1 /* Abstraction of GNU v3 abi. 2 Contributed by Jim Blandy <jimb@redhat.com> 3 4 Copyright (C) 2001, 2002, 2003, 2005, 2006, 2007, 2008, 2009, 2010 5 Free Software Foundation, Inc. 6 7 This file is part of GDB. 8 9 This program is free software; you can redistribute it and/or modify 10 it under the terms of the GNU General Public License as published by 11 the Free Software Foundation; either version 3 of the License, or 12 (at your option) any later version. 13 14 This program is distributed in the hope that it will be useful, 15 but WITHOUT ANY WARRANTY; without even the implied warranty of 16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 GNU General Public License for more details. 18 19 You should have received a copy of the GNU General Public License 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 21 22 #include "defs.h" 23 #include "value.h" 24 #include "cp-abi.h" 25 #include "cp-support.h" 26 #include "demangle.h" 27 #include "objfiles.h" 28 #include "valprint.h" 29 #include "c-lang.h" 30 31 #include "gdb_assert.h" 32 #include "gdb_string.h" 33 34 static struct cp_abi_ops gnu_v3_abi_ops; 35 36 static int 37 gnuv3_is_vtable_name (const char *name) 38 { 39 return strncmp (name, "_ZTV", 4) == 0; 40 } 41 42 static int 43 gnuv3_is_operator_name (const char *name) 44 { 45 return strncmp (name, "operator", 8) == 0; 46 } 47 48 49 /* To help us find the components of a vtable, we build ourselves a 50 GDB type object representing the vtable structure. Following the 51 V3 ABI, it goes something like this: 52 53 struct gdb_gnu_v3_abi_vtable { 54 55 / * An array of virtual call and virtual base offsets. The real 56 length of this array depends on the class hierarchy; we use 57 negative subscripts to access the elements. Yucky, but 58 better than the alternatives. * / 59 ptrdiff_t vcall_and_vbase_offsets[0]; 60 61 / * The offset from a virtual pointer referring to this table 62 to the top of the complete object. * / 63 ptrdiff_t offset_to_top; 64 65 / * The type_info pointer for this class. This is really a 66 std::type_info *, but GDB doesn't really look at the 67 type_info object itself, so we don't bother to get the type 68 exactly right. * / 69 void *type_info; 70 71 / * Virtual table pointers in objects point here. * / 72 73 / * Virtual function pointers. Like the vcall/vbase array, the 74 real length of this table depends on the class hierarchy. * / 75 void (*virtual_functions[0]) (); 76 77 }; 78 79 The catch, of course, is that the exact layout of this table 80 depends on the ABI --- word size, endianness, alignment, etc. So 81 the GDB type object is actually a per-architecture kind of thing. 82 83 vtable_type_gdbarch_data is a gdbarch per-architecture data pointer 84 which refers to the struct type * for this structure, laid out 85 appropriately for the architecture. */ 86 static struct gdbarch_data *vtable_type_gdbarch_data; 87 88 89 /* Human-readable names for the numbers of the fields above. */ 90 enum { 91 vtable_field_vcall_and_vbase_offsets, 92 vtable_field_offset_to_top, 93 vtable_field_type_info, 94 vtable_field_virtual_functions 95 }; 96 97 98 /* Return a GDB type representing `struct gdb_gnu_v3_abi_vtable', 99 described above, laid out appropriately for ARCH. 100 101 We use this function as the gdbarch per-architecture data 102 initialization function. */ 103 static void * 104 build_gdb_vtable_type (struct gdbarch *arch) 105 { 106 struct type *t; 107 struct field *field_list, *field; 108 int offset; 109 110 struct type *void_ptr_type 111 = builtin_type (arch)->builtin_data_ptr; 112 struct type *ptr_to_void_fn_type 113 = builtin_type (arch)->builtin_func_ptr; 114 115 /* ARCH can't give us the true ptrdiff_t type, so we guess. */ 116 struct type *ptrdiff_type 117 = arch_integer_type (arch, gdbarch_ptr_bit (arch), 0, "ptrdiff_t"); 118 119 /* We assume no padding is