "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
2452 
2453       append_composite_type_field (t, "uint64", bt->builtin_int64);
2454       append_composite_type_field (t, "v2_int32",
2455 				   init_vector_type (bt->builtin_int32, 2));
2456       append_composite_type_field (t, "v4_int16",
2457 				   init_vector_type (bt->builtin_int16, 4));
2458       append_composite_type_field (t, "v8_int8",
2459 				   init_vector_type (bt->builtin_int8, 8));
2460 
2461       TYPE_VECTOR (t) = 1;
2462       TYPE_NAME (t) = "builtin_type_vec64i";
2463       tdep->i386_mmx_type = t;
2464     }
2465 
2466   return tdep->i386_mmx_type;
2467 }
2468 
2469 /* Return the GDB type object for the "standard" data type of data in
2470    register REGNUM. */
2471 
2472 static struct type *
2473 i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
2474 {
2475   if (i386_mmx_regnum_p (gdbarch, regnum))
2476     return i386_mmx_type (gdbarch);
2477   else if (i386_ymm_regnum_p (gdbarch, regnum))
2478     return i386_ymm_type (gdbarch);
2479   else
2480     {
2481       const struct builtin_type *bt = builtin_type (gdbarch);
2482       if (i386_byte_regnum_p (gdbarch, regnum))
2483 	return bt->builtin_int8;
2484       else if (i386_word_regnum_p (gdbarch, regnum))
2485 	return bt->builtin_int16;
2486       else if (i386_dword_regnum_p (gdbarch, regnum))
2487 	return bt->builtin_int32;
2488     }
2489 
2490   internal_error (__FILE__, __LINE__, _("invalid regnum"));
2491 }
2492 
2493 /* Map a cooked register onto a raw register or memory.  For the i386,
2494    the MMX registers need to be mapped onto floating point registers.  */
2495 
2496 static int
2497 i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
2498 {
2499   struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
2500   int mmxreg, fpreg;
2501   ULONGEST fstat;
2502   int tos;
2503 
2504   mmxreg = regnum - tdep->mm0_regnum;
2505   regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2506   tos = (fstat >> 11) & 0x7;
2507   fpreg = (mmxreg + tos) % 8;
2508 
2509   return (I387_ST0_REGNUM (tdep) + fpreg);
2510 }
2511 
2512 void
2513 i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2514 			   int regnum, gdb_byte *buf)
2515 {
2516   gdb_byte raw_buf[MAX_REGISTER_SIZE];
2517 
2518   if (i386_mmx_regnum_p (gdbarch, regnum))
2519     {
2520       int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
2521 
2522       /* Extract (always little endian).  */
2523       regcache_raw_read (regcache, fpnum, raw_buf);
2524       memcpy (buf, raw_buf, register_size (gdbarch, regnum));
2525     }
2526   else
2527     {
2528       struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2529 
2530       if (i386_ymm_regnum_p (gdbarch, regnum))
2531 	{
2532 	  regnum -= tdep->ymm0_regnum;
2533 
2534 	  /* Extract (always little endian).  Read lower 128bits. */
2535 	  regcache_raw_read (regcache,
2536 			     I387_XMM0_REGNUM (tdep) + regnum,
2537 			     raw_buf);
2538 	  memcpy (buf, raw_buf, 16);
2539 	  /* Read upper 128bits.  */
2540 	  regcache_raw_read (regcache,
2541 			     tdep->ymm0h_regnum + regnum,
2542 			     raw_buf);
2543 	  memcpy (buf + 16, raw_buf, 16);
2544 	}
2545       else if (i386_word_regnum_p (gdbarch, regnum))
2546 	{
2547 	  int gpnum = regnum - tdep->ax_regnum;
2548 
2549 	  /* Extract (always little endian).  */
2550 	  regcache_raw_read (regcache, gpnum, raw_buf);
2551 	  memcpy (buf, raw_buf, 2);
2552 	}
2553       else if (i386_byte_regnum_p (gdbarch, regnum))
2554 	{
2555 	  /* Check byte pseudo registers last since this function will
2556 	     be called from amd64_pseudo_register_read, which handles
2557 	     byte pseudo registers differently.  */
2558 	  int gpnum = regnum - tdep->al_regnum;
2559 
2560 	  /* Extract (always little endian).  We read both lower and
2561 	     upper registers.  */
2562 	  regcache_raw_read (regcache, gpnum % 4, raw_buf);
2563 	  if (gpnum >= 4)
2564 	    memcpy (buf, raw_buf + 1, 1);
2565 	  else
2566 	    memcpy (buf, raw_buf, 1);
2567 	}
2568       else
2569 	internal_error (__FILE__, __LINE__, _("invalid regnum"));
2570     }
2571 }
2572 
2573 void
2574 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2575 			    int regnum, const gdb_byte *buf)
2576 {
2577   gdb_byte raw_buf[MAX_REGISTER_SIZE];
2578 
2579   if (i386_mmx_regnum_p (gdbarch, regnum))
2580     {
2581       int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
2582 
2583       /* Read ...  */
2584       regcache_raw_read (regcache, fpnum, raw_buf);
2585       /* ... Modify ... (always little endian).  */
2586       memcpy (raw_buf, buf, register_size (gdbarch, regnum));
2587       /* ... Write.  */
2588       regcache_raw_write (regcache, fpnum, raw_buf);
2589     }
2590   else
2591     {
2592       struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2593 
2594       if (i386_ymm_regnum_p (gdbarch, regnum))
2595 	{
2596 	  regnum -= tdep->ymm0_regnum;
2597 
2598 	  /* ... Write lower 128bits.  */
2599 	  regcache_raw_write (regcache,
2600 			     I387_XMM0_REGNUM (tdep) + regnum,
2601 			     buf);
2602 	  /* ... Write upper 128bits.  */
2603 	  regcache_raw_write (regcache,
2604 			     tdep->ymm0h_regnum + regnum,
2605 			     buf + 16);
2606 	}
2607       else if (i386_word_regnum_p (gdbarch, regnum))
2608 	{
2609 	  int gpnum = regnum - tdep->ax_regnum;
2610 
2611 	  /* Read ...  */
2612 	  regcache_raw_read (regcache, gpnum, raw_buf);
2613 	  /* ... Modify ... (always little endian).  */
2614 	  memcpy (raw_buf, buf, 2);
2615 	  /* ... Write.  */
2616 	  regcache_raw_write (regcache, gpnum, raw_buf);
2617 	}
2618       else if (i386_byte_regnum_p (gdbarch, regnum))
2619 	{
2620 	  /* Check byte pseudo registers last since this function will
2621 	     be called from amd64_pseudo_register_read, which handles
2622 	     byte pseudo registers differently.  */
2623 	  int gpnum = regnum - tdep->al_regnum;
2624 
2625 	  /* Read ...  We read both lower and upper registers.  */
2626 	  regcache_raw_read (regcache, gpnum % 4, raw_buf);
2627 	  /* ... Modify ... (always little endian).  */
2628 	  if (gpnum >= 4)
2629 	    memcpy (raw_buf + 1, buf, 1);
2630 	  else
2631 	    memcpy (raw_buf, buf, 1);
2632 	  /* ... Write.  */
2633 	  regcache_raw_write (regcache, gpnum % 4, raw_buf);
2634 	}
2635       else
2636 	internal_error (__FILE__, __LINE__, _("invalid regnum"));
2637     }
2638 }
2639 
2640 
2641 /* Return the register number of the register allocated by GCC after
2642    REGNUM, or -1 if there is no such register.  */
2643 
2644 static int
2645 i386_next_regnum (int regnum)
2646 {
2647   /* GCC allocates the registers in the order:
2648 
2649      %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
2650 
2651      Since storing a variable in %esp doesn't make any sense we return
2652      -1 for %ebp and for %esp itself.  */
2653   static int next_regnum[] =
2654   {
2655     I386_EDX_REGNUM,		/* Slot for %eax.  */
2656     I386_EBX_REGNUM,		/* Slot for %ecx.  */
2657     I386_ECX_REGNUM,		/* Slot for %edx.  */
2658     I386_ESI_REGNUM,		/* Slot for %ebx.  */
2659     -1, -1,			/* Slots for %esp and %ebp.  */
2660     I386_EDI_REGNUM,		/* Slot for %esi.  */
2661     I386_EBP_REGNUM		/* Slot for %edi.  */
2662   };
2663 
2664   if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
2665     return next_regnum[regnum];
2666 
2667   return -1;
2668 }
2669 
2670 /* Return nonzero if a value of type TYPE stored in register REGNUM
2671    needs any special handling.  */
2672 
2673 static int
2674 i386_convert_register_p (struct gdbarch *gdbarch, int regnum, struct type *type)
2675 {
2676   int len = TYPE_LENGTH (type);
2677 
2678   /* Values may be spread across multiple registers.  Most debugging
2679      formats aren't expressive enough to specify the locations, so
2680      some heuristics is involved.  Right now we only handle types that
2681      have a length that is a multiple of the word size, since GCC
2682      doesn't seem to put any other types into registers.  */
2683   if (len > 4 && len % 4 == 0)
2684     {
2685       int last_regnum = regnum;
2686 
2687       while (len > 4)
2688 	{
2689 	  last_regnum = i386_next_regnum (last_regnum);
2690 	  len -= 4;
2691 	}
2692 
2693       if (last_regnum != -1)
2694 	return 1;
2695     }
2696 
2697   return i387_convert_register_p (gdbarch, regnum, type);
2698 }
2699 
2700 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
2701    return its contents in TO.  */
2702 
2703 static void
2704 i386_register_to_value (struct frame_info *frame, int regnum,
2705 			struct type *type, gdb_byte *to)
2706 {
2707   struct gdbarch *gdbarch = get_frame_arch (frame);
2708   int len = TYPE_LENGTH (type);
2709 
2710   /* FIXME: kettenis/20030609: What should we do if REGNUM isn't
2711      available in FRAME (i.e. if it wasn't saved)?  */
2712 
2713   if (i386_fp_regnum_p (gdbarch, regnum))
2714     {
2715       i387_register_to_value (frame, regnum, type, to);
2716       return;
2717     }
2718 
2719   /* Read a value spread across multiple registers.  */
2720 
2721   gdb_assert (len > 4 && len % 4 == 0);
2722 
2723   while (len > 0)
2724     {
2725       gdb_assert (regnum != -1);
2726       gdb_assert (register_size (gdbarch, regnum) == 4);
2727 
2728       get_frame_register (frame, regnum, to);
2729       regnum = i386_next_regnum (regnum);
2730       len -= 4;
2731       to += 4;
2732     }
2733 }
2734 
2735 /* Write the contents FROM of a value of type TYPE into register
2736    REGNUM in frame FRAME.  */
2737 
2738 static void
2739 i386_value_to_register (struct frame_info *frame, int regnum,
2740 			struct type *type, const gdb_byte *from)
2741 {
2742   int len = TYPE_LENGTH (type);
2743 
2744   if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
2745     {
2746       i387_value_to_register (frame, regnum, type, from);
2747       return;
2748     }
2749 
2750   /* Write a value spread across multiple registers.  */
2751 
2752   gdb_assert (len > 4 && len % 4 == 0);
2753 
2754   while (len > 0)
2755     {
2756       gdb_assert (regnum != -1);
2757       gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
2758 
2759       put_frame_register (frame, regnum, from);
2760       regnum = i386_next_regnum (regnum);
2761       len -= 4;
2762       from += 4;
2763     }
2764 }
2765 
2766 /* Supply register REGNUM from the buffer specified by GREGS and LEN
2767    in the general-purpose register set REGSET to register cache
2768    REGCACHE.  If REGNUM is -1, do this for all registers in REGSET.  */
2769 
2770 void
2771 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
2772 		     int regnum, const void *gregs, size_t len)
2773 {
2774   const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2775   const gdb_byte *regs = gregs;
2776   int i;
2777 
2778   gdb_assert (len == tdep->sizeof_gregset);
2779 
2780   for (i = 0; i < tdep->gregset_num_regs; i++)
2781     {
2782       if ((regnum == i || regnum == -1)
2783 	  && tdep->gregset_reg_offset[i] != -1)
2784 	regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
2785     }
2786 }
2787 
2788 /* Collect register REGNUM from the register cache REGCACHE and store
2789    it in the buffer specified by GREGS and LEN as described by the
2790    general-purpose register set REGSET.  If REGNUM is -1, do this for
2791    all registers in REGSET.  */
2792 
2793 void
2794 i386_collect_gregset (const struct regset *regset,
2795 		      const struct regcache *regcache,
2796 		      int regnum, void *gregs, size_t len)
2797 {
2798   const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2799   gdb_byte *regs = gregs;
2800   int i;
2801 
2802   gdb_assert (len == tdep->sizeof_gregset);
2803 
2804   for (i = 0; i < tdep->gregset_num_regs; i++)
2805     {
2806       if ((regnum == i || regnum == -1)
2807 	  && tdep->gregset_reg_offset[i] != -1)
2808 	regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
2809     }
2810 }
2811 
2812 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
2813    in the floating-point register set REGSET to register cache
2814    REGCACHE.  If REGNUM is -1, do this for all registers in REGSET.  */
2815 
2816 static void
2817 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
2818 		      int regnum, const void *fpregs, size_t len)
2819 {
2820   const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2821 
2822   if (len == I387_SIZEOF_FXSAVE)
2823     {
2824       i387_supply_fxsave (regcache, regnum, fpregs);
2825       return;
2826     }
2827 
2828   gdb_assert (len == tdep->sizeof_fpregset);
2829   i387_supply_fsave (regcache, regnum, fpregs);
2830 }
2831 
2832 /* Collect register REGNUM from the register cache REGCACHE and store
2833    it in the buffer specified by FPREGS and LEN as described by the
2834    floating-point register set REGSET.  If REGNUM is -1, do this for
2835    all registers in REGSET.  */
2836 
2837 static void
2838 i386_collect_fpregset (const struct regset *regset,
2839 		       const struct regcache *regcache,
2840 		       int regnum, void *fpregs, size_t len)
2841 {
2842   const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2843 
2844   if (len == I387_SIZEOF_FXSAVE)
2845     {
2846       i387_collect_fxsave (regcache, regnum, fpregs);
2847       return;
2848     }
2849 
2850   gdb_assert (len == tdep->sizeof_fpregset);
2851   i387_collect_fsave (regcache, regnum, fpregs);
2852 }
2853 
2854 /* Similar to i386_supply_fpregset, but use XSAVE extended state.  */
2855 
2856 static void
2857 i386_supply_xstateregset (const struct regset *regset,
2858 			  struct regcache *regcache, int regnum,
2859 			  const void *xstateregs, size_t len)
2860 {
2861   i387_supply_xsave (regcache, regnum, xstateregs);
2862 }
2863 
2864 /* Similar to i386_collect_fpregset , but use XSAVE extended state.  */
2865 
2866 static void
2867 i386_collect_xstateregset (const struct regset *regset,
2868 			   const struct regcache *regcache,
2869 			   int regnum, void *xstateregs, size_t len)
2870 {
2871   i387_collect_xsave (regcache, regnum, xstateregs, 1);
2872 }
2873 
2874 /* Return the appropriate register set for the core section identified
2875    by SECT_NAME and SECT_SIZE.  */
2876 
2877 const struct regset *
2878 i386_regset_from_core_section (struct gdbarch *gdbarch,
2879 			       const char *sect_name, size_t sect_size)
2880 {
2881   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2882 
2883   if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
2884     {
2885       if (tdep->gregset == NULL)
2886 	tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
2887 				      i386_collect_gregset);
2888       return tdep->gregset;
2889     }
2890 
2891   if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
2892       || (strcmp (sect_name, ".reg-xfp") == 0
2893 	  && sect_size == I387_SIZEOF_FXSAVE))
2894     {
2895       if (tdep->fpregset == NULL)
2896 	tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
2897 				       i386_collect_fpregset);
2898       return tdep->fpregset;
2899     }
2900 
2901   if (strcmp (sect_name, ".reg-xstate") == 0)
2902     {
2903       if (tdep->xstateregset == NULL)
2904 	tdep->xstateregset = regset_alloc (gdbarch,
2905 					   i386_supply_xstateregset,
2906 					   i386_collect_xstateregset);
2907 
2908       return tdep->xstateregset;
2909     }
2910 
2911   return NULL;
2912 }
2913 
2914 
2915 /* Stuff for WIN32 PE style DLL's but is pretty generic really.  */
2916 
2917 CORE_ADDR
2918 i386_pe_skip_trampoline_code (struct frame_info *frame,
2919 			      CORE_ADDR pc, char *name)
2920 {
2921   struct gdbarch *gdbarch = get_frame_arch (frame);
2922   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2923 
2924   /* jmp *(dest) */
2925   if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
2926     {
2927       unsigned long indirect =
2928 	read_memory_unsigned_integer (pc + 2, 4, byte_order);
2929       struct minimal_symbol *indsym =
2930 	indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
2931       char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
2932 
2933       if (symname)
2934 	{
2935 	  if (strncmp (symname, "__imp_", 6) == 0
2936 	      || strncmp (symname, "_imp_", 5) == 0)
2937 	    return name ? 1 :
2938 		   read_memory_unsigned_integer (indirect, 4, byte_order);
2939 	}
2940     }
2941   return 0;			/* Not a trampoline.  */
2942 }
2943 
2944 
2945 /* Return whether the THIS_FRAME corresponds to a sigtramp
2946    routine.  */
2947 
2948 int
2949 i386_sigtramp_p (struct frame_info *this_frame)
2950 {
2951   CORE_ADDR pc = get_frame_pc (this_frame);
2952   char *name;
2953 
2954   find_pc_partial_function (pc, &name, NULL, NULL);
2955   return (name && strcmp ("_sigtramp", name) == 0);
2956 }
2957 
2958 
2959 /* We have two flavours of disassembly.  The machinery on this page
2960    deals with switching between those.  */
2961 
2962 static int
2963 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
2964 {
2965   gdb_assert (disassembly_flavor == att_flavor
2966 	      || disassembly_flavor == intel_flavor);
2967 
2968   /* FIXME: kettenis/20020915: Until disassembler_options is properly
2969      constified, cast to prevent a compiler warning.  */
2970   info->disassembler_options = (char *) disassembly_flavor;
2971 
2972   return print_insn_i386 (pc, info);
2973 }
2974 
2975 
2976 /* There are a few i386 architecture variants that differ only
2977    slightly from the generic i386 target.  For now, we don't give them
2978    their own source file, but include them here.  As a consequence,
2979    they'll always be included.  */
2980 
2981 /* System V Release 4 (SVR4).  */
2982 
2983 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
2984    routine.  */
2985 
2986 static int
2987 i386_svr4_sigtramp_p (struct frame_info *this_frame)
2988 {
2989   CORE_ADDR pc = get_frame_pc (this_frame);
2990   char *name;
2991 
2992   /* UnixWare uses _sigacthandler.  The origin of the other symbols is
2993      currently unknown.  */
2994   find_pc_partial_function (pc, &name, NULL, NULL);
2995   return (name && (strcmp ("_sigreturn", name) == 0
2996 		   || strcmp ("_sigacthandler", name) == 0
2997 		   || strcmp ("sigvechandler", name) == 0));
2998 }
2999 
3000 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
3001    address of the associated sigcontext (ucontext) structure.  */
3002 
3003 static CORE_ADDR
3004 i386_svr4_sigcontext_addr (struct frame_info *this_frame)
3005 {
3006   struct gdbarch *gdbarch = get_frame_arch (this_frame);
3007   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3008   gdb_byte buf[4];
3009   CORE_ADDR sp;
3010 
3011   get_frame_register (this_frame, I386_ESP_REGNUM, buf);
3012   sp = extract_unsigned_integer (buf, 4, byte_order);
3013 
3014   return read_memory_unsigned_integer (sp + 8, 4, byte_order);
3015 }
3016 
3017 
3018 /* Generic ELF.  */
3019 
3020 void
