1 /* Support routines for manipulating internal types for GDB. 2 3 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001, 2002, 4 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 5 Free Software Foundation, Inc. 6 7 Contributed by Cygnus Support, using pieces from other GDB modules. 8 9 This file is part of GDB. 10 11 This program is free software; you can redistribute it and/or modify 12 it under the terms of the GNU General Public License as published by 13 the Free Software Foundation; either version 3 of the License, or 14 (at your option) any later version. 15 16 This program is distributed in the hope that it will be useful, 17 but WITHOUT ANY WARRANTY; without even the implied warranty of 18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 19 GNU General Public License for more details. 20 21 You should have received a copy of the GNU General Public License 22 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 23 24 #include "defs.h" 25 #include "gdb_string.h" 26 #include "bfd.h" 27 #include "symtab.h" 28 #include "symfile.h" 29 #include "objfiles.h" 30 #include "gdbtypes.h" 31 #include "expression.h" 32 #include "language.h" 33 #include "target.h" 34 #include "value.h" 35 #include "demangle.h" 36 #include "complaints.h" 37 #include "gdbcmd.h" 38 #include "wrapper.h" 39 #include "cp-abi.h" 40 #include "gdb_assert.h" 41 #include "hashtab.h" 42 43 44 /* Floatformat pairs. */ 45 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = { 46 &floatformat_ieee_half_big, 47 &floatformat_ieee_half_little 48 }; 49 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = { 50 &floatformat_ieee_single_big, 51 &floatformat_ieee_single_little 52 }; 53 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = { 54 &floatformat_ieee_double_big, 55 &floatformat_ieee_double_little 56 }; 57 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = { 58 &floatformat_ieee_double_big, 59 &floatformat_ieee_double_littlebyte_bigword 60 }; 61 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = { 62 &floatformat_i387_ext, 63 &floatformat_i387_ext 64 }; 65 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = { 66 &floatformat_m68881_ext, 67 &floatformat_m68881_ext 68 }; 69 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = { 70 &floatformat_arm_ext_big, 71 &floatformat_arm_ext_littlebyte_bigword 72 }; 73 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = { 74 &floatformat_ia64_spill_big, 75 &floatformat_ia64_spill_little 76 }; 77 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = { 78 &floatformat_ia64_quad_big, 79 &floatformat_ia64_quad_little 80 }; 81 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = { 82 &floatformat_vax_f, 83 &floatformat_vax_f 84 }; 85 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = { 86 &floatformat_vax_d, 87 &floatformat_vax_d 88 }; 89 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = { 90 &floatformat_ibm_long_double, 91 &floatformat_ibm_long_double 92 }; 93 94 95 int opaque_type_resolution = 1; 96 static void 97 show_opaque_type_resolution (struct ui_file *file, int from_tty, 98 struct cmd_list_element *c, 99 const char *value) 100 { 101 fprintf_filtered (file, _("\ 102 Resolution of opaque struct/class/union types (if set before loading symbols) is %s.\n"), 103 value); 104 } 105 106 int overload_debug = 0; 107 static void 108 show_overload_debug (struct ui_file *file, int from_tty, 109 struct cmd_list_element *c, const char *value) 110 { 111 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"), 112 value); 113 } 114 115 struct extra 116 { 117 char str[128]; 118 int len; 119 }; /* Maximum extension is 128! FIXME */ 120 121 static void print_bit_vector (B_TYPE *, int); 122 static void print_arg_types (struct field *, int, int); 123 static void dump_fn_fieldlists (struct type *, int); 124 static void print_cplus_stuff (struct type *, int); 125 126 127 /* Allocate a new OBJFILE-associated type structure and fill it 128 with some defaults. Space for the type structure is allocated 129 on the objfile's objfile_obstack. */ 130 131 struct type * 132 alloc_type (struct objfile *objfile) 133 { 134 struct type *type; 135 136 gdb_assert (objfile != NULL); 137 138 /* Alloc the structure and start off with all fields zeroed. */ 139 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type); 140 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack, 141 struct main_type); 142 OBJSTAT (objfile, n_types++); 143 144 TYPE_OBJFILE_OWNED (type) = 1; 145 TYPE_OWNER (type).objfile = objfile; 146 147 /* Initialize the fields that might not be zero. */ 148 149 TYPE_CODE (type) = TYPE_CODE_UNDEF; 150 TYPE_VPTR_FIELDNO (type) = -1; 151 TYPE_CHAIN (type) = type; /* Chain back to itself. */ 152 153 return type; 154 } 155 156 /* Allocate a new GDBARCH-associated type structure and fill it 157 with some defaults. Space for the type structure is allocated 158 on the heap. */ 159 160 struct type * 161 alloc_type_arch (struct gdbarch *gdbarch) 162 { 163 struct type *type; 164 165 gdb_assert (gdbarch != NULL); 166 167 /* Alloc the structure and start off with all fields zeroed. */ 168 169 type = XZALLOC (struct type); 170 TYPE_MAIN_TYPE (type) = XZALLOC (struct main_type); 171 172 TYPE_OBJFILE_OWNED (type) = 0; 173 TYPE_OWNER (type).gdbarch = gdbarch; 174 175 /* Initialize the fields that might not be zero. */ 176 177 TYPE_CODE (type) = TYPE_CODE_UNDEF; 178 TYPE_VPTR_FIELDNO (type) = -1; 179 TYPE_CHAIN (type) = type; /* Chain back to itself. */ 180 181 return type; 182 } 183 184 /* If TYPE is objfile-associated, allocate a new type structure 185 associated with the same objfile. If TYPE is gdbarch-associated, 186 allocate a new type structure associated with the same gdbarch. */ 187 188 struct type * 189 alloc_type_copy (const struct type *type) 190 { 191 if (TYPE_OBJFILE_OWNED (type)) 192 return alloc_type (TYPE_OWNER (type).objfile); 193 else 194 return alloc_type_arch (TYPE_OWNER (type).gdbarch); 195 } 196 197 /* If TYPE is gdbarch-associated, return that architecture. 198 If TYPE is objfile-associated, return that objfile's architecture. */ 199 200 struct gdbarch * 201 get_type_arch (const struct type *type) 202 { 203 if (TYPE_OBJFILE_OWNED (type)) 204 return get_objfile_arch (TYPE_OWNER (type).objfile); 205 else 206 return TYPE_OWNER (type).gdbarch; 207 } 208 209 210 /* Alloc a new type instance structure, fill it with some defaults, 211 and point it at OLDTYPE. Allocate the new type instance from the 212 same place as OLDTYPE. */ 213 214 static struct type * 215 alloc_type_instance (struct type *oldtype) 216 { 217 struct type *type; 218 219 /* Allocate the structure. */ 220 221 if (! TYPE_OBJFILE_OWNED (oldtype)) 222 type = XZALLOC (struct type); 223 else 224 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack, 225 struct type); 226 227 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype); 228 229 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */ 230 231 return type; 232 } 233 234 /* Clear all remnants of the previous type at TYPE, in preparation for 235 replacing it with something else. Preserve owner information. */ 236 static void 237 smash_type (struct type *type) 238 { 239 int objfile_owned = TYPE_OBJFILE_OWNED (type); 240 union type_owner owner = TYPE_OWNER (type); 241 242 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type)); 243 244 /* Restore owner information. */ 245 TYPE_OBJFILE_OWNED (type) = objfile_owned; 246 TYPE_OWNER (type) = owner; 247 248 /* For now, delete the rings. */ 249 TYPE_CHAIN (type) = type; 250 251 /* For now, leave the pointer/reference types alone. */ 252 } 253 254 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points 255 to a pointer to memory where the pointer type should be stored. 256 If *TYPEPTR is zero, update it to point to the pointer type we return. 257 We allocate new memory if needed. */ 258 259 struct type * 260 make_pointer_type (struct type *type, struct type **typeptr) 261 { 262 struct type *ntype; /* New type */ 263 struct type *chain; 264 265 ntype = TYPE_POINTER_TYPE (type); 266 267 if (ntype) 268 { 269 if (typeptr == 0) 270 return ntype; /* Don't care about alloc, 271 and have new type. */ 272 else if (*typeptr == 0) 273 { 274 *typeptr = ntype; /* Tracking alloc, and have new type. */ 275 return ntype; 276 } 277 } 278 279 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */ 280 { 281 ntype = alloc_type_copy (type); 282 if (typeptr) 283 *typeptr = ntype; 284 } 285 else /* We have storage, but need to reset it. */ 286 { 287 ntype = *typeptr; 288 chain = TYPE_CHAIN (ntype); 289 smash_type (ntype); 290 TYPE_CHAIN (ntype) = chain; 291 } 292 293 TYPE_TARGET_TYPE (ntype) = type; 294 TYPE_POINTER_TYPE (type) = ntype; 295 296 /* FIXME! Assume the machine has only one representation for 297 pointers! */ 298 299 TYPE_LENGTH (ntype) 300 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT; 301 TYPE_CODE (ntype) = TYPE_CODE_PTR; 302 303 /* Mark pointers as unsigned. The target converts between pointers 304 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and 305 gdbarch_address_to_pointer. */ 306 TYPE_UNSIGNED (ntype) = 1; 307 308 if (!TYPE_POINTER_TYPE (type)) /* Remember it, if don't have one. */ 309 TYPE_POINTER_TYPE (type) = ntype; 310 311 /* Update the length of all the other variants of this type. */ 312 chain = TYPE_CHAIN (ntype); 313 while (chain != ntype) 314 { 315 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype); 316 chain = TYPE_CHAIN (chain); 317 } 318 319 return ntype; 320 } 321 322 /* Given a type TYPE, return a type of pointers to that type. 323 May need to construct such a type if this is the first use. */ 324 325 struct type * 326 lookup_pointer_type (struct type *type) 327 { 328 return make_pointer_type (type, (struct type **) 0); 329 } 330 331 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero, 332 points to a pointer to memory where the reference type should be 333 stored. If *TYPEPTR is zero, update it to point to the reference 334 type we return. We allocate new memory if needed. */ 335 336 struct type * 337 make_reference_type (struct type *type, struct type **typeptr) 338 { 339 struct type *ntype; /* New type */ 340 struct type *chain; 341 342 ntype = TYPE_REFERENCE_TYPE (type); 343 344 if (ntype) 345 { 346 if (typeptr == 0) 347 return ntype; /* Don't care about alloc, 348 and have new type. */ 349 else if (*typeptr == 0) 350 { 351 *typeptr = ntype; /* Tracking alloc, and have new type. */ 352 return ntype; 353 } 354 } 355 356 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */ 357 { 358 ntype = alloc_type_copy (type); 359 if (typeptr) 360 *typeptr = ntype; 361 } 362 else /* We have storage, but need to reset it. */ 363 { 364 ntype = *typeptr; 365 chain = TYPE_CHAIN (ntype); 366 smash_type (ntype); 367 TYPE_CHAIN (ntype) = chain; 368 } 369 370 TYPE_TARGET_TYPE (ntype) = type; 371 TYPE_REFERENCE_TYPE (type) = ntype; 372 373 /* FIXME! Assume the machine has only one representation for 374 references, and that it matches the (only) representation for 375 pointers! */ 376 377 TYPE_LENGTH (ntype) = 378 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT; 379 TYPE_CODE (ntype) = TYPE_CODE_REF; 380 381 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */ 382 TYPE_REFERENCE_TYPE (type) = ntype; 383 384 /* Update the length of all the other variants of this type. */ 385 chain = TYPE_CHAIN (ntype); 386 while (chain != ntype) 387 { 388 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype); 389 chain = TYPE_CHAIN (chain); 390 } 391 392 return ntype; 393 } 394 395 /* Same as above, but caller doesn't care about memory allocation 396 details. */ 397 398 struct type * 399 lookup_reference_type (struct type *type) 400 { 401 return make_reference_type (type, (struct type **) 0); 402 } 403 404 /* Lookup a function type that returns type TYPE. TYPEPTR, if 405 nonzero, points to a pointer to memory where the function type 406 should be stored. If *TYPEPTR is zero, update it to point to the 407 function type we return. We allocate new memory if needed. */ 408 409 struct type * 410 make_function_type (struct type *type, struct type **typeptr) 411 { 412 struct type *ntype; /* New type */ 413 414 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */ 415 { 416 ntype = alloc_type_copy (type); 417 if (typeptr) 418 *typeptr = ntype; 419 } 420 else /* We have storage, but need to reset it. */ 421 { 422 ntype = *typeptr; 423 smash_type (ntype); 424 } 425 426 TYPE_TARGET_TYPE (ntype) = type; 427 428 TYPE_LENGTH (ntype) = 1; 429 TYPE_CODE (ntype) = TYPE_CODE_FUNC; 430 431 return ntype; 432 } 433 434 435 /* Given a type TYPE, return a type of functions that return that type. 436 May need to construct such a type if this is the first use. */ 437 438 struct type * 439 lookup_function_type (struct type *type) 440 { 441 return make_function_type (type, (struct type **) 0); 442 } 443 444 /* Identify address space identifier by name -- 445 return the integer flag defined in gdbtypes.h. */ 446 extern int 447 address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier) 448 { 449 int type_flags; 450 451 /* Check for known address space delimiters. */ 452 if (!strcmp (space_identifier, "code")) 453 return TYPE_INSTANCE_FLAG_CODE_SPACE; 454 else if (!strcmp (space_identifier, "data")) 455 return TYPE_INSTANCE_FLAG_DATA_SPACE; 456 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch) 457 && gdbarch_address_class_name_to_type_flags (gdbarch, 458 space_identifier, 459 &type_flags)) 460 return type_flags; 461 else 462 error (_("Unknown address space specifier: \"%s\""), space_identifier); 463 } 464 465 /* Identify address space identifier by integer flag as defined in 466 gdbtypes.h -- return the string version of the adress space name. */ 467 468 const char * 469 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag) 470 { 471 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE) 472 return "code"; 473 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE) 474 return "data"; 475 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL) 476 && gdbarch_address_class_type_flags_to_name_p (gdbarch)) 477 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag); 478 else 479 return NULL; 480 } 481 482 /* Create a new type with instance flags NEW_FLAGS, based on TYPE. 483 484 If STORAGE is non-NULL, create the new type instance there. 