necessary, since GDB doesn't know 120 anything about alignment at the moment. If this assumption bites 121 us, we should add a gdbarch method which, given a type, returns 122 the alignment that type requires, and then use that here. */ 123 124 /* Build the field list. */ 125 field_list = xmalloc (sizeof (struct field [4])); 126 memset (field_list, 0, sizeof (struct field [4])); 127 field = &field_list[0]; 128 offset = 0; 129 130 /* ptrdiff_t vcall_and_vbase_offsets[0]; */ 131 FIELD_NAME (*field) = "vcall_and_vbase_offsets"; 132 FIELD_TYPE (*field) = lookup_array_range_type (ptrdiff_type, 0, -1); 133 FIELD_BITPOS (*field) = offset * TARGET_CHAR_BIT; 134 offset += TYPE_LENGTH (FIELD_TYPE (*field)); 135 field++; 136 137 /* ptrdiff_t offset_to_top; */ 138 FIELD_NAME (*field) = "offset_to_top"; 139 FIELD_TYPE (*field) = ptrdiff_type; 140 FIELD_BITPOS (*field) = offset * TARGET_CHAR_BIT; 141 offset += TYPE_LENGTH (FIELD_TYPE (*field)); 142 field++; 143 144 /* void *type_info; */ 145 FIELD_NAME (*field) = "type_info"; 146 FIELD_TYPE (*field) = void_ptr_type; 147 FIELD_BITPOS (*field) = offset * TARGET_CHAR_BIT; 148 offset += TYPE_LENGTH (FIELD_TYPE (*field)); 149 field++; 150 151 /* void (*virtual_functions[0]) (); */ 152 FIELD_NAME (*field) = "virtual_functions"; 153 FIELD_TYPE (*field) = lookup_array_range_type (ptr_to_void_fn_type, 0, -1); 154 FIELD_BITPOS (*field) = offset * TARGET_CHAR_BIT; 155 offset += TYPE_LENGTH (FIELD_TYPE (*field)); 156 field++; 157 158 /* We assumed in the allocation above that there were four fields. */ 159 gdb_assert (field == (field_list + 4)); 160 161 t = arch_type (arch, TYPE_CODE_STRUCT, offset, NULL); 162 TYPE_NFIELDS (t) = field - field_list; 163 TYPE_FIELDS (t) = field_list; 164 TYPE_TAG_NAME (t) = "gdb_gnu_v3_abi_vtable"; 165 INIT_CPLUS_SPECIFIC (t); 166 167 return t; 168 } 169 170 171 /* Return the ptrdiff_t type used in the vtable type. */ 172 static struct type * 173 vtable_ptrdiff_type (struct gdbarch *gdbarch) 174 { 175 struct type *vtable_type = gdbarch_data (gdbarch, vtable_type_gdbarch_data); 176 177 /* The "offset_to_top" field has the appropriate (ptrdiff_t) type. */ 178 return TYPE_FIELD_TYPE (vtable_type, vtable_field_offset_to_top); 179 } 180 181 /* Return the offset from the start of the imaginary `struct 182 gdb_gnu_v3_abi_vtable' object to the vtable's "address point" 183 (i.e., where objects' virtual table pointers point). */ 184 static int 185 vtable_address_point_offset (struct gdbarch *gdbarch) 186 { 187 struct type *vtable_type = gdbarch_data (gdbarch, vtable_type_gdbarch_data); 188 189 return (TYPE_FIELD_BITPOS (vtable_type, vtable_field_virtual_functions) 190 / TARGET_CHAR_BIT); 191 } 192 193 194 /* Determine whether structure TYPE is a dynamic class. Cache the 195 result. */ 196 197 static int 198 gnuv3_dynamic_class (struct type *type) 199 { 200 int fieldnum, fieldelem; 201 202 if (TYPE_CPLUS_DYNAMIC (type)) 203 return TYPE_CPLUS_DYNAMIC (type) == 1; 204 205 ALLOCATE_CPLUS_STRUCT_TYPE (type); 206 207 for (fieldnum = 0; fieldnum < TYPE_N_BASECLASSES (type); fieldnum++) 208 if (BASETYPE_VIA_VIRTUAL (type, fieldnum) 209 || gnuv3_dynamic_class (TYPE_FIELD_TYPE (type, fieldnum))) 210 { 211 TYPE_CPLUS_DYNAMIC (type) = 1; 212 return 1; 213 } 214 215 for (fieldnum = 0; fieldnum < TYPE_NFN_FIELDS (type); fieldnum++) 216 for (fieldelem = 0; fieldelem < TYPE_FN_FIELDLIST_LENGTH (type, fieldnum); 217 fieldelem++) 218 { 219 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, fieldnum); 220 221 if (TYPE_FN_FIELD_VIRTUAL_P (f, fieldelem)) 222 { 223 TYPE_CPLUS_DYNAMIC (type) = 1; 224 return 1; 225 } 226 } 227 228 TYPE_CPLUS_DYNAMIC (type) = -1; 229 return 0; 230 } 231 232 /* Find the vtable for a value of CONTAINER_TYPE located at 233 CONTAINER_ADDR. Return a value of the correct vtable type for this 234 architecture, or NULL if CONTAINER does not have a