3021 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3022 {
3023   /* We typically use stabs-in-ELF with the SVR4 register numbering.  */
3024   set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3025 }
3026 
3027 /* System V Release 4 (SVR4).  */
3028 
3029 void
3030 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3031 {
3032   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3033 
3034   /* System V Release 4 uses ELF.  */
3035   i386_elf_init_abi (info, gdbarch);
3036 
3037   /* System V Release 4 has shared libraries.  */
3038   set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
3039 
3040   tdep->sigtramp_p = i386_svr4_sigtramp_p;
3041   tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
3042   tdep->sc_pc_offset = 36 + 14 * 4;
3043   tdep->sc_sp_offset = 36 + 17 * 4;
3044 
3045   tdep->jb_pc_offset = 20;
3046 }
3047 
3048 /* DJGPP.  */
3049 
3050 static void
3051 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3052 {
3053   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3054 
3055   /* DJGPP doesn't have any special frames for signal handlers.  */
3056   tdep->sigtramp_p = NULL;
3057 
3058   tdep->jb_pc_offset = 36;
3059 
3060   /* DJGPP does not support the SSE registers.  */
3061   if (! tdesc_has_registers (info.target_desc))
3062     tdep->tdesc = tdesc_i386_mmx;
3063 
3064   /* Native compiler is GCC, which uses the SVR4 register numbering
3065      even in COFF and STABS.  See the comment in i386_gdbarch_init,
3066      before the calls to set_gdbarch_stab_reg_to_regnum and
3067      set_gdbarch_sdb_reg_to_regnum.  */
3068   set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3069   set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3070 
3071   set_gdbarch_has_dos_based_file_system (gdbarch, 1);
3072 }
3073 
3074 
3075 /* i386 register groups.  In addition to the normal groups, add "mmx"
3076    and "sse".  */
3077 
3078 static struct reggroup *i386_sse_reggroup;
3079 static struct reggroup *i386_mmx_reggroup;
3080 
3081 static void
3082 i386_init_reggroups (void)
3083 {
3084   i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
3085   i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
3086 }
3087 
3088 static void
3089 i386_add_reggroups (struct gdbarch *gdbarch)
3090 {
3091   reggroup_add (gdbarch, i386_sse_reggroup);
3092   reggroup_add (gdbarch, i386_mmx_reggroup);
3093   reggroup_add (gdbarch, general_reggroup);
3094   reggroup_add (gdbarch, float_reggroup);
3095   reggroup_add (gdbarch, all_reggroup);
3096   reggroup_add (gdbarch, save_reggroup);
3097   reggroup_add (gdbarch, restore_reggroup);
3098   reggroup_add (gdbarch, vector_reggroup);
3099   reggroup_add (gdbarch, system_reggroup);
3100 }
3101 
3102 int
3103 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
3104 			  struct reggroup *group)
3105 {
3106   const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3107   int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
3108       ymm_regnum_p, ymmh_regnum_p;
3109 
3110   /* Don't include pseudo registers, except for MMX, in any register
3111      groups.  */
3112   if (i386_byte_regnum_p (gdbarch, regnum))
3113     return 0;
3114 
3115   if (i386_word_regnum_p (gdbarch, regnum))
3116     return 0;
3117 
3118   if (i386_dword_regnum_p (gdbarch, regnum))
3119     return 0;
3120 
3121   mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
3122   if (group == i386_mmx_reggroup)
3123     return mmx_regnum_p;
3124 
3125   xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
3126   mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
3127   if (group == i386_sse_reggroup)
3128     return xmm_regnum_p || mxcsr_regnum_p;
3129 
3130   ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
3131   if (group == vector_reggroup)
3132     return (mmx_regnum_p
3133 	    || ymm_regnum_p
3134 	    || mxcsr_regnum_p
3135 	    || (xmm_regnum_p
3136 		&& ((tdep->xcr0 & I386_XSTATE_AVX_MASK)
3137 		    == I386_XSTATE_SSE_MASK)));
3138 
3139   fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
3140 		 || i386_fpc_regnum_p (gdbarch, regnum));
3141   if (group == float_reggroup)
3142     return fp_regnum_p;
3143 
3144   /* For "info reg all", don't include upper YMM registers nor XMM
3145      registers when AVX is supported.  */
3146   ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
3147   if (group == all_reggroup
3148       && ((xmm_regnum_p
3149 	   && (tdep->xcr0 & I386_XSTATE_AVX))
3150 	  || ymmh_regnum_p))
3151     return 0;
3152 
3153   if (group == general_reggroup)
3154     return (!fp_regnum_p
3155 	    && !mmx_regnum_p
3156 	    && !mxcsr_regnum_p
3157 	    && !xmm_regnum_p
3158 	    && !ymm_regnum_p
3159 	    && !ymmh_regnum_p);
3160 
3161   return default_register_reggroup_p (gdbarch, regnum, group);
3162 }
3163 
3164 
3165 /* Get the ARGIth function argument for the current function.  */
3166 
3167 static CORE_ADDR
3168 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
3169 			     struct type *type)
3170 {
3171   struct gdbarch *gdbarch = get_frame_arch (frame);
3172   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3173   CORE_ADDR sp = get_frame_register_unsigned  (frame, I386_ESP_REGNUM);
3174   return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
3175 }
3176 
3177 static void
3178 i386_skip_permanent_breakpoint (struct regcache *regcache)
3179 {
3180   CORE_ADDR current_pc = regcache_read_pc (regcache);
3181 
3182  /* On i386, breakpoint is exactly 1 byte long, so we just
3183     adjust the PC in the regcache.  */
3184   current_pc += 1;
3185   regcache_write_pc (regcache, current_pc);
3186 }
3187 
3188 
3189 #define PREFIX_REPZ	0x01
3190 #define PREFIX_REPNZ	0x02
3191 #define PREFIX_LOCK	0x04
3192 #define PREFIX_DATA	0x08
3193 #define PREFIX_ADDR	0x10
3194 
3195 /* operand size */
3196 enum
3197 {
3198   OT_BYTE = 0,
3199   OT_WORD,
3200   OT_LONG,
3201   OT_QUAD,
3202   OT_DQUAD,
3203 };
3204 
3205 /* i386 arith/logic operations */
3206 enum
3207 {
3208   OP_ADDL,
3209   OP_ORL,
3210   OP_ADCL,
3211   OP_SBBL,
3212   OP_ANDL,
3213   OP_SUBL,
3214   OP_XORL,
3215   OP_CMPL,
3216 };
3217 
3218 struct i386_record_s
3219 {
3220   struct gdbarch *gdbarch;
3221   struct regcache *regcache;
3222   CORE_ADDR orig_addr;
3223   CORE_ADDR addr;
3224   int aflag;
3225   int dflag;
3226   int override;
3227   uint8_t modrm;
3228   uint8_t mod, reg, rm;
3229   int ot;
3230   uint8_t rex_x;
3231   uint8_t rex_b;
3232   int rip_offset;
3233   int popl_esp_hack;
3234   const int *regmap;
3235 };
3236 
3237 /* Parse "modrm" part in current memory address that irp->addr point to
3238    Return -1 if something wrong. */
3239 
3240 static int
3241 i386_record_modrm (struct i386_record_s *irp)
3242 {
3243   struct gdbarch *gdbarch = irp->gdbarch;
3244 
3245   if (target_read_memory (irp->addr, &irp->modrm, 1))
3246     {
3247       if (record_debug)
3248 	printf_unfiltered (_("Process record: error reading memory at "
3249 			     "addr %s len = 1.\n"),
3250 			   paddress (gdbarch, irp->addr));
3251       return -1;
3252     }
3253   irp->addr++;
3254   irp->mod = (irp->modrm >> 6) & 3;
3255   irp->reg = (irp->modrm >> 3) & 7;
3256   irp->rm = irp->modrm & 7;
3257 
3258   return 0;
3259 }
3260 
3261 /* Get the memory address that current instruction  write to and set it to
3262    the argument "addr".
3263    Return -1 if something wrong. */
3264 
3265 static int
3266 i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
3267 {
3268   struct gdbarch *gdbarch = irp->gdbarch;
3269   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3270   gdb_byte buf[4];
3271   ULONGEST offset64;
3272 
3273   *addr = 0;
3274   if (irp->aflag)
3275     {
3276       /* 32 bits */
3277       int havesib = 0;
3278       uint8_t scale = 0;
3279       uint8_t byte;
3280       uint8_t index = 0;
3281       uint8_t base = irp->rm;
3282 
3283       if (base == 4)
3284 	{
3285 	  havesib = 1;
3286 	  if (target_read_memory (irp->addr, &byte, 1))
3287 	    {
3288 	      if (record_debug)
3289 		printf_unfiltered (_("Process record: error reading memory "
3290 				     "at addr %s len = 1.\n"),
3291 				   paddress (gdbarch, irp->addr));
3292 	      return -1;
3293 	    }
3294 	  irp->addr++;
3295 	  scale = (byte >> 6) & 3;
3296 	  index = ((byte >> 3) & 7) | irp->rex_x;
3297 	  base = (byte & 7);
3298 	}
3299       base |= irp->rex_b;
3300 
3301       switch (irp->mod)
3302 	{
3303 	case 0:
3304 	  if ((base & 7) == 5)
3305 	    {
3306 	      base = 0xff;
3307 	      if (target_read_memory (irp->addr, buf, 4))
3308 		{
3309 		  if (record_debug)
3310 		    printf_unfiltered (_("Process record: error reading "
3311 				         "memory at addr %s len = 4.\n"),
3312 				       paddress (gdbarch, irp->addr));
3313 		  return -1;
3314 		}
3315 	      irp->addr += 4;
3316 	      *addr = extract_signed_integer (buf, 4, byte_order);
3317 	      if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
3318 		*addr += irp->addr + irp->rip_offset;
3319 	    }
3320 	  break;
3321 	case 1:
3322 	  if (target_read_memory (irp->addr, buf, 1))
3323 	    {
3324 	      if (record_debug)
3325 		printf_unfiltered (_("Process record: error reading memory "
3326 				     "at addr %s len = 1.\n"),
3327 				   paddress (gdbarch, irp->addr));
3328 	      return -1;
3329 	    }
3330 	  irp->addr++;
3331 	  *addr = (int8_t) buf[0];
3332 	  break;
3333 	case 2:
3334 	  if (target_read_memory (irp->addr, buf, 4))
3335 	    {
3336 	      if (record_debug)
3337 		printf_unfiltered (_("Process record: error reading memory "
3338 				     "at addr %s len = 4.\n"),
3339 				   paddress (gdbarch, irp->addr));
3340 	      return -1;
3341 	    }
3342 	  *addr = extract_signed_integer (buf, 4, byte_order);
3343 	  irp->addr += 4;
3344 	  break;
3345 	}
3346 
3347       offset64 = 0;
3348       if (base != 0xff)
3349         {
3350 	  if (base == 4 && irp->popl_esp_hack)
3351 	    *addr += irp->popl_esp_hack;
3352 	  regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
3353                                       &offset64);
3354 	}
3355       if (irp->aflag == 2)
3356         {
3357 	  *addr += offset64;
3358         }
3359       else
3360         *addr = (uint32_t) (offset64 + *addr);
3361 
3362       if (havesib && (index != 4 || scale != 0))
3363 	{
3364 	  regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
3365                                       &offset64);
3366 	  if (irp->aflag == 2)
3367 	    *addr += offset64 << scale;
3368 	  else
3369 	    *addr = (uint32_t) (*addr + (offset64 << scale));
3370 	}
3371     }
3372   else
3373     {
3374       /* 16 bits */
3375       switch (irp->mod)
3376 	{
3377 	case 0:
3378 	  if (irp->rm == 6)
3379 	    {
3380 	      if (target_read_memory (irp->addr, buf, 2))
3381 		{
3382 		  if (record_debug)
3383 		    printf_unfiltered (_("Process record: error reading "
3384 					 "memory at addr %s len = 2.\n"),
3385 				       paddress (gdbarch, irp->addr));
3386 		  return -1;
3387 		}
3388 	      irp->addr += 2;
3389 	      *addr = extract_signed_integer (buf, 2, byte_order);
3390 	      irp->rm = 0;
3391 	      goto no_rm;
3392 	    }
3393 	  break;
3394 	case 1:
3395 	  if (target_read_memory (irp->addr, buf, 1))
3396 	    {
3397 	      if (record_debug)
3398 		printf_unfiltered (_("Process record: error reading memory "
3399 				     "at addr %s len = 1.\n"),
3400 				   paddress (gdbarch, irp->addr));
3401 	      return -1;
3402 	    }
3403 	  irp->addr++;
3404 	  *addr = (int8_t) buf[0];
3405 	  break;
3406 	case 2:
3407 	  if (target_read_memory (irp->addr, buf, 2))
3408 	    {
3409 	      if (record_debug)
3410 		printf_unfiltered (_("Process record: error reading memory "
3411 				     "at addr %s len = 2.\n"),
3412 				   paddress (gdbarch, irp->addr));
3413 	      return -1;
3414 	    }
3415 	  irp->addr += 2;
3416 	  *addr = extract_signed_integer (buf, 2, byte_order);
3417 	  break;
3418 	}
3419 
3420       switch (irp->rm)
3421 	{
3422 	case 0:
3423 	  regcache_raw_read_unsigned (irp->regcache,
3424 				      irp->regmap[X86_RECORD_REBX_REGNUM],
3425                                       &offset64);
3426 	  *addr = (uint32_t) (*addr + offset64);
3427 	  regcache_raw_read_unsigned (irp->regcache,
3428 				      irp->regmap[X86_RECORD_RESI_REGNUM],
3429                                       &offset64);
3430 	  *addr = (uint32_t) (*addr + offset64);
3431 	  break;
3432 	case 1:
3433 	  regcache_raw_read_unsigned (irp->regcache,
3434 				      irp->regmap[X86_RECORD_REBX_REGNUM],
3435                                       &offset64);
3436 	  *addr = (uint32_t) (*addr + offset64);
3437 	  regcache_raw_read_unsigned (irp->regcache,
3438 				      irp->regmap[X86_RECORD_REDI_REGNUM],
3439                                       &offset64);
3440 	  *addr = (uint32_t) (*addr + offset64);
3441 	  break;
3442 	case 2:
3443 	  regcache_raw_read_unsigned (irp->regcache,
3444 				      irp->regmap[X86_RECORD_REBP_REGNUM],
3445                                       &offset64);
3446 	  *addr = (uint32_t) (*addr + offset64);
3447 	  regcache_raw_read_unsigned (irp->regcache,
3448 				      irp->regmap[X86_RECORD_RESI_REGNUM],
3449                                       &offset64);
3450 	  *addr = (uint32_t) (*addr + offset64);
3451 	  break;
3452 	case 3:
3453 	  regcache_raw_read_unsigned (irp->regcache,
3454 				      irp->regmap[X86_RECORD_REBP_REGNUM],
3455                                       &offset64);
3456 	  *addr = (uint32_t) (*addr + offset64);
3457 	  regcache_raw_read_unsigned (irp->regcache,
3458 				      irp->regmap[X86_RECORD_REDI_REGNUM],
3459                                       &offset64);
3460 	  *addr = (uint32_t) (*addr + offset64);
3461 	  break;
3462 	case 4:
3463 	  regcache_raw_read_unsigned (irp->regcache,
3464 				      irp->regmap[X86_RECORD_RESI_REGNUM],
3465                                       &offset64);
3466 	  *addr = (uint32_t) (*addr + offset64);
3467 	  break;
3468 	case 5:
3469 	  regcache_raw_read_unsigned (irp->regcache,
3470 				      irp->regmap[X86_RECORD_REDI_REGNUM],
3471                                       &offset64);
3472 	  *addr = (uint32_t) (*addr + offset64);
3473 	  break;
3474 	case 6:
3475 	  regcache_raw_read_unsigned (irp->regcache,
3476 				      irp->regmap[X86_RECORD_REBP_REGNUM],
3477                                       &offset64);
3478 	  *addr = (uint32_t) (*addr + offset64);
3479 	  break;
3480 	case 7:
3481 	  regcache_raw_read_unsigned (irp->regcache,
3482 				      irp->regmap[X86_RECORD_REBX_REGNUM],
3483                                       &offset64);
3484 	  *addr = (uint32_t) (*addr + offset64);
3485 	  break;
3486 	}
3487       *addr &= 0xffff;
3488     }
3489 
3490  no_rm:
3491   return 0;
3492 }
3493 
3494 /* Record the value of the memory that willbe changed in current instruction
3495    to "record_arch_list".
3496    Return -1 if something wrong. */
3497 
3498 static int
3499 i386_record_lea_modrm (struct i386_record_s *irp)
3500 {
3501   struct gdbarch *gdbarch = irp->gdbarch;
3502   uint64_t addr;
3503 
3504   if (irp->override >= 0)
3505     {
3506       if (record_memory_query)
3507         {
3508 	  int q;
3509 
3510           target_terminal_ours ();
3511           q = yquery (_("\
3512 Process record ignores the memory change of instruction at address %s\n\
3513 because it can't get the value of the segment register.\n\
3514 Do you want to stop the program?"),
3515                       paddress (gdbarch, irp->orig_addr));
3516             target_terminal_inferior ();
3517             if (q)
3518               return -1;
3519         }
3520 
3521       return 0;
3522     }
3523 
3524   if (i386_record_lea_modrm_addr (irp, &addr))
3525     return -1;
3526 
3527   if (record_arch_list_add_mem (addr, 1 << irp->ot))
3528     return -1;
3529 
3530   return 0;
3531 }
3532 
3533 /* Record the push operation to "record_arch_list".
3534    Return -1 if something wrong. */
3535 
3536 static int
3537 i386_record_push (struct i386_record_s *irp, int size)
3538 {
3539   ULONGEST addr;
3540 
3541   if (record_arch_list_add_reg (irp->regcache,
3542 				irp->regmap[X86_RECORD_RESP_REGNUM]))
3543     return -1;
3544   regcache_raw_read_unsigned (irp->regcache,
3545 			      irp->regmap[X86_RECORD_RESP_REGNUM],
3546 			      &addr);
3547   if (record_arch_list_add_mem ((CORE_ADDR) addr - size, size))
3548     return -1;
3549 
3550   return 0;
3551 }
3552 
3553 
3554 /* Defines contents to record.  */
3555 #define I386_SAVE_FPU_REGS              0xfffd
3556 #define I386_SAVE_FPU_ENV               0xfffe
3557 #define I386_SAVE_FPU_ENV_REG_STACK     0xffff
3558 
3559 /* Record the value of floating point registers which will be changed by the
3560    current instruction to "record_arch_list".  Return -1 if something is wrong.
3561 */
3562 
3563 static int i386_record_floats (struct gdbarch *gdbarch,
3564                                struct i386_record_s *ir,
3565                                uint32_t iregnum)
3566 {
3567   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3568   int i;
3569 
3570   /* Oza: Because of floating point insn push/pop of fpu stack is going to
3571      happen.  Currently we store st0-st7 registers, but we need not store all
3572      registers all the time, in future we use ftag register and record only
3573      those who are not marked as an empty.  */
3574 
3575   if (I386_SAVE_FPU_REGS == iregnum)
3576     {
3577       for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
3578         {
3579           if (record_arch_list_add_reg (ir->regcache, i))
3580             return -1;
3581         }
3582     }
3583   else if (I386_SAVE_FPU_ENV == iregnum)
3584     {
3585       for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
3586 	      {
3587 	      if (record_arch_list_add_reg (ir->regcache, i))
3588 	        return -1;
3589 	      }
3590     }
3591   else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
3592     {
3593       for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
3594       {
3595         if (record_arch_list_add_reg (ir->regcache, i))
3596           return -1;
3597       }
3598     }
3599   else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
3600            (iregnum <= I387_FOP_REGNUM (tdep)))
3601     {
3602       if (record_arch_list_add_reg (ir->regcache,iregnum))
3603         return -1;
3604     }
3605   else
3606     {
3607       /* Parameter error.  */
3608       return -1;
3609     }
3610   if(I386_SAVE_FPU_ENV != iregnum)
3611     {
3612     for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
3613       {
3614       if (record_arch_list_add_reg (ir->regcache, i))
3615         return -1;
3616       }
3617     }
3618   return 0;
3619 }
3620 
3621 /* Parse the current instruction and record the values of the registers and
3622    memory that will be changed in current instruction to "record_arch_list".