485 STORAGE must be in the same obstack as TYPE. */ 486 487 static struct type * 488 make_qualified_type (struct type *type, int new_flags, 489 struct type *storage) 490 { 491 struct type *ntype; 492 493 ntype = type; 494 do 495 { 496 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags) 497 return ntype; 498 ntype = TYPE_CHAIN (ntype); 499 } 500 while (ntype != type); 501 502 /* Create a new type instance. */ 503 if (storage == NULL) 504 ntype = alloc_type_instance (type); 505 else 506 { 507 /* If STORAGE was provided, it had better be in the same objfile 508 as TYPE. Otherwise, we can't link it into TYPE's cv chain: 509 if one objfile is freed and the other kept, we'd have 510 dangling pointers. */ 511 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage)); 512 513 ntype = storage; 514 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type); 515 TYPE_CHAIN (ntype) = ntype; 516 } 517 518 /* Pointers or references to the original type are not relevant to 519 the new type. */ 520 TYPE_POINTER_TYPE (ntype) = (struct type *) 0; 521 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0; 522 523 /* Chain the new qualified type to the old type. */ 524 TYPE_CHAIN (ntype) = TYPE_CHAIN (type); 525 TYPE_CHAIN (type) = ntype; 526 527 /* Now set the instance flags and return the new type. */ 528 TYPE_INSTANCE_FLAGS (ntype) = new_flags; 529 530 /* Set length of new type to that of the original type. */ 531 TYPE_LENGTH (ntype) = TYPE_LENGTH (type); 532 533 return ntype; 534 } 535 536 /* Make an address-space-delimited variant of a type -- a type that 537 is identical to the one supplied except that it has an address 538 space attribute attached to it (such as "code" or "data"). 539 540 The space attributes "code" and "data" are for Harvard 541 architectures. The address space attributes are for architectures 542 which have alternately sized pointers or pointers with alternate 543 representations. */ 544 545 struct type * 546 make_type_with_address_space (struct type *type, int space_flag) 547 { 548 int new_flags = ((TYPE_INSTANCE_FLAGS (type) 549 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE 550 | TYPE_INSTANCE_FLAG_DATA_SPACE 551 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)) 552 | space_flag); 553 554 return make_qualified_type (type, new_flags, NULL); 555 } 556 557 /* Make a "c-v" variant of a type -- a type that is identical to the 558 one supplied except that it may have const or volatile attributes 559 CNST is a flag for setting the const attribute 560 VOLTL is a flag for setting the volatile attribute 561 TYPE is the base type whose variant we are creating. 562 563 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to 564 storage to hold the new qualified type; *TYPEPTR and TYPE must be 565 in the same objfile. Otherwise, allocate fresh memory for the new 566 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the 567 new type we construct. */ 568 struct type * 569 make_cv_type (int cnst, int voltl, 570 struct type *type, 571 struct type **typeptr) 572 { 573 struct type *ntype; /* New type */ 574 575 int new_flags = (TYPE_INSTANCE_FLAGS (type) 576 & ~(TYPE_INSTANCE_FLAG_CONST 577 | TYPE_INSTANCE_FLAG_VOLATILE)); 578 579 if (cnst) 580 new_flags |= TYPE_INSTANCE_FLAG_CONST; 581 582 if (voltl) 583 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE; 584 585 if (typeptr && *typeptr != NULL) 586 { 587 /* TYPE and *TYPEPTR must be in the same objfile. We can't have 588 a C-V variant chain that threads across objfiles: if one 589 objfile gets freed, then the other has a broken C-V chain. 590 591 This code used to try to copy over the main type from TYPE to 592 *TYPEPTR if they were in different objfiles, but that's 593 wrong, too: TYPE may have a field list or member function 594 lists, which refer to types of their own, etc. etc. The 595 whole shebang would need to be copied over recursively; you 596 can't have inter-objfile pointers. The only thing to do is 597 to leave stub types as stub types, and look them up afresh by 598 name each time you encounter them. */ 599 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type)); 600 } 601 602 ntype = make_qualified_type (type, new_flags, 603 typeptr ? *typeptr : NULL); 604 605 if (typeptr != NULL) 606 *typeptr = ntype; 607 608 return ntype; 609 } 610 611 /* Replace the contents of ntype with the type *type. This changes the 612 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus 613 the changes are propogated to all types in the TYPE_CHAIN. 614 615 In order to build recursive types, it's inevitable that we'll need 616 to update types in place --- but this sort of indiscriminate 617 smashing is ugly, and needs to be replaced with something more 618 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not 619 clear if more steps are needed. */ 620 void 621 replace_type (struct type *ntype, struct type *type) 622 { 623 struct type *chain; 624 625 /* These two types had better be in the same objfile. Otherwise, 626 the assignment of one type's main type structure to the other 627 will produce a type with references to objects (names; field 628 lists; etc.) allocated on an objfile other than its own. */ 629 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype)); 630 631 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type); 632 633 /* The type length is not a part of the main type. Update it for 634 each type on the variant chain. */ 635 chain = ntype; 636 do 637 { 638 /* Assert that this element of the chain has no address-class bits 639 set in its flags. Such type variants might have type lengths 640 which are supposed to be different from the non-address-class 641 variants. This assertion shouldn't ever be triggered because 642 symbol readers which do construct address-class variants don't 643 call replace_type(). */ 644 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0); 645 646 TYPE_LENGTH (chain) = TYPE_LENGTH (type); 647 chain = TYPE_CHAIN (chain); 648 } 649 while (ntype != chain); 650 651 /* Assert that the two types have equivalent instance qualifiers. 652 This should be true for at least all of our debug readers. */ 653 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type)); 654 } 655 656 /* Implement direct support for MEMBER_TYPE in GNU C++. 657 May need to construct such a type if this is the first use. 658 The TYPE is the type of the member. The DOMAIN is the type 659 of the aggregate that the member belongs to. */ 660 661 struct type * 662 lookup_memberptr_type (struct type *type, struct type *domain) 663 { 664 struct type *mtype; 665 666 mtype = alloc_type_copy (type); 667 smash_to_memberptr_type (mtype, domain, type); 668 return mtype; 669 } 670 671 /* Return a pointer-to-method type, for a method of type TO_TYPE. */ 672 673 struct type * 674 lookup_methodptr_type (struct type *to_type) 675 { 676 struct type *mtype; 677 678 mtype = alloc_type_copy (to_type); 679 smash_to_methodptr_type (mtype, to_type); 680 return mtype; 681 } 682 683 /* Allocate a stub method whose return type is TYPE. This apparently 684 happens for speed of symbol reading, since parsing out the 685 arguments to the method is cpu-intensive, the way we are doing it. 686 So, we will fill in arguments later. This always returns a fresh 687 type. */ 688 689 struct type * 690 allocate_stub_method (struct type *type) 691 { 692 struct type *mtype; 693 694 mtype = alloc_type_copy (type); 695 TYPE_CODE (mtype) = TYPE_CODE_METHOD; 696 TYPE_LENGTH (mtype) = 1; 697 TYPE_STUB (mtype) = 1; 698 TYPE_TARGET_TYPE (mtype) = type; 699 /* _DOMAIN_TYPE (mtype) = unknown yet */ 700 return mtype; 701 } 702 703 /* Create a range type using either a blank type supplied in 704 RESULT_TYPE, or creating a new type, inheriting the objfile from 705 INDEX_TYPE. 706 707 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND 708 to HIGH_BOUND, inclusive. 709 710 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make 711 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */ 712 713 struct type * 714 create_range_type (struct type *result_type, struct type *index_type, 715 LONGEST low_bound, LONGEST high_bound) 716 { 717 if (result_type == NULL) 718 result_type = alloc_type_copy (index_type); 719 TYPE_CODE (result_type) = TYPE_CODE_RANGE; 720 TYPE_TARGET_TYPE (result_type) = index_type; 721 if (TYPE_STUB (index_type)) 722 TYPE_TARGET_STUB (result_type) = 1; 723 else 724 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type)); 725 TYPE_RANGE_DATA (result_type) = (struct range_bounds *) 726 TYPE_ZALLOC (result_type, sizeof (struct range_bounds)); 727 TYPE_LOW_BOUND (result_type) = low_bound; 728 TYPE_HIGH_BOUND (result_type) = high_bound; 729 730 if (low_bound >= 0) 731 TYPE_UNSIGNED (result_type) = 1; 732 733 return result_type; 734 } 735 736 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type 737 TYPE. Return 1 if type is a range type, 0 if it is discrete (and 738 bounds will fit in LONGEST), or -1 otherwise. */ 739 740 int 741 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp) 742 { 743 CHECK_TYPEDEF (type); 744 switch (TYPE_CODE (type)) 745 { 746 case TYPE_CODE_RANGE: 747 *lowp = TYPE_LOW_BOUND (type); 748 *highp = TYPE_HIGH_BOUND (type); 749 return 1; 750 case TYPE_CODE_ENUM: 751 if (TYPE_NFIELDS (type) > 0) 752 { 753 /* The enums may not be sorted by value, so search all 754 entries */ 755 int i; 756 757 *lowp = *highp = TYPE_FIELD_BITPOS (type, 0); 758 for (i = 0; i < TYPE_NFIELDS (type); i++) 759 { 760 if (TYPE_FIELD_BITPOS (type, i) < *lowp) 761 *lowp = TYPE_FIELD_BITPOS (type, i); 762 if (TYPE_FIELD_BITPOS (type, i) > *highp) 763 *highp = TYPE_FIELD_BITPOS (type, i); 764 } 765 766 /* Set unsigned indicator if warranted. */ 767 if (*lowp >= 0) 768 { 769 TYPE_UNSIGNED (type) = 1; 770 } 771 } 772 else 773 { 774 *lowp = 0; 775 *highp = -1; 776 } 777 return 0; 778 case TYPE_CODE_BOOL: 779 *lowp = 0; 780 *highp = 1; 781 return 0; 782 case TYPE_CODE_INT: 783 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */ 784 return -1; 785 if (!TYPE_UNSIGNED (type)) 786 { 787 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1)); 788 *highp = -*lowp - 1; 789 return 0; 790 } 791 /* ... fall through for unsigned ints ... */ 792 case TYPE_CODE_CHAR: 793 *lowp = 0; 794 /* This round-about calculation is to avoid shifting by 795 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work 796 if TYPE_LENGTH (type) == sizeof (LONGEST). */ 797 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1); 798 *highp = (*highp - 1) | *highp; 799 return 0; 800 default: 801 return -1; 802 } 803 } 804 805 /* Create an array type using either a blank type supplied in 806 RESULT_TYPE, or creating a new type, inheriting the objfile from 807 RANGE_TYPE. 808 809 Elements will be of type ELEMENT_TYPE, the indices will be of type 810 RANGE_TYPE. 811 812 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make 813 sure it is TYPE_CODE_UNDEF before we bash it into an array 814 type? */ 815 816 struct type * 817 create_array_type (struct type *result_type, 818 struct type *element_type, 819 struct type *range_type) 820 { 821 LONGEST low_bound, high_bound; 822 823 if (result_type == NULL) 824 result_type = alloc_type_copy (range_type); 825 826 TYPE_CODE (result_type) = TYPE_CODE_ARRAY; 827 TYPE_TARGET_TYPE (result_type) = element_type; 828 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0) 829 low_bound = high_bound = 0; 830 CHECK_TYPEDEF (element_type); 831 /* Be careful when setting the array length. Ada arrays can be 832 empty arrays with the high_bound being smaller than the low_bound. 833 In such cases, the array length should be zero. */ 834 if (high_bound < low_bound) 835 TYPE_LENGTH (result_type) = 0; 836 else 837 TYPE_LENGTH (result_type) = 838 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1); 839 TYPE_NFIELDS (result_type) = 1; 840 TYPE_FIELDS (result_type) = 841 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field)); 842 TYPE_INDEX_TYPE (result_type) = range_type; 843 TYPE_VPTR_FIELDNO (result_type) = -1; 844 845 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays */ 846 if (TYPE_LENGTH (result_type) == 0) 847 TYPE_TARGET_STUB (result_type) = 1; 848 849 return result_type; 850 } 851 852 struct type * 853 lookup_array_range_type (struct type *element_type, 854 int low_bound, int high_bound) 855 { 856 struct gdbarch *gdbarch = get_type_arch (element_type); 857 struct type *index_type = builtin_type (gdbarch)->builtin_int; 858 struct type *range_type 859 = create_range_type (NULL, index_type, low_bound, high_bound); 860 861 return create_array_type (NULL, element_type, range_type); 862 } 863 864 /* Create a string type using either a blank type supplied in 865 RESULT_TYPE, or creating a new type. String types are similar 866 enough to array of char types that we can use create_array_type to 867 build the basic type and then bash it into a string type. 868 869 For fixed length strings, the range type contains 0 as the lower 870 bound and the length of the string minus one as the upper bound. 871 872 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make 873 sure it is TYPE_CODE_UNDEF before we bash it into a string 874 type? */ 875 876 struct type * 877 create_string_type (struct type *result_type, 878 struct type *string_char_type, 879 struct type *range_type) 880 { 881 result_type = create_array_type (result_type, 882 string_char_type, 883 range_type); 884 TYPE_CODE (result_type) = TYPE_CODE_STRING; 885 return result_type; 886 } 887 888 struct type * 889 lookup_string_range_type (struct type *string_char_type, 890 int low_bound, int high_bound) 891 { 892 struct type *result_type; 893 894 result_type = lookup_array_range_type (string_char_type, 895 low_bound, high_bound); 896 TYPE_CODE (result_type) = TYPE_CODE_STRING; 897 return result_type; 898 } 899 900 struct type * 901 create_set_type (struct type *result_type, struct type *domain_type) 902 { 903 if (result_type == NULL) 904 result_type = alloc_type_copy (domain_type); 905 906 TYPE_CODE (result_type) = TYPE_CODE_SET; 907 TYPE_NFIELDS (result_type) = 1; 908 TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type, sizeof (struct field)); 909 910 if (!TYPE_STUB (domain_type)) 911 { 912 LONGEST low_bound, high_bound, bit_length; 913 914 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0) 915 low_bound = high_bound = 0; 916 bit_length = high_bound - low_bound + 1; 917 TYPE_LENGTH (result_type) 918 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT; 919 if (low_bound >= 0) 920 TYPE_UNSIGNED (result_type) = 1; 921 } 922 TYPE_FIELD_TYPE (result_type, 0) = domain_type; 923 924 return result_type; 925 } 926 927 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE 928 and any array types nested inside it. */ 929 930 void 931 make_vector_type (struct type *array_type) 932 { 933 struct type *inner_array, *elt_type; 934 int flags; 935 936 /* Find the innermost array type, in case the array is 937 multi-dimensional. */ 938 inner_array = array_type; 939 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY) 940 inner_array = TYPE_TARGET_TYPE (inner_array); 941 942 elt_type = TYPE_TARGET_TYPE (inner_array); 943 if (TYPE_CODE (elt_type) == TYPE_CODE_INT) 944 { 945 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_FLAG_NOTTEXT; 946 elt_type = make_qualified_type (elt_type, flags, NULL); 947 TYPE_TARGET_TYPE (inner_array) = elt_type; 948 } 949 950 TYPE_VECTOR (array_type) = 1; 951 } 952 953 struct type * 954 init_vector_type (struct type *elt_type, int n) 955 { 956 struct type *array_type; 957 958 array_type = lookup_array_range_type (elt_type, 0, n - 1); 959 make_vector_type (array_type); 960 return array_type; 961 } 962 963 /* Smash TYPE to be a type of pointers to members of DOMAIN with type 964 TO_TYPE. A member pointer is a wierd thing -- it amounts to a 965 typed offset into a struct, e.g. "an int at offset 8". A MEMBER 966 TYPE doesn't include the offset (that's the value of the MEMBER 967 itself), but does include the structure type into which it points 968 (for some reason). 