vtable. */ 235 236 static struct value * 237 gnuv3_get_vtable (struct gdbarch *gdbarch, 238 struct type *container_type, CORE_ADDR container_addr) 239 { 240 struct type *vtable_type = gdbarch_data (gdbarch, 241 vtable_type_gdbarch_data); 242 struct type *vtable_pointer_type; 243 struct value *vtable_pointer; 244 CORE_ADDR vtable_address; 245 246 /* If this type does not have a virtual table, don't read the first 247 field. */ 248 if (!gnuv3_dynamic_class (check_typedef (container_type))) 249 return NULL; 250 251 /* We do not consult the debug information to find the virtual table. 252 The ABI specifies that it is always at offset zero in any class, 253 and debug information may not represent it. 254 255 We avoid using value_contents on principle, because the object might 256 be large. */ 257 258 /* Find the type "pointer to virtual table". */ 259 vtable_pointer_type = lookup_pointer_type (vtable_type); 260 261 /* Load it from the start of the class. */ 262 vtable_pointer = value_at (vtable_pointer_type, container_addr); 263 vtable_address = value_as_address (vtable_pointer); 264 265 /* Correct it to point at the start of the virtual table, rather 266 than the address point. */ 267 return value_at_lazy (vtable_type, 268 vtable_address - vtable_address_point_offset (gdbarch)); 269 } 270 271 272 static struct type * 273 gnuv3_rtti_type (struct value *value, 274 int *full_p, int *top_p, int *using_enc_p) 275 { 276 struct gdbarch *gdbarch; 277 struct type *values_type = check_typedef (value_type (value)); 278 struct value *vtable; 279 struct minimal_symbol *vtable_symbol; 280 const char *vtable_symbol_name; 281 const char *class_name; 282 struct type *run_time_type; 283 LONGEST offset_to_top; 284 285 /* We only have RTTI for class objects. */ 286 if (TYPE_CODE (values_type) != TYPE_CODE_CLASS) 287 return NULL; 288 289 /* Determine architecture. */ 290 gdbarch = get_type_arch (values_type); 291 292 if (using_enc_p) 293 *using_enc_p = 0; 294 295 vtable = gnuv3_get_vtable (gdbarch, value_type (value), 296 value_as_address (value_addr (value))); 297 if (vtable == NULL) 298 return NULL; 299 300 /* Find the linker symbol for this vtable. */ 301 vtable_symbol 302 = lookup_minimal_symbol_by_pc (value_address (vtable) 303 + value_embedded_offset (vtable)); 304 if (! vtable_symbol) 305 return NULL; 306 307 /* The symbol's demangled name should be something like "vtable for 308 CLASS", where CLASS is the name of the run-time type of VALUE. 309 If we didn't like this approach, we could instead look in the 310 type_info object itself to get the class name. But this way 311 should work just as well, and doesn't read target memory. */ 312 vtable_symbol_name = SYMBOL_DEMANGLED_NAME (vtable_symbol); 313 if (vtable_symbol_name == NULL 314 || strncmp (vtable_symbol_name, "vtable for ", 11)) 315 { 316 warning (_("can't find linker symbol for virtual table for `%s' value"), 317 TYPE_NAME (values_type)); 318 if (vtable_symbol_name) 319 warning (_(" found `%s' instead"), vtable_symbol_name); 320 return NULL; 321 } 322 class_name = vtable_symbol_name + 11; 323 324 /* Try to look up the class name as a type name. */ 325 /* FIXME: chastain/2003-11-26: block=NULL is bogus. See pr gdb/1465. */ 326 run_time_type = cp_lookup_rtti_type (class_name, NULL); 327 if (run_time_type == NULL) 328 return NULL; 329 330 /* Get the offset from VALUE to the top of the complete object. 