3623    Return -1 if something wrong. */
3624 
3625 #define I386_RECORD_ARCH_LIST_ADD_REG(regnum) \
3626     record_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
3627 
3628 int
3629 i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
3630 		     CORE_ADDR input_addr)
3631 {
3632   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3633   int prefixes = 0;
3634   int regnum = 0;
3635   uint32_t opcode;
3636   uint8_t  opcode8;
3637   ULONGEST addr;
3638   gdb_byte buf[MAX_REGISTER_SIZE];
3639   struct i386_record_s ir;
3640   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3641   int rex = 0;
3642   uint8_t rex_w = -1;
3643   uint8_t rex_r = 0;
3644 
3645   memset (&ir, 0, sizeof (struct i386_record_s));
3646   ir.regcache = regcache;
3647   ir.addr = input_addr;
3648   ir.orig_addr = input_addr;
3649   ir.aflag = 1;
3650   ir.dflag = 1;
3651   ir.override = -1;
3652   ir.popl_esp_hack = 0;
3653   ir.regmap = tdep->record_regmap;
3654   ir.gdbarch = gdbarch;
3655 
3656   if (record_debug > 1)
3657     fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
3658 			            "addr = %s\n",
3659 			paddress (gdbarch, ir.addr));
3660 
3661   /* prefixes */
3662   while (1)
3663     {
3664       if (target_read_memory (ir.addr, &opcode8, 1))
3665 	{
3666 	  if (record_debug)
3667 	    printf_unfiltered (_("Process record: error reading memory at "
3668 				 "addr %s len = 1.\n"),
3669 			       paddress (gdbarch, ir.addr));
3670 	  return -1;
3671 	}
3672       ir.addr++;
3673       switch (opcode8)	/* Instruction prefixes */
3674 	{
3675 	case REPE_PREFIX_OPCODE:
3676 	  prefixes |= PREFIX_REPZ;
3677 	  break;
3678 	case REPNE_PREFIX_OPCODE:
3679 	  prefixes |= PREFIX_REPNZ;
3680 	  break;
3681 	case LOCK_PREFIX_OPCODE:
3682 	  prefixes |= PREFIX_LOCK;
3683 	  break;
3684 	case CS_PREFIX_OPCODE:
3685 	  ir.override = X86_RECORD_CS_REGNUM;
3686 	  break;
3687 	case SS_PREFIX_OPCODE:
3688 	  ir.override = X86_RECORD_SS_REGNUM;
3689 	  break;
3690 	case DS_PREFIX_OPCODE:
3691 	  ir.override = X86_RECORD_DS_REGNUM;
3692 	  break;
3693 	case ES_PREFIX_OPCODE:
3694 	  ir.override = X86_RECORD_ES_REGNUM;
3695 	  break;
3696 	case FS_PREFIX_OPCODE:
3697 	  ir.override = X86_RECORD_FS_REGNUM;
3698 	  break;
3699 	case GS_PREFIX_OPCODE:
3700 	  ir.override = X86_RECORD_GS_REGNUM;
3701 	  break;
3702 	case DATA_PREFIX_OPCODE:
3703 	  prefixes |= PREFIX_DATA;
3704 	  break;
3705 	case ADDR_PREFIX_OPCODE:
3706 	  prefixes |= PREFIX_ADDR;
3707 	  break;
3708         case 0x40:	/* i386 inc %eax */
3709         case 0x41:	/* i386 inc %ecx */
3710         case 0x42:	/* i386 inc %edx */
3711         case 0x43:	/* i386 inc %ebx */
3712         case 0x44:	/* i386 inc %esp */
3713         case 0x45:	/* i386 inc %ebp */
3714         case 0x46:	/* i386 inc %esi */
3715         case 0x47:	/* i386 inc %edi */
3716         case 0x48:	/* i386 dec %eax */
3717         case 0x49:	/* i386 dec %ecx */
3718         case 0x4a:	/* i386 dec %edx */
3719         case 0x4b:	/* i386 dec %ebx */
3720         case 0x4c:	/* i386 dec %esp */
3721         case 0x4d:	/* i386 dec %ebp */
3722         case 0x4e:	/* i386 dec %esi */
3723         case 0x4f:	/* i386 dec %edi */
3724           if (ir.regmap[X86_RECORD_R8_REGNUM])	/* 64 bit target */
3725             {
3726                /* REX */
3727                rex = 1;
3728                rex_w = (opcode8 >> 3) & 1;
3729                rex_r = (opcode8 & 0x4) << 1;
3730                ir.rex_x = (opcode8 & 0x2) << 2;
3731                ir.rex_b = (opcode8 & 0x1) << 3;
3732             }
3733 	  else					/* 32 bit target */
3734 	    goto out_prefixes;
3735           break;
3736 	default:
3737 	  goto out_prefixes;
3738 	  break;
3739 	}
3740     }
3741  out_prefixes:
3742   if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
3743     {
3744       ir.dflag = 2;
3745     }
3746   else
3747     {
3748       if (prefixes & PREFIX_DATA)
3749         ir.dflag ^= 1;
3750     }
3751   if (prefixes & PREFIX_ADDR)
3752     ir.aflag ^= 1;
3753   else if (ir.regmap[X86_RECORD_R8_REGNUM])
3754     ir.aflag = 2;
3755 
3756   /* now check op code */
3757   opcode = (uint32_t) opcode8;
3758  reswitch:
3759   switch (opcode)
3760     {
3761     case 0x0f:
3762       if (target_read_memory (ir.addr, &opcode8, 1))
3763 	{
3764 	  if (record_debug)
3765 	    printf_unfiltered (_("Process record: error reading memory at "
3766 				 "addr %s len = 1.\n"),
3767 			       paddress (gdbarch, ir.addr));
3768 	  return -1;
3769 	}
3770       ir.addr++;
3771       opcode = (uint32_t) opcode8 | 0x0f00;
3772       goto reswitch;
3773       break;
3774 
3775     case 0x00:    /* arith & logic */
3776     case 0x01:
3777     case 0x02:
3778     case 0x03:
3779     case 0x04:
3780     case 0x05:
3781     case 0x08:
3782     case 0x09:
3783     case 0x0a:
3784     case 0x0b:
3785     case 0x0c:
3786     case 0x0d:
3787     case 0x10:
3788     case 0x11:
3789     case 0x12:
3790     case 0x13:
3791     case 0x14:
3792     case 0x15:
3793     case 0x18:
3794     case 0x19:
3795     case 0x1a:
3796     case 0x1b:
3797     case 0x1c:
3798     case 0x1d:
3799     case 0x20:
3800     case 0x21:
3801     case 0x22:
3802     case 0x23:
3803     case 0x24:
3804     case 0x25:
3805     case 0x28:
3806     case 0x29:
3807     case 0x2a:
3808     case 0x2b:
3809     case 0x2c:
3810     case 0x2d:
3811     case 0x30:
3812     case 0x31:
3813     case 0x32:
3814     case 0x33:
3815     case 0x34:
3816     case 0x35:
3817     case 0x38:
3818     case 0x39:
3819     case 0x3a:
3820     case 0x3b:
3821     case 0x3c:
3822     case 0x3d:
3823       if (((opcode >> 3) & 7) != OP_CMPL)
3824 	{
3825 	  if ((opcode & 1) == 0)
3826 	    ir.ot = OT_BYTE;
3827 	  else
3828 	    ir.ot = ir.dflag + OT_WORD;
3829 
3830 	  switch ((opcode >> 1) & 3)
3831 	    {
3832 	    case 0:    /* OP Ev, Gv */
3833 	      if (i386_record_modrm (&ir))
3834 		return -1;
3835 	      if (ir.mod != 3)
3836 		{
3837 		  if (i386_record_lea_modrm (&ir))
3838 		    return -1;
3839 		}
3840 	      else
3841 		{
3842                   ir.rm |= ir.rex_b;
3843 		  if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
3844 		    ir.rm &= 0x3;
3845 		  I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
3846 		}
3847 	      break;
3848 	    case 1:    /* OP Gv, Ev */
3849 	      if (i386_record_modrm (&ir))
3850 		return -1;
3851               ir.reg |= rex_r;
3852 	      if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
3853 		ir.reg &= 0x3;
3854 	      I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
3855 	      break;
3856 	    case 2:    /* OP A, Iv */
3857 	      I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
3858 	      break;
3859 	    }
3860 	}
3861       I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
3862       break;
3863 
3864     case 0x80:    /* GRP1 */
3865     case 0x81:
3866     case 0x82:
3867     case 0x83:
3868       if (i386_record_modrm (&ir))
3869 	return -1;
3870 
3871       if (ir.reg != OP_CMPL)
3872 	{
3873 	  if ((opcode & 1) == 0)
3874 	    ir.ot = OT_BYTE;
3875 	  else
3876 	    ir.ot = ir.dflag + OT_WORD;
3877 
3878 	  if (ir.mod != 3)
3879 	    {
3880               if (opcode == 0x83)
3881                 ir.rip_offset = 1;
3882               else
3883                 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
3884 	      if (i386_record_lea_modrm (&ir))
3885 		return -1;
3886 	    }
3887 	  else
3888 	    I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
3889 	}
3890       I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
3891       break;
3892 
3893     case 0x40:      /* inc */
3894     case 0x41:
3895     case 0x42:
3896     case 0x43:
3897     case 0x44:
3898     case 0x45:
3899     case 0x46:
3900     case 0x47:
3901 
3902     case 0x48:      /* dec */
3903     case 0x49:
3904     case 0x4a:
3905     case 0x4b:
3906     case 0x4c:
3907     case 0x4d:
3908     case 0x4e:
3909     case 0x4f:
3910 
3911       I386_RECORD_ARCH_LIST_ADD_REG (opcode & 7);
3912       I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
3913       break;
3914 
3915     case 0xf6:    /* GRP3 */
3916     case 0xf7:
3917       if ((opcode & 1) == 0)
3918 	ir.ot = OT_BYTE;
3919       else
3920 	ir.ot = ir.dflag + OT_WORD;
3921       if (i386_record_modrm (&ir))
3922 	return -1;
3923 
3924       if (ir.mod != 3 && ir.reg == 0)
3925         ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
3926 
3927       switch (ir.reg)
3928 	{
3929 	case 0:    /* test */
3930 	  I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
3931 	  break;
3932 	case 2:    /* not */
3933 	case 3:    /* neg */
3934 	  if (ir.mod != 3)
3935 	    {
3936 	      if (i386_record_lea_modrm (&ir))
3937 		return -1;
3938 	    }
3939 	  else
3940 	    {
3941               ir.rm |= ir.rex_b;
3942 	      if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
3943 		ir.rm &= 0x3;
3944 	      I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
3945 	    }
3946 	  if (ir.reg == 3)  /* neg */
3947 	    I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
3948 	  break;
3949 	case 4:    /* mul  */
3950 	case 5:    /* imul */
3951 	case 6:    /* div  */
3952 	case 7:    /* idiv */
3953 	  I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
3954 	  if (ir.ot != OT_BYTE)
3955 	    I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
3956 	  I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
3957 	  break;
3958 	default:
3959 	  ir.addr -= 2;
3960 	  opcode = opcode << 8 | ir.modrm;
3961 	  goto no_support;
3962 	  break;
3963 	}
3964       break;
3965 
3966     case 0xfe:    /* GRP4 */
3967     case 0xff:    /* GRP5 */
3968       if (i386_record_modrm (&ir))
3969 	return -1;
3970       if (ir.reg >= 2 && opcode == 0xfe)
3971 	{
3972 	  ir.addr -= 2;
3973 	  opcode = opcode << 8 | ir.modrm;
3974 	  goto no_support;
3975 	}
3976       switch (ir.reg)
3977 	{
3978 	case 0:    /* inc */
3979 	case 1:    /* dec */
3980           if ((opcode & 1) == 0)
3981 	    ir.ot = OT_BYTE;
3982           else
3983 	    ir.ot = ir.dflag + OT_WORD;
3984 	  if (ir.mod != 3)
3985 	    {
3986 	      if (i386_record_lea_modrm (&ir))
3987 		return -1;
3988 	    }
3989 	  else
3990 	    {
3991 	      ir.rm |= ir.rex_b;
3992 	      if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
3993 		ir.rm &= 0x3;
3994 	      I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
3995 	    }
3996 	  I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
3997 	  break;
3998 	case 2:    /* call */
3999           if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4000             ir.dflag = 2;
4001 	  if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4002 	    return -1;
4003 	  I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4004 	  break;
4005 	case 3:    /* lcall */
4006 	  I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
4007 	  if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4008 	    return -1;
4009 	  I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4010 	  break;
4011 	case 4:    /* jmp  */
4012 	case 5:    /* ljmp */
4013 	  I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4014 	  break;
4015 	case 6:    /* push */
4016           if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4017             ir.dflag = 2;
4018 	  if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4019 	    return -1;
4020 	  break;
4021 	default:
4022 	  ir.addr -= 2;
4023 	  opcode = opcode << 8 | ir.modrm;
4024 	  goto no_support;
4025 	  break;
4026 	}
4027       break;
4028 
4029     case 0x84:    /* test */
4030     case 0x85:
4031     case 0xa8:
4032     case 0xa9:
4033       I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4034       break;
4035 
4036     case 0x98:    /* CWDE/CBW */
4037       I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4038       break;
4039 
4040     case 0x99:    /* CDQ/CWD */
4041       I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4042       I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4043       break;
4044 
4045     case 0x0faf:  /* imul */
4046     case 0x69:
4047     case 0x6b:
4048       ir.ot = ir.dflag + OT_WORD;
4049       if (i386_record_modrm (&ir))
4050 	return -1;
4051       if (opcode == 0x69)
4052         ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4053       else if (opcode == 0x6b)
4054         ir.rip_offset = 1;
4055       ir.reg |= rex_r;
4056       if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4057 	ir.reg &= 0x3;
4058       I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4059       I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4060       break;
4061 
4062     case 0x0fc0:  /* xadd */
4063     case 0x0fc1:
4064       if ((opcode & 1) == 0)
4065 	ir.ot = OT_BYTE;
4066       else
4067 	ir.ot = ir.dflag + OT_WORD;
4068       if (i386_record_modrm (&ir))
4069 	return -1;
4070       ir.reg |= rex_r;
4071       if (ir.mod == 3)
4072 	{
4073 	  if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4074 	    ir.reg &= 0x3;
4075 	  I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4076 	  if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4077 	    ir.rm &= 0x3;
4078 	  I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4079 	}
4080       else
4081 	{
4082 	  if (i386_record_lea_modrm (&ir))
4083 	    return -1;
4084 	  if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4085 	    ir.reg &= 0x3;
4086 	  I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4087 	}
4088       I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4089       break;
4090 
4091     case 0x0fb0:  /* cmpxchg */
4092     case 0x0fb1:
4093       if ((opcode & 1) == 0)
4094 	ir.ot = OT_BYTE;
4095       else
4096 	ir.ot = ir.dflag + OT_WORD;
4097       if (i386_record_modrm (&ir))
4098 	return -1;
4099       if (ir.mod == 3)
4100 	{
4101           ir.reg |= rex_r;
4102 	  I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4103 	  if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4104 	    ir.reg &= 0x3;
4105 	  I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4106 	}
4107       else
4108 	{
4109 	  I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4110 	  if (i386_record_lea_modrm (&ir))
4111 	    return -1;
4112 	}
4113       I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4114       break;
4115 
4116     case 0x0fc7:    /* cmpxchg8b */
4117       if (i386_record_modrm (&ir))
4118 	return -1;
4119       if (ir.mod == 3)
4120 	{
4121 	  ir.addr -= 2;
4122 	  opcode = opcode << 8 | ir.modrm;
4123 	  goto no_support;
4124 	}
4125       I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4126       I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4127       if (i386_record_lea_modrm (&ir))
4128 	return -1;
4129       I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4130       break;
4131 
4132     case 0x50:    /* push */
4133     case 0x51:
4134     case 0x52:
4135     case 0x53:
4136     case 0x54:
4137     case 0x55:
4138     case 0x56:
4139     case 0x57:
4140     case 0x68:
4141     case 0x6a:
4142       if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4143         ir.dflag = 2;
4144       if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4145 	return -1;
4146       break;
4147 
4148     case 0x06:    /* push es */
4149     case 0x0e:    /* push cs */
4150     case 0x16:    /* push ss */
4151     case 0x1e:    /* push ds */
4152       if (ir.regmap[X86_RECORD_R8_REGNUM])
4153         {
4154 	  ir.addr -= 1;
4155 	  goto no_support;
4156 	}
4157       if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4158 	return -1;
4159       break;
4160 
4161     case 0x0fa0:    /* push fs */
4162     case 0x0fa8:    /* push gs */
4163       if (ir.regmap[X86_RECORD_R8_REGNUM])
4164         {
4165 	  ir.addr -= 2;
4166 	  goto no_support;
4167 	}
4168       if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4169 	return -1;
4170       break;
4171 
4172     case 0x60:    /* pusha */
4173       if (ir.regmap[X86_RECORD_R8_REGNUM])
4174         {
4175 	  ir.addr -= 1;
4176 	  goto no_support;
4177 	}
4178       if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
4179 	return -1;
4180       break;
4181 
4182     case 0x58:    /* pop */
4183     case 0x59:
4184     case 0x5a:
4185     case 0x5b:
4186     case 0x5c:
4187     case 0x5d:
4188     case 0x5e:
4189     case 0x5f:
4190       I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4191       I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
4192       break;
4193 
4194     case 0x61:    /* popa */
4195       if (ir.regmap[X86_RECORD_R8_REGNUM])
4196         {
4197 	  ir.addr -= 1;
4198 	  goto no_support;
4199 	}
4200       for (regnum = X86_RECORD_REAX_REGNUM;
4201 	   regnum <= X86_RECORD_REDI_REGNUM;
4202 	   regnum++)
4203 	I386_RECORD_ARCH_LIST_ADD_REG (regnum);
4204       break;
4205 
4206     case 0x8f:    /* pop */
4207       if (ir.regmap[X86_RECORD_R8_REGNUM])
4208 	ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
4209       else
4210         ir.ot = ir.dflag + OT_WORD;
4211       if (i386_record_modrm (&ir))
4212 	return -1;
4213       if (ir.mod == 3)
4214 	I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
4215       else
4216 	{
4217           ir.popl_esp_hack = 1 << ir.ot;
4218 	  if (i386_record_lea_modrm (&ir))
4219 	    return -1;
4220 	}
4221       I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4222       break;
4223 
4224     case 0xc8:    /* enter */
4225       I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
4226       if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4227         ir.dflag = 2;
4228       if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4229 	return -1;
4230       break;
4231 
4232     case 0xc9:    /* leave */
4233       I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4234       I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
4235       break;
4236 
4237     case 0x07:    /* pop es */
4238       if (ir.regmap[X86_RECORD_R8_REGNUM])
4239         {
4240 	  ir.addr -= 1;
4241 	  goto no_support;
4242 	}
4243       I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4244       I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
4245       I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4246       break;
4247 
4248     case 0x17:    /* pop ss */
4249       if (ir.regmap[X86_RECORD_R8_REGNUM])
4250         {
4251 	  ir.addr -= 1;
4252 	  goto no_support;
4253 	}
4254       I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4255       I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
4256       I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4257       break;
4258 
4259     case 0x1f:    /* pop ds */
4260       if (ir.regmap[X86_RECORD_R8_REGNUM])
4261         {
4262 	  ir.addr -= 1;
4263 	  goto no_support;
4264 	}
4265       I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4266       I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
4267       I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4268       break;
4269 
4270     case 0x0fa1:    /* pop fs */
4271       I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4272       I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
4273       I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4274       break;
4275 
4276     case 0x0fa9:    /* pop gs */
4277       I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4278       I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
4279       I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4280       break;
4281 
4282     case 0x88:    /* mov */
4283     case 0x89:
4284     case 0xc6:
4285     case 0xc7:
4286       if ((opcode & 1) == 0)
4287 	ir.ot = OT_BYTE;
4288       else
4289 	ir.ot = ir.dflag + OT_WORD;
4290 
4291       if (i386_record_modrm (&ir))
4292 	return -1;
4293 
4294       if (ir.mod != 3)
4295 	{
4296           if (opcode == 0xc6 || opcode == 0xc7)
4297 	    ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4298 	  if (i386_record_lea_modrm (&ir))
4299 	    return -1;
4300 	}
4301       else
4302 	{
4303           if (opcode == 0xc6 || opcode == 0xc7)
4304 	    ir.rm |= ir.rex_b;
4305 	  if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4306 	    ir.rm &= 0x3;