969 970 When "smashing" the type, we preserve the objfile that the old type 971 pointed to, since we aren't changing where the type is actually 972 allocated. */ 973 974 void 975 smash_to_memberptr_type (struct type *type, struct type *domain, 976 struct type *to_type) 977 { 978 smash_type (type); 979 TYPE_TARGET_TYPE (type) = to_type; 980 TYPE_DOMAIN_TYPE (type) = domain; 981 /* Assume that a data member pointer is the same size as a normal 982 pointer. */ 983 TYPE_LENGTH (type) 984 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT; 985 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR; 986 } 987 988 /* Smash TYPE to be a type of pointer to methods type TO_TYPE. 989 990 When "smashing" the type, we preserve the objfile that the old type 991 pointed to, since we aren't changing where the type is actually 992 allocated. */ 993 994 void 995 smash_to_methodptr_type (struct type *type, struct type *to_type) 996 { 997 smash_type (type); 998 TYPE_TARGET_TYPE (type) = to_type; 999 TYPE_DOMAIN_TYPE (type) = TYPE_DOMAIN_TYPE (to_type); 1000 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type); 1001 TYPE_CODE (type) = TYPE_CODE_METHODPTR; 1002 } 1003 1004 /* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE. 1005 METHOD just means `function that gets an extra "this" argument'. 1006 1007 When "smashing" the type, we preserve the objfile that the old type 1008 pointed to, since we aren't changing where the type is actually 1009 allocated. */ 1010 1011 void 1012 smash_to_method_type (struct type *type, struct type *domain, 1013 struct type *to_type, struct field *args, 1014 int nargs, int varargs) 1015 { 1016 smash_type (type); 1017 TYPE_TARGET_TYPE (type) = to_type; 1018 TYPE_DOMAIN_TYPE (type) = domain; 1019 TYPE_FIELDS (type) = args; 1020 TYPE_NFIELDS (type) = nargs; 1021 if (varargs) 1022 TYPE_VARARGS (type) = 1; 1023 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */ 1024 TYPE_CODE (type) = TYPE_CODE_METHOD; 1025 } 1026 1027 /* Return a typename for a struct/union/enum type without "struct ", 1028 "union ", or "enum ". If the type has a NULL name, return NULL. */ 1029 1030 char * 1031 type_name_no_tag (const struct type *type) 1032 { 1033 if (TYPE_TAG_NAME (type) != NULL) 1034 return TYPE_TAG_NAME (type); 1035 1036 /* Is there code which expects this to return the name if there is 1037 no tag name? My guess is that this is mainly used for C++ in 1038 cases where the two will always be the same. */ 1039 return TYPE_NAME (type); 1040 } 1041 1042 /* Lookup a typedef or primitive type named NAME, visible in lexical 1043 block BLOCK. If NOERR is nonzero, return zero if NAME is not 1044 suitably defined. */ 1045 1046 struct type * 1047 lookup_typename (const struct language_defn *language, 1048 struct gdbarch *gdbarch, char *name, 1049 struct block *block, int noerr) 1050 { 1051 struct symbol *sym; 1052 struct type *tmp; 1053 1054 sym = lookup_symbol (name, block, VAR_DOMAIN, 0); 1055 if (sym == NULL || SYMBOL_CLASS (sym) != LOC_TYPEDEF) 1056 { 1057 tmp = language_lookup_primitive_type_by_name (language, gdbarch, name); 1058 if (tmp) 1059 { 1060 return tmp; 1061 } 1062 else if (!tmp && noerr) 1063 { 1064 return NULL; 1065 } 1066 else 1067 { 1068 error (_("No type named %s."), name); 1069 } 1070 } 1071 return (SYMBOL_TYPE (sym)); 1072 } 1073 1074 struct type * 1075 lookup_unsigned_typename (const struct language_defn *language, 1076 struct gdbarch *gdbarch, char *name) 1077 { 1078 char *uns = alloca (strlen (name) + 10); 1079 1080 strcpy (uns, "unsigned "); 1081 strcpy (uns + 9, name); 1082 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0); 1083 } 1084 1085 struct type * 1086 lookup_signed_typename (const struct language_defn *language, 1087 struct gdbarch *gdbarch, char *name) 1088 { 1089 struct type *t; 1090 char *uns = alloca (strlen (name) + 8); 1091 1092 strcpy (uns, "signed "); 1093 strcpy (uns + 7, name); 1094 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1); 1095 /* If we don't find "signed FOO" just try again with plain "FOO". */ 1096 if (t != NULL) 1097 return t; 1098 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0); 1099 } 1100 1101 /* Lookup a structure type named "struct NAME", 1102 visible in lexical block BLOCK. */ 1103 1104 struct type * 1105 lookup_struct (char *name, struct block *block) 1106 { 1107 struct symbol *sym; 1108 1109 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0); 1110 1111 if (sym == NULL) 1112 { 1113 error (_("No struct type named %s."), name); 1114 } 1115 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT) 1116 { 1117 error (_("This context has class, union or enum %s, not a struct."), 1118 name); 1119 } 1120 return (SYMBOL_TYPE (sym)); 1121 } 1122 1123 /* Lookup a union type named "union NAME", 1124 visible in lexical block BLOCK. */ 1125 1126 struct type * 1127 lookup_union (char *name, struct block *block) 1128 { 1129 struct symbol *sym; 1130 struct type *t; 1131 1132 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0); 1133 1134 if (sym == NULL) 1135 error (_("No union type named %s."), name); 1136 1137 t = SYMBOL_TYPE (sym); 1138 1139 if (TYPE_CODE (t) == TYPE_CODE_UNION) 1140 return t; 1141 1142 /* If we get here, it's not a union. */ 1143 error (_("This context has class, struct or enum %s, not a union."), 1144 name); 1145 } 1146 1147 1148 /* Lookup an enum type named "enum NAME", 1149 visible in lexical block BLOCK. */ 1150 1151 struct type * 1152 lookup_enum (char *name, struct block *block) 1153 { 1154 struct symbol *sym; 1155 1156 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0); 1157 if (sym == NULL) 1158 { 1159 error (_("No enum type named %s."), name); 1160 } 1161 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM) 1162 { 1163 error (_("This context has class, struct or union %s, not an enum."), 1164 name); 1165 } 1166 return (SYMBOL_TYPE (sym)); 1167 } 1168 1169 /* Lookup a template type named "template NAME<TYPE>", 1170 visible in lexical block BLOCK. */ 1171 1172 struct type * 1173 lookup_template_type (char *name, struct type *type, 1174 struct block *block) 1175 { 1176 struct symbol *sym; 1177 char *nam = (char *) 1178 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4); 1179 1180 strcpy (nam, name); 1181 strcat (nam, "<"); 1182 strcat (nam, TYPE_NAME (type)); 1183 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */ 1184 1185 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0); 1186 1187 if (sym == NULL) 1188 { 1189 error (_("No template type named %s."), name); 1190 } 1191 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT) 1192 { 1193 error (_("This context has class, union or enum %s, not a struct."), 1194 name); 1195 } 1196 return (SYMBOL_TYPE (sym)); 1197 } 1198 1199 /* Given a type TYPE, lookup the type of the component of type named 1200 NAME. 1201 1202 TYPE can be either a struct or union, or a pointer or reference to 1203 a struct or union. If it is a pointer or reference, its target 1204 type is automatically used. Thus '.' and '->' are interchangable, 1205 as specified for the definitions of the expression element types 1206 STRUCTOP_STRUCT and STRUCTOP_PTR. 1207 1208 If NOERR is nonzero, return zero if NAME is not suitably defined. 1209 If NAME is the name of a baseclass type, return that type. */ 1210 1211 struct type * 1212 lookup_struct_elt_type (struct type *type, char *name, int noerr) 1213 { 1214 int i; 1215 1216 for (;;) 1217 { 1218 CHECK_TYPEDEF (type); 1219 if (TYPE_CODE (type) != TYPE_CODE_PTR 1220 && TYPE_CODE (type) != TYPE_CODE_REF) 1221 break; 1222 type = TYPE_TARGET_TYPE (type); 1223 } 1224 1225 if (TYPE_CODE (type) != TYPE_CODE_STRUCT 1226 && TYPE_CODE (type) != TYPE_CODE_UNION) 1227 { 1228 target_terminal_ours (); 1229 gdb_flush (gdb_stdout); 1230 fprintf_unfiltered (gdb_stderr, "Type "); 1231 type_print (type, "", gdb_stderr, -1); 1232 error (_(" is not a structure or union type.")); 1233 } 1234 1235 #if 0 1236 /* FIXME: This change put in by Michael seems incorrect for the case 1237 where the structure tag name is the same as the member name. 1238 I.E. when doing "ptype bell->bar" for "struct foo { int bar; int 1239 foo; } bell;" Disabled by fnf. */ 1240 { 1241 char *typename; 1242 1243 typename = type_name_no_tag (type); 1244 if (typename != NULL && strcmp (typename, name) == 0) 1245 return type; 1246 } 1247 #endif 1248 1249 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--) 1250 { 1251 char *t_field_name = TYPE_FIELD_NAME (type, i); 1252 1253 if (t_field_name && (strcmp_iw (t_field_name, name) == 0)) 1254 { 1255 return TYPE_FIELD_TYPE (type, i); 1256 } 1257 else if (!t_field_name || *t_field_name == '\0') 1258 { 1259 struct type *subtype 1260 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1); 1261 1262 if (subtype != NULL) 1263 return subtype; 1264 } 1265 } 1266 1267 /* OK, it's not in this class. Recursively check the baseclasses. */ 1268 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--) 1269 { 1270 struct type *t; 1271 1272 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1); 1273 if (t != NULL) 1274 { 1275 return t; 1276 } 1277 } 1278 1279 if (noerr) 1280 { 1281 return NULL; 1282 } 1283 1284 target_terminal_ours (); 1285 gdb_flush (gdb_stdout); 1286 fprintf_unfiltered (gdb_stderr, "Type "); 1287 type_print (type, "", gdb_stderr, -1); 1288 fprintf_unfiltered (gdb_stderr, " has no component named "); 1289 fputs_filtered (name, gdb_stderr); 1290 error ((".")); 1291 return (struct type *) -1; /* For lint */ 1292 } 1293 1294 /* Lookup the vptr basetype/fieldno values for TYPE. 1295 If found store vptr_basetype in *BASETYPEP if non-NULL, and return 1296 vptr_fieldno. Also, if found and basetype is from the same objfile, 1297 cache the results. 1298 If not found, return -1 and ignore BASETYPEP. 1299 Callers should be aware that in some cases (for example, 1300 the type or one of its baseclasses is a stub type and we are 1301 debugging a .o file, or the compiler uses DWARF-2 and is not GCC), 1302 this function will not be able to find the 1303 virtual function table pointer, and vptr_fieldno will remain -1 and 1304 vptr_basetype will remain NULL or incomplete. */ 1305 1306 int 1307 get_vptr_fieldno (struct type *type, struct type **basetypep) 1308 { 1309 CHECK_TYPEDEF (type); 1310 1311 if (TYPE_VPTR_FIELDNO (type) < 0) 1312 { 1313 int i; 1314 1315 /* We must start at zero in case the first (and only) baseclass 1316 is virtual (and hence we cannot share the table pointer). */ 1317 for (i = 0; i < TYPE_N_BASECLASSES (type); i++) 1318 { 1319 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i)); 1320 int fieldno; 1321 struct type *basetype; 1322 1323 fieldno = get_vptr_fieldno (baseclass, &basetype); 1324 if (fieldno >= 0) 1325 { 1326 /* If the type comes from a different objfile we can't cache 1327 it, it may have a different lifetime. PR 2384 */ 1328 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype)) 1329 { 1330 TYPE_VPTR_FIELDNO (type) = fieldno; 1331 TYPE_VPTR_BASETYPE (type) = basetype; 1332 } 1333 if (basetypep) 1334 *basetypep = basetype; 1335 return fieldno; 1336 } 1337 } 1338 1339 /* Not found. */ 1340 return -1; 1341 } 1342 else 1343 { 1344 if (basetypep) 1345 *basetypep = TYPE_VPTR_BASETYPE (type); 1346 return TYPE_VPTR_FIELDNO (type); 1347 } 1348 } 1349 1350 static void 1351 stub_noname_complaint (void) 1352 { 1353 complaint (&symfile_complaints, _("stub type has NULL name")); 1354 } 1355 1356 /* Added by Bryan Boreham, Kewill, Sun Sep 17 18:07:17 1989. 1357 1358 If this is a stubbed struct (i.e. declared as struct foo *), see if 1359 we can find a full definition in some other file. If so, copy this 1360 definition, so we can use it in future. There used to be a comment 1361 (but not any code) that if we don't find a full definition, we'd 1362 set a flag so we don't spend time in the future checking the same 1363 type. That would be a mistake, though--we might load in more 1364 symbols which contain a full definition for the type. 1365 1366 This used to be coded as a macro, but I don't think it is called 1367 often enough to merit such treatment. 