331 NOTE: this is the reverse of the meaning of *TOP_P. */ 332 offset_to_top 333 = value_as_long (value_field (vtable, vtable_field_offset_to_top)); 334 335 if (full_p) 336 *full_p = (- offset_to_top == value_embedded_offset (value) 337 && (TYPE_LENGTH (value_enclosing_type (value)) 338 >= TYPE_LENGTH (run_time_type))); 339 if (top_p) 340 *top_p = - offset_to_top; 341 return run_time_type; 342 } 343 344 /* Return a function pointer for CONTAINER's VTABLE_INDEX'th virtual 345 function, of type FNTYPE. */ 346 347 static struct value * 348 gnuv3_get_virtual_fn (struct gdbarch *gdbarch, struct value *container, 349 struct type *fntype, int vtable_index) 350 { 351 struct value *vtable, *vfn; 352 353 /* Every class with virtual functions must have a vtable. */ 354 vtable = gnuv3_get_vtable (gdbarch, value_type (container), 355 value_as_address (value_addr (container))); 356 gdb_assert (vtable != NULL); 357 358 /* Fetch the appropriate function pointer from the vtable. */ 359 vfn = value_subscript (value_field (vtable, vtable_field_virtual_functions), 360 vtable_index); 361 362 /* If this architecture uses function descriptors directly in the vtable, 363 then the address of the vtable entry is actually a "function pointer" 364 (i.e. points to the descriptor). We don't need to scale the index 365 by the size of a function descriptor; GCC does that before outputing 366 debug information. */ 367 if (gdbarch_vtable_function_descriptors (gdbarch)) 368 vfn = value_addr (vfn); 369 370 /* Cast the function pointer to the appropriate type. */ 371 vfn = value_cast (lookup_pointer_type (fntype), vfn); 372 373 return vfn; 374 } 375 376 /* GNU v3 implementation of value_virtual_fn_field. See cp-abi.h 377 for a description of the arguments. */ 378 379 static struct value * 380 gnuv3_virtual_fn_field (struct value **value_p, 381 struct fn_field *f, int j, 382 struct type *vfn_base, int offset) 383 { 384 struct type *values_type = check_typedef (value_type (*value_p)); 385 struct gdbarch *gdbarch; 386 387 /* Some simple sanity checks. */ 388 if (TYPE_CODE (values_type) != TYPE_CODE_CLASS) 389 error (_("Only classes can have virtual functions.")); 390 391 /* Determine architecture. */ 392 gdbarch = get_type_arch (values_type); 393 394 /* Cast our value to the base class which defines this virtual 395 function. This takes care of any necessary `this' 396 adjustments. */ 397 if (vfn_base != values_type) 398 *value_p = value_cast (vfn_base, *value_p); 399 400 return gnuv3_get_virtual_fn (gdbarch, *value_p, TYPE_FN_FIELD_TYPE (f, j), 401 TYPE_FN_FIELD_VOFFSET (f, j)); 402 } 403 404 /* Compute the offset of the baseclass which is 405 the INDEXth baseclass of class TYPE, 406 for value at VALADDR (in host) at ADDRESS (in target). 407 The result is the offset of the baseclass value relative 408 to (the address of)(ARG) + OFFSET. 409 410 -1 is returned on error. */ 411 static int 412 gnuv3_baseclass_offset (struct type *type, int index, const bfd_byte *valaddr, 413 CORE_ADDR address) 414 { 415 struct gdbarch *gdbarch; 416 struct type *ptr_type; 417 struct value *vtable; 418 struct value *vbase_array; 419 long int cur_base_offset, base_offset; 420 421 /* Determine architecture. */ 422 gdbarch = get_type_arch (type); 423 ptr_type = builtin_type (gdbarch)->builtin_data_ptr; 424 425 /* If it isn't a virtual base, this is easy. The offset is in the 426 type definition. */ 427 if (!BASETYPE_VIA_VIRTUAL (type, index)) 428 return TYPE_BASECLASS_BITPOS (type, index) / 8; 429 430 /* To access a virtual base, we need to use the vbase offset stored in 431 our vtable. Recent GCC versions provide this information. If it isn't 432 available, we could get what we needed from RTTI, or from drawing the 433 complete inheritance graph based on the debug info. Neither is 434 worthwhile. */ 435 cur_base_offset = TYPE_BASECLASS_BITPOS (type, index) / 8; 436 if (cur_base_offset >= - vtable_address_point_offset (gdbarch)) 437 error (_("Expected a negative vbase offset (old compiler?)")); 438 439 cur_base_offset = cur_base_offset + vtable_address_point_offset (gdbarch); 440 if ((- cur_base_offset) % TYPE_LENGTH (ptr_type) != 0) 441 error (_("Misaligned vbase offset.")); 442 cur_base_offset = cur_base_offset / ((int) TYPE_LENGTH (ptr_type)); 443 444 vtable = gnuv3_get_vtable (gdbarch, type, address); 445 gdb_assert (vtable != NULL); 446 vbase_array = value_field (vtable, vtable_field_vcall_and_vbase_offsets); 447 base_offset = value_as_long (value_subscript (vbase_array, cur_base_offset)); 448 return base_offset; 449 } 450 451 /* Locate a virtual method in DOMAIN or its non-virtual base classes 452 which has virtual table index VOFFSET. The method has an associated 453 "this" adjustment of ADJUSTMENT bytes. */ 454 455 static const char * 456 gnuv3_find_method_in (struct type *domain, CORE_ADDR voffset, 457 LONGEST adjustment) 458 { 459 int i; 460 461 /* Search this class first. */ 462 if (adjustment == 0) 463 { 464 int len; 465 466 len = TYPE_NFN_FIELDS (domain); 467 for (i = 0; i < len; i++) 468 { 469 int len2, j; 470 struct fn_field *f; 471 472 f = TYPE_FN_FIELDLIST1 (domain, i); 473 len2 = TYPE_FN_FIELDLIST_LENGTH (domain, i); 474 475 check_stub_method_group (domain, i); 476 for (j = 0; j < len2; j++) 477 if (TYPE_FN_FIELD_VOFFSET (f, j) == voffset) 478 return TYPE_FN_FIELD_PHYSNAME (f, j); 479 } 480 } 481 482 /* Next search non-virtual bases. If it's in a virtual base, 483 we're out of luck. */ 484 for (i = 0; i < TYPE_N_BASECLASSES (domain); i++) 485 { 486 int pos; 487 struct type *basetype; 488 489 if (BASETYPE_VIA_VIRTUAL (domain, i)) 490 continue; 491 492 pos = TYPE_BASECLASS_BITPOS (domain, i) / 8; 493 basetype = TYPE_FIELD_TYPE (domain, i); 494 /* Recurse with a modified adjustment. We don't need to adjust 495 voffset. */ 496 if (adjustment >= pos && adjustment < pos + TYPE_LENGTH (basetype)) 497 return gnuv3_find_method_in (basetype, voffset, adjustment - pos); 498 } 499 500 return NULL; 501 } 502 503 /* Decode GNU v3 method pointer. */ 504 505 static int 506 gnuv3_decode_method_ptr (struct gdbarch *gdbarch, 507 const gdb_byte *contents, 508 CORE_ADDR *value_p, 509 LONGEST *adjustment_p) 510 { 511 struct type *funcptr_type = builtin_type (gdbarch)->builtin_func_ptr; 512 struct type *offset_type = vtable_ptrdiff_type (gdbarch); 513 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 514 CORE_ADDR ptr_value; 515 LONGEST voffset, adjustment; 516 int vbit; 517 518 /* Extract the pointer to member. The first element is either a pointer 519 or a vtable offset. For pointers, we need to use extract_typed_address 520 to allow the back-end to convert the pointer to a GDB address -- but 521 vtable offsets we must handle as integers. At this point, we do not 522 yet know which case we have, so we extract the value under both 523 interpretations and choose the right one later on. */ 524 ptr_value = extract_typed_address (contents, funcptr_type); 525 voffset = extract_signed_integer (contents, 526 TYPE_LENGTH (funcptr_type), byte_order); 527 contents += TYPE_LENGTH (funcptr_type); 528 adjustment = extract_signed_integer (contents, 529 TYPE_LENGTH (offset_type), byte_order); 530 531 if (!gdbarch_vbit_in_delta (gdbarch)) 532 { 533 vbit = voffset & 1; 534 voffset = voffset ^ vbit; 535 } 536 else 537 { 538 vbit = adjustment & 1; 539 adjustment = adjustment >> 1; 540 } 541 542 *value_p = vbit? voffset : ptr_value; 543 *adjustment_p = adjustment; 544 return vbit; 545 } 546 547 /* GNU v3 implementation of cplus_print_method_ptr. */ 548 549 static void 550 gnuv3_print_method_ptr (const gdb_byte *contents, 551 struct type *type, 552 struct ui_file *stream) 553 { 554 struct type *domain = TYPE_DOMAIN_TYPE (type); 555 struct gdbarch *gdbarch = get_type_arch (domain); 556 CORE_ADDR ptr_value; 557 LONGEST adjustment; 558 int vbit; 559 560 /* Extract the pointer to member. */ 561 vbit = gnuv3_decode_method_ptr (gdbarch, contents, &ptr_value, &adjustment); 562 563 /* Check for NULL. */ 564 if (ptr_value == 0 && vbit == 0) 565 { 566 fprintf_filtered (stream, "NULL"); 567 return; 568 } 569 570 /* Search for a virtual method. */ 571 if (vbit) 572 { 573 CORE_ADDR voffset; 574 const char *physname; 575 576 /* It's a