4307 	  I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4308 	}
4309       break;
4310 
4311     case 0x8a:    /* mov */
4312     case 0x8b:
4313       if ((opcode & 1) == 0)
4314 	ir.ot = OT_BYTE;
4315       else
4316 	ir.ot = ir.dflag + OT_WORD;
4317       if (i386_record_modrm (&ir))
4318 	return -1;
4319       ir.reg |= rex_r;
4320       if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4321 	ir.reg &= 0x3;
4322       I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4323       break;
4324 
4325     case 0x8c:    /* mov seg */
4326       if (i386_record_modrm (&ir))
4327 	return -1;
4328       if (ir.reg > 5)
4329 	{
4330 	  ir.addr -= 2;
4331 	  opcode = opcode << 8 | ir.modrm;
4332 	  goto no_support;
4333 	}
4334 
4335       if (ir.mod == 3)
4336 	I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4337       else
4338 	{
4339 	  ir.ot = OT_WORD;
4340 	  if (i386_record_lea_modrm (&ir))
4341 	    return -1;
4342 	}
4343       break;
4344 
4345     case 0x8e:    /* mov seg */
4346       if (i386_record_modrm (&ir))
4347 	return -1;
4348       switch (ir.reg)
4349 	{
4350 	case 0:
4351 	  regnum = X86_RECORD_ES_REGNUM;
4352 	  break;
4353 	case 2:
4354 	  regnum = X86_RECORD_SS_REGNUM;
4355 	  break;
4356 	case 3:
4357 	  regnum = X86_RECORD_DS_REGNUM;
4358 	  break;
4359 	case 4:
4360 	  regnum = X86_RECORD_FS_REGNUM;
4361 	  break;
4362 	case 5:
4363 	  regnum = X86_RECORD_GS_REGNUM;
4364 	  break;
4365 	default:
4366 	  ir.addr -= 2;
4367 	  opcode = opcode << 8 | ir.modrm;
4368 	  goto no_support;
4369 	  break;
4370 	}
4371       I386_RECORD_ARCH_LIST_ADD_REG (regnum);
4372       I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4373       break;
4374 
4375     case 0x0fb6:    /* movzbS */
4376     case 0x0fb7:    /* movzwS */
4377     case 0x0fbe:    /* movsbS */
4378     case 0x0fbf:    /* movswS */
4379       if (i386_record_modrm (&ir))
4380 	return -1;
4381       I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
4382       break;
4383 
4384     case 0x8d:      /* lea */
4385       if (i386_record_modrm (&ir))
4386 	return -1;
4387       if (ir.mod == 3)
4388 	{
4389 	  ir.addr -= 2;
4390 	  opcode = opcode << 8 | ir.modrm;
4391 	  goto no_support;
4392 	}
4393       ir.ot = ir.dflag;
4394       ir.reg |= rex_r;
4395       if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4396 	ir.reg &= 0x3;
4397       I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4398       break;
4399 
4400     case 0xa0:    /* mov EAX */
4401     case 0xa1:
4402 
4403     case 0xd7:    /* xlat */
4404       I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4405       break;
4406 
4407     case 0xa2:    /* mov EAX */
4408     case 0xa3:
4409       if (ir.override >= 0)
4410         {
4411           if (record_memory_query)
4412             {
4413 	      int q;
4414 
4415               target_terminal_ours ();
4416               q = yquery (_("\
4417 Process record ignores the memory change of instruction at address %s\n\
4418 because it can't get the value of the segment register.\n\
4419 Do you want to stop the program?"),
4420                           paddress (gdbarch, ir.orig_addr));
4421               target_terminal_inferior ();
4422               if (q)
4423                 return -1;
4424             }
4425 	}
4426       else
4427 	{
4428           if ((opcode & 1) == 0)
4429 	    ir.ot = OT_BYTE;
4430 	  else
4431 	    ir.ot = ir.dflag + OT_WORD;
4432 	  if (ir.aflag == 2)
4433 	    {
4434               if (target_read_memory (ir.addr, buf, 8))
4435 		{
4436 	          if (record_debug)
4437 		    printf_unfiltered (_("Process record: error reading "
4438 	                    		 "memory at addr 0x%s len = 8.\n"),
4439 				       paddress (gdbarch, ir.addr));
4440 		  return -1;
4441 		}
4442 	      ir.addr += 8;
4443 	      addr = extract_unsigned_integer (buf, 8, byte_order);
4444 	    }
4445           else if (ir.aflag)
4446 	    {
4447               if (target_read_memory (ir.addr, buf, 4))
4448 		{
4449 	          if (record_debug)
4450 		    printf_unfiltered (_("Process record: error reading "
4451 	                    		 "memory at addr 0x%s len = 4.\n"),
4452 				       paddress (gdbarch, ir.addr));
4453 		  return -1;
4454 		}
4455 	      ir.addr += 4;
4456               addr = extract_unsigned_integer (buf, 4, byte_order);
4457 	    }
4458           else
4459 	    {
4460               if (target_read_memory (ir.addr, buf, 2))
4461 		{
4462 	          if (record_debug)
4463 		    printf_unfiltered (_("Process record: error reading "
4464 	                    		 "memory at addr 0x%s len = 2.\n"),
4465 				       paddress (gdbarch, ir.addr));
4466 		  return -1;
4467 		}
4468 	      ir.addr += 2;
4469               addr = extract_unsigned_integer (buf, 2, byte_order);
4470 	    }
4471 	  if (record_arch_list_add_mem (addr, 1 << ir.ot))
4472 	    return -1;
4473         }
4474       break;
4475 
4476     case 0xb0:    /* mov R, Ib */
4477     case 0xb1:
4478     case 0xb2:
4479     case 0xb3:
4480     case 0xb4:
4481     case 0xb5:
4482     case 0xb6:
4483     case 0xb7:
4484       I386_RECORD_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
4485                                         ? ((opcode & 0x7) | ir.rex_b)
4486 					: ((opcode & 0x7) & 0x3));
4487       break;
4488 
4489     case 0xb8:    /* mov R, Iv */
4490     case 0xb9:
4491     case 0xba:
4492     case 0xbb:
4493     case 0xbc:
4494     case 0xbd:
4495     case 0xbe:
4496     case 0xbf:
4497       I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
4498       break;
4499 
4500     case 0x91:    /* xchg R, EAX */
4501     case 0x92:
4502     case 0x93:
4503     case 0x94:
4504     case 0x95:
4505     case 0x96:
4506     case 0x97:
4507       I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4508       I386_RECORD_ARCH_LIST_ADD_REG (opcode & 0x7);
4509       break;
4510 
4511     case 0x86:    /* xchg Ev, Gv */
4512     case 0x87:
4513       if ((opcode & 1) == 0)
4514 	ir.ot = OT_BYTE;
4515       else
4516 	ir.ot = ir.dflag + OT_WORD;
4517       if (i386_record_modrm (&ir))
4518 	return -1;
4519       if (ir.mod == 3)
4520 	{
4521 	  ir.rm |= ir.rex_b;
4522 	  if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4523 	    ir.rm &= 0x3;
4524 	  I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4525 	}
4526       else
4527 	{
4528 	  if (i386_record_lea_modrm (&ir))
4529 	    return -1;
4530 	}
4531       ir.reg |= rex_r;
4532       if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4533 	ir.reg &= 0x3;
4534       I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4535       break;
4536 
4537     case 0xc4:    /* les Gv */
4538     case 0xc5:    /* lds Gv */
4539       if (ir.regmap[X86_RECORD_R8_REGNUM])
4540         {
4541 	  ir.addr -= 1;
4542 	  goto no_support;
4543 	}
4544     case 0x0fb2:    /* lss Gv */
4545     case 0x0fb4:    /* lfs Gv */
4546     case 0x0fb5:    /* lgs Gv */
4547       if (i386_record_modrm (&ir))
4548 	return -1;
4549       if (ir.mod == 3)
4550 	{
4551 	  if (opcode > 0xff)
4552 	    ir.addr -= 3;
4553 	  else
4554 	    ir.addr -= 2;
4555 	  opcode = opcode << 8 | ir.modrm;
4556 	  goto no_support;
4557 	}
4558       switch (opcode)
4559 	{
4560 	case 0xc4:    /* les Gv */
4561 	  regnum = X86_RECORD_ES_REGNUM;
4562 	  break;
4563 	case 0xc5:    /* lds Gv */
4564 	  regnum = X86_RECORD_DS_REGNUM;
4565 	  break;
4566 	case 0x0fb2:  /* lss Gv */
4567 	  regnum = X86_RECORD_SS_REGNUM;
4568 	  break;
4569 	case 0x0fb4:  /* lfs Gv */
4570 	  regnum = X86_RECORD_FS_REGNUM;
4571 	  break;
4572 	case 0x0fb5:  /* lgs Gv */
4573 	  regnum = X86_RECORD_GS_REGNUM;
4574 	  break;
4575 	}
4576       I386_RECORD_ARCH_LIST_ADD_REG (regnum);
4577       I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
4578       I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4579       break;
4580 
4581     case 0xc0:    /* shifts */
4582     case 0xc1:
4583     case 0xd0:
4584     case 0xd1:
4585     case 0xd2:
4586     case 0xd3:
4587       if ((opcode & 1) == 0)
4588 	ir.ot = OT_BYTE;
4589       else
4590 	ir.ot = ir.dflag + OT_WORD;
4591       if (i386_record_modrm (&ir))
4592 	return -1;
4593       if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
4594 	{
4595 	  if (i386_record_lea_modrm (&ir))
4596 	    return -1;
4597 	}
4598       else
4599 	{
4600 	  ir.rm |= ir.rex_b;
4601 	  if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4602 	    ir.rm &= 0x3;
4603 	  I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4604 	}
4605       I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4606       break;
4607 
4608     case 0x0fa4:
4609     case 0x0fa5:
4610     case 0x0fac:
4611     case 0x0fad:
4612       if (i386_record_modrm (&ir))
4613 	return -1;
4614       if (ir.mod == 3)
4615 	{
4616 	  if (record_arch_list_add_reg (ir.regcache, ir.rm))
4617 	    return -1;
4618 	}
4619       else
4620 	{
4621 	  if (i386_record_lea_modrm (&ir))
4622 	    return -1;
4623 	}
4624       break;
4625 
4626     case 0xd8:    /* Floats.  */
4627     case 0xd9:
4628     case 0xda:
4629     case 0xdb:
4630     case 0xdc:
4631     case 0xdd:
4632     case 0xde:
4633     case 0xdf:
4634       if (i386_record_modrm (&ir))
4635 	return -1;
4636       ir.reg |= ((opcode & 7) << 3);
4637       if (ir.mod != 3)
4638 	{
4639 	  /* Memory. */
4640 	  uint64_t addr64;
4641 
4642 	  if (i386_record_lea_modrm_addr (&ir, &addr64))
4643 	    return -1;
4644 	  switch (ir.reg)
4645 	    {
4646 	    case 0x02:
4647             case 0x12:
4648             case 0x22:
4649             case 0x32:
4650 	      /* For fcom, ficom nothing to do.  */
4651               break;
4652 	    case 0x03:
4653             case 0x13:
4654             case 0x23:
4655             case 0x33:
4656 	      /* For fcomp, ficomp pop FPU stack, store all.  */
4657               if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
4658                 return -1;
4659               break;
4660             case 0x00:
4661             case 0x01:
4662 	    case 0x04:
4663 	    case 0x05:
4664 	    case 0x06:
4665 	    case 0x07:
4666 	    case 0x10:
4667 	    case 0x11:
4668 	    case 0x14:
4669 	    case 0x15:
4670 	    case 0x16:
4671 	    case 0x17:
4672 	    case 0x20:
4673 	    case 0x21:
4674 	    case 0x24:
4675 	    case 0x25:
4676 	    case 0x26:
4677 	    case 0x27:
4678 	    case 0x30:
4679 	    case 0x31:
4680 	    case 0x34:
4681 	    case 0x35:
4682 	    case 0x36:
4683 	    case 0x37:
4684               /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
4685                  fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
4686                  of code,  always affects st(0) register.  */
4687               if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
4688                 return -1;
4689 	      break;
4690 	    case 0x08:
4691 	    case 0x0a:
4692 	    case 0x0b:
4693 	    case 0x18:
4694 	    case 0x19:
4695 	    case 0x1a:
4696 	    case 0x1b:
4697             case 0x1d:
4698 	    case 0x28:
4699 	    case 0x29:
4700 	    case 0x2a:
4701 	    case 0x2b:
4702 	    case 0x38:
4703 	    case 0x39:
4704 	    case 0x3a:
4705 	    case 0x3b:
4706             case 0x3c:
4707             case 0x3d:
4708 	      switch (ir.reg & 7)
4709 		{
4710 		case 0:
4711 		  /* Handling fld, fild.  */
4712 		  if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
4713 		    return -1;
4714 		  break;
4715 		case 1:
4716 		  switch (ir.reg >> 4)
4717 		    {
4718 		    case 0:
4719 		      if (record_arch_list_add_mem (addr64, 4))
4720 			return -1;
4721 		      break;
4722 		    case 2:
4723 		      if (record_arch_list_add_mem (addr64, 8))
4724 			return -1;
4725 		      break;
4726 		    case 3:
4727 		      break;
4728 		    default:
4729 		      if (record_arch_list_add_mem (addr64, 2))
4730 			return -1;
4731 		      break;
4732 		    }
4733 		  break;
4734 		default:
4735 		  switch (ir.reg >> 4)
4736 		    {
4737 		    case 0:
4738 		      if (record_arch_list_add_mem (addr64, 4))
4739 			return -1;
4740 		      if (3 == (ir.reg & 7))
4741 			{
4742 			  /* For fstp m32fp.  */
4743 			  if (i386_record_floats (gdbarch, &ir,
4744 						  I386_SAVE_FPU_REGS))
4745 			    return -1;
4746 			}
4747 		      break;
4748 		    case 1:
4749 		      if (record_arch_list_add_mem (addr64, 4))
4750 			return -1;
4751 		      if ((3 == (ir.reg & 7))
4752 			  || (5 == (ir.reg & 7))
4753 			  || (7 == (ir.reg & 7)))
4754 			{
4755 			  /* For fstp insn.  */
4756 			  if (i386_record_floats (gdbarch, &ir,
4757 						  I386_SAVE_FPU_REGS))
4758 			    return -1;
4759 			}
4760 		      break;
4761 		    case 2:
4762 		      if (record_arch_list_add_mem (addr64, 8))
4763 			return -1;
4764 		      if (3 == (ir.reg & 7))
4765 			{
4766 			  /* For fstp m64fp.  */
4767 			  if (i386_record_floats (gdbarch, &ir,
4768 						  I386_SAVE_FPU_REGS))
4769 			    return -1;
4770 			}
4771 		      break;
4772 		    case 3:
4773 		      if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
4774 			{
4775 			  /* For fistp, fbld, fild, fbstp.  */
4776 			  if (i386_record_floats (gdbarch, &ir,
4777 						  I386_SAVE_FPU_REGS))
4778 			    return -1;
4779 			}
4780 		      /* Fall through */
4781 		    default:
4782 		      if (record_arch_list_add_mem (addr64, 2))
4783 			return -1;
4784 		      break;
4785 		    }
4786 		  break;
4787 		}
4788 	      break;
4789 	    case 0x0c:
4790               /* Insn fldenv.  */
4791               if (i386_record_floats (gdbarch, &ir,
4792                                       I386_SAVE_FPU_ENV_REG_STACK))
4793                 return -1;
4794               break;
4795 	    case 0x0d:
4796               /* Insn fldcw.  */
4797               if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
4798                 return -1;
4799               break;
4800 	    case 0x2c:
4801               /* Insn frstor.  */
4802               if (i386_record_floats (gdbarch, &ir,
4803                                       I386_SAVE_FPU_ENV_REG_STACK))
4804                 return -1;
4805 	      break;
4806 	    case 0x0e:
4807 	      if (ir.dflag)
4808 		{
4809 		  if (record_arch_list_add_mem (addr64, 28))
4810 		    return -1;
4811 		}
4812 	      else
4813 		{
4814 		  if (record_arch_list_add_mem (addr64, 14))
4815 		    return -1;
4816 		}
4817 	      break;
4818 	    case 0x0f:
4819 	    case 0x2f:
4820 	      if (record_arch_list_add_mem (addr64, 2))
4821 		return -1;
4822               /* Insn fstp, fbstp.  */
4823               if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
4824                 return -1;
4825 	      break;
4826 	    case 0x1f:
4827 	    case 0x3e:
4828 	      if (record_arch_list_add_mem (addr64, 10))
4829 		return -1;
4830 	      break;
4831 	    case 0x2e:
4832 	      if (ir.dflag)
4833 		{
4834 		  if (record_arch_list_add_mem (addr64, 28))
4835 		    return -1;
4836 		  addr64 += 28;
4837 		}
4838 	      else
4839 		{
4840 		  if (record_arch_list_add_mem (addr64, 14))
4841 		    return -1;
4842 		  addr64 += 14;
4843 		}
4844 	      if (record_arch_list_add_mem (addr64, 80))
4845 		return -1;
4846 	      /* Insn fsave.  */
4847 	      if (i386_record_floats (gdbarch, &ir,
4848 				      I386_SAVE_FPU_ENV_REG_STACK))
4849 		return -1;
4850 	      break;
4851 	    case 0x3f:
4852 	      if (record_arch_list_add_mem (addr64, 8))
4853 		return -1;
4854 	      /* Insn fistp.  */
4855 	      if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
4856 		return -1;
4857 	      break;
4858 	    default:
4859 	      ir.addr -= 2;
4860 	      opcode = opcode << 8 | ir.modrm;
4861 	      goto no_support;
4862 	      break;
4863 	    }
4864 	}
4865       /* Opcode is an extension of modR/M byte.  */
4866       else
4867         {
4868 	  switch (opcode)
4869 	    {
4870 	    case 0xd8:
4871 	      if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
4872 		return -1;
4873 	      break;
4874 	    case 0xd9:
4875 	      if (0x0c == (ir.modrm >> 4))
4876 		{
4877 		  if ((ir.modrm & 0x0f) <= 7)
4878 		    {
4879 		      if (i386_record_floats (gdbarch, &ir,
4880 					      I386_SAVE_FPU_REGS))
4881 			return -1;
4882 		    }
4883                   else
4884 		    {
4885 		      if (i386_record_floats (gdbarch, &ir,
4886 					      I387_ST0_REGNUM (tdep)))
4887 			return -1;
4888 		      /* If only st(0) is changing, then we have already
4889 			 recorded.  */
4890 		      if ((ir.modrm & 0x0f) - 0x08)
4891 			{
4892 			  if (i386_record_floats (gdbarch, &ir,
4893 						  I387_ST0_REGNUM (tdep) +
4894 						  ((ir.modrm & 0x0f) - 0x08)))
4895 			    return -1;
4896 			}
4897 		    }
4898 		}
4899               else
4900                 {
4901 		  switch (ir.modrm)
4902 		    {
4903 		    case 0xe0:
4904 		    case 0xe1:
4905 		    case 0xf0:
4906 		    case 0xf5:
4907 		    case 0xf8:
4908 		    case 0xfa:
4909 		    case 0xfc:
4910 		    case 0xfe:
4911 		    case 0xff:
4912 		      if (i386_record_floats (gdbarch, &ir,
4913 					      I387_ST0_REGNUM (tdep)))
4914 			return -1;
4915 		      break;
4916 		    case 0xf1:
4917 		    case 0xf2:
4918 		    case 0xf3:
4919 		    case 0xf4:
4920 		    case 0xf6:
4921 		    case 0xf7:
4922 		    case 0xe8:
4923 		    case 0xe9:
4924 		    case 0xea:
4925 		    case 0xeb:
4926 		    case 0xec:
4927 		    case 0xed:
4928 		    case 0xee:
4929 		    case 0xf9:
4930 		    case 0xfb:
4931 		      if (i386_record_floats (gdbarch, &ir,
4932 					      I386_SAVE_FPU_REGS))
4933 			return -1;
4934 		      break;
4935 		    case 0xfd:
4936 		      if (i386_record_floats (gdbarch, &ir,
4937 					      I387_ST0_REGNUM (tdep)))
4938 			return -1;
4939 		      if (i386_record_floats (gdbarch, &ir,
4940 					      I387_ST0_REGNUM (tdep) + 1))
4941 			return -1;
4942 		      break;
4943 		    }
4944 		}
4945               break;
4946             case 0xda:
4947               if (0xe9 == ir.modrm)
4948                 {
4949 		  if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
4950 		    return -1;
4951                 }
4952               else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
4953                 {
4954 		  if (i386_record_floats (gdbarch, &ir,
4955 					  I387_ST0_REGNUM (tdep)))
4956 		    return -1;
4957 		  if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
4958 		    {
4959 		      if (i386_record_floats (gdbarch, &ir,
4960 					      I387_ST0_REGNUM (tdep) +
4961 					      (ir.modrm & 0x0f)))
4962 			return -1;
4963 		    }
4964 		  else if ((ir.modrm & 0x0f) - 0x08)
4965 		    {
4966 		      if (i386_record_floats (gdbarch, &ir,
4967 					      I387_ST0_REGNUM (tdep) +
4968 					      ((ir.modrm & 0x0f) - 0x08)))
4969 			return -1;
4970 		    }
4971                 }
4972               break;
4973             case 0xdb:
4974               if (0xe3 == ir.modrm)
4975                 {
4976 		  if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
4977 		    return -1;
4978                 }
4979               else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
4980                 {
4981 		  if (i386_record_floats (gdbarch, &ir,
4982 					  I387_ST0_REGNUM (tdep)))
4983 		    return -1;
4984 		  if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
4985 		    {
4986 		      if (i386_record_floats (gdbarch, &ir,
4987 					      I387_ST0_REGNUM (tdep) +
4988 					      (ir.modrm & 0x0f)))
4989 			return -1;
4990 		    }
4991 		  else if ((ir.modrm & 0x0f) - 0x08)
4992 		    {
4993 		      if (i386_record_floats (gdbarch, &ir,
4994 					      I387_ST0_REGNUM (tdep) +
4995 					      ((ir.modrm & 0x0f) - 0x08)))
4996 			return -1;
4997 		    }
4998                 }
4999               break;
5000             case 0xdc:
5001               if ((0x0c == ir.modrm >> 4)
5002 		  || (0x0d == ir.modrm >> 4)
5003 		  || (0x0f == ir.modrm >> 4))
5004                 {
5005 		  if ((ir.modrm & 0x0f) <= 7)
5006 		    {
5007 		      if (i386_record_floats (gdbarch, &ir,
5008 					      I387_ST0_REGNUM (tdep) +
5009 					      (ir.modrm & 0x0f)))
5010 			return -1;
5011 		    }
5012 		  else
5013 		    {
5014 		      if (i386_record_floats (gdbarch, &ir,
5015 					      I387_ST0_REGNUM (tdep) +