1368 1369 Find the real type of TYPE. This function returns the real type, 1370 after removing all layers of typedefs and completing opaque or stub 1371 types. Completion changes the TYPE argument, but stripping of 1372 typedefs does not. 1373 1374 If TYPE is a TYPE_CODE_TYPEDEF, its length is (also) set to the length of 1375 the target type instead of zero. However, in the case of TYPE_CODE_TYPEDEF 1376 check_typedef can still return different type than the original TYPE 1377 pointer. */ 1378 1379 struct type * 1380 check_typedef (struct type *type) 1381 { 1382 struct type *orig_type = type; 1383 int is_const, is_volatile; 1384 1385 gdb_assert (type); 1386 1387 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) 1388 { 1389 if (!TYPE_TARGET_TYPE (type)) 1390 { 1391 char *name; 1392 struct symbol *sym; 1393 1394 /* It is dangerous to call lookup_symbol if we are currently 1395 reading a symtab. Infinite recursion is one danger. */ 1396 if (currently_reading_symtab) 1397 return type; 1398 1399 name = type_name_no_tag (type); 1400 /* FIXME: shouldn't we separately check the TYPE_NAME and 1401 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or 1402 VAR_DOMAIN as appropriate? (this code was written before 1403 TYPE_NAME and TYPE_TAG_NAME were separate). */ 1404 if (name == NULL) 1405 { 1406 stub_noname_complaint (); 1407 return type; 1408 } 1409 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0); 1410 if (sym) 1411 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym); 1412 else /* TYPE_CODE_UNDEF */ 1413 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type)); 1414 } 1415 type = TYPE_TARGET_TYPE (type); 1416 } 1417 1418 is_const = TYPE_CONST (type); 1419 is_volatile = TYPE_VOLATILE (type); 1420 1421 /* If this is a struct/class/union with no fields, then check 1422 whether a full definition exists somewhere else. This is for 1423 systems where a type definition with no fields is issued for such 1424 types, instead of identifying them as stub types in the first 1425 place. */ 1426 1427 if (TYPE_IS_OPAQUE (type) 1428 && opaque_type_resolution 1429 && !currently_reading_symtab) 1430 { 1431 char *name = type_name_no_tag (type); 1432 struct type *newtype; 1433 1434 if (name == NULL) 1435 { 1436 stub_noname_complaint (); 1437 return type; 1438 } 1439 newtype = lookup_transparent_type (name); 1440 1441 if (newtype) 1442 { 1443 /* If the resolved type and the stub are in the same 1444 objfile, then replace the stub type with the real deal. 1445 But if they're in separate objfiles, leave the stub 1446 alone; we'll just look up the transparent type every time 1447 we call check_typedef. We can't create pointers between 1448 types allocated to different objfiles, since they may 1449 have different lifetimes. Trying to copy NEWTYPE over to 1450 TYPE's objfile is pointless, too, since you'll have to 1451 move over any other types NEWTYPE refers to, which could 1452 be an unbounded amount of stuff. */ 1453 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type)) 1454 make_cv_type (is_const, is_volatile, newtype, &type); 1455 else 1456 type = newtype; 1457 } 1458 } 1459 /* Otherwise, rely on the stub flag being set for opaque/stubbed 1460 types. */ 1461 else if (TYPE_STUB (type) && !currently_reading_symtab) 1462 { 1463 char *name = type_name_no_tag (type); 1464 /* FIXME: shouldn't we separately check the TYPE_NAME and the 1465 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN 1466 as appropriate? (this code was written before TYPE_NAME and 1467 TYPE_TAG_NAME were separate). */ 1468 struct symbol *sym; 1469 1470 if (name == NULL) 1471 { 1472 stub_noname_complaint (); 1473 return type; 1474 } 1475 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0); 1476 if (sym) 1477 { 1478 /* Same as above for opaque types, we can replace the stub 1479 with the complete type only if they are int the same 1480 objfile. */ 1481 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type)) 1482 make_cv_type (is_const, is_volatile, 1483 SYMBOL_TYPE (sym), &type); 1484 else 1485 type = SYMBOL_TYPE (sym); 1486 } 1487 } 1488 1489 if (TYPE_TARGET_STUB (type)) 1490 { 1491 struct type *range_type; 1492 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type)); 1493 1494 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type)) 1495 { 1496 /* Empty. */ 1497 } 1498 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY 1499 && TYPE_NFIELDS (type) == 1 1500 && (TYPE_CODE (range_type = TYPE_INDEX_TYPE (type)) 1501 == TYPE_CODE_RANGE)) 1502 { 1503 /* Now recompute the length of the array type, based on its 1504 number of elements and the target type's length. 1505 Watch out for Ada null Ada arrays where the high bound 1506 is smaller than the low bound. */ 1507 const LONGEST low_bound = TYPE_LOW_BOUND (range_type); 1508 const LONGEST high_bound = TYPE_HIGH_BOUND (range_type); 1509 ULONGEST len; 1510 1511 if (high_bound < low_bound) 1512 len = 0; 1513 else 1514 { 1515 /* For now, we conservatively take the array length to be 0 1516 if its length exceeds UINT_MAX. The code below assumes 1517 that for x < 0, (ULONGEST) x == -x + ULONGEST_MAX + 1, 1518 which is technically not guaranteed by C, but is usually true 1519 (because it would be true if x were unsigned with its 1520 high-order bit on). It uses the fact that 1521 high_bound-low_bound is always representable in 1522 ULONGEST and that if high_bound-low_bound+1 overflows, 1523 it overflows to 0. We must change these tests if we 1524 decide to increase the representation of TYPE_LENGTH 1525 from unsigned int to ULONGEST. */ 1526 ULONGEST ulow = low_bound, uhigh = high_bound; 1527 ULONGEST tlen = TYPE_LENGTH (target_type); 1528 1529 len = tlen * (uhigh - ulow + 1); 1530 if (tlen == 0 || (len / tlen - 1 + ulow) != uhigh 1531 || len > UINT_MAX) 1532 len = 0; 1533 } 1534 TYPE_LENGTH (type) = len; 1535 TYPE_TARGET_STUB (type) = 0; 1536 } 1537 else if (TYPE_CODE (type) == TYPE_CODE_RANGE) 1538 { 1539 TYPE_LENGTH (type) = TYPE_LENGTH (target_type); 1540 TYPE_TARGET_STUB (type) = 0; 1541 } 1542 } 1543 /* Cache TYPE_LENGTH for future use. */ 1544 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type); 1545 return type; 1546 } 1547 1548 /* Parse a type expression in the string [P..P+LENGTH). If an error 1549 occurs, silently return a void type. */ 1550 1551 static struct type * 1552 safe_parse_type (struct gdbarch *gdbarch, char *p, int length) 1553 { 1554 struct ui_file *saved_gdb_stderr; 1555 struct type *type; 1556 1557 /* Suppress error messages. */ 1558 saved_gdb_stderr = gdb_stderr; 1559 gdb_stderr = ui_file_new (); 1560 1561 /* Call parse_and_eval_type() without fear of longjmp()s. */ 1562 if (!gdb_parse_and_eval_type (p, length, &type)) 1563 type = builtin_type (gdbarch)->builtin_void; 1564 1565 /* Stop suppressing error messages. */ 1566 ui_file_delete (gdb_stderr); 1567 gdb_stderr = saved_gdb_stderr; 1568 1569 return type; 1570 } 1571 1572 /* Ugly hack to convert method stubs into method types. 1573 1574 He ain't kiddin'. This demangles the name of the method into a 1575 string including argument types, parses out each argument type, 1576 generates a string casting a zero to that type, evaluates the 1577 string, and stuffs the resulting type into an argtype vector!!! 1578 Then it knows the type of the whole function (including argument 1579 types for overloading), which info used to be in the stab's but was 1580 removed to hack back the space required for them. */ 1581 1582 static void 1583 check_stub_method (struct type *type, int method_id, int signature_id) 1584 { 1585 struct gdbarch *gdbarch = get_type_arch (type); 1586 struct fn_field *f; 1587 char *mangled_name = gdb_mangle_name (type, method_id, signature_id); 1588 char *demangled_name = cplus_demangle (mangled_name, 1589 DMGL_PARAMS | DMGL_ANSI); 1590 char *argtypetext, *p; 1591 int depth = 0, argcount = 1; 1592 struct field *argtypes; 1593 struct type *mtype; 1594 1595 /* Make sure we got back a function string that we can use. */ 1596 if (demangled_name) 1597 p = strchr (demangled_name, '('); 1598 else 1599 p = NULL; 1600 1601 if (demangled_name == NULL || p == NULL) 1602 error (_("Internal: Cannot demangle mangled name `%s'."), 1603 mangled_name); 1604 1605 /* Now, read in the parameters that define this type. */ 1606 p += 1; 1607 argtypetext = p; 1608 while (*p) 1609 { 1610 if (*p == '(' || *p == '<') 1611 { 1612 depth += 1; 1613 } 1614 else if (*p == ')' || *p == '>') 1615 { 1616 depth -= 1; 1617 } 1618 else if (*p == ',' && depth == 0) 1619 { 1620 argcount += 1; 1621 } 1622 1623 p += 1; 1624 } 1625 1626 /* If we read one argument and it was ``void'', don't count it. */ 1627 if (strncmp (argtypetext, "(void)", 6) == 0) 1628 argcount -= 1; 1629 1630 /* We need one extra slot, for the THIS pointer. */ 1631 1632 argtypes = (struct field *) 1633 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field)); 1634 p = argtypetext; 1635 1636 /* Add THIS pointer for non-static methods. */ 1637 f = TYPE_FN_FIELDLIST1 (type, method_id); 1638 if (TYPE_FN_FIELD_STATIC_P (f, signature_id)) 1639 argcount = 0; 1640 else 1641 { 1642 argtypes[0].type = lookup_pointer_type (type); 1643 argcount = 1; 1644 } 1645 1646 if (*p != ')') /* () means no args, skip while */ 1647 { 1648 depth = 0; 1649 while (*p) 1650 { 1651 if (depth <= 0 && (*p == ',' || *p == ')')) 1652 { 1653 /* Avoid parsing of ellipsis, they will be handled below. 1654 Also avoid ``void'' as above. */ 1655 if (strncmp (argtypetext, "...", p - argtypetext) != 0 1656 && strncmp (argtypetext, "void", p - argtypetext) != 0) 1657 { 1658 argtypes[argcount].type = 1659 safe_parse_type (gdbarch, argtypetext, p - argtypetext); 1660 argcount += 1; 1661 } 1662 argtypetext = p + 1; 1663 } 1664 1665 if (*p == '(' || *p == '<') 1666 { 1667 depth += 1; 1668 } 1669 else if (*p == ')' || *p == '>') 1670 { 1671 depth -= 1; 1672 } 1673 1674 p += 1; 1675 } 1676 } 1677 1678 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name; 1679 1680 /* Now update the old "stub" type into a real type. */ 1681 mtype = TYPE_FN_FIELD_TYPE (f, signature_id); 1682 TYPE_DOMAIN_TYPE (mtype) = type; 1683 TYPE_FIELDS (mtype) = argtypes; 1684 TYPE_NFIELDS (mtype) = argcount; 1685 TYPE_STUB (mtype) = 0; 1686 TYPE_FN_FIELD_STUB (f, signature_id) = 0; 1687 if (p[-2] == '.') 1688 TYPE_VARARGS (mtype) = 1; 1689 1690 xfree (demangled_name); 1691 } 1692 1693 /* This is the external interface to check_stub_method, above. This 1694 function unstubs all of the signatures for TYPE's METHOD_ID method 1695 name. After calling this function TYPE_FN_FIELD_STUB will be 1696 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be 1697 correct. 1698 1699 This function unfortunately can not die until stabs do. */ 1700 1701 void 1702 check_stub_method_group (struct type *type, int method_id) 1703 { 1704 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id); 1705 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id); 1706 int j, found_stub = 0; 1707 1708 for (j = 0; j < len; j++) 1709 if (TYPE_FN_FIELD_STUB (f, j)) 1710 { 1711 found_stub = 1; 1712 check_stub_method (type, method_id, j); 1713 } 1714 1715 /* GNU v3 methods with incorrect names were corrected when we read 1716 in type information, because it was cheaper to do it then. The 1717 only GNU v2 methods with incorrect method names are operators and 1718 destructors; destructors were also corrected when we read in type 1719 information. 1720 1721 Therefore the only thing we need to handle here are v2 operator 1722 names. */ 1723 if (found_stub && strncmp (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z", 2) != 0) 1724 { 1725 int ret; 1726 char dem_opname[256]; 1727 1728 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type, 1729 method_id), 1730 dem_opname, DMGL_ANSI); 1731 if (!ret) 1732 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type, 1733 method_id), 1734 dem_opname, 0); 1735 if (ret) 1736 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname); 1737 } 1738 } 1739 1740 /* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */ 1741 const struct cplus_struct_type cplus_struct_default = { }; 1742 1743 void 1744 allocate_cplus_struct_type (struct type *type) 1745 { 1746 if (HAVE_CPLUS_STRUCT (type)) 1747 /* Structure was already allocated. Nothing more to do. */ 1748 return; 1749 1750 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF; 1751 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *) 1752 TYPE_ALLOC (type, sizeof (struct cplus_struct_type)); 1753 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default; 1754 } 1755 1756 const struct gnat_aux_type gnat_aux_default = 1757 { NULL }; 1758 1759 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF, 1760 and allocate the associated gnat-specific data. The gnat-specific 1761 data is also initialized to gnat_aux_default. */ 1762 void 1763 allocate_gnat_aux_type (struct type *type) 1764 { 1765 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF; 1766 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *) 1767 TYPE_ALLOC (type, sizeof (struct gnat_aux_type)); 1768 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default; 1769 } 1770 1771 1772 /* Helper function to initialize the standard scalar types. 1773 1774 If NAME is non-NULL, then we make a copy of the string pointed 1775 to by name in the objfile_obstack for that objfile, and initialize 1776 the type name to that copy. There are places (mipsread.c in particular), 1777 where init_type is called with a NULL value for NAME). */ 1778 1779 struct type * 1780 init_type (enum type_code code, int length, int flags, 1781 char *name, struct objfile *objfile) 1782 { 1783 struct type *type; 1784 1785 type = alloc_type (objfile); 1786 TYPE_CODE (type) = code; 1787 TYPE_LENGTH (type) = length; 1788 1789 gdb_assert (!