virtual table offset, maybe in this class. Search 577 for a field with the correct vtable offset. First convert it 578 to an index, as used in TYPE_FN_FIELD_VOFFSET. */ 579 voffset = ptr_value / TYPE_LENGTH (vtable_ptrdiff_type (gdbarch)); 580 581 physname = gnuv3_find_method_in (domain, voffset, adjustment); 582 583 /* If we found a method, print that. We don't bother to disambiguate 584 possible paths to the method based on the adjustment. */ 585 if (physname) 586 { 587 char *demangled_name = cplus_demangle (physname, 588 DMGL_ANSI | DMGL_PARAMS); 589 590 fprintf_filtered (stream, "&virtual "); 591 if (demangled_name == NULL) 592 fputs_filtered (physname, stream); 593 else 594 { 595 fputs_filtered (demangled_name, stream); 596 xfree (demangled_name); 597 } 598 return; 599 } 600 } 601 else if (ptr_value != 0) 602 { 603 /* Found a non-virtual function: print out the type. */ 604 fputs_filtered ("(", stream); 605 c_print_type (type, "", stream, -1, 0); 606 fputs_filtered (") ", stream); 607 } 608 609 /* We didn't find it; print the raw data. */ 610 if (vbit) 611 { 612 fprintf_filtered (stream, "&virtual table offset "); 613 print_longest (stream, 'd', 1, ptr_value); 614 } 615 else 616 print_address_demangle (gdbarch, ptr_value, stream, demangle); 617 618 if (adjustment) 619 { 620 fprintf_filtered (stream, ", this adjustment "); 621 print_longest (stream, 'd', 1, adjustment); 622 } 623 } 624 625 /* GNU v3 implementation of cplus_method_ptr_size. */ 626 627 static int 628 gnuv3_method_ptr_size (struct type *type) 629 { 630 struct type *domain_type = check_typedef (TYPE_DOMAIN_TYPE (type)); 631 struct gdbarch *gdbarch = get_type_arch (domain_type); 632 633 return 2 * TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr); 634 } 635 636 /* GNU v3 implementation of cplus_make_method_ptr. */ 637 638 static void 639 gnuv3_make_method_ptr (struct type *type, gdb_byte *contents, 640 CORE_ADDR value, int is_virtual) 641 { 642 struct type *domain_type = check_typedef (TYPE_DOMAIN_TYPE (type)); 643 struct gdbarch *gdbarch = get_type_arch (domain_type); 644 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr); 645 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 646 647 /* FIXME drow/2006-12-24: The adjustment of "this" is currently 648 always zero, since the method pointer is of the correct type. 649 But if the method pointer came from a base class, this is 650 incorrect - it should be the offset to the base. The best 651 fix might be to create the pointer to member pointing at the 652 base class and cast it to the derived class, but that requires 653 support for adjusting pointers to members when casting them - 654 not currently supported by GDB. */ 655 656 if (!gdbarch_vbit_in_delta (gdbarch)) 657 { 658 store_unsigned_integer (contents, size, byte_order, value | is_virtual); 659 store_unsigned_integer (contents + size, size, byte_order, 0); 660 } 661 else 662 { 663 store_unsigned_integer (contents, size, byte_order, value); 664 store_unsigned_integer (contents + size, size, byte_order, is_virtual); 665 } 666 } 667 668 /* GNU v3 implementation of cplus_method_ptr_to_value. */ 669 670 static struct value * 671 gnuv3_method_ptr_to_value (struct value **this_p, struct value *method_ptr) 672 { 673 struct gdbarch *gdbarch; 674 const gdb_byte *contents = value_contents (method_ptr); 675 CORE_ADDR ptr_value; 676 struct type *domain_type, *final_type, *method_type; 677 LONGEST adjustment; 678 int vbit; 679 680 domain_type = TYPE_DOMAIN_TYPE (check_typedef (value_type (method_ptr))); 681 final_type = lookup_pointer_type (domain_type); 682 683 method_type = TYPE_TARGET_TYPE (check_typedef (value_type (method_ptr))); 684 685 /* Extract the pointer to member. */ 686 gdbarch = get_type_arch (domain_type); 687 vbit = gnuv3_decode_method_ptr (gdbarch, contents, &ptr_value, &adjustment); 688 689 /* First convert THIS to match the containing type of the pointer to 690 member. This cast may adjust the value of THIS. */ 691 *this_p = value_cast (final_type, *this_p); 692 693 /* Then apply whatever adjustment is necessary. This creates a somewhat 694 strange pointer: it claims to have type FINAL_TYPE, but in fact it 695 might not be a valid FINAL_TYPE. For instance, it might be a 696 base class of FINAL_TYPE. And if it's not the primary base class, 697 then printing it out as a FINAL_TYPE object would produce some pretty 698 garbage. 