5016 					      ((ir.modrm & 0x0f) - 0x08)))
5017 			return -1;
5018 		    }
5019                 }
5020 	      break;
5021             case 0xdd:
5022               if (0x0c == ir.modrm >> 4)
5023                 {
5024                   if (i386_record_floats (gdbarch, &ir,
5025                                           I387_FTAG_REGNUM (tdep)))
5026                     return -1;
5027                 }
5028               else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
5029                 {
5030                   if ((ir.modrm & 0x0f) <= 7)
5031                     {
5032 		      if (i386_record_floats (gdbarch, &ir,
5033 					      I387_ST0_REGNUM (tdep) +
5034 					      (ir.modrm & 0x0f)))
5035 			return -1;
5036                     }
5037                   else
5038                     {
5039                       if (i386_record_floats (gdbarch, &ir,
5040 					      I386_SAVE_FPU_REGS))
5041                         return -1;
5042                     }
5043                 }
5044               break;
5045             case 0xde:
5046               if ((0x0c == ir.modrm >> 4)
5047 		  || (0x0e == ir.modrm >> 4)
5048 		  || (0x0f == ir.modrm >> 4)
5049 		  || (0xd9 == ir.modrm))
5050                 {
5051 		  if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5052 		    return -1;
5053                 }
5054               break;
5055             case 0xdf:
5056               if (0xe0 == ir.modrm)
5057                 {
5058 		  if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
5059 		    return -1;
5060                 }
5061               else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
5062                 {
5063 		  if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5064 		    return -1;
5065                 }
5066               break;
5067 	    }
5068 	}
5069       break;
5070       /* string ops */
5071     case 0xa4:    /* movsS */
5072     case 0xa5:
5073     case 0xaa:    /* stosS */
5074     case 0xab:
5075     case 0x6c:    /* insS */
5076     case 0x6d:
5077       regcache_raw_read_unsigned (ir.regcache,
5078                                   ir.regmap[X86_RECORD_RECX_REGNUM],
5079                                   &addr);
5080       if (addr)
5081         {
5082           ULONGEST es, ds;
5083 
5084           if ((opcode & 1) == 0)
5085 	    ir.ot = OT_BYTE;
5086           else
5087 	    ir.ot = ir.dflag + OT_WORD;
5088           regcache_raw_read_unsigned (ir.regcache,
5089                                       ir.regmap[X86_RECORD_REDI_REGNUM],
5090                                       &addr);
5091 
5092           regcache_raw_read_unsigned (ir.regcache,
5093                                       ir.regmap[X86_RECORD_ES_REGNUM],
5094                                       &es);
5095           regcache_raw_read_unsigned (ir.regcache,
5096                                       ir.regmap[X86_RECORD_DS_REGNUM],
5097                                       &ds);
5098           if (ir.aflag && (es != ds))
5099             {
5100               /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
5101               if (record_memory_query)
5102                 {
5103 	          int q;
5104 
5105                   target_terminal_ours ();
5106                   q = yquery (_("\
5107 Process record ignores the memory change of instruction at address %s\n\
5108 because it can't get the value of the segment register.\n\
5109 Do you want to stop the program?"),
5110                               paddress (gdbarch, ir.orig_addr));
5111                   target_terminal_inferior ();
5112                   if (q)
5113                     return -1;
5114                 }
5115             }
5116           else
5117             {
5118               if (record_arch_list_add_mem (addr, 1 << ir.ot))
5119                 return -1;
5120             }
5121 
5122           if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5123             I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5124           if (opcode == 0xa4 || opcode == 0xa5)
5125             I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5126           I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5127           I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5128 	}
5129       break;
5130 
5131     case 0xa6:    /* cmpsS */
5132     case 0xa7:
5133       I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5134       I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5135       if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5136         I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5137       I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5138       break;
5139 
5140     case 0xac:    /* lodsS */
5141     case 0xad:
5142       I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5143       I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5144       if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5145         I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5146       I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5147       break;
5148 
5149     case 0xae:    /* scasS */
5150     case 0xaf:
5151       I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5152       if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5153         I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5154       I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5155       break;
5156 
5157     case 0x6e:    /* outsS */
5158     case 0x6f:
5159       I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5160       if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5161         I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5162       I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5163       break;
5164 
5165     case 0xe4:    /* port I/O */
5166     case 0xe5:
5167     case 0xec:
5168     case 0xed:
5169       I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5170       I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5171       break;
5172 
5173     case 0xe6:
5174     case 0xe7:
5175     case 0xee:
5176     case 0xef:
5177       break;
5178 
5179       /* control */
5180     case 0xc2:    /* ret im */
5181     case 0xc3:    /* ret */
5182       I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5183       I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5184       break;
5185 
5186     case 0xca:    /* lret im */
5187     case 0xcb:    /* lret */
5188     case 0xcf:    /* iret */
5189       I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5190       I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5191       I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5192       break;
5193 
5194     case 0xe8:    /* call im */
5195       if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5196         ir.dflag = 2;
5197       if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5198         return -1;
5199       break;
5200 
5201     case 0x9a:    /* lcall im */
5202       if (ir.regmap[X86_RECORD_R8_REGNUM])
5203         {
5204           ir.addr -= 1;
5205           goto no_support;
5206         }
5207       I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5208       if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5209         return -1;
5210       break;
5211 
5212     case 0xe9:    /* jmp im */
5213     case 0xea:    /* ljmp im */
5214     case 0xeb:    /* jmp Jb */
5215     case 0x70:    /* jcc Jb */
5216     case 0x71:
5217     case 0x72:
5218     case 0x73:
5219     case 0x74:
5220     case 0x75:
5221     case 0x76:
5222     case 0x77:
5223     case 0x78:
5224     case 0x79:
5225     case 0x7a:
5226     case 0x7b:
5227     case 0x7c:
5228     case 0x7d:
5229     case 0x7e:
5230     case 0x7f:
5231     case 0x0f80:  /* jcc Jv */
5232     case 0x0f81:
5233     case 0x0f82:
5234     case 0x0f83:
5235     case 0x0f84:
5236     case 0x0f85:
5237     case 0x0f86:
5238     case 0x0f87:
5239     case 0x0f88:
5240     case 0x0f89:
5241     case 0x0f8a:
5242     case 0x0f8b:
5243     case 0x0f8c:
5244     case 0x0f8d:
5245     case 0x0f8e:
5246     case 0x0f8f:
5247       break;
5248 
5249     case 0x0f90:  /* setcc Gv */
5250     case 0x0f91:
5251     case 0x0f92:
5252     case 0x0f93:
5253     case 0x0f94:
5254     case 0x0f95:
5255     case 0x0f96:
5256     case 0x0f97:
5257     case 0x0f98:
5258     case 0x0f99:
5259     case 0x0f9a:
5260     case 0x0f9b:
5261     case 0x0f9c:
5262     case 0x0f9d:
5263     case 0x0f9e:
5264     case 0x0f9f:
5265       I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5266       ir.ot = OT_BYTE;
5267       if (i386_record_modrm (&ir))
5268 	return -1;
5269       if (ir.mod == 3)
5270         I386_RECORD_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
5271 	                                        : (ir.rm & 0x3));
5272       else
5273 	{
5274 	  if (i386_record_lea_modrm (&ir))
5275 	    return -1;
5276 	}
5277       break;
5278 
5279     case 0x0f40:    /* cmov Gv, Ev */
5280     case 0x0f41:
5281     case 0x0f42:
5282     case 0x0f43:
5283     case 0x0f44:
5284     case 0x0f45:
5285     case 0x0f46:
5286     case 0x0f47:
5287     case 0x0f48:
5288     case 0x0f49:
5289     case 0x0f4a:
5290     case 0x0f4b:
5291     case 0x0f4c:
5292     case 0x0f4d:
5293     case 0x0f4e:
5294     case 0x0f4f:
5295       if (i386_record_modrm (&ir))
5296 	return -1;
5297       ir.reg |= rex_r;
5298       if (ir.dflag == OT_BYTE)
5299 	ir.reg &= 0x3;
5300       I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
5301       break;
5302 
5303       /* flags */
5304     case 0x9c:    /* pushf */
5305       I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5306       if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5307         ir.dflag = 2;
5308       if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5309         return -1;
5310       break;
5311 
5312     case 0x9d:    /* popf */
5313       I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5314       I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5315       break;
5316 
5317     case 0x9e:    /* sahf */
5318       if (ir.regmap[X86_RECORD_R8_REGNUM])
5319         {
5320           ir.addr -= 1;
5321           goto no_support;
5322         }
5323     case 0xf5:    /* cmc */
5324     case 0xf8:    /* clc */
5325     case 0xf9:    /* stc */
5326     case 0xfc:    /* cld */
5327     case 0xfd:    /* std */
5328       I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5329       break;
5330 
5331     case 0x9f:    /* lahf */
5332       if (ir.regmap[X86_RECORD_R8_REGNUM])
5333         {
5334           ir.addr -= 1;
5335           goto no_support;
5336         }
5337       I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5338       I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5339       break;
5340 
5341       /* bit operations */
5342     case 0x0fba:    /* bt/bts/btr/btc Gv, im */
5343       ir.ot = ir.dflag + OT_WORD;
5344       if (i386_record_modrm (&ir))
5345 	return -1;
5346       if (ir.reg < 4)
5347 	{
5348 	  ir.addr -= 2;
5349 	  opcode = opcode << 8 | ir.modrm;
5350 	  goto no_support;
5351 	}
5352       if (ir.reg != 4)
5353 	{
5354           if (ir.mod == 3)
5355             I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5356 	  else
5357 	    {
5358 	      if (i386_record_lea_modrm (&ir))
5359 		return -1;
5360 	    }
5361 	}
5362       I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5363       break;
5364 
5365     case 0x0fa3:    /* bt Gv, Ev */
5366       I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5367       break;
5368 
5369     case 0x0fab:    /* bts */
5370     case 0x0fb3:    /* btr */
5371     case 0x0fbb:    /* btc */
5372       ir.ot = ir.dflag + OT_WORD;
5373       if (i386_record_modrm (&ir))
5374         return -1;
5375       if (ir.mod == 3)
5376         I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5377       else
5378         {
5379           uint64_t addr64;
5380           if (i386_record_lea_modrm_addr (&ir, &addr64))
5381             return -1;
5382           regcache_raw_read_unsigned (ir.regcache,
5383                                       ir.regmap[ir.reg | rex_r],
5384                                       &addr);
5385           switch (ir.dflag)
5386             {
5387             case 0:
5388               addr64 += ((int16_t) addr >> 4) << 4;
5389               break;
5390             case 1:
5391               addr64 += ((int32_t) addr >> 5) << 5;
5392               break;
5393             case 2:
5394               addr64 += ((int64_t) addr >> 6) << 6;
5395               break;
5396             }
5397           if (record_arch_list_add_mem (addr64, 1 << ir.ot))
5398             return -1;
5399           if (i386_record_lea_modrm (&ir))
5400             return -1;
5401         }
5402       I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5403       break;
5404 
5405     case 0x0fbc:    /* bsf */
5406     case 0x0fbd:    /* bsr */
5407       I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5408       I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5409       break;
5410 
5411       /* bcd */
5412     case 0x27:    /* daa */
5413     case 0x2f:    /* das */
5414     case 0x37:    /* aaa */
5415     case 0x3f:    /* aas */
5416     case 0xd4:    /* aam */
5417     case 0xd5:    /* aad */
5418       if (ir.regmap[X86_RECORD_R8_REGNUM])
5419         {
5420           ir.addr -= 1;
5421           goto no_support;
5422         }
5423       I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5424       I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5425       break;
5426 
5427       /* misc */
5428     case 0x90:    /* nop */
5429       if (prefixes & PREFIX_LOCK)
5430 	{
5431 	  ir.addr -= 1;
5432 	  goto no_support;
5433 	}
5434       break;
5435 
5436     case 0x9b:    /* fwait */
5437       if (target_read_memory (ir.addr, &opcode8, 1))
5438         {
5439           if (record_debug)
5440             printf_unfiltered (_("Process record: error reading memory at "
5441 				 "addr 0x%s len = 1.\n"),
5442 			       paddress (gdbarch, ir.addr));
5443           return -1;
5444         }
5445       opcode = (uint32_t) opcode8;
5446       ir.addr++;
5447       goto reswitch;
5448       break;
5449 
5450       /* XXX */
5451     case 0xcc:    /* int3 */
5452       printf_unfiltered (_("Process record does not support instruction "
5453 			   "int3.\n"));
5454       ir.addr -= 1;
5455       goto no_support;
5456       break;
5457 
5458       /* XXX */
5459     case 0xcd:    /* int */
5460       {
5461 	int ret;
5462 	uint8_t interrupt;
5463 	if (target_read_memory (ir.addr, &interrupt, 1))
5464 	  {
5465 	    if (record_debug)
5466 	      printf_unfiltered (_("Process record: error reading memory "
5467 				   "at addr %s len = 1.\n"),
5468 				 paddress (gdbarch, ir.addr));
5469 	    return -1;
5470 	  }
5471 	ir.addr++;
5472 	if (interrupt != 0x80
5473 	    || tdep->i386_intx80_record == NULL)
5474 	  {
5475 	    printf_unfiltered (_("Process record does not support "
5476 				 "instruction int 0x%02x.\n"),
5477 			       interrupt);
5478 	    ir.addr -= 2;
5479 	    goto no_support;
5480 	  }
5481 	ret = tdep->i386_intx80_record (ir.regcache);
5482 	if (ret)
5483 	  return ret;
5484       }
5485       break;
5486 
5487       /* XXX */
5488     case 0xce:    /* into */
5489       printf_unfiltered (_("Process record does not support "
5490 			   "instruction into.\n"));
5491       ir.addr -= 1;
5492       goto no_support;
5493       break;
5494 
5495     case 0xfa:    /* cli */
5496     case 0xfb:    /* sti */
5497       break;
5498 
5499     case 0x62:    /* bound */
5500       printf_unfiltered (_("Process record does not support "
5501 			   "instruction bound.\n"));
5502       ir.addr -= 1;
5503       goto no_support;
5504       break;
5505 
5506     case 0x0fc8:    /* bswap reg */
5507     case 0x0fc9:
5508     case 0x0fca:
5509     case 0x0fcb:
5510     case 0x0fcc:
5511     case 0x0fcd:
5512     case 0x0fce:
5513     case 0x0fcf:
5514       I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
5515       break;
5516 
5517     case 0xd6:    /* salc */
5518       if (ir.regmap[X86_RECORD_R8_REGNUM])
5519         {
5520           ir.addr -= 1;
5521           goto no_support;
5522         }
5523       I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5524       I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5525       break;
5526 
5527     case 0xe0:    /* loopnz */
5528     case 0xe1:    /* loopz */
5529     case 0xe2:    /* loop */
5530     case 0xe3:    /* jecxz */
5531       I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5532       I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5533       break;
5534 
5535     case 0x0f30:    /* wrmsr */
5536       printf_unfiltered (_("Process record does not support "
5537 			   "instruction wrmsr.\n"));
5538       ir.addr -= 2;
5539       goto no_support;
5540       break;
5541 
5542     case 0x0f32:    /* rdmsr */
5543       printf_unfiltered (_("Process record does not support "
5544 			   "instruction rdmsr.\n"));
5545       ir.addr -= 2;
5546       goto no_support;
5547       break;
5548 
5549     case 0x0f31:    /* rdtsc */
5550       I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5551       I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5552       break;
5553 
5554     case 0x0f34:    /* sysenter */
5555       {
5556 	int ret;
5557         if (ir.regmap[X86_RECORD_R8_REGNUM])
5558           {
5559             ir.addr -= 2;
5560             goto no_support;
5561           }
5562 	if (tdep->i386_sysenter_record == NULL)
5563 	  {
5564 	    printf_unfiltered (_("Process record does not support "
5565 				 "instruction sysenter.\n"));
5566 	    ir.addr -= 2;
5567 	    goto no_support;
5568 	  }
5569 	ret = tdep->i386_sysenter_record (ir.regcache);
5570 	if (ret)
5571 	  return ret;
5572       }
5573       break;
5574 
5575     case 0x0f35:    /* sysexit */
5576       printf_unfiltered (_("Process record does not support "
5577 			   "instruction sysexit.\n"));
5578       ir.addr -= 2;
5579       goto no_support;
5580       break;
5581 
5582     case 0x0f05:    /* syscall */
5583       {
5584 	int ret;
5585 	if (tdep->i386_syscall_record == NULL)
5586 	  {
5587 	    printf_unfiltered (_("Process record does not support "
5588 				 "instruction syscall.\n"));
5589 	    ir.addr -= 2;
5590 	    goto no_support;
5591 	  }
5592 	ret = tdep->i386_syscall_record (ir.regcache);
5593 	if (ret)
5594 	  return ret;
5595       }
5596       break;
5597 
5598     case 0x0f07:    /* sysret */
5599       printf_unfiltered (_("Process record does not support "
5600                            "instruction sysret.\n"));
5601       ir.addr -= 2;
5602       goto no_support;
5603       break;
5604 
5605     case 0x0fa2:    /* cpuid */
5606       I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5607       I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5608       I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5609       I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
5610       break;
5611 
5612     case 0xf4:    /* hlt */
5613       printf_unfiltered (_("Process record does not support "
5614 			   "instruction hlt.\n"));
5615       ir.addr -= 1;
5616       goto no_support;
5617       break;
5618 
5619     case 0x0f00:
5620       if (i386_record_modrm (&ir))
5621 	return -1;
5622       switch (ir.reg)
5623 	{
5624 	case 0:  /* sldt */
5625 	case 1:  /* str  */
5626 	  if (ir.mod == 3)
5627             I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5628 	  else
5629 	    {
5630 	      ir.ot = OT_WORD;
5631 	      if (i386_record_lea_modrm (&ir))
5632 		return -1;
5633 	    }
5634 	  break;
5635 	case 2:  /* lldt */
5636 	case 3:  /* ltr */
5637 	  break;
5638 	case 4:  /* verr */
5639 	case 5:  /* verw */
5640           I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5641 	  break;
5642 	default:
5643 	  ir.addr -= 3;
5644 	  opcode = opcode << 8 | ir.modrm;
5645 	  goto no_support;
5646 	  break;
5647 	}
5648       break;
5649 
5650     case 0x0f01:
5651       if (i386_record_modrm (&ir))
5652 	return -1;