(flags & (TYPE_FLAG_MIN - 1))); 1790 if (flags & TYPE_FLAG_UNSIGNED) 1791 TYPE_UNSIGNED (type) = 1; 1792 if (flags & TYPE_FLAG_NOSIGN) 1793 TYPE_NOSIGN (type) = 1; 1794 if (flags & TYPE_FLAG_STUB) 1795 TYPE_STUB (type) = 1; 1796 if (flags & TYPE_FLAG_TARGET_STUB) 1797 TYPE_TARGET_STUB (type) = 1; 1798 if (flags & TYPE_FLAG_STATIC) 1799 TYPE_STATIC (type) = 1; 1800 if (flags & TYPE_FLAG_PROTOTYPED) 1801 TYPE_PROTOTYPED (type) = 1; 1802 if (flags & TYPE_FLAG_INCOMPLETE) 1803 TYPE_INCOMPLETE (type) = 1; 1804 if (flags & TYPE_FLAG_VARARGS) 1805 TYPE_VARARGS (type) = 1; 1806 if (flags & TYPE_FLAG_VECTOR) 1807 TYPE_VECTOR (type) = 1; 1808 if (flags & TYPE_FLAG_STUB_SUPPORTED) 1809 TYPE_STUB_SUPPORTED (type) = 1; 1810 if (flags & TYPE_FLAG_NOTTEXT) 1811 TYPE_NOTTEXT (type) = 1; 1812 if (flags & TYPE_FLAG_FIXED_INSTANCE) 1813 TYPE_FIXED_INSTANCE (type) = 1; 1814 1815 if (name) 1816 TYPE_NAME (type) = obsavestring (name, strlen (name), 1817 &objfile->objfile_obstack); 1818 1819 /* C++ fancies. */ 1820 1821 if (name && strcmp (name, "char") == 0) 1822 TYPE_NOSIGN (type) = 1; 1823 1824 switch (code) 1825 { 1826 case TYPE_CODE_STRUCT: 1827 case TYPE_CODE_UNION: 1828 case TYPE_CODE_NAMESPACE: 1829 INIT_CPLUS_SPECIFIC (type); 1830 break; 1831 case TYPE_CODE_FLT: 1832 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT; 1833 break; 1834 case TYPE_CODE_FUNC: 1835 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CALLING_CONVENTION; 1836 break; 1837 } 1838 return type; 1839 } 1840 1841 int 1842 can_dereference (struct type *t) 1843 { 1844 /* FIXME: Should we return true for references as well as 1845 pointers? */ 1846 CHECK_TYPEDEF (t); 1847 return 1848 (t != NULL 1849 && TYPE_CODE (t) == TYPE_CODE_PTR 1850 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID); 1851 } 1852 1853 int 1854 is_integral_type (struct type *t) 1855 { 1856 CHECK_TYPEDEF (t); 1857 return 1858 ((t != NULL) 1859 && ((TYPE_CODE (t) == TYPE_CODE_INT) 1860 || (TYPE_CODE (t) == TYPE_CODE_ENUM) 1861 || (TYPE_CODE (t) == TYPE_CODE_FLAGS) 1862 || (TYPE_CODE (t) == TYPE_CODE_CHAR) 1863 || (TYPE_CODE (t) == TYPE_CODE_RANGE) 1864 || (TYPE_CODE (t) == TYPE_CODE_BOOL))); 1865 } 1866 1867 /* A helper function which returns true if types A and B represent the 1868 "same" class type. This is true if the types have the same main 1869 type, or the same name. */ 1870 1871 int 1872 class_types_same_p (const struct type *a, const struct type *b) 1873 { 1874 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b) 1875 || (TYPE_NAME (a) && TYPE_NAME (b) 1876 && !strcmp (TYPE_NAME (a), TYPE_NAME (b)))); 1877 } 1878 1879 /* Check whether BASE is an ancestor or base class or DCLASS 1880 Return 1 if so, and 0 if not. 1881 Note: callers may want to check for identity of the types before 1882 calling this function -- identical types are considered to satisfy 1883 the ancestor relationship even if they're identical. */ 1884 1885 int 1886 is_ancestor (struct type *base, struct type *dclass) 1887 { 1888 int i; 1889 1890 CHECK_TYPEDEF (base); 1891 CHECK_TYPEDEF (dclass); 1892 1893 if (class_types_same_p (base, dclass)) 1894 return 1; 1895 1896 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++) 1897 { 1898 if (is_ancestor (base, TYPE_BASECLASS (dclass, i))) 1899 return 1; 1900 } 1901 1902 return 0; 1903 } 1904 1905 /* Like is_ancestor, but only returns true when BASE is a public 1906 ancestor of DCLASS. */ 1907 1908 int 1909 is_public_ancestor (struct type *base, struct type *dclass) 1910 { 1911 int i; 1912 1913 CHECK_TYPEDEF (base); 1914 CHECK_TYPEDEF (dclass); 1915 1916 if (class_types_same_p (base, dclass)) 1917 return 1; 1918 1919 for (i = 0; i < TYPE_N_BASECLASSES (dclass); ++i) 1920 { 1921 if (! BASETYPE_VIA_PUBLIC (dclass, i)) 1922 continue; 1923 if (is_public_ancestor (base, TYPE_BASECLASS (dclass, i))) 1924 return 1; 1925 } 1926 1927 return 0; 1928 } 1929 1930 /* A helper function for is_unique_ancestor. */ 1931 1932 static int 1933 is_unique_ancestor_worker (struct type *base, struct type *dclass, 1934 int *offset, 1935 const bfd_byte *contents, CORE_ADDR address) 1936 { 1937 int i, count = 0; 1938 1939 CHECK_TYPEDEF (base); 1940 CHECK_TYPEDEF (dclass); 1941 1942 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i) 1943 { 1944 struct type *iter = check_typedef (TYPE_BASECLASS (dclass, i)); 1945 int this_offset = baseclass_offset (dclass, i, contents, address); 1946 1947 if (this_offset == -1) 1948 error (_("virtual baseclass botch")); 1949 1950 if (class_types_same_p (base, iter)) 1951 { 1952 /* If this is the first subclass, set *OFFSET and set count 1953 to 1. Otherwise, if this is at the same offset as 1954 previous instances, do nothing. Otherwise, increment 1955 count. */ 1956 if (*offset == -1) 1957 { 1958 *offset = this_offset; 1959 count = 1; 1960 } 1961 else if (this_offset == *offset) 1962 { 1963 /* Nothing. */ 1964 } 1965 else 1966 ++count; 1967 } 1968 else 1969 count += is_unique_ancestor_worker (base, iter, offset, 1970 contents + this_offset, 1971 address + this_offset); 1972 } 1973 1974 return count; 1975 } 1976 1977 /* Like is_ancestor, but only returns true if BASE is a unique base 1978 class of the type of VAL. */ 1979 1980 int 1981 is_unique_ancestor (struct type *base, struct value *val) 1982 { 1983 int offset = -1; 1984 1985 return is_unique_ancestor_worker (base, value_type (val), &offset, 1986 value_contents (val), 1987 value_address (val)) == 1; 1988 } 1989 1990 1991 1992 1993 /* Functions for overload resolution begin here */ 1994 1995 /* Compare two badness vectors A and B and return the result. 1996 0 => A and B are identical 1997 1 => A and B are incomparable 1998 2 => A is better than B 1999 3 => A is worse than B */ 2000 2001 int 2002 compare_badness (struct badness_vector *a, struct badness_vector *b) 2003 { 2004 int i; 2005 int tmp; 2006 short found_pos = 0; /* any positives in c? */ 2007 short found_neg = 0; /* any negatives in c? */ 2008 2009 /* differing lengths => incomparable */ 2010 if (a->length != b->length) 2011 return 1; 2012 2013 /* Subtract b from a */ 2014 for (i = 0; i < a->length; i++) 2015 { 2016 tmp = a->rank[i] - b->rank[i]; 2017 if (tmp > 0) 2018 found_pos = 1; 2019 else if (tmp < 0) 2020 found_neg = 1; 2021 } 2022 2023 if (found_pos) 2024 { 2025 if (found_neg) 2026 return 1; /* incomparable */ 2027 else 2028 return 3; /* A > B */ 2029 } 2030 else 2031 /* no positives */ 2032 { 2033 if (found_neg) 2034 return 2; /* A < B */ 2035 else 2036 return 0; /* A == B */ 2037 } 2038 } 2039 2040 /* Rank a function by comparing its parameter types (PARMS, length 2041 NPARMS), to the types of an argument list (ARGS, length NARGS). 2042 Return a pointer to a badness vector. This has NARGS + 1 2043 entries. */ 2044 2045 struct badness_vector * 2046 rank_function (struct type **parms, int nparms, 2047 struct type **args, int nargs) 2048 { 2049 int i; 2050 struct badness_vector *bv; 2051 int min_len = nparms < nargs ? nparms : nargs; 2052 2053 bv = xmalloc (sizeof (struct badness_vector)); 2054 bv->length = nargs + 1; /* add 1 for the length-match rank */ 2055 bv->rank = xmalloc ((nargs + 1) * sizeof (int)); 2056 2057 /* First compare the lengths of the supplied lists. 2058 If there is a mismatch, set it to a high value. */ 2059 2060 /* pai/1997-06-03 FIXME: when we have debug info about default 2061 arguments and ellipsis parameter lists, we should consider those 2062 and rank the length-match more finely. */ 2063 2064 LENGTH_MATCH (bv) = (nargs != nparms) ? LENGTH_MISMATCH_BADNESS : 0; 2065 2066 /* Now rank all the parameters of the candidate function */ 2067 for (i = 1; i <= min_len; i++) 2068 bv->rank[i] = rank_one_type (parms[i-1], args[i-1]); 2069 2070 /* If more arguments than parameters, add dummy entries */ 2071 for (i = min_len + 1; i <= nargs; i++) 2072 bv->rank[i] = TOO_FEW_PARAMS_BADNESS; 2073 2074 return bv; 2075 } 2076 2077 /* Compare the names of two integer types, assuming that any sign 2078 qualifiers have been checked already. We do it this way because 2079 there may be an "int" in the name of one of the types. */ 2080 2081 static int 2082 integer_types_same_name_p (const char *first, const char *second) 2083 { 2084 int first_p, second_p; 2085 2086 /* If both are shorts, return 1; if neither is a short, keep 2087 checking. */ 2088 first_p = (strstr (first, "short") != NULL); 2089 second_p = (strstr (second, "short") != NULL); 2090 if (first_p && second_p) 2091 return 1; 2092 if (first_p || second_p) 2093 return 0; 2094 2095 /* Likewise for long. */ 2096 first_p = (strstr (first, "long") != NULL); 2097 second_p = (strstr (second, "long") != NULL); 2098 if (first_p && second_p) 2099 return 1; 2100 if (first_p || second_p) 2101 return 0; 2102 2103 /* Likewise for char. */ 2104 first_p = (strstr (first, "char") != NULL); 2105 second_p = (strstr (second, "char") != NULL); 2106 if (first_p && second_p) 2107 return 1; 2108 if (first_p || second_p) 2109 return 0; 2110 2111 /* They must both be ints. */ 2112 return 1; 2113 } 2114 2115 /* Compare one type (PARM) for compatibility with another (ARG). 2116 * PARM is intended to be the parameter type of a function; and 2117 * ARG is the supplied argument's type. This function tests if 2118 * the latter can be converted to the former. 2119 * 2120 * Return 0 if they are identical types; 2121 * Otherwise, return an integer which corresponds to how compatible 2122 * PARM is to ARG. The higher the return value, the worse the match. 2123 * Generally the "bad" conversions are all uniformly assigned a 100. */ 2124 2125 int 2126 rank_one_type (struct type *parm, struct type *arg) 2127 { 2128 /* Identical type pointers. */ 2129 /* However, this still doesn't catch all cases of same type for arg 2130 and param. The reason is that builtin types are different from 2131 the same ones constructed from the object. */ 2132 if (parm == arg) 2133 return 0; 2134 2135 /* Resolve typedefs */ 2136 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF) 2137 parm = check_typedef (parm); 2138 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF) 2139 arg = check_typedef (arg); 2140 2141 /* 2142 Well, damnit, if the names are exactly the same, I'll say they 2143 are exactly the same. This happens when we generate method 2144 stubs. The types won't point to the same address, but they 2145 really are the same. 2146 */ 2147 2148 if (TYPE_NAME (parm) && TYPE_NAME (arg) 2149 && !strcmp (TYPE_NAME (parm), TYPE_NAME (arg))) 2150 return 0; 2151 2152 /* Check if identical after resolving typedefs. */ 2153 if (parm == arg) 2154 return 0; 2155 2156 /* See through references, since we can almost make non-references 2157 references. */ 2158 if (TYPE_CODE (arg) == TYPE_CODE_REF) 2159 return (rank_one_type (parm, TYPE_TARGET_TYPE (arg)) 2160 + REFERENCE_CONVERSION_BADNESS); 2161 if (TYPE_CODE (parm) == TYPE_CODE_REF) 2162 return (rank_one_type (TYPE_TARGET_TYPE (parm), arg) 2163 + REFERENCE_CONVERSION_BADNESS); 2164 if (overload_debug) 2165 /* Debugging only. */ 2166 fprintf_filtered (gdb_stderr, 2167 "------ Arg is %s [%d], parm is %s [%d]\n", 2168 TYPE_NAME (arg), TYPE_CODE (arg), 2169 TYPE_NAME (parm), TYPE_CODE (parm)); 2170 2171 /* x -> y means arg of type x being supplied for parameter of type y */ 2172 2173 switch (TYPE_CODE (parm)) 2174 { 2175 case TYPE_CODE_PTR: 2176 switch (TYPE_CODE (arg)) 2177 { 2178 case TYPE_CODE_PTR: 2179 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID 2180 && TYPE_CODE (TYPE_TARGET_TYPE (arg)) != TYPE_CODE_VOID) 2181 return VOID_PTR_CONVERSION_BADNESS; 2182 else 2183 return rank_one_type (TYPE_TARGET_TYPE (parm), 2184 TYPE_TARGET_TYPE (arg)); 2185 case TYPE_CODE_ARRAY: 2186 return rank_one_type (TYPE_TARGET_TYPE (parm), 2187 TYPE_TARGET_TYPE (arg)); 2188 case TYPE_CODE_FUNC: 2189 return rank_one_type (TYPE_TARGET_TYPE (parm), arg); 2190 case TYPE_CODE_INT: 2191 case TYPE_CODE_ENUM: 2192 case TYPE_CODE_FLAGS: 2193 case TYPE_CODE_CHAR: 2194 case TYPE_CODE_RANGE: 2195 case TYPE_CODE_BOOL: 2196 return POINTER_CONVERSION_BADNESS; 2197 default: 2198 return INCOMPATIBLE_TYPE_BADNESS; 2199 } 2200 case TYPE_CODE_ARRAY: 2201 switch (TYPE_CODE (arg)) 2202 { 2203 case TYPE_CODE_PTR: 2204 case TYPE_CODE_ARRAY: 2205 return rank_one_type (TYPE_TARGET_TYPE (parm), 2206 TYPE_TARGET_TYPE (arg)); 2207 default: 2208 return INCOMPATIBLE_TYPE_BADNESS; 2209 } 2210 case TYPE_CODE_FUNC: 2211 switch (TYPE_CODE (arg)) 2212 { 2213 case TYPE_CODE_PTR: /* funcptr -> func */ 2214 return rank_one_type (parm, TYPE_TARGET_TYPE (arg)); 2215 default: 2216 return INCOMPATIBLE_TYPE_BADNESS; 2217 } 2218 case TYPE_CODE_INT: 2219 switch (TYPE_CODE (arg)) 2220 { 2221 case TYPE_CODE_INT: 2222 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm)) 2223 { 2224 /* Deal with signed, unsigned, and plain chars and 2225 signed and unsigned ints. */ 2226 if (TYPE_NOSIGN (parm)) 2227 { 2228 /* This case only for character types */ 2229 if (TYPE_NOSIGN (arg)) 2230 return 0; /* plain char -> plain char */ 2231 else /* signed/unsigned char -> plain char */ 2232 return INTEGER_CONVERSION_BADNESS; 2233 } 2234 else if (TYPE_UNSIGNED (parm)) 2235 { 2236 if (TYPE_UNSIGNED (arg)) 2237 { 2238 /* unsigned int -> unsigned int, or 2239 unsigned long -> unsigned long */ 2240 if (integer_types_same_name_p (TYPE_NAME (parm), 2241 TYPE_NAME (arg))) 2242 return 0; 2243 else if (integer_types_same_name_p (TYPE_NAME (arg), 2244 "int") 2245 && integer_types_same_name_p (TYPE_NAME (parm), 2246 "long")) 2247 return INTEGER_PROMOTION_BADNESS; /* unsigned int -> unsigned long */ 2248 else 2249 return INTEGER_CONVERSION_BADNESS; /* unsigned long -> unsigned int */ 2250 } 2251 else 2252 { 2253 if (integer_types_same_name_p (TYPE_NAME (arg), 2254 "long") 2255 && integer_types_same_name_p (TYPE_NAME (parm), 2256 "int")) 2257 return INTEGER_CONVERSION_BADNESS; /* signed long -> unsigned int */ 2258 else 2259 return INTEGER_CONVERSION_BADNESS; /* signed int/long -> unsigned int/long */ 2260 } 2261 } 2262 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg)) 2263 { 2264 if (integer_types_same_name_p (TYPE_NAME (parm), 2265 TYPE_NAME (arg))) 2266 return 0; 2267 else if (integer_types_same_name_p (TYPE_NAME (arg), 2268 "int") 2269 && integer_types_same_name_p (TYPE_NAME (parm), 2270 "long")) 2271 return INTEGER_PROMOTION_BADNESS; 2272 else 2273 return INTEGER_CONVERSION_BADNESS; 2274 } 2275 else 2276 return INTEGER_CONVERSION_BADNESS; 2277 } 2278 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm)) 2279 return INTEGER_PROMOTION_BADNESS; 2280 else 2281 return INTEGER_CONVERSION_BADNESS; 2282 case TYPE_CODE_ENUM: 2283 case TYPE_CODE_FLAGS: 2284 case TYPE_CODE_CHAR: 2285 case TYPE_CODE_RANGE: 2286 case TYPE_CODE_BOOL: 2287 return INTEGER_PROMOTION_BADNESS; 2288 case TYPE_CODE_FLT: 2289 return INT_FLOAT_CONVERSION_BADNESS; 2290 case TYPE_CODE_PTR: 2291 return NS_POINTER_CONVERSION_BADNESS; 2292 default: 2293 return INCOMPATIBLE_TYPE_BADNESS; 2294 } 2295 break; 2296 case TYPE_CODE_ENUM: 2297 switch (TYPE_CODE (arg)) 2298 { 2299 case TYPE_CODE_INT: 2300 case TYPE_CODE_CHAR: 2301 case TYPE_CODE_RANGE: 2302 case TYPE_CODE_BOOL: 2303 case TYPE_CODE_ENUM: 2304 return INTEGER_CONVERSION_BADNESS; 2305 case TYPE_CODE_FLT: 2306 return INT_FLOAT_CONVERSION_BADNESS; 2307 default: 2308 return INCOMPATIBLE_TYPE_BADNESS; 2309 } 2310 break; 2311 case TYPE_CODE_CHAR: 2312 switch (TYPE_CODE (arg)) 2313 { 2314 case TYPE_CODE_RANGE: 2315 case TYPE_CODE_BOOL: 2316 case TYPE_CODE_ENUM: 2317 return INTEGER_CONVERSION_BADNESS; 2318 case TYPE_CODE_FLT: 2319 return INT_FLOAT_CONVERSION_BADNESS; 2320 case TYPE_CODE_INT: 2321 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm)) 2322 return INTEGER_CONVERSION_BADNESS; 2323 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm)) 2324 return INTEGER_PROMOTION_BADNESS; 2325 /* >>> !! else fall through !! <<< */ 2326 case TYPE_CODE_CHAR: 2327 /* Deal with signed, unsigned, and plain chars for C++ and 2328 with int cases falling through from previous case. */ 2329 if (TYPE_NOSIGN (parm)) 2330 { 2331 if (TYPE_NOSIGN (arg)) 2332 return 0; 2333 else 2334 return INTEGER_CONVERSION_BADNESS; 2335 } 2336 else if (TYPE_UNSIGNED (parm)) 2337 { 2338 if (TYPE_UNSIGNED (arg)) 2339 return 0; 2340 else 2341 return INTEGER_PROMOTION_BADNESS; 2342 } 2343 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg)) 2344 return 0; 2345 else 2346 return INTEGER_CONVERSION_BADNESS; 2347 default: 2348 return INCOMPATIBLE_TYPE_BADNESS; 2349 } 2350 break; 2351 case TYPE_CODE_RANGE: 2352 switch (TYPE_CODE (arg)) 2353 { 2354 