699 700 But we don't really know the type of the first argument in 701 METHOD_TYPE either, which is why this happens. We can't 702 dereference this later as a FINAL_TYPE, but once we arrive in the 703 called method we'll have debugging information for the type of 704 "this" - and that'll match the value we produce here. 705 706 You can provoke this case by casting a Base::* to a Derived::*, for 707 instance. */ 708 *this_p = value_cast (builtin_type (gdbarch)->builtin_data_ptr, *this_p); 709 *this_p = value_ptradd (*this_p, adjustment); 710 *this_p = value_cast (final_type, *this_p); 711 712 if (vbit) 713 { 714 LONGEST voffset; 715 716 voffset = ptr_value / TYPE_LENGTH (vtable_ptrdiff_type (gdbarch)); 717 return gnuv3_get_virtual_fn (gdbarch, value_ind (*this_p), 718 method_type, voffset); 719 } 720 else 721 return value_from_pointer (lookup_pointer_type (method_type), ptr_value); 722 } 723 724 /* Determine if we are currently in a C++ thunk. If so, get the address 725 of the routine we are thunking to and continue to there instead. */ 726 727 static CORE_ADDR 728 gnuv3_skip_trampoline (struct frame_info *frame, CORE_ADDR stop_pc) 729 { 730 CORE_ADDR real_stop_pc, method_stop_pc; 731 struct gdbarch *gdbarch = get_frame_arch (frame); 732 struct minimal_symbol *thunk_sym, *fn_sym; 733 struct obj_section *section; 734 char *thunk_name, *fn_name; 735 736 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc); 737 if (real_stop_pc == 0) 738 real_stop_pc = stop_pc; 739 740 /* Find the linker symbol for this potential thunk. */ 741 thunk_sym = lookup_minimal_symbol_by_pc (real_stop_pc); 742 section = find_pc_section (real_stop_pc); 743 if (thunk_sym == NULL || section == NULL) 744 return 0; 745 746 /* The symbol's demangled name should be something like "virtual 747 thunk to FUNCTION", where FUNCTION is the name of the function 748 being thunked to. */ 749 thunk_name = SYMBOL_DEMANGLED_NAME (thunk_sym); 750 if (thunk_name == NULL || strstr (thunk_name, " thunk to ") == NULL) 751 return 0; 752 753 fn_name = strstr (thunk_name, " thunk to ") + strlen (" thunk to "); 754 fn_sym = lookup_minimal_symbol (fn_name, NULL, section->objfile); 755 if (fn_sym == NULL) 756 return 0; 757 758 method_stop_pc = SYMBOL_VALUE_ADDRESS (fn_sym); 759 real_stop_pc = gdbarch_skip_trampoline_code 760 (gdbarch, frame, method_stop_pc); 761 if (real_stop_pc == 0) 762 real_stop_pc = method_stop_pc; 763 764 return real_stop_pc; 765 } 766 767 /* Return nonzero if a type should be passed by reference. 768 769 The rule in the v3 ABI document comes from section 3.1.1. If the 770 type has a non-trivial copy constructor or destructor, then the 771 caller must make a copy (by calling the copy constructor if there 772 is one or perform the copy itself otherwise), pass the address of 773 the copy, and then destroy the temporary (if necessary). 774 775 For return values with non-trivial copy constructors or 776 destructors, space will be allocated in the caller, and a pointer 777 will be passed as the first argument (preceding "this"). 