5653       switch (ir.reg)
5654 	{
5655 	case 0:  /* sgdt */
5656 	  {
5657 	    uint64_t addr64;
5658 
5659 	    if (ir.mod == 3)
5660 	      {
5661 		ir.addr -= 3;
5662 		opcode = opcode << 8 | ir.modrm;
5663 		goto no_support;
5664 	      }
5665 	    if (ir.override >= 0)
5666 	      {
5667                 if (record_memory_query)
5668                   {
5669 	            int q;
5670 
5671                     target_terminal_ours ();
5672                     q = yquery (_("\
5673 Process record ignores the memory change of instruction at address %s\n\
5674 because it can't get the value of the segment register.\n\
5675 Do you want to stop the program?"),
5676                                 paddress (gdbarch, ir.orig_addr));
5677                     target_terminal_inferior ();
5678                     if (q)
5679                       return -1;
5680                   }
5681 	      }
5682 	    else
5683 	      {
5684 		if (i386_record_lea_modrm_addr (&ir, &addr64))
5685 		  return -1;
5686 		if (record_arch_list_add_mem (addr64, 2))
5687 		  return -1;
5688 		addr64 += 2;
5689                 if (ir.regmap[X86_RECORD_R8_REGNUM])
5690                   {
5691                     if (record_arch_list_add_mem (addr64, 8))
5692 		      return -1;
5693                   }
5694                 else
5695                   {
5696                     if (record_arch_list_add_mem (addr64, 4))
5697 		      return -1;
5698                   }
5699 	      }
5700 	  }
5701 	  break;
5702 	case 1:
5703 	  if (ir.mod == 3)
5704 	    {
5705 	      switch (ir.rm)
5706 		{
5707 		case 0:  /* monitor */
5708 		  break;
5709 		case 1:  /* mwait */
5710 		  I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5711 		  break;
5712 		default:
5713 		  ir.addr -= 3;
5714 		  opcode = opcode << 8 | ir.modrm;
5715 		  goto no_support;
5716 		  break;
5717 		}
5718 	    }
5719 	  else
5720 	    {
5721 	      /* sidt */
5722 	      if (ir.override >= 0)
5723 		{
5724                   if (record_memory_query)
5725                     {
5726 	              int q;
5727 
5728                       target_terminal_ours ();
5729                       q = yquery (_("\
5730 Process record ignores the memory change of instruction at address %s\n\
5731 because it can't get the value of the segment register.\n\
5732 Do you want to stop the program?"),
5733                                   paddress (gdbarch, ir.orig_addr));
5734                       target_terminal_inferior ();
5735                       if (q)
5736                         return -1;
5737                     }
5738 		}
5739 	      else
5740 		{
5741 		  uint64_t addr64;
5742 
5743 		  if (i386_record_lea_modrm_addr (&ir, &addr64))
5744 		    return -1;
5745 		  if (record_arch_list_add_mem (addr64, 2))
5746 		    return -1;
5747 		  addr64 += 2;
5748                   if (ir.regmap[X86_RECORD_R8_REGNUM])
5749                     {
5750                       if (record_arch_list_add_mem (addr64, 8))
5751 		        return -1;
5752                     }
5753                   else
5754                     {
5755                       if (record_arch_list_add_mem (addr64, 4))
5756 		        return -1;
5757                     }
5758 		}
5759 	    }
5760 	  break;
5761 	case 2:  /* lgdt */
5762 	  if (ir.mod == 3)
5763 	    {
5764 	      /* xgetbv */
5765 	      if (ir.rm == 0)
5766 		{
5767 		  I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5768 		  I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5769 		  break;
5770 		}
5771 	      /* xsetbv */
5772 	      else if (ir.rm == 1)
5773 		break;
5774 	    }
5775 	case 3:  /* lidt */
5776 	  if (ir.mod == 3)
5777 	    {
5778 	      ir.addr -= 3;
5779 	      opcode = opcode << 8 | ir.modrm;
5780 	      goto no_support;
5781 	    }
5782 	  break;
5783 	case 4:  /* smsw */
5784 	  if (ir.mod == 3)
5785 	    {
5786 	      if (record_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
5787 		return -1;
5788 	    }
5789 	  else
5790 	    {
5791 	      ir.ot = OT_WORD;
5792 	      if (i386_record_lea_modrm (&ir))
5793 		return -1;
5794 	    }
5795 	  I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5796 	  break;
5797 	case 6:  /* lmsw */
5798 	  I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5799 	  break;
5800 	case 7:  /* invlpg */
5801 	  if (ir.mod == 3)
5802 	    {
5803 	      if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
5804 	        I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5805 	      else
5806 	        {
5807 	          ir.addr -= 3;
5808 	          opcode = opcode << 8 | ir.modrm;
5809 	          goto no_support;
5810 	        }
5811 	    }
5812 	  else
5813 	    I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5814 	  break;
5815 	default:
5816 	  ir.addr -= 3;
5817 	  opcode = opcode << 8 | ir.modrm;
5818 	  goto no_support;
5819 	  break;
5820 	}
5821       break;
5822 
5823     case 0x0f08:    /* invd */
5824     case 0x0f09:    /* wbinvd */
5825       break;
5826 
5827     case 0x63:    /* arpl */
5828       if (i386_record_modrm (&ir))
5829 	return -1;
5830       if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
5831         {
5832           I386_RECORD_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
5833 	                                   ? (ir.reg | rex_r) : ir.rm);
5834         }
5835       else
5836         {
5837           ir.ot = ir.dflag ? OT_LONG : OT_WORD;
5838           if (i386_record_lea_modrm (&ir))
5839             return -1;
5840         }
5841       if (!ir.regmap[X86_RECORD_R8_REGNUM])
5842         I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5843       break;
5844 
5845     case 0x0f02:    /* lar */
5846     case 0x0f03:    /* lsl */
5847       if (i386_record_modrm (&ir))
5848 	return -1;
5849       I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5850       I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5851       break;
5852 
5853     case 0x0f18:
5854       if (i386_record_modrm (&ir))
5855 	return -1;
5856       if (ir.mod == 3 && ir.reg == 3)
5857         {
5858 	  ir.addr -= 3;
5859 	  opcode = opcode << 8 | ir.modrm;
5860 	  goto no_support;
5861 	}
5862       break;
5863 
5864     case 0x0f19:
5865     case 0x0f1a:
5866     case 0x0f1b:
5867     case 0x0f1c:
5868     case 0x0f1d:
5869     case 0x0f1e:
5870     case 0x0f1f:
5871       /* nop (multi byte) */
5872       break;
5873 
5874     case 0x0f20:    /* mov reg, crN */
5875     case 0x0f22:    /* mov crN, reg */
5876       if (i386_record_modrm (&ir))
5877 	return -1;
5878       if ((ir.modrm & 0xc0) != 0xc0)
5879 	{
5880 	  ir.addr -= 3;
5881 	  opcode = opcode << 8 | ir.modrm;
5882 	  goto no_support;
5883 	}
5884       switch (ir.reg)
5885 	{
5886 	case 0:
5887 	case 2:
5888 	case 3:
5889 	case 4:
5890 	case 8:
5891 	  if (opcode & 2)
5892 	    I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5893 	  else
5894             I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5895 	  break;
5896 	default:
5897 	  ir.addr -= 3;
5898 	  opcode = opcode << 8 | ir.modrm;
5899 	  goto no_support;
5900 	  break;
5901 	}
5902       break;
5903 
5904     case 0x0f21:    /* mov reg, drN */
5905     case 0x0f23:    /* mov drN, reg */
5906       if (i386_record_modrm (&ir))
5907 	return -1;
5908       if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
5909 	  || ir.reg == 5 || ir.reg >= 8)
5910 	{
5911 	  ir.addr -= 3;
5912 	  opcode = opcode << 8 | ir.modrm;
5913 	  goto no_support;
5914 	}
5915       if (opcode & 2)
5916         I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5917       else
5918 	I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5919       break;
5920 
5921     case 0x0f06:    /* clts */
5922       I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5923       break;
5924 
5925     /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
5926 
5927     case 0x0f0d:    /* 3DNow! prefetch */
5928       break;
5929 
5930     case 0x0f0e:    /* 3DNow! femms */
5931     case 0x0f77:    /* emms */
5932       if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
5933         goto no_support;
5934       record_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
5935       break;
5936 
5937     case 0x0f0f:    /* 3DNow! data */
5938       if (i386_record_modrm (&ir))
5939 	return -1;
5940       if (target_read_memory (ir.addr, &opcode8, 1))
5941         {
5942 	  printf_unfiltered (_("Process record: error reading memory at "
5943 	                       "addr %s len = 1.\n"),
5944 	                     paddress (gdbarch, ir.addr));
5945           return -1;
5946         }
5947       ir.addr++;
5948       switch (opcode8)
5949         {
5950         case 0x0c:    /* 3DNow! pi2fw */
5951         case 0x0d:    /* 3DNow! pi2fd */
5952         case 0x1c:    /* 3DNow! pf2iw */
5953         case 0x1d:    /* 3DNow! pf2id */
5954         case 0x8a:    /* 3DNow! pfnacc */
5955         case 0x8e:    /* 3DNow! pfpnacc */
5956         case 0x90:    /* 3DNow! pfcmpge */
5957         case 0x94:    /* 3DNow! pfmin */
5958         case 0x96:    /* 3DNow! pfrcp */
5959         case 0x97:    /* 3DNow! pfrsqrt */
5960         case 0x9a:    /* 3DNow! pfsub */
5961         case 0x9e:    /* 3DNow! pfadd */
5962         case 0xa0:    /* 3DNow! pfcmpgt */
5963         case 0xa4:    /* 3DNow! pfmax */
5964         case 0xa6:    /* 3DNow! pfrcpit1 */
5965         case 0xa7:    /* 3DNow! pfrsqit1 */
5966         case 0xaa:    /* 3DNow! pfsubr */
5967         case 0xae:    /* 3DNow! pfacc */
5968         case 0xb0:    /* 3DNow! pfcmpeq */
5969         case 0xb4:    /* 3DNow! pfmul */
5970         case 0xb6:    /* 3DNow! pfrcpit2 */
5971         case 0xb7:    /* 3DNow! pmulhrw */
5972         case 0xbb:    /* 3DNow! pswapd */
5973         case 0xbf:    /* 3DNow! pavgusb */
5974           if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
5975             goto no_support_3dnow_data;
5976           record_arch_list_add_reg (ir.regcache, ir.reg);
5977           break;
5978 
5979         default:
5980 no_support_3dnow_data:
5981           opcode = (opcode << 8) | opcode8;
5982           goto no_support;
5983           break;
5984         }
5985       break;
5986 
5987     case 0x0faa:    /* rsm */
5988       I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5989       I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5990       I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5991       I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5992       I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
5993       I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5994       I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5995       I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5996       I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5997       break;
5998 
5999     case 0x0fae:
6000       if (i386_record_modrm (&ir))
6001 	return -1;
6002       switch(ir.reg)
6003         {
6004         case 0:    /* fxsave */
6005           {
6006             uint64_t tmpu64;
6007 
6008             I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6009 	    if (i386_record_lea_modrm_addr (&ir, &tmpu64))
6010 	      return -1;
6011             if (record_arch_list_add_mem (tmpu64, 512))
6012               return -1;
6013           }
6014           break;
6015 
6016         case 1:    /* fxrstor */
6017           {
6018             int i;
6019 
6020             I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6021 
6022             for (i = I387_MM0_REGNUM (tdep);
6023                  i386_mmx_regnum_p (gdbarch, i); i++)
6024               record_arch_list_add_reg (ir.regcache, i);
6025 
6026             for (i = I387_XMM0_REGNUM (tdep);
6027                  i386_xmm_regnum_p (gdbarch, i); i++)
6028               record_arch_list_add_reg (ir.regcache, i);
6029 
6030             if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
6031               record_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
6032 
6033             for (i = I387_ST0_REGNUM (tdep);
6034                  i386_fp_regnum_p (gdbarch, i); i++)
6035               record_arch_list_add_reg (ir.regcache, i);
6036 
6037             for (i = I387_FCTRL_REGNUM (tdep);
6038                  i386_fpc_regnum_p (gdbarch, i); i++)
6039               record_arch_list_add_reg (ir.regcache, i);
6040           }
6041           break;
6042 
6043         case 2:    /* ldmxcsr */
6044           if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
6045             goto no_support;
6046           record_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
6047           break;
6048 
6049         case 3:    /* stmxcsr */
6050           ir.ot = OT_LONG;
6051           if (i386_record_lea_modrm (&ir))
6052             return -1;
6053           break;
6054 
6055         case 5:    /* lfence */
6056         case 6:    /* mfence */
6057         case 7:    /* sfence clflush */
6058           break;
6059 
6060         default:
6061           opcode = (opcode << 8) | ir.modrm;
6062           goto no_support;
6063           break;
6064         }
6065       break;
6066 
6067     case 0x0fc3:    /* movnti */
6068       ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
6069       if (i386_record_modrm (&ir))
6070 	return -1;
6071       if (ir.mod == 3)
6072         goto no_support;
6073       ir.reg |= rex_r;
6074       if (i386_record_lea_modrm (&ir))
6075         return -1;
6076       break;
6077 
6078     /* Add prefix to opcode.  */
6079     case 0x0f10:
6080     case 0x0f11:
6081     case 0x0f12:
6082     case 0x0f13:
6083     case 0x0f14:
6084     case 0x0f15:
6085     case 0x0f16:
6086     case 0x0f17:
6087     case 0x0f28:
6088     case 0x0f29:
6089     case 0x0f2a:
6090     case 0x0f2b:
6091     case 0x0f2c:
6092     case 0x0f2d:
6093     case 0x0f2e:
6094     case 0x0f2f:
6095     case 0x0f38:
6096     case 0x0f39:
6097     case 0x0f3a:
6098     case 0x0f50:
6099     case 0x0f51:
6100     case 0x0f52:
6101     case 0x0f53:
6102     case 0x0f54:
6103     case 0x0f55:
6104     case 0x0f56:
6105     case 0x0f57:
6106     case 0x0f58:
6107     case 0x0f59:
6108     case 0x0f5a:
6109     case 0x0f5b:
6110     case 0x0f5c:
6111     case 0x0f5d:
6112     case 0x0f5e:
6113     case 0x0f5f:
6114     case 0x0f60:
6115     case 0x0f61:
6116     case 0x0f62:
6117     case 0x0f63:
6118     case 0x0f64:
6119     case 0x0f65:
6120     case 0x0f66:
6121     case 0x0f67:
6122     case 0x0f68:
6123     case 0x0f69:
6124     case 0x0f6a:
6125     case 0x0f6b:
6126     case 0x0f6c:
6127     case 0x0f6d:
6128     case 0x0f6e:
6129     case 0x0f6f:
6130     case 0x0f70:
6131     case 0x0f71:
6132     case 0x0f72:
6133     case 0x0f73:
6134     case 0x0f74:
6135     case 0x0f75:
6136     case 0x0f76:
6137     case 0x0f7c:
6138     case 0x0f7d:
6139     case 0x0f7e:
6140     case 0x0f7f:
6141     case 0x0fb8:
6142     case 0x0fc2:
6143     case 0x0fc4:
6144     case 0x0fc5:
6145     case 0x0fc6:
6146     case 0x0fd0:
6147     case 0x0fd1:
6148     case 0x0fd2:
6149     case 0x0fd3:
6150     case 0x0fd4:
6151     case 0x0fd5:
6152     case 0x0fd6:
6153     case 0x0fd7:
6154     case 0x0fd8:
6155     case 0x0fd9:
6156     case 0x0fda:
6157     case 0x0fdb:
6158     case 0x0fdc:
6159     case 0x0fdd:
6160     case 0x0fde:
6161     case 0x0fdf:
6162     case 0x0fe0:
6163     case 0x0fe1:
6164     case 0x0fe2:
6165     case 0x0fe3:
6166     case 0x0fe4:
6167     case 0x0fe5:
6168     case 0x0fe6:
6169     case 0x0fe7:
6170     case 0x0fe8:
6171     case 0x0fe9:
6172     case 0x0fea:
6173     case 0x0feb:
6174     case 0x0fec:
6175     case 0x0fed:
6176     case 0x0fee:
6177     case 0x0fef:
6178     case 0x0ff0:
6179     case 0x0ff1:
6180     case 0x0ff2:
6181     case 0x0ff3:
6182     case 0x0ff4:
6183     case 0x0ff5:
6184     case 0x0ff6:
6185     case 0x0ff7:
6186     case 0x0ff8:
6187     case 0x0ff9:
6188     case 0x0ffa:
6189     case 0x0ffb:
6190     case 0x0ffc:
6191     case 0x0ffd:
6192     case 0x0ffe:
6193       switch (prefixes)
6194         {
6195         case PREFIX_REPNZ:
6196           opcode |= 0xf20000;
6197           break;
6198         case PREFIX_DATA:
6199           opcode |= 0x660000;
6200           break;
6201         case PREFIX_REPZ:
6202           opcode |= 0xf30000;
6203           break;
6204         }
6205 reswitch_prefix_add:
6206       switch (opcode)
6207         {
6208         case 0x0f38:
6209         case 0x660f38:
6210         case 0xf20f38:
6211         case 0x0f3a:
6212         case 0x660f3a:
6213           if (target_read_memory (ir.addr, &opcode8, 1))
6214             {
6215 	      printf_unfiltered (_("Process record: error reading memory at "
6216 	                           "addr %s len = 1.\n"),
6217 	                         paddress (gdbarch, ir.addr));
6218               return -1;
6219             }
6220           ir.addr++;
6221           opcode = (uint32_t) opcode8 | opcode << 8;
6222           goto reswitch_prefix_add;
6223           break;
6224 
6225         case 0x0f10:        /* movups */
6226         case 0x660f10:      /* movupd */
6227         case 0xf30f10:      /* movss */
6228         case 0xf20f10:      /* movsd */
6229         case 0x0f12:        /* movlps */
6230         case 0x660f12:      /* movlpd */
6231         case 0xf30f12:      /* movsldup */
6232         case 0xf20f12:      /* movddup */
6233         case 0x0f14:        /* unpcklps */
6234         case 0x660f14:      /* unpcklpd */
6235         case 0x0f15:        /* unpckhps */
6236         case 0x660f15:      /* unpckhpd */
6237         case 0x0f16:        /* movhps */
6238         case 0x660f16:      /* movhpd */
6239         case 0xf30f16:      /* movshdup */
6240         case 0x0f28:        /* movaps */
6241         case 0x660f28:      /* movapd */
6242         case 0x0f2a:        /* cvtpi2ps */
6243         case 0x660f2a:      /* cvtpi2pd */
6244         case 0xf30f2a:      /* cvtsi2ss */
6245         case 0xf20f2a:      /* cvtsi2sd */
6246         case 0x0f2c:        /* cvttps2pi */
6247         case 0x660f2c:      /* cvttpd2pi */
6248         case 0x0f2d:        /* cvtps2pi */
6249         case 0x660f2d:      /* cvtpd2pi */
6250         case 0x660f3800:    /* pshufb */
6251         case 0x660f3801:    /* phaddw */
6252         case 0x660f3802:    /* phaddd */
6253         case 0x660f3803:    /* phaddsw */
6254         case 0x660f3804:    /* pmaddubsw */
6255         case 0x660f3805:    /* phsubw */
6256         case 0x660f3806:    /* phsubd */
6257         case 0x660f3807:    /* phaddsw */
6258         case 0x660f3808:    /* psignb */
6259         case 0x660f3809:    /* psignw */
6260         case 0x660f380a:    /* psignd */
6261         case 0x660f380b:    /* pmulhrsw */
6262         case 0x660f3810:    /* pblendvb */
6263         case 0x660f3814:    /* blendvps */
6264         case 0x660f3815:    /* blendvpd */
6265         case 0x660f381c:    /* pabsb */
6266         case 0x660f381d:    /* pabsw */
6267         case 0x660f381e:    /* pabsd */
6268         case 0x660f3820:    /* pmovsxbw */
6269         case 0x660f3821:    /* pmovsxbd */
6270         case 0x660f3822:    /* pmovsxbq */
6271         case 0x660f3823:    /* pmovsxwd */
6272         case 0x660f3824:    /* pmovsxwq */
6273         case 0x660f3825:    /* pmovsxdq */
6274         case 0x660f3828:    /* pmuldq */
6275         case 0x660f3829:    /* pcmpeqq */
6276         case 0x660f382a:    /* movntdqa */
6277         case 0x660f3a08:    /* roundps */
6278         case 0x660f3a09:    /* roundpd */
6279         case 0x660f3a0a:    /* roundss */
6280         case 0x660f3a0b:    /* roundsd */
6281         case 0x660f3a0c:    /* blendps */
6282         case 0x660f3a0d:    /* blendpd */
6283         case 0x660f3a0e:    /* pblendw */
6284         case 0x660f3a0f:    /* palignr */
6285         case 0x660f3a20:    /* pinsrb */
6286         case 0x660f3a21:    /* insertps */
6287         case 0x660f3a22:    /* pinsrd pinsrq */
6288         case 0x660f3a40:    /* dpps */
6289         case 0x660f3a41:    /* dppd */
6290         case 0x660f3a42:    /* mpsadbw */
6291         case 0x660f3a60:    /* pcmpestrm */
6292         case 0x660f3a61:    /* pcmpestri */