case TYPE_CODE_INT: 2355 case TYPE_CODE_CHAR: 2356 case TYPE_CODE_RANGE: 2357 case TYPE_CODE_BOOL: 2358 case TYPE_CODE_ENUM: 2359 return INTEGER_CONVERSION_BADNESS; 2360 case TYPE_CODE_FLT: 2361 return INT_FLOAT_CONVERSION_BADNESS; 2362 default: 2363 return INCOMPATIBLE_TYPE_BADNESS; 2364 } 2365 break; 2366 case TYPE_CODE_BOOL: 2367 switch (TYPE_CODE (arg)) 2368 { 2369 case TYPE_CODE_INT: 2370 case TYPE_CODE_CHAR: 2371 case TYPE_CODE_RANGE: 2372 case TYPE_CODE_ENUM: 2373 case TYPE_CODE_FLT: 2374 case TYPE_CODE_PTR: 2375 return BOOLEAN_CONVERSION_BADNESS; 2376 case TYPE_CODE_BOOL: 2377 return 0; 2378 default: 2379 return INCOMPATIBLE_TYPE_BADNESS; 2380 } 2381 break; 2382 case TYPE_CODE_FLT: 2383 switch (TYPE_CODE (arg)) 2384 { 2385 case TYPE_CODE_FLT: 2386 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm)) 2387 return FLOAT_PROMOTION_BADNESS; 2388 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm)) 2389 return 0; 2390 else 2391 return FLOAT_CONVERSION_BADNESS; 2392 case TYPE_CODE_INT: 2393 case TYPE_CODE_BOOL: 2394 case TYPE_CODE_ENUM: 2395 case TYPE_CODE_RANGE: 2396 case TYPE_CODE_CHAR: 2397 return INT_FLOAT_CONVERSION_BADNESS; 2398 default: 2399 return INCOMPATIBLE_TYPE_BADNESS; 2400 } 2401 break; 2402 case TYPE_CODE_COMPLEX: 2403 switch (TYPE_CODE (arg)) 2404 { /* Strictly not needed for C++, but... */ 2405 case TYPE_CODE_FLT: 2406 return FLOAT_PROMOTION_BADNESS; 2407 case TYPE_CODE_COMPLEX: 2408 return 0; 2409 default: 2410 return INCOMPATIBLE_TYPE_BADNESS; 2411 } 2412 break; 2413 case TYPE_CODE_STRUCT: 2414 /* currently same as TYPE_CODE_CLASS */ 2415 switch (TYPE_CODE (arg)) 2416 { 2417 case TYPE_CODE_STRUCT: 2418 /* Check for derivation */ 2419 if (is_ancestor (parm, arg)) 2420 return BASE_CONVERSION_BADNESS; 2421 /* else fall through */ 2422 default: 2423 return INCOMPATIBLE_TYPE_BADNESS; 2424 } 2425 break; 2426 case TYPE_CODE_UNION: 2427 switch (TYPE_CODE (arg)) 2428 { 2429 case TYPE_CODE_UNION: 2430 default: 2431 return INCOMPATIBLE_TYPE_BADNESS; 2432 } 2433 break; 2434 case TYPE_CODE_MEMBERPTR: 2435 switch (TYPE_CODE (arg)) 2436 { 2437 default: 2438 return INCOMPATIBLE_TYPE_BADNESS; 2439 } 2440 break; 2441 case TYPE_CODE_METHOD: 2442 switch (TYPE_CODE (arg)) 2443 { 2444 2445 default: 2446 return INCOMPATIBLE_TYPE_BADNESS; 2447 } 2448 break; 2449 case TYPE_CODE_REF: 2450 switch (TYPE_CODE (arg)) 2451 { 2452 2453 default: 2454 return INCOMPATIBLE_TYPE_BADNESS; 2455 } 2456 2457 break; 2458 case TYPE_CODE_SET: 2459 switch (TYPE_CODE (arg)) 2460 { 2461 /* Not in C++ */ 2462 case TYPE_CODE_SET: 2463 return rank_one_type (TYPE_FIELD_TYPE (parm, 0), 2464 TYPE_FIELD_TYPE (arg, 0)); 2465 default: 2466 return INCOMPATIBLE_TYPE_BADNESS; 2467 } 2468 break; 2469 case TYPE_CODE_VOID: 2470 default: 2471 return INCOMPATIBLE_TYPE_BADNESS; 2472 } /* switch (TYPE_CODE (arg)) */ 2473 } 2474 2475 2476 /* End of functions for overload resolution */ 2477 2478 static void 2479 print_bit_vector (B_TYPE *bits, int nbits) 2480 { 2481 int bitno; 2482 2483 for (bitno = 0; bitno < nbits; bitno++) 2484 { 2485 if ((bitno % 8) == 0) 2486 { 2487 puts_filtered (" "); 2488 } 2489 if (B_TST (bits, bitno)) 2490 printf_filtered (("1")); 2491 else 2492 printf_filtered (("0")); 2493 } 2494 } 2495 2496 /* Note the first arg should be the "this" pointer, we may not want to 2497 include it since we may get into a infinitely recursive 2498 situation. */ 2499 2500 static void 2501 print_arg_types (struct field *args, int nargs, int spaces) 2502 { 2503 if (args != NULL) 2504 { 2505 int i; 2506 2507 for (i = 0; i < nargs; i++) 2508 recursive_dump_type (args[i].type, spaces + 2); 2509 } 2510 } 2511 2512 int 2513 field_is_static (struct field *f) 2514 { 2515 /* "static" fields are the fields whose location is not relative 2516 to the address of the enclosing struct. It would be nice to 2517 have a dedicated flag that would be set for static fields when 2518 the type is being created. But in practice, checking the field 2519 loc_kind should give us an accurate answer. */ 2520 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME 2521 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR); 2522 } 2523 2524 static void 2525 dump_fn_fieldlists (struct type *type, int spaces) 2526 { 2527 int method_idx; 2528 int overload_idx; 2529 struct fn_field *f; 2530 2531 printfi_filtered (spaces, "fn_fieldlists "); 2532 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout); 2533 printf_filtered ("\n"); 2534 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++) 2535 { 2536 f = TYPE_FN_FIELDLIST1 (type, method_idx); 2537 printfi_filtered (spaces + 2, "[%d] name '%s' (", 2538 method_idx, 2539 TYPE_FN_FIELDLIST_NAME (type, method_idx)); 2540 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx), 2541 gdb_stdout); 2542 printf_filtered (_(") length %d\n"), 2543 TYPE_FN_FIELDLIST_LENGTH (type, method_idx)); 2544 for (overload_idx = 0; 2545 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx); 2546 overload_idx++) 2547 { 2548 printfi_filtered (spaces + 4, "[%d] physname '%s' (", 2549 overload_idx, 2550 TYPE_FN_FIELD_PHYSNAME (f, overload_idx)); 2551 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx), 2552 gdb_stdout); 2553 printf_filtered (")\n"); 2554 printfi_filtered (spaces + 8, "type "); 2555 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx), 2556 gdb_stdout); 2557 printf_filtered ("\n"); 2558 2559 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx), 2560 spaces + 8 + 2); 2561 2562 printfi_filtered (spaces + 8, "args "); 2563 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx), 2564 gdb_stdout); 2565 printf_filtered ("\n"); 2566 2567 print_arg_types (TYPE_FN_FIELD_ARGS (f, overload_idx), 2568 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, 2569 overload_idx)), 2570 spaces); 2571 printfi_filtered (spaces + 8, "fcontext "); 2572 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx), 2573 gdb_stdout); 2574 printf_filtered ("\n"); 2575 2576 printfi_filtered (spaces + 8, "is_const %d\n", 2577 TYPE_FN_FIELD_CONST (f, overload_idx)); 2578 printfi_filtered (spaces + 8, "is_volatile %d\n", 2579 TYPE_FN_FIELD_VOLATILE (f, overload_idx)); 2580 printfi_filtered (spaces + 8, "is_private %d\n", 2581 TYPE_FN_FIELD_PRIVATE (f, overload_idx)); 2582 printfi_filtered (spaces + 8, "is_protected %d\n", 2583 TYPE_FN_FIELD_PROTECTED (f, overload_idx)); 2584 printfi_filtered (spaces + 8, "is_stub %d\n", 2585 TYPE_FN_FIELD_STUB (f, overload_idx)); 2586 printfi_filtered (spaces + 8, "voffset %u\n", 2587 TYPE_FN_FIELD_VOFFSET (f, overload_idx)); 2588 } 2589 } 2590 } 2591 2592 static void 2593 print_cplus_stuff (struct type *type, int spaces) 2594 { 2595 printfi_filtered (spaces, "n_baseclasses %d\n", 2596 TYPE_N_BASECLASSES (type)); 2597 printfi_filtered (spaces, "nfn_fields %d\n", 2598 TYPE_NFN_FIELDS (type)); 2599 printfi_filtered (spaces, "nfn_fields_total %d\n", 2600 TYPE_NFN_FIELDS_TOTAL (type)); 2601 if (TYPE_N_BASECLASSES (type) > 0) 2602 { 2603 printfi_filtered (spaces, "virtual_field_bits (%d bits at *", 2604 TYPE_N_BASECLASSES (type)); 2605 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type), 2606 gdb_stdout); 2607 printf_filtered (")"); 2608 2609 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type), 2610 TYPE_N_BASECLASSES (type)); 2611 puts_filtered ("\n"); 2612 } 2613 if (TYPE_NFIELDS (type) > 0) 2614 { 2615 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL) 2616 { 2617 printfi_filtered (spaces, 2618 "private_field_bits (%d bits at *", 2619 TYPE_NFIELDS (type)); 2620 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type), 2621 gdb_stdout); 2622 printf_filtered (")"); 2623 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type), 2624 TYPE_NFIELDS (type)); 2625 puts_filtered ("\n"); 2626 } 2627 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL) 2628 { 2629 printfi_filtered (spaces, 2630 "protected_field_bits (%d bits at *", 2631 TYPE_NFIELDS (type)); 2632 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type), 2633 gdb_stdout); 2634 printf_filtered (")"); 2635 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type), 2636 TYPE_NFIELDS (type)); 2637 puts_filtered ("\n"); 2638 } 2639 } 2640 if (TYPE_NFN_FIELDS (type) > 0) 2641 { 2642 dump_fn_fieldlists (type, spaces); 2643 } 2644 } 2645 2646 /* Print the contents of the TYPE's type_specific union, assuming that 2647 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */ 2648 2649 static void 2650 print_gnat_stuff (struct type *type, int spaces) 2651 { 2652 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type); 2653 2654 recursive_dump_type (descriptive_type, spaces + 2); 2655 } 2656 2657 static struct obstack dont_print_type_obstack; 2658 2659 void 2660 recursive_dump_type (struct type *type, int spaces) 2661 { 2662 int idx; 2663 2664 if (spaces == 0) 2665 obstack_begin (&dont_print_type_obstack, 0); 2666 2667 if (TYPE_NFIELDS (type) > 0 2668 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0)) 2669 { 2670 struct type **first_dont_print 2671 = (struct type **) obstack_base (&dont_print_type_obstack); 2672 2673 int i = (struct type **) 2674 obstack_next_free (&dont_print_type_obstack) - first_dont_print; 2675 2676 while (--i >= 0) 2677 { 2678 if (type == first_dont_print[i]) 2679 { 2680 printfi_filtered (spaces, "type node "); 2681 gdb_print_host_address (type, gdb_stdout); 2682 printf_filtered (_(" <same as already seen type>\n")); 2683 return; 2684 } 2685 } 2686 2687 obstack_ptr_grow (&dont_print_type_obstack, type); 2688 } 2689 2690 printfi_filtered (spaces, "type node "); 2691 gdb_print_host_address (type, gdb_stdout); 2692 printf_filtered ("\n"); 2693 printfi_filtered (spaces, "name '%s' (", 2694 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>"); 2695 gdb_print_host_address (TYPE_NAME (type), gdb_stdout); 2696 printf_filtered (")\n"); 2697 printfi_filtered (spaces, "tagname '%s' (", 2698 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>"); 2699 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout); 2700 printf_filtered (")\n"); 2701 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type)); 2702 switch (TYPE_CODE (type)) 2703 { 2704 case TYPE_CODE_UNDEF: 2705 printf_filtered ("(TYPE_CODE_UNDEF)"); 2706 break; 2707 case TYPE_CODE_PTR: 2708 printf_filtered ("(TYPE_CODE_PTR)"); 2709 break; 2710 case TYPE_CODE_ARRAY: 2711 printf_filtered ("(TYPE_CODE_ARRAY)"); 2712 break; 2713 case TYPE_CODE_STRUCT: 2714 printf_filtered ("(TYPE_CODE_STRUCT)"); 2715 break; 2716 case TYPE_CODE_UNION: 2717 printf_filtered ("(TYPE_CODE_UNION)"); 2718 break; 2719 case TYPE_CODE_ENUM: 2720 printf_filtered ("(TYPE_CODE_ENUM)"); 2721 break; 2722 case TYPE_CODE_FLAGS: 2723 printf_filtered ("(TYPE_CODE_FLAGS)"); 2724 break; 2725 case TYPE_CODE_FUNC: 2726 printf_filtered ("(TYPE_CODE_FUNC)"); 2727 break; 2728 case TYPE_CODE_INT: 2729 printf_filtered ("(TYPE_CODE_INT)"); 2730 break; 2731 case TYPE_CODE_FLT: 2732 printf_filtered ("(TYPE_CODE_FLT)"); 2733 break; 2734 case TYPE_CODE_VOID: 2735 printf_filtered ("(TYPE_CODE_VOID)"); 2736 break; 2737 case TYPE_CODE_SET: 2738 printf_filtered ("(TYPE_CODE_SET)"); 2739 break; 2740 case TYPE_CODE_RANGE: 2741 printf_filtered ("(TYPE_CODE_RANGE)"); 2742 break; 2743 case TYPE_CODE_STRING: 2744 printf_filtered ("(TYPE_CODE_STRING)"); 2745 break; 2746 case TYPE_CODE_BITSTRING: 2747 printf_filtered ("(TYPE_CODE_BITSTRING)"); 2748 break; 2749 case TYPE_CODE_ERROR: 2750 printf_filtered ("(TYPE_CODE_ERROR)"); 2751 break; 2752 case TYPE_CODE_MEMBERPTR: 2753 printf_filtered ("(TYPE_CODE_MEMBERPTR)"); 2754 break; 2755 case TYPE_CODE_METHODPTR: 2756 printf_filtered ("(TYPE_CODE_METHODPTR)"); 2757 break; 2758 case TYPE_CODE_METHOD: 2759 printf_filtered ("(TYPE_CODE_METHOD)"); 2760 break; 2761 case TYPE_CODE_REF: 2762 printf_filtered ("(TYPE_CODE_REF)"); 2763 break; 2764 case TYPE_CODE_CHAR: 2765 printf_filtered ("(TYPE_CODE_CHAR)"); 2766 break; 2767 case TYPE_CODE_BOOL: 2768 printf_filtered ("(TYPE_CODE_BOOL)"); 2769 break; 2770 case TYPE_CODE_COMPLEX: 2771 printf_filtered ("(TYPE_CODE_COMPLEX)"); 2772 break; 2773 case TYPE_CODE_TYPEDEF: 2774 printf_filtered ("(TYPE_CODE_TYPEDEF)"); 2775 break; 2776 case TYPE_CODE_NAMESPACE: 2777 printf_filtered ("(TYPE_CODE_NAMESPACE)"); 2778 break; 2779 default: 2780 printf_filtered ("(UNKNOWN TYPE CODE)"); 2781 break; 2782 } 2783 puts_filtered ("\n"); 2784 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type)); 2785 if (TYPE_OBJFILE_OWNED (type)) 2786 { 2787 printfi_filtered (spaces, "objfile "); 2788 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout); 2789 } 2790 else 2791 { 2792 printfi_filtered (spaces, "gdbarch "); 2793 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout); 2794 } 2795 printf_filtered ("\n"); 2796 printfi_filtered (spaces, "target_type "); 2797 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout); 2798 printf_filtered ("\n"); 2799 if (TYPE_TARGET_TYPE (type) != NULL) 2800 { 2801 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2); 2802 } 2803 printfi_filtered (spaces, "pointer_type "); 2804 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout); 2805 printf_filtered ("\n"); 2806 printfi_filtered (spaces, "reference_type "); 2807 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout); 2808 printf_filtered ("\n"); 2809 printfi_filtered (spaces, "type_chain "); 2810 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout); 2811 printf_filtered ("\n"); 2812 printfi_filtered (spaces, "instance_flags 0x%x", 2813 TYPE_INSTANCE_FLAGS (type)); 2814 if (TYPE_CONST (type)) 2815 { 2816 puts_filtered (" TYPE_FLAG_CONST"); 2817 } 2818 if (TYPE_VOLATILE (type)) 2819 { 2820 puts_filtered (" TYPE_FLAG_VOLATILE"); 2821 } 2822 if (TYPE_CODE_SPACE (type)) 2823 { 2824 puts_filtered (" TYPE_FLAG_CODE_SPACE"); 2825 } 2826 if (TYPE_DATA_SPACE (type)) 2827 { 2828 puts_filtered (" TYPE_FLAG_DATA_SPACE"); 2829 } 2830 if (TYPE_ADDRESS_CLASS_1 (type)) 2831 { 2832 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1"); 2833 } 2834 if (TYPE_ADDRESS_CLASS_2 (type)) 2835 { 2836 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2"); 2837 } 2838 puts_filtered ("\n"); 2839 2840 printfi_filtered (spaces, "flags"); 2841 if (TYPE_UNSIGNED (type)) 2842 { 2843 puts_filtered (" TYPE_FLAG_UNSIGNED"); 2844 } 2845 if (TYPE_NOSIGN (type)) 2846 { 2847 puts_filtered (" TYPE_FLAG_NOSIGN"); 2848 } 2849 if (TYPE_STUB (type)) 2850 { 2851 puts_filtered (" TYPE_FLAG_STUB"); 2852 } 2853 if (TYPE_TARGET_STUB (type)) 2854 { 2855 puts_filtered (" TYPE_FLAG_TARGET_STUB"); 2856 } 2857 if (TYPE_STATIC (type)) 2858 { 2859 puts_filtered (" TYPE_FLAG_STATIC"); 2860 } 2861 if (TYPE_PROTOTYPED (type)) 2862 { 2863 puts_filtered (" TYPE_FLAG_PROTOTYPED"); 2864 } 2865 if (TYPE_INCOMPLETE (type)) 2866 { 2867 puts_filtered (" TYPE_FLAG_INCOMPLETE"); 2868 } 2869 if (TYPE_VARARGS (type)) 2870 { 2871 puts_filtered (" TYPE_FLAG_VARARGS"); 2872 } 2873 /* This is used for things like AltiVec registers on ppc. Gcc emits 2874 an attribute for the array type, which tells whether or not we 2875 have a vector, instead of a regular array. */ 2876 if (TYPE_VECTOR (type)) 2877 { 2878 puts_filtered (" TYPE_FLAG_VECTOR"); 2879 } 2880 if (TYPE_FIXED_INSTANCE (type)) 2881 { 2882 puts_filtered (" TYPE_FIXED_INSTANCE"); 2883 } 2884 if (TYPE_STUB_SUPPORTED (type)) 2885 { 2886 puts_filtered (" TYPE_STUB_SUPPORTED"); 2887 } 2888 if (TYPE_NOTTEXT (type)) 2889 { 2890 puts_filtered (" TYPE_NOTTEXT"); 2891 } 2892 puts_filtered ("\n"); 2893 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type)); 2894 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout); 2895 puts_filtered ("\n"); 2896 for (idx = 0; idx < TYPE_NFIELDS (type); idx++) 2897 { 2898 printfi_filtered (spaces + 2, 2899 "[%d] bitpos %d bitsize %d type ", 2900 idx, TYPE_FIELD_BITPOS (type, idx), 2901 TYPE_FIELD_BITSIZE (type, idx)); 2902 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout); 2903 printf_filtered (" name '%s' (", 2904 TYPE_FIELD_NAME (type, idx) != NULL 2905 ? TYPE_FIELD_NAME (type, idx) 2906 : "<NULL>"); 2907 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout); 2908 printf_filtered (")\n"); 2909 if (TYPE_FIELD_TYPE (type, idx) != NULL) 2910 { 2911 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4); 2912 } 2913 } 2914 if (TYPE_CODE (type) == TYPE_CODE_RANGE) 2915 { 2916 printfi_filtered (spaces, "low %s%s high %s%s\n", 2917 plongest (TYPE_LOW_BOUND (type)), 2918 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "", 2919 plongest (TYPE_HIGH_BOUND (type)), 2920 TYPE_HIGH_BOUND_UNDEFINED (type) ? " (undefined)" : ""); 2921 } 2922 printfi_filtered (spaces, "vptr_basetype "); 2923 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout); 2924 puts_filtered ("\n"); 2925 if (TYPE_VPTR_BASETYPE (type) != NULL) 2926 { 2927 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2); 2928 } 2929 printfi_filtered (spaces, "vptr_fieldno %d\n", 2930 TYPE_VPTR_FIELDNO (type)); 2931 2932 switch (TYPE_SPECIFIC_FIELD (type)) 2933 { 2934 case TYPE_SPECIFIC_CPLUS_STUFF: 2935 printfi_filtered (spaces, "cplus_stuff "); 2936 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type), 2937 gdb_stdout); 2938 puts_filtered ("\n"); 2939 print_cplus_stuff (type, spaces); 2940 break; 2941 2942 case TYPE_SPECIFIC_GNAT_STUFF: 2943 printfi_filtered (spaces, "gnat_stuff "); 2944 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout); 2945 puts_filtered ("\n"); 2946 print_gnat_stuff (type, spaces); 2947 break; 2948 2949 case TYPE_SPECIFIC_FLOATFORMAT: 2950 printfi_filtered (spaces, "floatformat "); 2951 if (TYPE_FLOATFORMAT (type) == NULL) 2952 puts_filtered ("(null)"); 2953 else 2954 { 2955 puts_filtered ("{ "); 2956 if (TYPE_FLOATFORMAT (type)[0] == NULL 2957 || TYPE_FLOATFORMAT (type)[0]->name == NULL) 2958 puts_filtered ("(null)"); 2959 else 2960 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name); 2961 2962 puts_filtered (", "); 2963 if (TYPE_FLOATFORMAT (type)[1] == NULL 2964 || TYPE_FLOATFORMAT (type)[1]->name == NULL) 2965 puts_filtered ("(null)"); 2966 else 2967 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name); 2968 2969 puts_filtered (" }"); 2970 } 2971 puts_filtered ("\n"); 2972 break; 2973 2974 case TYPE_SPECIFIC_CALLING_CONVENTION: 2975 printfi_filtered (spaces, "calling_convention %d\n", 2976 TYPE_CALLING_CONVENTION (type)); 2977 break; 2978 } 2979 2980 if (spaces == 0) 2981 obstack_free (&dont_print_type_obstack, NULL); 2982 } 2983 2984 /* Trivial helpers for the libiberty hash table, for mapping one 2985 type to another. */ 2986 2987 struct type_pair 2988 { 2989 struct type *old, *new; 2990 }; 2991 2992 static hashval_t 2993 type_pair_hash (const void *item) 2994 { 2995 const struct type_pair *pair = item; 2996 2997 return htab_hash_pointer (pair->old); 2998 } 2999 3000 static int 3001 type_pair_eq (const void *item_lhs, const void *item_rhs) 3002 { 3003 const struct type_pair *lhs = item_lhs, *rhs = item_rhs; 3004 3005 return lhs->old == rhs->old; 3006 } 3007 3008 /* Allocate the hash table used by copy_type_recursive to walk 3009 types without duplicates. We use OBJFILE's obstack, because 3010 OBJFILE is about to be deleted. */ 3011 3012 htab_t 3013 create_copied_types_hash (struct objfile *objfile) 3014 { 3015 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq, 3016 NULL, &objfile->objfile_obstack, 3017 hashtab_obstack_allocate, 3018 dummy_obstack_deallocate); 3019 } 3020 3021 /* Recursively copy (deep copy) TYPE, if it is associated with 3022 OBJFILE. Return a new type allocated using malloc, a saved type if 3023 we have already visited TYPE (using COPIED_TYPES), or TYPE if it is 3024 not associated with OBJFILE. */ 3025 3026 struct type * 3027 copy_type_recursive (struct objfile *objfile, 3028 struct type *type, 3029 htab_t copied_types) 3030 { 3031 struct type_pair *stored, pair; 3032 void **slot; 3033 struct type *new_type; 3034 3035 if (! TYPE_OBJFILE_OWNED (type)) 3036 return type; 3037 3038 /* This type shouldn't be pointing to any types in other objfiles; 3039 if it did, the type might disappear unexpectedly. */ 3040 gdb_assert (TYPE_OBJFILE (type) == objfile); 3041 3042 pair.old = type; 3043 slot = htab_find_slot (copied_types, &pair, INSERT); 3044 if (*slot != NULL) 3045 return ((struct type_pair *) *slot)->new; 3046 3047 new_type = alloc_type_arch (get_type_arch (type)); 3048 3049 /* We must add the new type to the hash table immediately, in case 3050 we encounter this type again during a recursive call below. */ 3051 stored = obstack_alloc (&objfile->objfile_obstack, sizeof (struct type_pair)); 3052 stored->old = type; 3053 stored->new = new_type; 3054 *slot = stored; 3055 3056 /* Copy the common fields of types. For the main type, we simply 3057 copy the entire thing and then update specific fields as needed. */ 3058 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type); 3059 TYPE_OBJFILE_OWNED (new_type) = 0; 3060 TYPE_OWNER (new_type).gdbarch = get_type_arch (type); 3061 3062 if (TYPE_NAME (type)) 3063 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type)); 3064 if (TYPE_TAG_NAME (type)) 3065 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type)); 3066 3067 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type); 3068 TYPE_LENGTH (new_type) = TYPE_LENGTH (type); 3069 3070 /* Copy the fields. */ 3071 if (TYPE_NFIELDS (type)) 3072 { 3073 int i, nfields; 3074 3075 nfields = TYPE_NFIELDS (type); 3076 TYPE_FIELDS (new_type) = XCALLOC (nfields, struct field); 3077 for (i = 0; i < nfields; i++) 3078 { 3079 TYPE_FIELD_ARTIFICIAL (new_type, i) = 3080 TYPE_FIELD_ARTIFICIAL (type, i); 3081 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i); 3082 if (TYPE_FIELD_TYPE (type, i)) 3083 TYPE_FIELD_TYPE (new_type, i) 3084 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i), 3085 copied_types); 3086 if (TYPE_FIELD_NAME (type, i)) 3087 TYPE_FIELD_NAME (new_type, i) = 3088 xstrdup (TYPE_FIELD_NAME (type, i)); 3089 switch (TYPE_FIELD_LOC_KIND (type, i)) 3090 { 3091 case FIELD_LOC_KIND_BITPOS: 3092 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i), 3093 TYPE_FIELD_BITPOS (type, i)); 3094 break; 3095 case FIELD_LOC_KIND_PHYSADDR: 3096 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i), 3097 TYPE_FIELD_STATIC_PHYSADDR (type, i)); 3098 break; 3099 case FIELD_LOC_KIND_PHYSNAME: 3100 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i), 3101 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type, 3102 i))); 3103 break; 3104 default: 3105 internal_error (__FILE__, __LINE__, 3106 _("Unexpected type field location kind: %d"), 3107 TYPE_FIELD_LOC_KIND (type, i)); 3108 } 3109 } 3110 } 3111 3112 /* For range types, copy the bounds information. */ 3113 if (TYPE_CODE (type) == TYPE_CODE_RANGE) 3114 { 3115 TYPE_RANGE_DATA (new_type) = xmalloc (sizeof (struct range_bounds)); 3116 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type); 3117 } 3118 3119 /* Copy pointers to other types. */ 3120 if (TYPE_TARGET_TYPE (type)) 3121 TYPE_TARGET_TYPE (new_type) = 3122 copy_type_recursive (objfile, 3123 TYPE_TARGET_TYPE (type), 3124 copied_types); 3125 if (TYPE_VPTR_BASETYPE (type)) 3126 TYPE_VPTR_BASETYPE (new_type) = 3127 copy_type_recursive (objfile, 3128 TYPE_VPTR_BASETYPE (type), 3129 copied_types); 3130 /* Maybe copy the type_specific bits. 3131 3132 NOTE drow/2005-12-09: We do not copy the C++-specific bits like 3133 base classes and methods. There's no fundamental reason why we 3134 can't, but at the moment it is not needed. */ 3135 3136 if (TYPE_CODE (type) == TYPE_CODE_FLT) 3137 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type); 3138 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT 3139 || TYPE_CODE (type) == TYPE_CODE_UNION 3140 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE) 3141 INIT_CPLUS_SPECIFIC (new_type); 3142 3143 return new_type; 3144 } 3145 3146 /* Make a copy of the given TYPE, except that the pointer & reference 3147 types are not preserved. 3148 3149 This function assumes that the given type has an associated objfile. 3150 This objfile is used to allocate the new type. */ 3151 3152 struct type * 3153 copy_type (const struct type *type) 3154 { 3155 struct type *new_type; 3156 3157 gdb_assert (TYPE_OBJFILE_OWNED (type)); 3158 3159 new_type = alloc_type_copy (type); 3160 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type); 3161 TYPE_LENGTH (new_type) = TYPE_LENGTH (type); 3162 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type), 3163 sizeof (struct main_type)); 3164 3165 return new_type; 3166 } 3167 3168 3169 /* Helper functions to initialize architecture-specific types. */ 3170 3171 /* Allocate a type structure associated with GDBARCH and set its 3172 CODE, LENGTH, and NAME fields. */ 3173 struct type * 3174 arch_type (struct gdbarch *gdbarch, 3175 enum type_code code, int length, char *name) 3176 { 3177 struct type *type; 3178 3179 type = alloc_type_arch (gdbarch); 3180 TYPE_CODE (type) = code; 3181 TYPE_LENGTH (type) = length; 3182 3183 if (name) 3184 TYPE_NAME (type) = xstrdup (name); 3185 3186 return type; 3187 } 3188 3189 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH. 3190 BIT is the type size in bits. If UNSIGNED_P is non-zero, set 3191 the type's TYPE_UNSIGNED flag. NAME is the type name. */ 3192 struct type * 3193 arch_integer_type (struct gdbarch *gdbarch, 3194 int bit, int unsigned_p, char *name) 3195 { 3196 struct type *t; 3197 3198 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name); 3199 if (unsigned_p) 3200 TYPE_UNSIGNED (t) = 1; 3201 if (name && strcmp (name, "char") == 0) 3202 TYPE_NOSIGN (t) = 1; 3203 3204 return t; 3205 } 3206 3207 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH. 3208 BIT is the type size in bits. If UNSIGNED_P is non-zero, set 3209 the type's TYPE_UNSIGNED flag. NAME is the type name. */ 3210 struct type * 3211 arch_character_type (struct gdbarch *gdbarch, 3212 int bit, int unsigned_p, char *name) 3213 { 3214 struct type *t; 3215 3216 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name); 3217 if (unsigned_p) 3218 TYPE_UNSIGNED (t) = 1; 3219 3220 return t; 3221 } 3222 3223 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH. 3224 BIT is the type size in bits. If UNSIGNED_P is non-zero, set 3225 the type's TYPE_UNSIGNED flag. NAME is the type name. */ 3226 struct type * 3227 arch_boolean_type (struct gdbarch *gdbarch, 3228 int bit, int unsigned_p, char *name) 3229 { 3230 struct type *t; 3231 3232 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name); 3233 if (unsigned_p) 3234 TYPE_UNSIGNED (t) = 1; 3235 3236 return t; 3237 } 3238 3239 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH. 3240 BIT is the type size in bits; if BIT equals -1, the size is 3241 determined by the floatformat. NAME is the type name. Set the 3242 TYPE_FLOATFORMAT from FLOATFORMATS. */ 3243 struct type * 3244 arch_float_type (struct gdbarch *gdbarch, 3245 int bit, char *name, const struct floatformat **floatformats) 3246 { 3247 struct type *t; 3248 3249 if (bit == -1) 3250 { 3251 gdb_assert (floatformats != NULL); 3252 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL); 3253 bit = floatformats[0]->totalsize; 3254 } 3255 gdb_assert (bit >= 0); 3256 3257 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name); 3258 TYPE_FLOATFORMAT (t) = floatformats; 3259 return t; 3260 } 3261 3262 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH. 3263 NAME is the type name. TARGET_TYPE is the component float type. */ 3264 struct type * 3265 arch_complex_type (struct gdbarch *gdbarch, 3266 char *name, struct type *target_type) 3267 { 3268 struct type *t; 3269 3270 t = arch_type (gdbarch, TYPE_CODE_COMPLEX, 3271 2 * TYPE_LENGTH (target_type), name); 3272 TYPE_TARGET_TYPE (t) = target_type; 3273 return t; 3274 } 3275 3276 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH. 3277 NAME is the type name. LENGTH is the size of the flag word in bytes. */ 3278 struct type * 3279 arch_flags_type (struct gdbarch *gdbarch, char *name, int length) 3280 { 3281 int nfields = length * TARGET_CHAR_BIT; 3282 struct type *type; 3283 3284 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name); 3285 TYPE_UNSIGNED (type) = 1; 3286 TYPE_NFIELDS (type) = nfields; 3287 TYPE_FIELDS (type) = TYPE_ZALLOC (type, nfields * sizeof (struct field)); 3288 3289 return type; 3290 } 3291 3292 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at 3293 position BITPOS is called NAME. */ 3294 void 3295 append_flags_type_flag (struct type *type, int bitpos, char *name) 3296 { 3297 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS); 3298 gdb_assert (bitpos < TYPE_NFIELDS (type)); 3299 gdb_assert (bitpos >= 0); 3300 3301 if (name) 3302 { 3303 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name); 3304 TYPE_FIELD_BITPOS (type, bitpos) = bitpos; 3305 } 3306 else 3307 { 3308 /* Don't show this field to the user. */ 3309 TYPE_FIELD_BITPOS (type, bitpos) = -1; 3310 } 3311 } 3312 3313 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as 3314 specified by CODE) associated with GDBARCH. NAME is the type name. */ 3315 struct type * 3316 arch_composite_type (struct gdbarch *gdbarch, char *name, enum type_code code) 3317 { 