778 779 We don't have a bulletproof mechanism for determining whether a 780 constructor or destructor is trivial. For GCC and DWARF2 debug 781 information, we can check the artificial flag. 782 783 We don't do anything with the constructors or destructors, 784 but we have to get the argument passing right anyway. */ 785 static int 786 gnuv3_pass_by_reference (struct type *type) 787 { 788 int fieldnum, fieldelem; 789 790 CHECK_TYPEDEF (type); 791 792 /* We're only interested in things that can have methods. */ 793 if (TYPE_CODE (type) != TYPE_CODE_STRUCT 794 && TYPE_CODE (type) != TYPE_CODE_CLASS 795 && TYPE_CODE (type) != TYPE_CODE_UNION) 796 return 0; 797 798 for (fieldnum = 0; fieldnum < TYPE_NFN_FIELDS (type); fieldnum++) 799 for (fieldelem = 0; fieldelem < TYPE_FN_FIELDLIST_LENGTH (type, fieldnum); 800 fieldelem++) 801 { 802 struct fn_field *fn = TYPE_FN_FIELDLIST1 (type, fieldnum); 803 char *name = TYPE_FN_FIELDLIST_NAME (type, fieldnum); 804 struct type *fieldtype = TYPE_FN_FIELD_TYPE (fn, fieldelem); 805 806 /* If this function is marked as artificial, it is compiler-generated, 807 and we assume it is trivial. */ 808 if (TYPE_FN_FIELD_ARTIFICIAL (fn, fieldelem)) 809 continue; 810 811 /* If we've found a destructor, we must pass this by reference. */ 812 if (name[0] == '~') 813 return 1; 814 815 /* If the mangled name of this method doesn't indicate that it 816 is a constructor, we're not interested. 817 818 FIXME drow/2007-09-23: We could do this using the name of 819 the method and the name of the class instead of dealing 820 with the mangled name. We don't have a convenient function 821 to strip off both leading scope qualifiers and trailing 822 template arguments yet. */ 823 if (!is_constructor_name (TYPE_FN_FIELD_PHYSNAME (fn, fieldelem))) 824 continue; 825 826 /* If this method takes two arguments, and the second argument is 827 a reference to this class, then it is a copy constructor. */ 828 if (TYPE_NFIELDS (fieldtype) == 2 829 && TYPE_CODE (TYPE_FIELD_TYPE (fieldtype, 1)) == TYPE_CODE_REF 830 && check_typedef (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (fieldtype, 1))) == type) 831 return 1; 832 } 833 834 /* Even if all the constructors and destructors were artificial, one 835 of them may have invoked a non-artificial constructor or 836 destructor in a base class. If any base class needs to be passed 837 by reference, so does this class. Similarly for members, which 838 are constructed whenever this class is. We do not need to worry 839 about recursive loops here, since we are only looking at members 840 of complete class type. */ 841 for (fieldnum = 0; fieldnum < TYPE_NFIELDS (type); fieldnum++) 842 if (gnuv3_pass_by_reference (TYPE_FIELD_TYPE (type, fieldnum))) 843 return 1; 844 845 return 0; 846 } 847 848 static void 849 init_gnuv3_ops (void) 850 { 851 vtable_type_gdbarch_data = gdbarch_data_register_post_init (build_gdb_vtable_type); 852 853 gnu_v3_abi_ops.shortname = "gnu-v3"; 854 gnu_v3_abi_ops.longname = "GNU G++ Version 3 ABI"; 855 gnu_v3_abi_ops.doc = "G++ Version 3 ABI"; 856 gnu_v3_abi_ops.is_destructor_name = 857 (enum dtor_kinds (*) (const char *))is_gnu_v3_mangled_dtor; 858 gnu_v3_abi_ops.is_constructor_name = 859 (enum ctor_kinds (*) (const char *))is_gnu_v3_mangled_ctor; 860 gnu_v3_abi_ops.is_vtable_name = gnuv3_is_vtable_name; 861 gnu_v3_abi_ops.is_operator_name = gnuv3_is_operator_name; 862 gnu_v3_abi_ops.rtti_type = gnuv3_rtti_type; 863 gnu_v3_abi_ops.virtual_fn_field = gnuv3_virtual_fn_field; 864 gnu_v3_abi_ops.baseclass_offset = gnuv3_baseclass_offset; 865 gnu_v3_abi_ops.print_method_ptr = gnuv3_print_method_ptr; 866 gnu_v3_abi_ops.method_ptr_size = gnuv3_method_ptr_size; 867 gnu_v3_abi_ops.make_method_ptr = gnuv3_make_method_ptr; 868 gnu_v3_abi_ops.method_ptr_to_value = gnuv3_method_ptr_to_value; 869 gnu_v3_abi_ops.skip_trampoline = gnuv3_skip_trampoline; 870 gnu_v3_abi_ops.pass_by_reference = gnuv3_pass_by_reference; 871 } 872 873 extern initialize_file_ftype _initialize_gnu_v3_abi; /* -Wmissing-prototypes */ 874 875 void 876 _initialize_gnu_v3_abi (void) 877 { 878 init_gnuv3_ops (); 879 880 register_cp_abi (&gnu_v3_abi_ops); 881 } 882