6293         case 0x660f3a62:    /* pcmpistrm */
6294         case 0x660f3a63:    /* pcmpistri */
6295         case 0x0f51:        /* sqrtps */
6296         case 0x660f51:      /* sqrtpd */
6297         case 0xf20f51:      /* sqrtsd */
6298         case 0xf30f51:      /* sqrtss */
6299         case 0x0f52:        /* rsqrtps */
6300         case 0xf30f52:      /* rsqrtss */
6301         case 0x0f53:        /* rcpps */
6302         case 0xf30f53:      /* rcpss */
6303         case 0x0f54:        /* andps */
6304         case 0x660f54:      /* andpd */
6305         case 0x0f55:        /* andnps */
6306         case 0x660f55:      /* andnpd */
6307         case 0x0f56:        /* orps */
6308         case 0x660f56:      /* orpd */
6309         case 0x0f57:        /* xorps */
6310         case 0x660f57:      /* xorpd */
6311         case 0x0f58:        /* addps */
6312         case 0x660f58:      /* addpd */
6313         case 0xf20f58:      /* addsd */
6314         case 0xf30f58:      /* addss */
6315         case 0x0f59:        /* mulps */
6316         case 0x660f59:      /* mulpd */
6317         case 0xf20f59:      /* mulsd */
6318         case 0xf30f59:      /* mulss */
6319         case 0x0f5a:        /* cvtps2pd */
6320         case 0x660f5a:      /* cvtpd2ps */
6321         case 0xf20f5a:      /* cvtsd2ss */
6322         case 0xf30f5a:      /* cvtss2sd */
6323         case 0x0f5b:        /* cvtdq2ps */
6324         case 0x660f5b:      /* cvtps2dq */
6325         case 0xf30f5b:      /* cvttps2dq */
6326         case 0x0f5c:        /* subps */
6327         case 0x660f5c:      /* subpd */
6328         case 0xf20f5c:      /* subsd */
6329         case 0xf30f5c:      /* subss */
6330         case 0x0f5d:        /* minps */
6331         case 0x660f5d:      /* minpd */
6332         case 0xf20f5d:      /* minsd */
6333         case 0xf30f5d:      /* minss */
6334         case 0x0f5e:        /* divps */
6335         case 0x660f5e:      /* divpd */
6336         case 0xf20f5e:      /* divsd */
6337         case 0xf30f5e:      /* divss */
6338         case 0x0f5f:        /* maxps */
6339         case 0x660f5f:      /* maxpd */
6340         case 0xf20f5f:      /* maxsd */
6341         case 0xf30f5f:      /* maxss */
6342         case 0x660f60:      /* punpcklbw */
6343         case 0x660f61:      /* punpcklwd */
6344         case 0x660f62:      /* punpckldq */
6345         case 0x660f63:      /* packsswb */
6346         case 0x660f64:      /* pcmpgtb */
6347         case 0x660f65:      /* pcmpgtw */
6348         case 0x660f66:      /* pcmpgtl */
6349         case 0x660f67:      /* packuswb */
6350         case 0x660f68:      /* punpckhbw */
6351         case 0x660f69:      /* punpckhwd */
6352         case 0x660f6a:      /* punpckhdq */
6353         case 0x660f6b:      /* packssdw */
6354         case 0x660f6c:      /* punpcklqdq */
6355         case 0x660f6d:      /* punpckhqdq */
6356         case 0x660f6e:      /* movd */
6357         case 0x660f6f:      /* movdqa */
6358         case 0xf30f6f:      /* movdqu */
6359         case 0x660f70:      /* pshufd */
6360         case 0xf20f70:      /* pshuflw */
6361         case 0xf30f70:      /* pshufhw */
6362         case 0x660f74:      /* pcmpeqb */
6363         case 0x660f75:      /* pcmpeqw */
6364         case 0x660f76:      /* pcmpeql */
6365         case 0x660f7c:      /* haddpd */
6366         case 0xf20f7c:      /* haddps */
6367         case 0x660f7d:      /* hsubpd */
6368         case 0xf20f7d:      /* hsubps */
6369         case 0xf30f7e:      /* movq */
6370         case 0x0fc2:        /* cmpps */
6371         case 0x660fc2:      /* cmppd */
6372         case 0xf20fc2:      /* cmpsd */
6373         case 0xf30fc2:      /* cmpss */
6374         case 0x660fc4:      /* pinsrw */
6375         case 0x0fc6:        /* shufps */
6376         case 0x660fc6:      /* shufpd */
6377         case 0x660fd0:      /* addsubpd */
6378         case 0xf20fd0:      /* addsubps */
6379         case 0x660fd1:      /* psrlw */
6380         case 0x660fd2:      /* psrld */
6381         case 0x660fd3:      /* psrlq */
6382         case 0x660fd4:      /* paddq */
6383         case 0x660fd5:      /* pmullw */
6384         case 0xf30fd6:      /* movq2dq */
6385         case 0x660fd8:      /* psubusb */
6386         case 0x660fd9:      /* psubusw */
6387         case 0x660fda:      /* pminub */
6388         case 0x660fdb:      /* pand */
6389         case 0x660fdc:      /* paddusb */
6390         case 0x660fdd:      /* paddusw */
6391         case 0x660fde:      /* pmaxub */
6392         case 0x660fdf:      /* pandn */
6393         case 0x660fe0:      /* pavgb */
6394         case 0x660fe1:      /* psraw */
6395         case 0x660fe2:      /* psrad */
6396         case 0x660fe3:      /* pavgw */
6397         case 0x660fe4:      /* pmulhuw */
6398         case 0x660fe5:      /* pmulhw */
6399         case 0x660fe6:      /* cvttpd2dq */
6400         case 0xf20fe6:      /* cvtpd2dq */
6401         case 0xf30fe6:      /* cvtdq2pd */
6402         case 0x660fe8:      /* psubsb */
6403         case 0x660fe9:      /* psubsw */
6404         case 0x660fea:      /* pminsw */
6405         case 0x660feb:      /* por */
6406         case 0x660fec:      /* paddsb */
6407         case 0x660fed:      /* paddsw */
6408         case 0x660fee:      /* pmaxsw */
6409         case 0x660fef:      /* pxor */
6410         case 0x660ff0:      /* lddqu */
6411         case 0x660ff1:      /* psllw */
6412         case 0x660ff2:      /* pslld */
6413         case 0x660ff3:      /* psllq */
6414         case 0x660ff4:      /* pmuludq */
6415         case 0x660ff5:      /* pmaddwd */
6416         case 0x660ff6:      /* psadbw */
6417         case 0x660ff8:      /* psubb */
6418         case 0x660ff9:      /* psubw */
6419         case 0x660ffa:      /* psubl */
6420         case 0x660ffb:      /* psubq */
6421         case 0x660ffc:      /* paddb */
6422         case 0x660ffd:      /* paddw */
6423         case 0x660ffe:      /* paddl */
6424           if (i386_record_modrm (&ir))
6425 	    return -1;
6426           ir.reg |= rex_r;
6427           if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
6428             goto no_support;
6429           record_arch_list_add_reg (ir.regcache,
6430                                     I387_XMM0_REGNUM (tdep) + ir.reg);
6431           if ((opcode & 0xfffffffc) == 0x660f3a60)
6432             I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6433           break;
6434 
6435         case 0x0f11:        /* movups */
6436         case 0x660f11:      /* movupd */
6437         case 0xf30f11:      /* movss */
6438         case 0xf20f11:      /* movsd */
6439         case 0x0f13:        /* movlps */
6440         case 0x660f13:      /* movlpd */
6441         case 0x0f17:        /* movhps */
6442         case 0x660f17:      /* movhpd */
6443         case 0x0f29:        /* movaps */
6444         case 0x660f29:      /* movapd */
6445         case 0x660f3a14:    /* pextrb */
6446         case 0x660f3a15:    /* pextrw */
6447         case 0x660f3a16:    /* pextrd pextrq */
6448         case 0x660f3a17:    /* extractps */
6449         case 0x660f7f:      /* movdqa */
6450         case 0xf30f7f:      /* movdqu */
6451           if (i386_record_modrm (&ir))
6452 	    return -1;
6453           if (ir.mod == 3)
6454             {
6455               if (opcode == 0x0f13 || opcode == 0x660f13
6456                   || opcode == 0x0f17 || opcode == 0x660f17)
6457                 goto no_support;
6458               ir.rm |= ir.rex_b;
6459               if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
6460                 goto no_support;
6461               record_arch_list_add_reg (ir.regcache,
6462                                         I387_XMM0_REGNUM (tdep) + ir.rm);
6463             }
6464           else
6465             {
6466               switch (opcode)
6467                 {
6468                   case 0x660f3a14:
6469                     ir.ot = OT_BYTE;
6470                     break;
6471                   case 0x660f3a15:
6472                     ir.ot = OT_WORD;
6473                     break;
6474                   case 0x660f3a16:
6475                     ir.ot = OT_LONG;
6476                     break;
6477                   case 0x660f3a17:
6478                     ir.ot = OT_QUAD;
6479                     break;
6480                   default:
6481                     ir.ot = OT_DQUAD;
6482                     break;
6483                 }
6484               if (i386_record_lea_modrm (&ir))
6485                 return -1;
6486             }
6487           break;
6488 
6489         case 0x0f2b:      /* movntps */
6490         case 0x660f2b:    /* movntpd */
6491         case 0x0fe7:      /* movntq */
6492         case 0x660fe7:    /* movntdq */
6493           if (ir.mod == 3)
6494             goto no_support;
6495           if (opcode == 0x0fe7)
6496             ir.ot = OT_QUAD;
6497           else
6498             ir.ot = OT_DQUAD;
6499           if (i386_record_lea_modrm (&ir))
6500             return -1;
6501           break;
6502 
6503         case 0xf30f2c:      /* cvttss2si */
6504         case 0xf20f2c:      /* cvttsd2si */
6505         case 0xf30f2d:      /* cvtss2si */
6506         case 0xf20f2d:      /* cvtsd2si */
6507         case 0xf20f38f0:    /* crc32 */
6508         case 0xf20f38f1:    /* crc32 */
6509         case 0x0f50:        /* movmskps */
6510         case 0x660f50:      /* movmskpd */
6511         case 0x0fc5:        /* pextrw */
6512         case 0x660fc5:      /* pextrw */
6513         case 0x0fd7:        /* pmovmskb */
6514         case 0x660fd7:      /* pmovmskb */
6515           I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6516           break;
6517 
6518         case 0x0f3800:    /* pshufb */
6519         case 0x0f3801:    /* phaddw */
6520         case 0x0f3802:    /* phaddd */
6521         case 0x0f3803:    /* phaddsw */
6522         case 0x0f3804:    /* pmaddubsw */
6523         case 0x0f3805:    /* phsubw */
6524         case 0x0f3806:    /* phsubd */
6525         case 0x0f3807:    /* phaddsw */
6526         case 0x0f3808:    /* psignb */
6527         case 0x0f3809:    /* psignw */
6528         case 0x0f380a:    /* psignd */
6529         case 0x0f380b:    /* pmulhrsw */
6530         case 0x0f381c:    /* pabsb */
6531         case 0x0f381d:    /* pabsw */
6532         case 0x0f381e:    /* pabsd */
6533         case 0x0f382b:    /* packusdw */
6534         case 0x0f3830:    /* pmovzxbw */
6535         case 0x0f3831:    /* pmovzxbd */
6536         case 0x0f3832:    /* pmovzxbq */
6537         case 0x0f3833:    /* pmovzxwd */
6538         case 0x0f3834:    /* pmovzxwq */
6539         case 0x0f3835:    /* pmovzxdq */
6540         case 0x0f3837:    /* pcmpgtq */
6541         case 0x0f3838:    /* pminsb */
6542         case 0x0f3839:    /* pminsd */
6543         case 0x0f383a:    /* pminuw */
6544         case 0x0f383b:    /* pminud */
6545         case 0x0f383c:    /* pmaxsb */
6546         case 0x0f383d:    /* pmaxsd */
6547         case 0x0f383e:    /* pmaxuw */
6548         case 0x0f383f:    /* pmaxud */
6549         case 0x0f3840:    /* pmulld */
6550         case 0x0f3841:    /* phminposuw */
6551         case 0x0f3a0f:    /* palignr */
6552         case 0x0f60:      /* punpcklbw */
6553         case 0x0f61:      /* punpcklwd */
6554         case 0x0f62:      /* punpckldq */
6555         case 0x0f63:      /* packsswb */
6556         case 0x0f64:      /* pcmpgtb */
6557         case 0x0f65:      /* pcmpgtw */
6558         case 0x0f66:      /* pcmpgtl */
6559         case 0x0f67:      /* packuswb */
6560         case 0x0f68:      /* punpckhbw */
6561         case 0x0f69:      /* punpckhwd */
6562         case 0x0f6a:      /* punpckhdq */
6563         case 0x0f6b:      /* packssdw */
6564         case 0x0f6e:      /* movd */
6565         case 0x0f6f:      /* movq */
6566         case 0x0f70:      /* pshufw */
6567         case 0x0f74:      /* pcmpeqb */
6568         case 0x0f75:      /* pcmpeqw */
6569         case 0x0f76:      /* pcmpeql */
6570         case 0x0fc4:      /* pinsrw */
6571         case 0x0fd1:      /* psrlw */
6572         case 0x0fd2:      /* psrld */
6573         case 0x0fd3:      /* psrlq */
6574         case 0x0fd4:      /* paddq */
6575         case 0x0fd5:      /* pmullw */
6576         case 0xf20fd6:    /* movdq2q */
6577         case 0x0fd8:      /* psubusb */
6578         case 0x0fd9:      /* psubusw */
6579         case 0x0fda:      /* pminub */
6580         case 0x0fdb:      /* pand */
6581         case 0x0fdc:      /* paddusb */
6582         case 0x0fdd:      /* paddusw */
6583         case 0x0fde:      /* pmaxub */
6584         case 0x0fdf:      /* pandn */
6585         case 0x0fe0:      /* pavgb */
6586         case 0x0fe1:      /* psraw */
6587         case 0x0fe2:      /* psrad */
6588         case 0x0fe3:      /* pavgw */
6589         case 0x0fe4:      /* pmulhuw */
6590         case 0x0fe5:      /* pmulhw */
6591         case 0x0fe8:      /* psubsb */
6592         case 0x0fe9:      /* psubsw */
6593         case 0x0fea:      /* pminsw */
6594         case 0x0feb:      /* por */
6595         case 0x0fec:      /* paddsb */
6596         case 0x0fed:      /* paddsw */
6597         case 0x0fee:      /* pmaxsw */
6598         case 0x0fef:      /* pxor */
6599         case 0x0ff1:      /* psllw */
6600         case 0x0ff2:      /* pslld */
6601         case 0x0ff3:      /* psllq */
6602         case 0x0ff4:      /* pmuludq */
6603         case 0x0ff5:      /* pmaddwd */
6604         case 0x0ff6:      /* psadbw */
6605         case 0x0ff8:      /* psubb */
6606         case 0x0ff9:      /* psubw */
6607         case 0x0ffa:      /* psubl */
6608         case 0x0ffb:      /* psubq */
6609         case 0x0ffc:      /* paddb */
6610         case 0x0ffd:      /* paddw */
6611         case 0x0ffe:      /* paddl */
6612           if (i386_record_modrm (&ir))
6613 	    return -1;
6614           if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
6615             goto no_support;
6616           record_arch_list_add_reg (ir.regcache,
6617                                     I387_MM0_REGNUM (tdep) + ir.reg);
6618           break;
6619 
6620         case 0x0f71:    /* psllw */
6621         case 0x0f72:    /* pslld */
6622         case 0x0f73:    /* psllq */
6623           if (i386_record_modrm (&ir))
6624 	    return -1;
6625           if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
6626             goto no_support;
6627           record_arch_list_add_reg (ir.regcache,
6628                                     I387_MM0_REGNUM (tdep) + ir.rm);
6629           break;
6630 
6631         case 0x660f71:    /* psllw */
6632         case 0x660f72:    /* pslld */
6633         case 0x660f73:    /* psllq */
6634           if (i386_record_modrm (&ir))
6635 	    return -1;
6636           ir.rm |= ir.rex_b;
6637           if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
6638             goto no_support;
6639           record_arch_list_add_reg (ir.regcache,
6640                                     I387_XMM0_REGNUM (tdep) + ir.rm);
6641           break;
6642 
6643         case 0x0f7e:      /* movd */
6644         case 0x660f7e:    /* movd */
6645           if (i386_record_modrm (&ir))
6646 	    return -1;
6647           if (ir.mod == 3)
6648             I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6649           else
6650             {
6651               if (ir.dflag == 2)
6652                 ir.ot = OT_QUAD;
6653               else
6654                 ir.ot = OT_LONG;
6655               if (i386_record_lea_modrm (&ir))
6656                 return -1;
6657             }
6658           break;
6659 
6660         case 0x0f7f:    /* movq */
6661           if (i386_record_modrm (&ir))
6662 	    return -1;
6663           if (ir.mod == 3)
6664             {
6665               if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
6666                 goto no_support;
6667               record_arch_list_add_reg (ir.regcache,
6668                                         I387_MM0_REGNUM (tdep) + ir.rm);
6669             }
6670           else
6671             {
6672               ir.ot = OT_QUAD;
6673               if (i386_record_lea_modrm (&ir))
6674                 return -1;
6675             }
6676           break;
6677 
6678         case 0xf30fb8:    /* popcnt */
6679           if (i386_record_modrm (&ir))
6680 	    return -1;
6681           I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
6682           I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6683           break;
6684 
6685         case 0x660fd6:    /* movq */
6686           if (i386_record_modrm (&ir))
6687 	    return -1;
6688           if (ir.mod == 3)
6689             {
6690               ir.rm |= ir.rex_b;
6691               if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
6692                 goto no_support;
6693               record_arch_list_add_reg (ir.regcache,
6694                                         I387_XMM0_REGNUM (tdep) + ir.rm);
6695             }
6696           else
6697             {
6698               ir.ot = OT_QUAD;
6699               if (i386_record_lea_modrm (&ir))
6700                 return -1;
6701             }
6702           break;
6703 
6704         case 0x660f3817:    /* ptest */
6705         case 0x0f2e:        /* ucomiss */
6706         case 0x660f2e:      /* ucomisd */
6707         case 0x0f2f:        /* comiss */
6708         case 0x660f2f:      /* comisd */
6709           I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6710           break;
6711 
6712         case 0x0ff7:    /* maskmovq */
6713           regcache_raw_read_unsigned (ir.regcache,
6714                                       ir.regmap[X86_RECORD_REDI_REGNUM],
6715                                       &addr);
6716           if (record_arch_list_add_mem (addr, 64))
6717             return -1;
6718           break;
6719 
6720         case 0x660ff7:    /* maskmovdqu */
6721           regcache_raw_read_unsigned (ir.regcache,
6722                                       ir.regmap[X86_RECORD_REDI_REGNUM],
6723                                       &addr);
6724           if (record_arch_list_add_mem (addr, 128))
6725             return -1;
6726           break;
6727 
6728         default:
6729           goto no_support;
6730           break;
6731         }
6732       break;
6733 
6734     default:
6735       goto no_support;
6736       break;
6737     }
6738 
6739   /* In the future, maybe still need to deal with need_dasm.  */
6740   I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
6741   if (record_arch_list_add_end ())
6742     return -1;
6743 
6744   return 0;
6745 
6746  no_support:
6747   printf_unfiltered (_("Process record does not support instruction 0x%02x "
6748                        "at address %s.\n"),
6749                      (unsigned int) (opcode),
6750                      paddress (gdbarch, ir.orig_addr));
6751   return -1;
6752 }
6753 
6754 static const int i386_record_regmap[] =
6755 {
6756   I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
6757   I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
6758   0, 0, 0, 0, 0, 0, 0, 0,
6759   I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
6760   I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
6761 };
6762 
6763 /* Check that the given address appears suitable for a fast
6764    tracepoint, which on x86 means that we need an instruction of at
6765    least 5 bytes, so that we can overwrite it with a 4-byte-offset
6766    jump and not have to worry about program jumps to an address in the
6767    middle of the tracepoint jump.  Returns 1 if OK, and writes a size
6768    of instruction to replace, and 0 if not, plus an explanatory
6769    string.  */
6770 
6771 static int
6772 i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch,
6773 			       CORE_ADDR addr, int *isize, char **msg)
6774 {
6775   int len, jumplen;
6776   static struct ui_file *gdb_null = NULL;
6777 
6778   /* This is based on the target agent using a 4-byte relative jump.