3318 struct type *t; 3319 3320 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION); 3321 t = arch_type (gdbarch, code, 0, NULL); 3322 TYPE_TAG_NAME (t) = name; 3323 INIT_CPLUS_SPECIFIC (t); 3324 return t; 3325 } 3326 3327 /* Add new field with name NAME and type FIELD to composite type T. 3328 Do not set the field's position or adjust the type's length; 3329 the caller should do so. Return the new field. */ 3330 struct field * 3331 append_composite_type_field_raw (struct type *t, char *name, 3332 struct type *field) 3333 { 3334 struct field *f; 3335 3336 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1; 3337 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t), 3338 sizeof (struct field) * TYPE_NFIELDS (t)); 3339 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]); 3340 memset (f, 0, sizeof f[0]); 3341 FIELD_TYPE (f[0]) = field; 3342 FIELD_NAME (f[0]) = name; 3343 return f; 3344 } 3345 3346 /* Add new field with name NAME and type FIELD to composite type T. 3347 ALIGNMENT (if non-zero) specifies the minimum field alignment. */ 3348 void 3349 append_composite_type_field_aligned (struct type *t, char *name, 3350 struct type *field, int alignment) 3351 { 3352 struct field *f = append_composite_type_field_raw (t, name, field); 3353 3354 if (TYPE_CODE (t) == TYPE_CODE_UNION) 3355 { 3356 if (TYPE_LENGTH (t) < TYPE_LENGTH (field)) 3357 TYPE_LENGTH (t) = TYPE_LENGTH (field); 3358 } 3359 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT) 3360 { 3361 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field); 3362 if (TYPE_NFIELDS (t) > 1) 3363 { 3364 FIELD_BITPOS (f[0]) = (FIELD_BITPOS (f[-1]) 3365 + (TYPE_LENGTH (FIELD_TYPE (f[-1])) 3366 * TARGET_CHAR_BIT)); 3367 3368 if (alignment) 3369 { 3370 int left = FIELD_BITPOS (f[0]) % (alignment * TARGET_CHAR_BIT); 3371 3372 if (left) 3373 { 3374 FIELD_BITPOS (f[0]) += left; 3375 TYPE_LENGTH (t) += left / TARGET_CHAR_BIT; 3376 } 3377 } 3378 } 3379 } 3380 } 3381 3382 /* Add new field with name NAME and type FIELD to composite type T. */ 3383 void 3384 append_composite_type_field (struct type *t, char *name, 3385 struct type *field) 3386 { 3387 append_composite_type_field_aligned (t, name, field, 0); 3388 } 3389 3390 3391 static struct gdbarch_data *gdbtypes_data; 3392 3393 const struct builtin_type * 3394 builtin_type (struct gdbarch *gdbarch) 3395 { 3396 return gdbarch_data (gdbarch, gdbtypes_data); 3397 } 3398 3399 static void * 3400 gdbtypes_post_init (struct gdbarch *gdbarch) 3401 { 3402 struct builtin_type *builtin_type 3403 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type); 3404 3405 /* Basic types. */ 3406 builtin_type->builtin_void 3407 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"); 3408 builtin_type->builtin_char 3409 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 3410 !gdbarch_char_signed (gdbarch), "char"); 3411 builtin_type->builtin_signed_char 3412 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 3413 0, "signed char"); 3414 builtin_type->builtin_unsigned_char 3415 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 3416 1, "unsigned char"); 3417 builtin_type->builtin_short 3418 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch), 3419 0, "short"); 3420 builtin_type->builtin_unsigned_short 3421 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch), 3422 1, "unsigned short"); 3423 builtin_type->builtin_int 3424 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), 3425 0, "int"); 3426 builtin_type->builtin_unsigned_int 3427 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), 3428 1, "unsigned int"); 3429 builtin_type->builtin_long 3430 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch), 3431 0, "long"); 3432 builtin_type->builtin_unsigned_long 3433 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch), 3434 1, "unsigned long"); 3435 builtin_type->builtin_long_long 3436 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch), 3437 0, "long long"); 3438 builtin_type->builtin_unsigned_long_long 3439 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch), 3440 1, "unsigned long long"); 3441 builtin_type->builtin_float 3442 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch), 3443 "float", gdbarch_float_format (gdbarch)); 3444 builtin_type->builtin_double 3445 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch), 3446 "double", gdbarch_double_format (gdbarch)); 3447 builtin_type->builtin_long_double 3448 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch), 3449 "long double", gdbarch_long_double_format (gdbarch)); 3450 builtin_type->builtin_complex 3451 = arch_complex_type (gdbarch, "complex", 3452 builtin_type->builtin_float); 3453 builtin_type->builtin_double_complex 3454 = arch_complex_type (gdbarch, "double complex", 3455 builtin_type->builtin_double); 3456 builtin_type->builtin_string 3457 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string"); 3458 builtin_type->builtin_bool 3459 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool"); 3460 3461 /* The following three are about decimal floating point types, which 3462 are 32-bits, 64-bits and 128-bits respectively. */ 3463 builtin_type->builtin_decfloat 3464 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 32 / 8, "_Decimal32"); 3465 builtin_type->builtin_decdouble 3466 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 64 / 8, "_Decimal64"); 3467 builtin_type->builtin_declong 3468 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 128 / 8, "_Decimal128"); 3469 3470 /* "True" character types. */ 3471 builtin_type->builtin_true_char 3472 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character"); 3473 builtin_type->builtin_true_unsigned_char 3474 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character"); 3475 3476 /* Fixed-size integer types. */ 3477 builtin_type->builtin_int0 3478 = arch_integer_type (gdbarch, 0, 0, "int0_t"); 3479 builtin_type->builtin_int8 3480 = arch_integer_type (gdbarch, 8, 0, "int8_t"); 3481 builtin_type->builtin_uint8 3482 = arch_integer_type (gdbarch, 8, 1, "uint8_t"); 3483 builtin_type->builtin_int16 3484 = arch_integer_type (gdbarch, 16, 0, "int16_t"); 3485 builtin_type->builtin_uint16 3486 = arch_integer_type (gdbarch, 16, 1, "uint16_t"); 3487 builtin_type->builtin_int32 3488 = arch_integer_type (gdbarch, 32, 0, "int32_t"); 3489 builtin_type->builtin_uint32 3490 = arch_integer_type (gdbarch, 32, 1, "uint32_t"); 3491 builtin_type->builtin_int64 3492 = arch_integer_type (gdbarch, 64, 0, "int64_t"); 3493 builtin_type->builtin_uint64 3494 = arch_integer_type (gdbarch, 64, 1, "uint64_t"); 3495 builtin_type->builtin_int128 3496 = arch_integer_type (gdbarch, 128, 0, "int128_t"); 3497 builtin_type->builtin_uint128 3498 = arch_integer_type (gdbarch, 128, 1, "uint128_t"); 3499 TYPE_NOTTEXT (builtin_type->builtin_int8) = 1; 3500 TYPE_NOTTEXT (builtin_type->builtin_uint8) = 1; 3501 3502 /* Wide character types. */ 3503 builtin_type->builtin_char16 3504 = arch_integer_type (gdbarch, 16, 0, "char16_t"); 3505 builtin_type->builtin_char32 3506 = arch_integer_type (gdbarch, 32, 0, "char32_t"); 3507 3508 3509 /* Default data/code pointer types. */ 3510 builtin_type->builtin_data_ptr 3511 = lookup_pointer_type (builtin_type->builtin_void); 3512 builtin_type->builtin_func_ptr 3513 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void)); 3514 3515 /* This type represents a GDB internal function. */ 3516 builtin_type->internal_fn 3517 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0, 3518 "<internal function>"); 3519 3520 return builtin_type; 3521 } 3522 3523 3524 /* This set of objfile-based types is intended to be used by symbol 3525 readers as basic types. */ 3526 3527 static const struct objfile_data *objfile_type_data; 3528 3529 const struct objfile_type * 3530 objfile_type (struct objfile *objfile) 3531 { 3532 struct gdbarch *gdbarch; 3533 struct objfile_type *objfile_type 3534 = objfile_data (objfile, objfile_type_data); 3535 3536 if (objfile_type) 3537 return objfile_type; 3538 3539 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack, 3540 1, struct objfile_type); 3541 3542 /* Use the objfile architecture to determine basic type properties. */ 3543 gdbarch = get_objfile_arch (objfile); 3544 3545 /* Basic types. */ 3546 objfile_type->builtin_void 3547 = init_type (TYPE_CODE_VOID, 1, 3548 0, 3549 "void", objfile); 3550 3551 objfile_type->builtin_char 3552 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT, 3553 (TYPE_FLAG_NOSIGN 3554 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)), 3555 "char", objfile); 3556 objfile_type->builtin_signed_char 3557 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT, 3558 0, 3559 "signed char", objfile); 3560 objfile_type->builtin_unsigned_char 3561 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT, 3562 TYPE_FLAG_UNSIGNED, 3563 "unsigned char", objfile); 3564 objfile_type->builtin_short 3565 = init_type (TYPE_CODE_INT, 3566 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT, 3567 0, "short", objfile); 3568 objfile_type->builtin_unsigned_short 3569 = init_type (TYPE_CODE_INT, 3570 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT, 3571 TYPE_FLAG_UNSIGNED, "unsigned short", objfile); 3572 objfile_type->builtin_int 3573 = init_type (TYPE_CODE_INT, 3574 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT, 3575 0, "int", objfile); 3576 objfile_type->builtin_unsigned_int 3577 = init_type (TYPE_CODE_INT, 3578 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT, 3579 TYPE_FLAG_UNSIGNED, "unsigned int", objfile); 3580 objfile_type->builtin_long 3581 = init_type (TYPE_CODE_INT, 3582 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT, 3583 0, "long", objfile); 3584 objfile_type->builtin_unsigned_long 3585 = init_type (TYPE_CODE_INT, 3586 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT, 3587 TYPE_FLAG_UNSIGNED, "unsigned long", objfile); 3588 objfile_type->builtin_long_long 3589 = init_type (TYPE_CODE_INT, 3590 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT, 3591 0, "long long", objfile); 3592 objfile_type->builtin_unsigned_long_long 3593 = init_type (TYPE_CODE_INT, 3594 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT, 3595 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile); 3596 3597 objfile_type->builtin_float 3598 = init_type (TYPE_CODE_FLT, 3599 gdbarch_float_bit (gdbarch) / TARGET_CHAR_BIT, 3600 0, "float", objfile); 3601 TYPE_FLOATFORMAT (objfile_type->builtin_float) 3602 = gdbarch_float_format (gdbarch); 3603 objfile_type->builtin_double 3604 = init_type (TYPE_CODE_FLT, 3605 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT, 3606 0, "double", objfile); 3607 TYPE_FLOATFORMAT (objfile_type->builtin_double) 3608 = gdbarch_double_format (gdbarch); 3609 objfile_type->builtin_long_double 3610 = init_type (TYPE_CODE_FLT, 3611 gdbarch_long_double_bit (gdbarch) / TARGET_CHAR_BIT, 3612 0, "long double", objfile); 3613 TYPE_FLOATFORMAT (objfile_type->builtin_long_double) 3614 = gdbarch_long_double_format (gdbarch); 3615 3616 /* This type represents a type that was unrecognized in symbol read-in. */ 3617 objfile_type->builtin_error 3618 = init_type (TYPE_CODE_ERROR, 0, 0, "<unknown type>", objfile); 3619 3620 /* The following set of types is used for symbols with no 3621 debug information. */ 3622 objfile_type->nodebug_text_symbol 3623 = init_type (TYPE_CODE_FUNC, 1, 0, 3624 "<text variable, no debug info>", objfile); 3625 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol) 3626 = objfile_type->builtin_int; 3627 objfile_type->nodebug_data_symbol 3628 = init_type (TYPE_CODE_INT, 3629 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0, 3630 "<data variable, no debug info>", objfile); 3631 objfile_type->nodebug_unknown_symbol 3632 = init_type (TYPE_CODE_INT, 1, 0, 3633 "<variable (not text or data), no debug info>", objfile); 3634 objfile_type->nodebug_tls_symbol 3635 = init_type (TYPE_CODE_INT, 3636 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0, 3637 "<thread local variable, no debug info>", objfile); 3638 3639 /* NOTE: on some targets, addresses and pointers are not necessarily 3640 the same --- for example, on the D10V, pointers are 16 bits long, 3641 but addresses are 32 bits long. See doc/gdbint.texinfo, 3642 ``Pointers Are Not Always Addresses''. 3643 3644 The upshot is: 3645 - gdb's `struct type' always describes the target's 3646 representation. 3647 - gdb's `struct value' objects should always hold values in 3648 target form. 3649 - gdb's CORE_ADDR values are addresses in the unified virtual 3650 address space that the assembler and linker work with. Thus, 3651 since target_read_memory takes a CORE_ADDR as an argument, it 3652 can access any memory on the target, even if the processor has 3653 separate code and data address spaces. 3654 3655 So, for example: 3656 - If v is a value holding a D10V code pointer, its contents are 3657 in target form: a big-endian address left-shifted two bits. 3658 - If p is a D10V pointer type, TYPE_LENGTH (p) == 2, just as 3659 sizeof (void *) == 2 on the target. 3660 3661 In this context, objfile_type->builtin_core_addr is a bit odd: 3662 it's a target type for a value the target will never see. It's 3663 only used to hold the values of (typeless) linker symbols, which 3664 are indeed in the unified virtual address space. */ 3665 3666 objfile_type->builtin_core_addr 3667 = init_type (TYPE_CODE_INT, 3668 gdbarch_addr_bit (gdbarch) / 8, 3669 TYPE_FLAG_UNSIGNED, "__CORE_ADDR", objfile); 3670 3671 set_objfile_data (objfile, objfile_type_data, objfile_type); 3672 return objfile_type; 3673 } 3674 3675 3676 extern void _initialize_gdbtypes (void); 3677 void 3678 _initialize_gdbtypes (void) 3679 { 3680 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init); 3681 objfile_type_data = register_objfile_data (); 3682 3683 add_setshow_zinteger_cmd ("overload", no_class, &overload_debug, _("\ 3684 Set debugging of C++ overloading."), _("\ 3685 Show debugging of C++ overloading."), _("\ 3686 When enabled, ranking of the functions is displayed."), 3687 NULL, 3688 show_overload_debug, 3689 &setdebuglist, &showdebuglist); 3690 3691 /* Add user knob for controlling resolution of opaque types. */ 3692 add_setshow_boolean_cmd ("opaque-type-resolution", class_support, 3693 &opaque_type_resolution, _("\ 3694 Set resolution of opaque struct/class/union types (if set before loading symbols)."), _("\ 3695 Show resolution of opaque struct/class/union types (if set before loading symbols)."), NULL, 3696 NULL, 3697 show_opaque_type_resolution, 3698 &setlist, &showlist); 3699 } 3700