6779      Alternate future possibilities include 8-byte offset for x86-84,
6780      or 3-byte jumps if the program has trampoline space close by.  */
6781   jumplen = 5;
6782 
6783   /* Dummy file descriptor for the disassembler.  */
6784   if (!gdb_null)
6785     gdb_null = ui_file_new ();
6786 
6787   /* Check for fit.  */
6788   len = gdb_print_insn (gdbarch, addr, gdb_null, NULL);
6789   if (len < jumplen)
6790     {
6791       /* Return a bit of target-specific detail to add to the caller's
6792 	 generic failure message.  */
6793       if (msg)
6794 	*msg = xstrprintf (_("; instruction is only %d bytes long, need at least %d bytes for the jump"),
6795 			   len, jumplen);
6796       return 0;
6797     }
6798 
6799   if (isize)
6800     *isize = len;
6801   if (msg)
6802     *msg = NULL;
6803   return 1;
6804 }
6805 
6806 static int
6807 i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
6808 		       struct tdesc_arch_data *tdesc_data)
6809 {
6810   const struct target_desc *tdesc = tdep->tdesc;
6811   const struct tdesc_feature *feature_core;
6812   const struct tdesc_feature *feature_sse, *feature_avx;
6813   int i, num_regs, valid_p;
6814 
6815   if (! tdesc_has_registers (tdesc))
6816     return 0;
6817 
6818   /* Get core registers.  */
6819   feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
6820   if (feature_core == NULL)
6821     return 0;
6822 
6823   /* Get SSE registers.  */
6824   feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
6825 
6826   /* Try AVX registers.  */
6827   feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
6828 
6829   valid_p = 1;
6830 
6831   /* The XCR0 bits.  */
6832   if (feature_avx)
6833     {
6834       /* AVX register description requires SSE register description.  */
6835       if (!feature_sse)
6836 	return 0;
6837 
6838       tdep->xcr0 = I386_XSTATE_AVX_MASK;
6839 
6840       /* It may have been set by OSABI initialization function.  */
6841       if (tdep->num_ymm_regs == 0)
6842 	{
6843 	  tdep->ymmh_register_names = i386_ymmh_names;
6844 	  tdep->num_ymm_regs = 8;
6845 	  tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
6846 	}
6847 
6848       for (i = 0; i < tdep->num_ymm_regs; i++)
6849 	valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
6850 					    tdep->ymm0h_regnum + i,
6851 					    tdep->ymmh_register_names[i]);
6852     }
6853   else if (feature_sse)
6854     tdep->xcr0 = I386_XSTATE_SSE_MASK;
6855   else
6856     {
6857       tdep->xcr0 = I386_XSTATE_X87_MASK;
6858       tdep->num_xmm_regs = 0;
6859     }
6860 
6861   num_regs = tdep->num_core_regs;
6862   for (i = 0; i < num_regs; i++)
6863     valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
6864 					tdep->register_names[i]);
6865 
6866   if (feature_sse)
6867     {
6868       /* Need to include %mxcsr, so add one.  */
6869       num_regs += tdep->num_xmm_regs + 1;
6870       for (; i < num_regs; i++)
6871 	valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
6872 					    tdep->register_names[i]);
6873     }
6874 
6875   return valid_p;
6876 }
6877 
6878 
6879 static struct gdbarch *
6880 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
6881 {
6882   struct gdbarch_tdep *tdep;
6883   struct gdbarch *gdbarch;
6884   struct tdesc_arch_data *tdesc_data;
6885   const struct target_desc *tdesc;
6886   int mm0_regnum;
6887   int ymm0_regnum;
6888 
6889   /* If there is already a candidate, use it.  */
6890   arches = gdbarch_list_lookup_by_info (arches, &info);
6891   if (arches != NULL)
6892     return arches->gdbarch;
6893 
6894   /* Allocate space for the new architecture.  */
6895   tdep = XCALLOC (1, struct gdbarch_tdep);
6896   gdbarch = gdbarch_alloc (&info, tdep);
6897 
6898   /* General-purpose registers.  */
6899   tdep->gregset = NULL;
6900   tdep->gregset_reg_offset = NULL;
6901   tdep->gregset_num_regs = I386_NUM_GREGS;
6902   tdep->sizeof_gregset = 0;
6903 
6904   /* Floating-point registers.  */
6905   tdep->fpregset = NULL;
6906   tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
6907 
6908   tdep->xstateregset = NULL;
6909 
6910   /* The default settings include the FPU registers, the MMX registers
6911      and the SSE registers.  This can be overridden for a specific ABI
6912      by adjusting the members `st0_regnum', `mm0_regnum' and
6913      `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
6914      will show up in the output of "info all-registers".  */
6915 
6916   tdep->st0_regnum = I386_ST0_REGNUM;
6917 
6918   /* I386_NUM_XREGS includes %mxcsr, so substract one.  */
6919   tdep->num_xmm_regs = I386_NUM_XREGS - 1;
6920 
6921   tdep->jb_pc_offset = -1;
6922   tdep->struct_return = pcc_struct_return;
6923   tdep->sigtramp_start = 0;
6924   tdep->sigtramp_end = 0;
6925   tdep->sigtramp_p = i386_sigtramp_p;
6926   tdep->sigcontext_addr = NULL;
6927   tdep->sc_reg_offset = NULL;
6928   tdep->sc_pc_offset = -1;
6929   tdep->sc_sp_offset = -1;
6930 
6931   tdep->xsave_xcr0_offset = -1;
6932 
6933   tdep->record_regmap = i386_record_regmap;
6934 
6935   /* The format used for `long double' on almost all i386 targets is
6936      the i387 extended floating-point format.  In fact, of all targets
6937      in the GCC 2.95 tree, only OSF/1 does it different, and insists
6938      on having a `long double' that's not `long' at all.  */
6939   set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
6940 
6941   /* Although the i387 extended floating-point has only 80 significant
6942      bits, a `long double' actually takes up 96, probably to enforce
6943      alignment.  */
6944   set_gdbarch_long_double_bit (gdbarch, 96);
6945 
6946   /* Register numbers of various important registers.  */
6947   set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
6948   set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
6949   set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
6950   set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
6951 
6952   /* NOTE: kettenis/20040418: GCC does have two possible register
6953      numbering schemes on the i386: dbx and SVR4.  These schemes
6954      differ in how they number %ebp, %esp, %eflags, and the
6955      floating-point registers, and are implemented by the arrays
6956      dbx_register_map[] and svr4_dbx_register_map in
6957      gcc/config/i386.c.  GCC also defines a third numbering scheme in
6958      gcc/config/i386.c, which it designates as the "default" register
6959      map used in 64bit mode.  This last register numbering scheme is
6960      implemented in dbx64_register_map, and is used for AMD64; see
6961      amd64-tdep.c.
6962 
6963      Currently, each GCC i386 target always uses the same register
6964      numbering scheme across all its supported debugging formats
6965      i.e. SDB (COFF), stabs and DWARF 2.  This is because
6966      gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
6967      DBX_REGISTER_NUMBER macro which is defined by each target's
6968      respective config header in a manner independent of the requested
6969      output debugging format.
6970 
6971      This does not match the arrangement below, which presumes that
6972      the SDB and stabs numbering schemes differ from the DWARF and
6973      DWARF 2 ones.  The reason for this arrangement is that it is
6974      likely to get the numbering scheme for the target's
6975      default/native debug format right.  For targets where GCC is the
6976      native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
6977      targets where the native toolchain uses a different numbering
6978      scheme for a particular debug format (stabs-in-ELF on Solaris)
6979      the defaults below will have to be overridden, like
6980      i386_elf_init_abi() does.  */
6981 
6982   /* Use the dbx register numbering scheme for stabs and COFF.  */
6983   set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
6984   set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
6985 
6986   /* Use the SVR4 register numbering scheme for DWARF 2.  */
6987   set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
6988 
6989   /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
6990      be in use on any of the supported i386 targets.  */
6991 
6992   set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
6993 
6994   set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
6995 
6996   /* Call dummy code.  */
6997   set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
6998 
6999   set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
7000   set_gdbarch_register_to_value (gdbarch,  i386_register_to_value);
7001   set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
7002 
7003   set_gdbarch_return_value (gdbarch, i386_return_value);
7004 
7005   set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
7006 
7007   /* Stack grows downward.  */
7008   set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
7009 
7010   set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
7011   set_gdbarch_decr_pc_after_break (gdbarch, 1);
7012   set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
7013 
7014   set_gdbarch_frame_args_skip (gdbarch, 8);
7015 
7016   set_gdbarch_print_insn (gdbarch, i386_print_insn);
7017 
7018   set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
7019 
7020   set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
7021 
7022   /* Add the i386 register groups.  */
7023   i386_add_reggroups (gdbarch);
7024   tdep->register_reggroup_p = i386_register_reggroup_p;
7025 
7026   /* Helper for function argument information.  */
7027   set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
7028 
7029   /* Hook the function epilogue frame unwinder.  This unwinder is
7030      appended to the list first, so that it supercedes the Dwarf
7031      unwinder in function epilogues (where the Dwarf unwinder
7032      currently fails).  */
7033   frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
7034 
7035   /* Hook in the DWARF CFI frame unwinder.  This unwinder is appended
7036      to the list before the prologue-based unwinders, so that Dwarf
7037      CFI info will be used if it is available.  */
7038   dwarf2_append_unwinders (gdbarch);
7039 
7040   frame_base_set_default (gdbarch, &i386_frame_base);
7041 
7042   /* Pseudo registers may be changed by amd64_init_abi.  */
7043   set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
7044   set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
7045 
7046   set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
7047   set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
7048 
7049   /* Override the normal target description method to make the AVX
7050      upper halves anonymous.  */
7051   set_gdbarch_register_name (gdbarch, i386_register_name);
7052 
7053   /* Even though the default ABI only includes general-purpose registers,
7054      floating-point registers and the SSE registers, we have to leave a
7055      gap for the upper AVX registers.  */
7056   set_gdbarch_num_regs (gdbarch, I386_AVX_NUM_REGS);
7057 
7058   /* Get the x86 target description from INFO.  */
7059   tdesc = info.target_desc;
7060   if (! tdesc_has_registers (tdesc))
7061     tdesc = tdesc_i386;
7062   tdep->tdesc = tdesc;
7063 
7064   tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
7065   tdep->register_names = i386_register_names;
7066 
7067   /* No upper YMM registers.  */
7068   tdep->ymmh_register_names = NULL;
7069   tdep->ymm0h_regnum = -1;
7070 
7071   tdep->num_byte_regs = 8;
7072   tdep->num_word_regs = 8;
7073   tdep->num_dword_regs = 0;
7074   tdep->num_mmx_regs = 8;
7075   tdep->num_ymm_regs = 0;
7076 
7077   tdesc_data = tdesc_data_alloc ();
7078 
7079   set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
7080 
7081   /* Hook in ABI-specific overrides, if they have been registered.  */
7082   info.tdep_info = (void *) tdesc_data;
7083   gdbarch_init_osabi (info, gdbarch);
7084 
7085   if (!i386_validate_tdesc_p (tdep, tdesc_data))
7086     {
7087       tdesc_data_cleanup (tdesc_data);
7088       xfree (tdep);
7089       gdbarch_free (gdbarch);
7090       return NULL;
7091     }
7092 
7093   /* Wire in pseudo registers.  Number of pseudo registers may be
7094      changed.  */
7095   set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
7096 					 + tdep->num_word_regs
7097 					 + tdep->num_dword_regs
7098 					 + tdep->num_mmx_regs
7099 					 + tdep->num_ymm_regs));
7100 
7101   /* Target description may be changed.  */
7102   tdesc = tdep->tdesc;
7103 
7104   tdesc_use_registers (gdbarch, tdesc, tdesc_data);
7105 
7106   /* Override gdbarch_register_reggroup_p set in tdesc_use_registers.  */
7107   set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
7108 
7109   /* Make %al the first pseudo-register.  */
7110   tdep->al_regnum = gdbarch_num_regs (gdbarch);
7111   tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
7112 
7113   ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
7114   if (tdep->num_dword_regs)
7115     {
7116       /* Support dword pseudo-registesr if it hasn't been disabled,  */
7117       tdep->eax_regnum = ymm0_regnum;
7118       ymm0_regnum += tdep->num_dword_regs;
7119     }
7120   else
7121     tdep->eax_regnum = -1;
7122 
7123   mm0_regnum = ymm0_regnum;
7124   if (tdep->num_ymm_regs)
7125     {
7126       /* Support YMM pseudo-registesr if it is available,  */
7127       tdep->ymm0_regnum = ymm0_regnum;
7128       mm0_regnum += tdep->num_ymm_regs;
7129     }
7130   else
7131     tdep->ymm0_regnum = -1;
7132 
7133   if (tdep->num_mmx_regs != 0)
7134     {
7135       /* Support MMX pseudo-registesr if MMX hasn't been disabled,  */
7136       tdep->mm0_regnum = mm0_regnum;
7137     }
7138   else
7139     tdep->mm0_regnum = -1;
7140 
7141   /* Hook in the legacy prologue-based unwinders last (fallback).  */
7142   frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
7143   frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
7144 
7145   /* If we have a register mapping, enable the generic core file
7146      support, unless it has already been enabled.  */
7147   if (tdep->gregset_reg_offset
7148       && !gdbarch_regset_from_core_section_p (gdbarch))
7149     set_gdbarch_regset_from_core_section (gdbarch,
7150 					  i386_regset_from_core_section);
7151 
7152   set_gdbarch_skip_permanent_breakpoint (gdbarch,
7153 					 i386_skip_permanent_breakpoint);
7154 
7155   set_gdbarch_fast_tracepoint_valid_at (gdbarch,
7156 					i386_fast_tracepoint_valid_at);
7157 
7158   return gdbarch;
7159 }
7160 
7161 static enum gdb_osabi
7162 i386_coff_osabi_sniffer (bfd *abfd)
7163 {
7164   if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
7165       || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
7166     return GDB_OSABI_GO32;
7167 
7168   return GDB_OSABI_UNKNOWN;
7169 }
7170 
7171 
7172 /* Provide a prototype to silence -Wmissing-prototypes.  */
7173 void _initialize_i386_tdep (void);
7174 
7175 void
7176 _initialize_i386_tdep (void)
7177 {
7178   register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
7179 
7180   /* Add the variable that controls the disassembly flavor.  */
7181   add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
7182 			&disassembly_flavor, _("\
7183 Set the disassembly flavor."), _("\
7184 Show the disassembly flavor."), _("\
7185 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
7186 			NULL,
7187 			NULL, /* FIXME: i18n: */
7188 			&setlist, &showlist);
7189 
7190   /* Add the variable that controls the convention for returning
7191      structs.  */
7192   add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
7193 			&struct_convention, _("\
7194 Set the convention for returning small structs."), _("\
7195 Show the convention for returning small structs."), _("\
7196 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
7197 is \"default\"."),
7198 			NULL,
7199 			NULL, /* FIXME: i18n: */
7200 			&setlist, &showlist);
7201 
7202   gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
7203 				  i386_coff_osabi_sniffer);
7204 
7205   gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
7206 			  i386_svr4_init_abi);
7207   gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
7208 			  i386_go32_init_abi);
7209 
7210   /* Initialize the i386-specific register groups.  */
7211   i386_init_reggroups ();
7212 
7213   /* Initialize the standard target descriptions.  */
7214   initialize_tdesc_i386 ();
7215   initialize_tdesc_i386_mmx ();
7216   initialize_tdesc_i386_avx ();
7217 
7218   /* Tell remote stub that we support XML target description.  */
7219   register_remote_support_xml ("i386");
7220 }
7221